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1. Introduction

Let H = H(U) denote the class of analytic functions in the open unit disk
U={z€C:|z| <1}. For a € C, let

Hla,n] ={f € H: f(2) = a+ apz" + app1 2" +--- }.

Let f and F' be members of H. The function f is said to be subordinate to F,
or I is said to be superordinate to f, if there exists a function w analytic in U,
with w(0) = 0 and |w(z)| < 1, and such that f(z) = F(w(2)). In such a case,
we write f < F or f(z) < F(z).-If the functionF is univalent in U, then f < F
if and only if f(0) = F(0) and f(U) C F(U) (cf. [8)).

Definition 1.1 [7]. Let ¢ : C* — C and let h be univalent in U. If p is

analytic in U and satisfies the differential subordination

¢(p(2), 2p'(2)) < (), (1.1)

then p is called a solution of the differential subordination. The univalent function
q is called a dominant of the solutions of the differential subordination, or more
simply a dominant if p < ¢ for all p satisfying (1.1). A'dominant ¢ that satisfies
G < q for all dominants-q of (1.1)'is said to bethe best dominant.

Definition 1.2 [8]. Let ¢ : C*=C and let h be analytic in U. If p and

©(p(z),zp'(z)) are univalent in U and satisfy the differential superordination

h(z) < ¢(p(2), 2p'(2)), (1.2)

then p is called a solution of the differential superordination. An analytic func-
tion ¢ is called a subordinant of the solutions of the differential superordination,
or more simply a subordinant if ¢ < p for all p satisfying (1.2). A univalent
subordinant ¢ that satisfies ¢ < ¢ for all subordinants ¢ of (1.2) is said to be the

best subordinant.



Definition 1.3 [8]. We denote by Q the class of functions f that are ana-
lytic and injective on U\ E(f), where

B(f) = {c € OV lim f(2) = oo},

and are such that f'({) # 0 for ¢ € OU\E(f).

Let M denote the class of all meromorphic functions of the form

1 00
Z) = ; + Zakzk
k=0

which are analytic in the-annulus D = {2z : 0 < |z]-< 1} with an additional

condition

ii_r)r(l)zf(z) # 0/ (z&D).

The Hadamard product or convolution of two functions f and ¢ in M will be
denoted by f * g.
Let

1

D" fz)= ST f(z) (z&D) (1.3)

or, equivalently,

D4z _1( n+1f )(n)
z
1 (n+2)(n+1)

== 1
Z+ n+ 1)ag + o

(n+k+1)...(n+1)
(k+1)!

For various interesting developments involving the operators D™ for functions

a1z + -

apz® + ... (z€D).

belonging to M, the reader may be refereed to the recent works of Uralegaddi
and Path[13], and others[14,15]. It is easily verified from (1.3) that
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2D"f(2)) = (n+1)D" " f(2) — (n +2)D" f(2). (1.4)

Making use of the principle of subordination between analytic functions, Miller
et al. [9] obtained some subordination theorems involving certain integral oper-
ators for analytic functions in U. Also Owa and Srivastava [10] investigated
the subordination properties of certain integral operators (see also [1]). More-
over, Miller and Mocanu [8] considered differential superordinations, as the dual
problem of differential subordinations (see also [2]). In the present paper, we
investigate the subordination and superordination preserving properties of the

multiplier transformation D™ defined by (1.3)with the sandwich-type theorem.

The following lemmas will be required in our present investigation.

Lemma 1.1/[5].  Suppose that the function H : C* — C satisfies the condi-

tion:

Re{H (is,t)} <0,
for all real s and.t < —n(1+ s*)/2, where n is a positive integer. If the function
p(z) = 1+ pp2™ + - isianalytic in U and

Re{H (p(2),2p'(2))} > 0-(z € U),

then Re{p(z)} >0 in U.

Lemma 1.2 [6]. Let 3,7 € C with 8 # 0 and let h € H(U) with h(0) = c.
If Re{Bh(z) +~} > 0 (z € U), then the solution of the differential equation

) s

with q(0) = ¢ is analytic in U and satisfies Re{Bq(z) +~v} >0 (z € U).



Lemma 1.3 [7]. Let p € Q with p(0) =a and let q(z) = a+ a,z™ +--- be
analytic in U with q(z) Z a and n > 1. If q is not subordinate to p, then there
exist points zy = roe? € U and ¢, € U\ E(f), for which ¢(U,,) C p(U),

q(20) = p(Co) and 204 (20) = mlop'(Co) (m > n).

A function L(z,t) defined on Ux [0, c0) is the subordination chain (or Léwner
chain) if L(-,t) is analytic and univalent in U for all ¢ € [0, 00), L(z,-) is contin-

uously differentiable on [0, 00) forall z € U and L(z,s) < L(z,t) for 0 < s <.

Lemma 1.4 [8]. - Let q € Hla, 1], let ¢ : C* — C and set p(q(z),2¢'(2)) = h(z).
If L(z,t) = ©(q(2),t2¢'(2)) is a subordination chain and p € Hla,1] N Q, then

h(Z) < o(p(2),2p'(2)) (2 € V)

implies that

¢(2)y <p(z) (= €0).

Furthermore, if ©(q(2),2¢(2)) =h(z) has a univalent solution q € Q, then q is

the best subordinant.

Lemma 1.5 [11]. The function L(z,t) = ai(t)z + --- with ay(t) # 0 and
lim; o a1 (t)| = oco. Suppose that L(-;t) ia analytic in U for all t > 0, L(z;-)
is continuously differentiable on [0,00) for all z € U. If L(z;t) satisfies

|L(z;t)] < Kolay(t)] (|z] <ro<1; 0 <t < o0))

for some positive constants Ko and ro and

e { 20L(z,1)/0z

-0 <
OL(=.1) /01 }>0 (z€eU; 0<t <o),

4



then L(z;t) is a subordination chain.

2. Main Results

Firstly, we begin by proving the following subordination theorem involving

the multiplier transformation D™ defined by (1.3).

Theorem 2.1. Let f,g € M. Suppose that

SRELC 1

(z €U; ¢(z) == (L—a)zD"g(z) + azD"g(z); 0 < a < 1),

where

("4 1)° g 00T ) — (1 S8
4(1 — o )(EE )
If f and g satisfy the following subordination condition :

5:

(1 — a)zD™f(2) + azD"(2) < (L =a)2D"g(2) + azD"g(2),

then

2D"f(2) < zD"g(z2).
Moreover, the function zD"g(z) is the best dominant.

Proof.  Let us define the functions F' and G by

F(z):=2D"f(z) and G(z):=2D"g(z2),

(2.2)

(2.3)

(2.5)

respectively. Without loss of generality, we can assume that G is analytic and
univalent on U and G’(¢) # 0 for |¢| = 1. Otherwise, we replace F' and G
by F.(z) = F(rz) and G,(z) = G(rz) for 0 < r < 1, respectively. Then



these functions satisty the conditions of the theorem on U. We can prove that
F,.(z) < G.(2), which enables us to obtain (2.4) on letting r — 1.
We first show that, if the function ¢ is defined by

2G"(2)
G'(2)

q(z) =1+ (z € D), (2.6)

then

Re{q(z)} >0 (z€T).

Taking the logarithmic differentiation-on both sides of the second equation in
(2.5) and using (1.4) for g € M, we obtain

(n+ Do(2) =An +1)G(z) + (1 — a)zG'(2) (2.7)

Now, by differentiating both sides of (2.7), we obtain

(4 1)z (D= (1 - 0)-G2) (q<z> i

which, in conjuction with (2.7), yields the relationship:

(n+1)>7

l—a

2¢" (2)~ & () 2q'(2)
o TR i+ /1) .
— ulz 2q'(2) _ (s '
B O R TRy R
From (2.1), we have
Re {h(z) + (?j;)} >0 (2 €U),

and by using Lemma 1.2, we conclude that the differential equation (2.8) has a
solution ¢ € H(U) with ¢(0) = h(0) = 1.
Let us put



v
u+(n+1)/(1—-a)
where ¢ is given by (2.2). From (2.1), (2.8) and (2.9), we obtain

H(u,v) =u+ +9, (2.9)

Re{H(q(2),2¢'(2))} >0 (2 € ).

Now we proceed to show that Re{H (is,t)} < 0 for all real s and t < —(1+s%)/2.

From (2.9), we have

t

Re{H (is,t)} = Re {is—f— BT 1) T—a) +5}

_H(n+1)/(1 )
Cn+ D /(1— a) +is|? S (2.10)
E(;(s)

2[(n+1)/(1 —a) +is|?’

where

Bs(s),:= (M R 25) 1 & (25 YLy 1) L (2.11)

l-a -« 1-a
For § given by (2.2), we can prove easily that the expression Ejs(s) given by (2.11)
is positive or equal to zero.. Hence from (2.9), we see that Re{H (is,t)} < 0 for
all real s and t < —(1 + s?)/2. Thus, by using Lemma 1.1, we conclude that
Re{q(z)} > 0 for all z € U. That is, G is convex in U.

Next, we prove that the subordination condition (2.3) implies that

F(z) < G(2) (2.12)

for the functions F' and G defined by (2.5). For this purpose, we consider the
function L(z,t) given by

(1—a)(1+1)

L(z,t) == G(z) + T

2G'(2) (2 €U; 0<t<o0).



We note that

OL(z,t)
0z

n+1+(1—a)(l+t)
n+1

:G’(O)( )¢O(O§t<oo;)\>0).

z=0

This shows that the function

L(z,t) =ay(t)z+---

satisfies the condition ay(t) # 0 for all ¢ € [0,00). By using the well-known
growth and distortion theorems for convex functions, it is easy to check that the

first part of Lemma 1.5 is-satisfied. Furthermore, we have

Re{%} — Re{%+(l—l—t) (1+ Zg/;(z';))} >0,

since G is convex and (n+1)/(1 — «) > 0. Therefore, by virtue of Lemma 1.5,
L(z,t) is a subordination chain. We observe from the definition of a subordination

chain that

and

L(z,0) < L(z,t) (0 <t < 00).

This implies that

L(¢,t) ¢ L(U,0) = ¢(U)

for ( € OU and t € [0, 00).
Now suppose that F' is not subordinate to GG, then by Lemma 1.3, there exists
points zp € U and (, € JU such that



F(z) = G(¢) and zoF'(20) = (1 + )G (¢) (0 <t < 0).

Hence we have

16 t) = (@) + =20 (g
= F(z) + :l_ ?zOF'(zo)

= (1 —a)z%D"" f(20) + azD" f(20) € ¢(U),

by virtue of the subordination condition (2.3). This-contradicts the above obser-
vation that L((p,t) ¢ ¢(U). Therefore, the subordination condition (2.3) must
imply the subordination given by (2.12). Considering F(z) = G(z), we see that
the function G is best dominant. This evidently completes the proof of Theorem
2.1.

Remark 2.1. We note that ¢ given by (2.2) in Theorem 2.1 satisfies the
inequality 0 < 0 < 1/2.

We next prove a.dual problem of Theorem 2.1, in the sense that the subordi-
nations are replaced by-superordinations.
Theorem 2.2. Let f,g € M. Suppose that
/!
Re{1+ 20 <z)} > =4

¢'(2)
(z€U; ¢(z) == (1 —a)zD"g(z) + azD"g(2); 0 < < 1),

where § is given by (2.2). If (1 — «)zD"M f(2) + azD"f(z) is univalent in U
and zD"f(z) € H[1,1] N Q, then

(1—a)zD"g(2) + azD"g(2) < (1 — a)zD" " f(2) + azD" f(2) (2.13)



implies that

zD"g(z) < zD" f(z).
Moreover, the function zD"g(z) is the best subordinant.

Proof.  The first part of the proof is similar to that of Theorem 2.1 and so
we will use the same notation as in the proof of Theorem 2.1.

Now let us define the functions F' and G, respectively, by (2.5). We first note
that, if the function ¢ is defined by (2.6), by using (2.7), then we obtain

l—«a

¢(2) = G(2) + 2G'(2)

n+1 (2.14)
=: p(G(2),2G'(2)).

After a simple caleulation, Eq. (2.13) yields the relationship:

2¢"(2) 2q (2)
P ——— SR (2)- .
s8R D/ )
Then by using the same method as in the proof of Theorem 2.1, we can prove
that Re{q(z)} > 0for all’z € U. That is, G defined by«(2.5) is convex(univalent)
in U.

Next, we prove that the subordination ‘condition (2.13) implies that

G(z) < F(2) (2.15)

for the functions F' and G defined by (2.5). Now consider the function L(z,t)
defined by

(1—a)t
n+1
Since G is convex and (1 —«a)/(n+ 1) > 0, we can prove easily that L(z,t) is

L(z,t) :=G(z) +

2G'(2) (z€U; 0<t < 0).

a subordination chain as in the proof of Theorem 2.1. Therefore according to

10



Lemma 1.4, we conclude that the superordination condition (2.13) must imply
the superordination given by (2.15). Furthermore, since the differential equa-
tion (2.14) has the univalent solution G, it is the best subordinant of the given

differential superordination. Therefore we complete the proof of Theorem 2.2.

If we combine this Theorem 2.1 and Theorem 2.2, then we obtain the following

sandwich-type theorem.

Theorem 2.3. Let f,g, € M(k =1,2). Suppose also that

e {1205 > s

(z € U; ¢u(2) :==A1 —a)2D"g(z) + azD"gi(2); k=1,2; 0 < <p),
(2.16)
where § 1is given by (2:2). If(1 = @)zD"t f(2) + azD"f(z) s univalent in U
and zD"f(z) € H[1,1] N Q, then

(1 —a)zD" g (2) + azD"g1(2) < (1 — @)D" f(2) +azD"f(2)
< (1 —a)zD"gy(2) +'azD"gy(2)

implies that

2D"g1(z) < zD" f(z) < 2D"ga(2).

Moreover, the functions zD™g,(z) and zD"gs(2) are the best subordinant and the

best dominant, respectively.

Since the assumption of Theorem 2.3, that the functions (1—a)zD" ™! f(2)+azD" f(2)
and zD"f(z) need to be univalent in U, is not so easy to check, we will replace

these conditions by another conditions in the following result.

Corollary 2.1. Let f, g, € M(k =1,2). Suppose that the condition (2.16)

15 satisfied and

11



Z¢H(Z) B
Re{l—i— () }> )
(z € U; ¥(2) = (1 — a)zD"" f(2) + azD"f(2)) , (2.17)

where § is given by (2.2). Then

(1 —a)zD"g1(2) + azD"gy(2) < (1 — a)zD" ™ f(2) + azD" f(2)
< (1 —a)zD" M gy(2) + azD"gy(2)

implies that

2D"qi(z) < zD" f(z) < 2D"gs(2).

Moreover, the functions zD™g(2) and zD"gs(z) are the best subordinant and the

best dominant, respectively.

Proof.  In order to prove Corollary 2.1, we have to show that the condition
(2.17) implies the univalence of 1(z) and F(z) := zD"f(z). Since 0 < § < 1/2
from Remark 2.1, the condition (2.17) means that 1 is a close-to-convex function
in U (see [4]) and hence ?) is univalent in U. Furthermore, by using the same
tecnniques as in the proof of Theorem 2.1, we can'prove the convexity(univalence)
of F' and so the details may be-omitted:~Therefore; from Theorem 2.3, we obtain

Corollary 2.1.

Setting n =0, @ = 0 in Theorem 2.3, we have the following result.
Corollary 2.2. Let f,gx € M(k =1,2). Suppose that

{5

(z € U; ¢p(z) := 2gp(2) + 22gx(2); k=1,2).

If 22f'(2) + 22 f(2) is univalent in U and zf(z) € H[1,1]N Q, then

12



291 (2) + 2201(2) < 2°f'(2) + 22 (2) < 205 (2) + 2202(2)

implies that

2g1(2) < 2f(2) < zg2(2).

Moreover, the functions zgi(z) and zgs(z) are the best subordinant and the best

dominant, respectively.
Next, we consider the integral operator F, defined by (cf. [3,14,15])

d

FAN@ = — /0 “EFdE (c50). (2.18)

Now, we obtain the following result involving the integral operator defined by
(2.18).

Theorem 2.4 Let f,g € M. Suppose that

Re {1 + Z¢’/(Z)} A5

¢'(z)
el o(2) ‘= 2D%gE2)7, (2.19)
where
P ;(;'1_02’ (c>0). (2.20)

If f and g satisfy the following subordination condition :

zD" f(z) < 2D"g(2),

then

2D"F.(f)(z) < zD"F.(9)(2).

13



Moreover, the function zD"F,(g)(z) is the best dominant.

Proof.  Let us define the functions F' and G by

F(z):=2zD"F.(f)(z) and G(z):=zD"F.(g)(2),

respectively. Without loss of generality, as in the proof of Theorem 2.1, we can
assume that G is analytic and univalent on U and G’(¢) # 0 for (| = 1.
From the definition of the integral operator F, defined by (2.18), we obtain

2(D"Fo(f)(2)) = cD"f(2) = (c + 1)D"Fu(f)(2) (2.21)

Then from (2.19) and (2:21), we have

ch(a)=cG(2P+2G (2). (2.22)

Setting
uf 2G"(2)
and differentiating both sides of (2.22), we obtain

(Z € U)7

N ()

¢'(2) q(2)+c

The remaining part of the proof is similar to that of Theorem 2.1 and so we may

omit for the proof involved.

We state a dual problem of Theorem 2.4, which can be obtained by using the

similar techniques as in the proof of Theorem 2.2.
Theorem 2.5. Let f,g € M. Suppose also that

Re {1 + zj(g)} > 5

(2 €U ¢(2) = 2D"g(2)) ,

14



where § is given by (2.20). If zD™f(z) is univalent in U and zD"F.(f)(z) € H[1,1]NQ,
then

2D"g(z) < zD" f(2)

implies that

2D"Fo(9)(2) < 2D"Fo(f)(2).

Moreover, the function zD"F.(g)(2) is the best subordinant.

If we combine this Theorem 2.5 and Theorem 2.6, then we obtain the following
result.

Theorem 2.6. Let f,g, € M(k =1,2). Suppose also that

Z¢g<z)}
Req1+ )
{ 1, (2)
(z € UMOR(ZIN= - B =11, 2) | (2.23)

where 0 is given by (2.20). If zD" f(2) is univalent in U and zD"F.(f)(z) € H[1,1]NQ,
then

2D"gi(z) = 2D™f(2) < 2D"gs(z)

implies that

2D"F.(q1)(2) < 2D"F.(f)(2) < 2D"F.(92)(2).

Moreover, the functions zD"F.(g1)(z) and zD™F.(g2)(z) are the best subordinant

and the best dominant, respectively.

By using the same methods as in the proof of Corollary 2,1, we have the

following result.

15



Corollary 2.3. Let f,gr € M(k =1,2). Suppose that the condition (2.23)

is satisfied and

e O

(z € U; Yp(z) :=2zD"f(2)),
where § is given by (2.20). Then

2D"g1(z) < zD"f(z) < 2zD"gs(2)

implies that

2D Fe(91)(2) < 2D"Fo(f)(2) < 2D"Fe(ga)().
Moreover, the functions zD"Fuo(g1)(2) and 2zD™F.(g2)(z) are the best subordinant
and the best dominant, respectively.
Taking n = 0 in Theorem 2.6, we have the following result.
Corollary 2.4. Let f, g, €3(k = 1,2). Suppose that

Re {1 + Zi’f(f))} ~)

(z € U; gu(2)=2q(2); k=1,2),
where § is given by (2.20). If zf(z) is univalent in U and zF.(f)(z) € H[1,1]NQ,
then

291(2) < 2f(2) < 2ga(2)

implies that

2Fe(g1)(2) < 2Fe(f)(2) < 2Fu(g2)(2).

16



Moreover, the functions zF.(g1)(z) and zF.(g2)(z) are the best subordinant and

the best dominant, respectively.
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