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1. Introduction

Let X denote the class of functions of the form

a_1

f(z) = -t mzzoamzm (a—1 #0),
which are analytic in the punctured open unit disk D = {z : z € C and 0 < 2| < 1}.
For analytic functions ¢ and h with ¢(0) = h(0), g is said to be subordinate
to h if there exists an analytic function w such that w(0) = 0,|w(z)| < 1 for
2€U=DU{0}, and ¢(z2) = h(w(z)). We denote this subordination by g < h
or g(z) < h(z).

Following Uralegaddi and Somanatha [8,9], we define

D’ f(z) =4C2);
le(z) = E+2ao—1-36L1z—|—4012z2_|_... :
2

D*f(z) = D' (D f(2)),

and
D" f(z) = D(D"""f(z))
> 1.1
=%+mz:2m"am_gzm_2 (neN={1,2,---}, z€D). (1)
Let

Sn; A, B] = {f ey —Z(g:;((j)))/ < iigi 2 e IU}, (1.2)

where —1 < B < A < 1. In particular, we note that X[0;1 —2n, —1](0 < n < 1)
is the well-known class of meromorphic starlike functions of order n. Further,

Uraligaddi and Somanatha [8] introduced the classes ¥[n; 1—2n, —1] and obtained



the inclusion relationship among the classes X[n;1 — 2n,—1]. From (1.2), we
observe [6] that a function f isin X[n; A, B] if and only if

- A-B
1—-B?

AD"(2) | 1-AB

D" f(2) 1 72 (-1<B<A<LI1; z€ ). (1.3)

For any nonnegative integer n, let X.[n,~; A, B] be the class of functions

f € X satisfying the condition

e {ALIC)

> 0<y<1l; 2€l).
Drg(z) } ( )

for some g € X[n; A, B]. Inparticular, X.[0, 0; 1, —1]-is the class of meromorphic
close-to-convex functions introduced by Libera and Robertson [3] and the class
%.[0,7; 1, —1] have extensively studied by Singh [7].

The purpose of the present paper is to give some argument estimates of mero-
morphic functions belonging to ¥ which imply the basic inclusion relationship
among the classes ¥.[n,v; A, B] and the integral preserving properties for mero-
morphic close-to-convex functions in a sector in connection with the differential
operators D™ defined by (1.1).“Further, we extend the previous result of Goel
and Sohi [2].

2. Main results

In proving our results below, we need the following lemmas.
Lemma 2.1 [1]. Let h be conver univalent in U with h(0) = 1 and
Re{\h(z) +pu} >0\ pueC). If p is analytic in U with p(0) = 1, then

zp/(2)

p(2) +

implies

p(z) < h(z) (z€0).



Lemma 2.2 [4]. Let h be convex univalent in U and n be analytic in U with
Re{n(z)} > 0. If p is analytic in U and p(0) = h(0), then

p(2) + n(2)zp'(2) < h(z) (2 €U)
implies
p(z) < h(z) (2 €l).

Lemma 2.3 [5]. Let p be analytic in U with p(0) =1 and p(z) # 0 in U.
If there exist two points zy, zo € U -such that

T 7r
7245 argp(z1) < argp(z) < argp(z) = 502 (2.1)
for some ay, as(y, a9 > 0) and for all z(|z| < |z1] = |22|), then we have
/ /
z1p'(=1) __B + oo .o (22) _ ;M + a2m, (2.2)
p(z1) 2 p(22) 2
where
L~ |al LT (e =y
m > and a = itan — : (2.3)
I |(I| 4 a4+ @9

At first, with the help of Lemma 2.1, we obtain the following result.

Proposition 2.1. Let h be conver univalent in U with h(0) = 1 and
Re{h(z)} be bounded in U. If f € X satisfies the condition

CADTSEY
DnJrlf(Z) = h( ) ( S U)v

then

AP,
Defs M) (EU)

for max,cy Re{h(z)} <2 (provided D™ f(z) # 0 in D).

3



Proof.  Let

p(z) = ——Z(g:}f((;))/,
where p is analytic in U with p(0) = 1. By using the equation
2(D"f(2)) = D" f(z) — 2 D" f(2), (2.4)
we get .
p(z) —2 = —DDTJ(CS). (2.5)

Taking logarithmic derivatives in both sides of (2.5) and multiplying by z, we

have

zp'(%) o (DM f(2)
—p(z)+2 Dkt (2)

From Lemma 2.1, it follows that p(z) < h(z) for Re{—h(z) + 2} > 0 (z € U),

which means

< ) e € U).

R woW
Daf (=) < h(z) (2€l)

for max,cyRe{h(2)} < 2 (provided D" f(z) # 0 in D).

Taking h(z) = (1 + Az)/{1 +Bz)(=1 < B <A< 1) in Proposition 2.1, we

have the following result.

Corollary 2.1. The inclusion relation, X[n + 1; A, B] C X[n; A, B], holds
for any n € Ny = NU{0}.

Remark 2.1. Ifwetake A=1—7n(0 <n<1)and B=0in (1.2), then we
see from Proposition 2.1 that every function belonging to the class ¥[n;1 — 7, 0]
for any nonnegative integer n is meromorphic starlike of order n, which is the

corresponding result obtained by Uralegaddi and Somanatha [8].



Proposition 2.2. Let h be conver univalent in U with h(0) = 1 and
Re{h(z)} be bounded in U. Let F.(f) be the integral operator defined by

R = NG =55 [ i o> o) (26)
If f € ¥ satisfies the condition
DR L
SR <h) (e,
e (D)
—W = h(z) (Z € [U)

for max,cy Re{h(z)} < c+1 (provided D"F.(f)# 0 in D).

Proof.  From (2.6), we have

(D" F()E) = D" f(2) = (e 1)D" F.(f)(2). (2.7)
- (D)
2(D"E, ’
p(2) = _W’
where p is analytic in U with p(0) = 1. Then, by using (2.7); we get
DTL
pée) - 8 _CD"FLC((?)' (2.8)
Taking logarithmic derivatives in both sides of (2.8) and multiplying by z, we
have
zp'(z) 2D f(r)
p(z) + i D) < h(z) (ze€).
Therefore, by Lemma 2.1, we have
z(D"Fu(f))
—W =< h(Z) (Z < U)

for max,cy Re{h(z)} < c+1 (provided D"F.(f) # 0 in D).

5



Letting h(z) = (1 + A2)/(1+ Bz)(—1 < B < A < 1) in Proposition 2.2, we
have immediately

Corollary 2.2. If f € X[n; A, B], then F.(f) € X[n; A, B], where F, is the
integral operator defined by (2.6).

Applying Proposition 2.1, we now derive

Theorem 2.1. Let0 < 91,60 <1, 0<y<1and1+A <2(1+B) (-1 < B<
A <1). If a function f € X satisfies the condition :

R ) < I

W& <
91 g Drtlg(z)

for some g € ¥[n+ 1; A, B], then

z(D"f(2)). m

S B WA <\
Do) N i

L < ar
__a e
e 3 2
where a; and a2(0 < aq,de < 1) are the solutions of the equations :

(a1 + ag)(1 = |al) cos 5t

2
0 = o+~ tan ! i — (2.9)
T 9 <%> (1+ |a]) + (1.4 ap) (1= |a]) sin 5t;
and
) a1 + ao)(1 — |al|) cos Tt
2 = ap+—tan~" (o )1~ laf) cos 5, (2.10)
T

9 (2(1—3);4—1) (1+1al) + (a1 + a2)(1 — |a]) sin 2ty

when a is given by (2.3) and

2 . A-B
tlzgsm <2(1—B2)—(1—AB))' (2.11)




Proof.  Let

By (2.4), we have

(1 =7)2p'(2)D"g(2) + (1 = 7)p(2)2(D"g(2))" = 22(D" f(2))
= —2(D"" f(2)) — y2(D"g(2))'-

Dividing (2.12) by D"g(z) and simplifying, we get

(2.12)

274 N e el 1 i 0NN
Ple) b e 1—7( D) ”)’
where
_ z2(Dg(2)
1) = Drg(z)

Since g € X[n 4 1; A, B], from Corollary 2.1, we have

1+ Az

< —=.
a(2) 1+ Bz

From (1.3), we have

where

{ 2(1+Ba——B(1+A) < p < H=Bra-l
—1 < ¢ < ty

when ¢; is given by (2.11). Let h be a function which maps U onto the angular

domain {w : —%d; < argw < §dp} with h(0) = 1. Applying Lemma 2.2 for this

h with A\(z) = 1/(—q(z) + 2), we see that Re{p(2)} > 0 in U and hence p(z) # 0

in U.



If there exist two points z1, 20 € U such that the condition (2.1) is satisfied,
then (by Lemma 2.3) we obtain (2.2) under the restriction (2.3). Then we obtain

e [ ()
+ 5m(peig¢)—1>

m o ( (1 + ag)msin Z(1 — ¢) )
< ——ap; — tan p
2 2p + (o + az)mcos (1 — ¢)

™ ey
:—§a+arg <1—z

< Ty — tan! m— 1(041 + ay)(1 — |al) cos Tt
’ 2( : 717); 1 ) (1+ |a]) + (a1 a2)(1 — |a]) sin §t;
7T
=I5
27
and

« [ )

_fy Dn+lg(z2)
a1+ as)(1l — |a|) cos Tt
= ga2+tan_1 2(1—B)+A 1( 1 i gl e
2( (_1_); ~ ) (14 |al]) 4+ (e a2) (1 — |al) sin 5t
T
g —5
2

where 01,92 and ¢, are given by (2.9), (2.10) and (2.11), respectively. This is a
contradiction to the assumption of our theorem. Therefore we complete the proof

of our theorem.

Letting 0; = 05 in Theorem 2.1, we have the following result.

Corollary 2.3. Let0<y<1,0<éd<1and 1+A<2(1+B)(-1<B< A
<1). If a function f € X is satisfies the condition :

arg <_M _7>' Ty

DnJrlg(Z) 2

8



for some g € X[n+ 1; A, B], then

arg <_M _ 7) ’ T

Drg(z) 2
where o (0 < av < 1) is the solution of the equation :
2 o cos Ity
§=a+ =tan"! 2
™ (—2(1_{9_);1_1 + asin §t;

and ty is given by (2.11).

Remark 2.2. From Corollary 2.1, we see thatthe inclusion relation ¥ .[n+1,
v; A, B] C 3¢[n,v; A, B] holds for any nonnegative integer. n, and so every func-
tion belonging to the class ¥.[n,v; A, B] for any nonnegative.integer n is mero-

morphic close-to-convex function.

Taking n =0, v =0, B — A and g(z) = 1/z in Corollary 2.3, we obtain the

following result.

Corollary 2.4. If a funetion f € X is satisfies the condition :

jarg (& 22 (=) + 3£/ (2)) | <5,

then

larg (=2°f'(2))] < goz,

where o (0 < av < 1) s the solution of the equation :

2
d=a+ =tan'a.
v

By the same techniques as in the proof of Theorem 2.1, we have the following

result.



Theorem 2.2. Let 0 < ;,00<1,y>1and 1+A<2(1+B)(-1<B<A
<1). If a function f € ¥ satisfies the condition :

™ (D" f(2) ™
—5(51 < arg (W—f—’y < —52

[\]

for some g € X[n+ 1; A, B], then

2
where a; and as (0 < oy, a9 < 1) are the solutions of the equations (2.9) and
(2.10).

D)

s
——a < —ay.
2% ( Dg(2) "

Next, we prove

Theorem 2.3. Let 0< d1,00 <1, 0 <y <1 and1+A<(c+1)(14B) (-1 <
B < A<1). Ifia function €3 satisfies the condition :

7T D" f(2) 7T
—551< arg <—W—’}/> < 5(52

for some g € Xn; A, B], then

m 2(DUE(S)) m
2 ( Dnf (e | AW 0%
where F, is defined by (2.6), and-a; and ax(0 < aq;ay < 1) are the solutions of

the equations :

(a1 + az)(1 — |a]) cos Tty

2.

01 = oy +—tan T (2.13)
s 9 (%) (1+a]) + (a1 4+ a2)(1 — |a|) sin 5t,

and
2 + 1— cos It

8y = ap+— tan* (o1 + a2)(1 — |a]) cos 5t (2.14)
T

2 (LHO=DIEAL) (14 a]) + (e + az)(1 — |al) sin 5t

10



when a is given by (2.3) and

2 A-B
ty = sin ((c+1)(1—32)—(1—AB)) (2.15)

Proof.  Let

B L [(2(D"F.(f))
W)__l—v( D"Fi(g) ”)'

Since g € X[n; A, B], from Corollary 2.2, F.(g) € X[n; A, B]. Using (2.7), we

have
(1 =9)p(2) D" Fe(g) = (c+ 1)D"F(f) = =cD"f(2) = vD"F.(g).

Then, by a simple calculation; we get

(1= 2)(ep () 20 (~0f8) et 1) S=EELLEY (g +c 1),
where
a— 2D F
& DrF.(g)
Hence we have
2p(z) 1 [(2D"f(2))
plz)+ —q(z) e+l 1-7 ( Drg(z) +7> ‘

The remaining part of the proof is similar to that of Theorem 2.1 and so we omit

it.
Taking 6; = d in Theorem 2.3, we obtain the following result.

Corollary 2.5. Let0<y<1,0<0<1and1+A < (c+1)(1+B) (-1 < B
< A<1). If a function f € ¥ satisfies the condition :

11



s (<4505 )| <5

for some g € X[n; A, B], then
ADE(S)) "
— J— < J—
e < D'F(g) )| 2"
where F, is the integral operator given by (2.6) and a(0 < o < 1) is the solution

of the equation :

2 o cos Ztq
d=oa+ =tan™" 2
7 (—(”1)(11:%”‘4;1 + arsin Sty

where ty is given by (2.15).
Remark 2.3. From Theorem 2.3 or Corollary 2.5, we see easily that every

function in the class 3.[n,v; A, B] preserves the angles under the integral operator
defined by (2.6).

Letting A = 1, B = 0, n=0 and ¢ = 1 in Corollary 2.5, we have the

following result.

Corollary 2.6. Let 0< v<.1. If a function f € ¥ satisfies the condition :

e {5m )

for some g € ¥ satisfying the condition :

2g'(2)
9(2)

+1’<1,

then

where F, is given by (2.6).

12



Remark 2.4. If we put v = 0 in Corollary 2.6, then we have the result
obtained by Goel and Sohi [2].

Taking n = v =0, B — A and g(z) = 1/z in Theorem 2.3, we have the

following result.

Corollary 2.7. Let 0 < 61,00 < 1. If a function f € X satisfies the condi-
tion :
s

—gél < arg (=2°f'(2)) < 552,

then

—gal < arg (—ZQFC/(f)) < gag,

where F, is defined by (2.6), and oy and as(0 < ay,as < 1) are the solutions of

the equations :

|
5\ ot (B 1)
g

2¢(1 + |al)

and

09 = tvg + gtan_1 ((al 3 a2)(1 E. |a|)>
e

2¢(1+1al)
when a is given by (2.3).

By using the same methods as in proving Theorem 2.3, we have the following

result.

Theorem 2.4. Let 0 < 01,00 <1, 7> 1 and 1+A < (c+1)(1+B) (-1 < B
< A<1). If a function f € ¥ satisfies the condition :

D" f(2))

~I5 < ar
2! & Drg(z)

for some g € X[n; A, B], then

T
< =0
+’7) 502

13



7r 2(D"F(f)) m
2a1 < arg( D Eu(g) +v) < 2a2,

where F, is defined by (2.6), and oy and a3(0 < ay,as < 1) are the solutions of
the equations (2.13) and (2.14).

Finally, we derive

Theorem 2.5. Let0<y <1, 0<d6<1andl+A<2(1+4B)(-1<B< A
<1). If a function f € X satisfies the condition :

for some g € Xn+ 1; A, B], then

ADH1E () ™
o UG

where F, is defined by (2.6) with ¢ = 1.

Proof.  From (2.4) and (2.7) with ¢ =1, we have D" f(z) = D" F,(f)
Therefore

2D f(2)) (DR
Drg(z) 1y & i G)

and the result follows.
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