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1. Introduction

Let Σ denote the class of functions of the form

f(z) =
a−1
z

+
∞∑
m=0

amz
m (a−1 6= 0),

which are analytic in the punctured open unit disk D = {z : z ∈ C and 0 < |z| < 1}.
For analytic functions g and h with g(0) = h(0), g is said to be subordinate

to h if there exists an analytic function w such that w(0) = 0, |w(z)| < 1 for

z ∈ U = D ∪ {0} , and g(z) = h(w(z)). We denote this subordination by g ≺ h

or g(z) ≺ h(z).

Following Uralegaddi and Somanatha [8,9], we define

D0f(z) = f(z),

D1f(z) =
a−1
z

+ 2a0 + 3a1z + 4a2z
2 + · · · ,

D2f(z) = D1(D1f(z)),

and

Dnf(z) = D1(Dn−1f(z))

=
a−1
z

+
∞∑
m=2

mnam−2z
m−2 (n ∈ N = {1, 2, · · · }, z ∈ D).

(1.1)

Let

Σ[n;A,B] =

{
f ∈ Σ : −z(Dnf(z))′

Dnf(z)
≺ 1 + Az

1 +Bz
, z ∈ U

}
, (1.2)

where −1 ≤ B < A ≤ 1. In particular, we note that Σ[0; 1− 2η,−1](0 ≤ η < 1)

is the well-known class of meromorphic starlike functions of order η . Further,

Uraligaddi and Somanatha [8] introduced the classes Σ[n; 1−2η,−1] and obtained
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the inclusion relationship among the classes Σ[n; 1 − 2η,−1]. From (1.2), we

observe [6] that a function f is in Σ[n;A,B] if and only if∣∣∣∣z(Dnf(z))′

Dnf(z)
+

1− AB
1−B2

∣∣∣∣ < A−B
1−B2

(−1 < B < A ≤ 1; z ∈ U). (1.3)

For any nonnegative integer n , let Σc[n, γ;A,B] be the class of functions

f ∈ Σ satisfying the condition

−Re

{
z(Dnf(z))′

Dng(z)

}
> γ (0 ≤ γ < 1 ; z ∈ U).

for some g ∈ Σ[n;A,B] . In particular, Σc[0, 0; 1,−1] is the class of meromorphic

close-to-convex functions introduced by Libera and Robertson [3] and the class

Σc[0, γ; 1,−1] have extensively studied by Singh [7].

The purpose of the present paper is to give some argument estimates of mero-

morphic functions belonging to Σ which imply the basic inclusion relationship

among the classes Σc[n, γ;A,B] and the integral preserving properties for mero-

morphic close-to-convex functions in a sector in connection with the differential

operators Dn defined by (1.1). Further, we extend the previous result of Goel

and Sohi [2].

2. Main results

In proving our results below, we need the following lemmas.

Lemma 2.1 [1]. Let h be convex univalent in U with h(0) = 1 and

Re{λh(z) + µ} > 0(λ, µ ∈ C). If p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

λp(z) + µ
≺ h(z) (z ∈ U)

implies

p(z) ≺ h(z) (z ∈ U).
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Lemma 2.2 [4]. Let h be convex univalent in U and η be analytic in U with

Re{η(z)} ≥ 0. If p is analytic in U and p(0) = h(0), then

p(z) + η(z)zp′(z) ≺ h(z) (z ∈ U)

implies

p(z) ≺ h(z) (z ∈ U).

Lemma 2.3 [5]. Let p be analytic in U with p(0) = 1 and p(z) 6= 0 in U.

If there exist two points z1, z2 ∈ U such that

−π
2
α1 = arg p(z1) < arg p(z) < arg p(z2) =

π

2
α2 (2.1)

for some α1, α2(α1, α2 > 0) and for all z(|z| < |z1| = |z2|), then we have

z1p
′(z1)

p(z1)
= −iα1 + α2

2
m and

z2p
′(z2)

p(z2)
= i

α1 + α2

2
m, (2.2)

where

m ≥ 1− |a|
1 + |a|

and a = i tan
π

4

(
α2 − α1

α1 + α2

)
. (2.3)

At first, with the help of Lemma 2.1, we obtain the following result.

Proposition 2.1. Let h be convex univalent in U with h(0) = 1 and

Re{h(z)} be bounded in U. If f ∈ Σ satisfies the condition

−z(Dn+1f(z))′

Dn+1f(z)
≺ h(z) (z ∈ U),

then

−z(Dnf(z))′

Dnf(z)
≺ h(z) (z ∈ U)

for maxz∈U Re{h(z)} < 2 (provided Dnf(z) 6= 0 in D).
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Proof. Let

p(z) = −z(Dnf(z))′

Dnf(z)
,

where p is analytic in U with p(0) = 1. By using the equation

z(Dnf(z))′ = Dn+1f(z)− 2 Dnf(z), (2.4)

we get

p(z)− 2 = −D
n+1f(z)

Dnf(z)
. (2.5)

Taking logarithmic derivatives in both sides of (2.5) and multiplying by z , we

have

zp′(z)

−p(z) + 2
+ p(z) = −z(Dn+1f(z))′

Dn+1f(z)
≺ h(z) (z ∈ U).

From Lemma 2.1, it follows that p(z) ≺ h(z) for Re{−h(z) + 2} > 0 (z ∈ U),

which means

−z(Dnf(z))′

Dnf(z)
≺ h(z) (z ∈ U)

for maxz∈URe{h(z)} < 2 (provided Dnf(z) 6= 0 in D).

Taking h(z) = (1 + Az)/(1 + Bz)(−1 ≤ B < A ≤ 1) in Proposition 2.1, we

have the following result.

Corollary 2.1. The inclusion relation, Σ[n + 1;A,B] ⊂ Σ[n;A,B], holds

for any n ∈ N0 = N ∪ {0}.

Remark 2.1. If we take A = 1−η(0 ≤ η < 1) and B = 0 in (1.2), then we

see from Proposition 2.1 that every function belonging to the class Σ[n; 1− η, 0]

for any nonnegative integer n is meromorphic starlike of order η , which is the

corresponding result obtained by Uralegaddi and Somanatha [8].
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Proposition 2.2. Let h be convex univalent in U with h(0) = 1 and

Re{h(z)} be bounded in U. Let Fc(f) be the integral operator defined by

Fc(f) := Fc(f)(z) =
c

zc+1

∫ z

0

tcf(t)dt (c > 0). (2.6)

If f ∈ Σ satisfies the condition

−z(Dnf(z))′

Dnf(z)
≺ h(z) (z ∈ U),

then

−z(DnFc(f))′

DnFc(f)
≺ h(z) (z ∈ U)

for maxz∈U Re{h(z)} < c+ 1 (provided DnFc(f) 6= 0 in D).

Proof. From (2.6), we have

z(DnFc(f))′(z) = cDnf(z)− (c+ 1)DnFc(f)(z). (2.7)

Let

p(z) = −z(DnFc(f))′

DnFc(f)
,

where p is analytic in U with p(0) = 1. Then, by using (2.7), we get

p(z)− (c+ 1) = −c D
nf(z)

DnFc(f)
. (2.8)

Taking logarithmic derivatives in both sides of (2.8) and multiplying by z , we

have

p(z) +
zp′(z)

−p(z) + (c+ 1)
= −z(Dnf(z))′

Dnf(z)
≺ h(z) (z ∈ U).

Therefore, by Lemma 2.1, we have

−z(DnFc(f))′

DnFc(f)
≺ h(z) (z ∈ U)

for maxz∈U Re{h(z)} < c+ 1 (provided DnFc(f) 6= 0 in D).
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Letting h(z) = (1 + Az)/(1 + Bz)(−1 ≤ B < A ≤ 1) in Proposition 2.2, we

have immediately

Corollary 2.2. If f ∈ Σ[n;A,B], then Fc(f) ∈ Σ[n;A,B], where Fc is the

integral operator defined by (2.6).

Applying Proposition 2.1, we now derive

Theorem 2.1. Let 0 < δ1, δ2 ≤ 1, 0 ≤ γ < 1 and 1+A < 2(1+B) (−1 < B <

A ≤ 1). If a function f ∈ Σ satisfies the condition :

−π
2
δ1 < arg

(
−z(Dn+1f(z))′

Dn+1g(z)
− γ
)

<
π

2
δ2

for some g ∈ Σ[n+ 1;A,B], then

−π
2
α1 < arg

(
−z(Dnf(z))′

Dng(z)
− γ
)

<
π

2
α2.

where α1 and α2(0 < α1, α2 ≤ 1) are the solutions of the equations :

δ1 = α1+
2

π
tan−1

 (α1 + α2)(1− |a|) cos π
2
t1

2
(

2(1−B)+A−1
1−B

)
(1 + |a|) + (α1 + α2)(1− |a|) sin π

2
t1

 (2.9)

and

δ2 = α2+
2

π
tan−1

 (α1 + α2)(1− |a|) cos π
2
t1

2
(

2(1−B)+A−1
1−B

)
(1 + |a|) + (α1 + α2)(1− |a|) sin π

2
t1

 (2.10)

when a is given by (2.3) and

t1 =
2

π
sin−1

(
A−B

2(1−B2)− (1− AB)

)
. (2.11)
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Proof. Let

p(z) = − 1

1− γ

(
z(Dnf(z))′

Dng(z)
+ γ

)
.

By (2.4), we have

(1− γ)zp′(z)Dng(z) + (1− γ)p(z)z(Dng(z))′ − 2z(Dnf(z))′

= −z(Dn+1f(z))′ − γz(Dng(z))′.
(2.12)

Dividing (2.12) by Dng(z) and simplifying, we get

p(z) +
zp′(z)

−q(z) + 2
= − 1

1− γ

(
z(Dn+1f(z))′

Dn+1g(z)
+ γ

)
,

where

q(z) = −z(Dng(z))′

Dng(z)
.

Since g ∈ Σ[n+ 1;A,B] , from Corollary 2.1, we have

q(z) ≺ 1 + Az

1 +Bz
.

From (1.3), we have

−q(z) + 2 = ρei
π
2
φ,

where {
2(1+B)−(1+A)

1+B
< ρ < 2(1−B)+A−1

1−B

−t1 < φ < t1

when t1 is given by (2.11). Let h be a function which maps U onto the angular

domain {w : −π
2
δ1 < argw < π

2
δ2} with h(0) = 1. Applying Lemma 2.2 for this

h with λ(z) = 1/(−q(z) + 2), we see that Re{p(z)} > 0 in U and hence p(z) 6= 0

in U .
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If there exist two points z1, z2 ∈ U such that the condition (2.1) is satisfied,

then (by Lemma 2.3) we obtain (2.2) under the restriction (2.3). Then we obtain

arg

[
− 1

1− γ

(
z1(D

n+1f(z1))
′

Dn+1g(z1)
+ γ

)]
= −π

2
α + arg

(
1− iα + β

2
m(ρei

π
2
φ)−1

)
≤ −π

2
α1 − tan−1

(
(α1 + α2)m sin π

2
(1− φ)

2ρ+ (α1 + α2)m cos π
2
(1− φ)

)

≤ −π
2
α1 − tan−1

 (α1 + α2)(1− |a|) cos π
2
t1

2
(

2(1−B)+A−1
1−B

)
(1 + |a|) + (α1 + α2)(1− |a|) sin π

2
t1


= −π

2
δ1,

and

arg

[
− 1

1− γ

(
z2(D

n+1f(z2))
′

Dn+1g(z2)
+ γ

)]

≥ π

2
α2 + tan−1

 (α1 + α2)(1− |a|) cos π
2
t1

2
(

2(1−B)+A−1
1−B

)
(1 + |a|) + (α1 + α2)(1− |a|) sin π

2
t1


=
π

2
δ2,

where δ1, δ2 and t1 are given by (2.9), (2.10) and (2.11), respectively. This is a

contradiction to the assumption of our theorem. Therefore we complete the proof

of our theorem.

Letting δ1 = δ2 in Theorem 2.1, we have the following result.

Corollary 2.3. Let 0 ≤ γ < 1, 0 < δ ≤ 1 and 1+A < 2(1+B) (−1 < B < A

≤ 1). If a function f ∈ Σ is satisfies the condition :∣∣∣∣arg

(
−z(Dn+1f(z))′

Dn+1g(z)
− γ
)∣∣∣∣ < π

2
δ
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for some g ∈ Σ[n+ 1;A,B], then∣∣∣∣arg

(
−z(Dnf(z))′

Dng(z)
− γ
)∣∣∣∣ < π

2
α,

where α (0 < α ≤ 1) is the solution of the equation :

δ = α +
2

π
tan−1

(
α cos π

2
t1

2(1−B)+A−1
1−B + α sin π

2
t1

)

and t1 is given by (2.11).

Remark 2.2. From Corollary 2.1, we see that the inclusion relation Σc[n+1,

γ;A,B] ⊂ Σc[n, γ;A,B] holds for any nonnegative integer n , and so every func-

tion belonging to the class Σc[n, γ;A,B] for any nonnegative integer n is mero-

morphic close-to-convex function.

Taking n = 0, γ = 0, B → A and g(z) = 1/z in Corollary 2.3, we obtain the

following result.

Corollary 2.4. If a function f ∈ Σ is satisfies the condition :

∣∣arg
(
−z2(zf ′′(z) + 3f ′(z))

)∣∣ < π

2
δ,

then

∣∣arg
(
−z2f ′(z)

)∣∣ < π

2
α,

where α (0 < α ≤ 1) is the solution of the equation :

δ = α +
2

π
tan−1 α.

By the same techniques as in the proof of Theorem 2.1, we have the following

result.
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Theorem 2.2. Let 0 < δ1, δ2 ≤ 1, γ > 1 and 1+A < 2(1+B) (−1 < B < A

≤ 1). If a function f ∈ Σ satisfies the condition :

−π
2
δ1 < arg

(
z(Dn+1f(z))′

Dn+1g(z)
+ γ

)
<

π

2
δ2

for some g ∈ Σ[n+ 1;A,B], then

−π
2
α1 < arg

(
z(Dnf(z))′

Dng(z)
+ γ

)
<

π

2
α2.

where α1 and α2 (0 < α1, α2 ≤ 1) are the solutions of the equations (2.9) and

(2.10).

Next, we prove

Theorem 2.3. Let 0 < δ1, δ2 ≤ 1, 0 ≤ γ < 1 and 1+A < (c+1)(1+B) (−1 <

B < A ≤ 1). If a function f ∈ Σ satisfies the condition :

−π
2
δ1 < arg

(
−z(Dnf(z))′

Dng(z)
− γ
)

<
π

2
δ2

for some g ∈ Σ[n;A,B], then

−π
2
α1 < arg

(
−z(DnFc(f))′

DnFc(g)
− γ
)

<
π

2
α2,

where Fc is defined by (2.6), and α1 and α2(0 < α1, α2 ≤ 1) are the solutions of

the equations :

δ1 = α1+
2

π
tan−1

 (α1 + α2)(1− |a|) cos π
2
t2

2
(

(c+1)(1−B)+A−1
1−B

)
(1 + |a|) + (α1 + α2)(1− |a|) sin π

2
t2

 (2.13)

and

δ2 = α2+
2

π
tan−1

 (α1 + α2)(1− |a|) cos π
2
t2

2
(

(c+1)(1−B)+A−1
1−B

)
(1 + |a|) + (α1 + α2)(1− |a|) sin π

2
t2

 (2.14)
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when a is given by (2.3) and

t2 =
2

π
sin−1

(
A−B

(c+ 1)(1−B2)− (1− AB)

)
(2.15)

Proof. Let

p(z) = − 1

1− γ

(
z(DnFc(f))′

DnFc(g)
+ γ

)
.

Since g ∈ Σ[n;A,B] , from Corollary 2.2, Fc(g) ∈ Σ[n;A,B] . Using (2.7), we

have

(1− γ)p(z)DnFc(g)− (c+ 1)DnFc(f) = −cDnf(z)− γDnFc(g).

Then, by a simple calculation, we get

(1− γ)(zp′(z) + p(z)(−q(z) + c+ 1)) = −cz(Dnf(z))′

DnFc(g)
− γ(−q(z) + c+ 1),

where

q(z) = −z(DnFc(g))′

DnFc(g)
.

Hence we have

p(z) +
zp′(z)

−q(z) + c+ 1
= − 1

1− γ

(
z(Dnf(z))′

Dng(z)
+ γ

)
.

The remaining part of the proof is similar to that of Theorem 2.1 and so we omit

it.

Taking δ1 = δ2 in Theorem 2.3, we obtain the following result.

Corollary 2.5. Let 0 ≤ γ < 1, 0 < δ ≤ 1 and 1+A < (c+1)(1+B) (−1 < B

< A ≤ 1). If a function f ∈ Σ satisfies the condition :

11



∣∣∣∣arg

(
−z(Dnf(z))′

Dng(z)
− γ
)∣∣∣∣ < π

2
δ

for some g ∈ Σ[n;A,B], then∣∣∣∣arg

(
−z(DnFc(f))′

DnFc(g)
− γ
)∣∣∣∣ < π

2
α,

where Fc is the integral operator given by (2.6) and α(0 < α ≤ 1) is the solution

of the equation :

δ = α +
2

π
tan−1

(
α cos π

2
t2

(c+1)(1−B)+A−1
1−B + α sin π

2
t2

)
where t2 is given by (2.15).

Remark 2.3. From Theorem 2.3 or Corollary 2.5, we see easily that every

function in the class Σc[n, γ;A,B] preserves the angles under the integral operator

defined by (2.6).

Letting A = 1, B = 0, n = 0 and δ = 1 in Corollary 2.5, we have the

following result.

Corollary 2.6. Let 0 ≤ γ < 1. If a function f ∈ Σ satisfies the condition :

−Re

{
zf ′(z)

g(z)

}
> γ

for some g ∈ Σ satisfying the condition :∣∣∣∣zg′(z)

g(z)
+ 1

∣∣∣∣ < 1,

then

−Re

{
zF ′c(f)

Fc(g)

}
> γ,

where Fc is given by (2.6).
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Remark 2.4. If we put γ = 0 in Corollary 2.6, then we have the result

obtained by Goel and Sohi [2].

Taking n = γ = 0, B → A and g(z) = 1/z in Theorem 2.3, we have the

following result.

Corollary 2.7. Let 0 < δ1, δ2 ≤ 1. If a function f ∈ Σ satisfies the condi-

tion :

−π
2
δ1 < arg (−z2f ′(z)) <

π

2
δ2,

then

−π
2
α1 < arg

(
−z2F ′c(f)

)
<

π

2
α2,

where Fc is defined by (2.6), and α1 and α2(0 < α1, α2 ≤ 1) are the solutions of

the equations :

δ1 = α1 +
2

π
tan−1

(
(α1 + α2)(1− |a|)

2c(1 + |a|)

)
and

δ2 = α2 +
2

π
tan−1

(
(α1 + α2)(1− |a|)

2c(1 + |a|)

)
when a is given by (2.3).

By using the same methods as in proving Theorem 2.3, we have the following

result.

Theorem 2.4. Let 0 < δ1, δ2 ≤ 1, γ > 1 and 1+A < (c+1)(1+B) (−1 < B

< A ≤ 1). If a function f ∈ Σ satisfies the condition :

−π
2
δ1 < arg

(
z(Dnf(z))′

Dng(z)
+ γ

)
<

π

2
δ2

for some g ∈ Σ[n;A,B], then
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−π
2
α1 < arg

(
z(DnFc(f))′

DnFc(g)
+ γ

)
<

π

2
α2,

where Fc is defined by (2.6), and α1 and α2(0 < α1, α2 ≤ 1) are the solutions of

the equations (2.13) and (2.14).

Finally, we derive

Theorem 2.5. Let 0 ≤ γ < 1, 0 < δ ≤ 1 and 1+A < 2(1+B) (−1 < B < A

≤ 1). If a function f ∈ Σ satisfies the condition :∣∣∣∣arg

(
−z(Dnf(z))′

Dng(z)
− γ
)∣∣∣∣ < π

2
δ

for some g ∈ Σ[n+ 1;A,B], then∣∣∣∣arg

(
−z(Dn+1Fc(f))′

Dn+1Fc(g)
− γ
)∣∣∣∣ < π

2
δ,

where Fc is defined by (2.6) with c = 1.

Proof. From (2.4) and (2.7) with c = 1, we have Dnf(z) = Dn+1Fc(f)

Therefore

z(Dnf(z))′

Dng(z)
=

z(Dn+1Fc(f))′

Dn+1Fc(g)

and the result follows.
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