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A Simplified Model of Interlocked Caisson System for Damage
Assessment

Huynh Thanh Canh

Department of Ocean Engineering
The Graduate School
Pukyong National University

ABSTRACT

The objective of this study is to present a simplified model of
interlocked caisson system which can be used for dynamic analysis and
damage assessment. The following approaches are performed to obtain the
objective. Firstly, a conceptual dynamic model of the interlocked caisson
system is designed on-the basis of the characteristics of existing harbor
caisson structures. A-mass-spring-dashpot model considering only the sway
motion is proposed. In the simplified model, each caisson unit is connected
to adjacent ones by adding springs and dashpots to represent the condition
of interlocking mechanisms. Secondly, the simplified model of the
interlocked caisson system is evaluated for vibration analysis. A 3-D finite
element model of the caisson system is utilized to examine the accuracy of
the simplified model’s vibration responses. Thirdly, the simplified model of
the caisson system is employed for damage assessment. A damage detection
method based on modal strain energy is formulated to localize damage in

the caisson system.



CHAPTER 1
INTRODUCTION

1.1 Background

A breakwater is constructed to provide safe spaces for ship anchorage
and to protect harbor facilities from the action of waves. It is designed to
absorb the wave energy from open sea, either by its mass or by revetment
slope with armor wunits. Among various breakwater types, caisson
breakwaters have been widely used since they provide extremely stable
structures even in rough and deep seas (Takahashi, 2002).

Over the last decades, severe failure events. of caisson breakwaters
have been reported from Japan, Italy, Spain, and etc.-(Oumeraci, 1994).
Despite considerable lessons that have been learned from those failure
events (Franco, 1994; Oumeraci, 1994; Tanimoto and Takahashi, 1994), the
structural failures have still been observed in recent years (Maddrell, 2005;
Taro, 2012). Meanwhile, structural health monitoring (SHM) has become
the key to ensure the safety and serviceability of caisson breakwater systems.
The adequate assessment of the structural safety and performance is
prerequisite to estimate the failure probabilities for the design and
maintenance of the breakwater system' (Oumeraci et al., 2001).

Related to damage types-in caisson breakwaters, it can be clarified into
sliding, overturning and settlement. They are called global damages. Before
the actual collapse occurs, it is generally preceded by small defects, so-
called local damages such as seabed scour or erosion at the foundation
(Oumercaci, 1994). Therefore, it is very important to capture the incipient
local defects in structure-foundation interface in time before they become
the global damages.

Up to now, vibration-based damage monitoring for civil structures has
been widely studied via examining the change in measured vibration
response (Doebling et al., 1996; Sohn et al., 2003). The problems concerned

with structural damage detection, localization and characterization can be



solved by damage detection theories such as modal sensitivity methods,
modal flexibility methods, genetic algorithm, artificial neural network, etc.
(Wu et al., 1992; Pandey and Biswas, 1994; Kim and Stubbs, 1995; Yun and
Bahng 2000; Chou and Ghaboussi, 2001; Koo et al., 2009; Park et al., 2009).
Also, many sensor systems have been proposed for vibration-based SHM of
civil structures. However, most of SHM systems have been applied to inland
structures such as bridges and buildings (Wong, 2004; Glisic et al., 2005;
Jang et al., 2010; Ho et. al, 2012). Many challenges still remain to develop
efficient SHM systems for offshore structures such as breakwaters.

Over the past three decades, many researchers have investigated global
structural failures of caisson-type breakwaters such as overturning, sliding
or settlement by numerical analyses as well as experimental model tests
(Yamamoto et al., 1981; Kobayashi et al., 1987; Sekiguchi and Ohmaki,
1992; Sekiguchi and Kobayashi, 1994). A few researchers have analyzed
vibration responses of coastal structures considering soil-structure or fluid-
soil-structure interactions (Yang et al., 2001, Kim et al., 2005). Recently, a
few researchers have attempted to monitor the health status of caisson
structures using changes in modal parameters (Park et al., 2011; Lee et al.,
2011 and 2012; Yoon et al., 2012). Those studies have mostly concentrated
on mono-caisson. systems which have potential .damage in structure-
foundation interface. For damage assessment in a real caisson breakwater,
the following main issues should be considered: (1) the submerged
condition of the coastal structure limits the accessibility for vibration
measurement; and (2) the harbor caisson system consists of multiple caisson
segments which are normally interconnected with each other by shear-keys
to resist against the incident wave force acting perpendicular to the front
wall.

On the demand to support dynamic analysis of caisson-type
breakwater, a few simplified dynamic models were proposed with small
differences in the recent years (Smirnov and Moroz, 1983; Marinski and
Oumeraci, 1992; Goda, 1994; Oumeraci and Kortenhaus, 1994; Vink, 1997).



To simulate dynamic behaviors of a caisson, the analytical model of a rigid
body on an elastic half-space foundation is usually used (Barkan, 1962;
Richart, 1970). The elasticity of the foundation is described via the
coefficient of soil reaction (so-called modulus of subgrade reaction or bed
constant). However, most of the previous simplified models did not
represent the effect of longitudinal caisson array. Therefore, a simplified
model of interlocked caissons should be developed to improve the
understanding of dynamic behaviors of the caisson system. Furthermore, the
simplified model can be utilized to formulate a damage detection method for
the health status assessment of the caisson systems.

Concerned with the-above-mentioned issues, the simplified model of

the interlocked caisson system is developed in this study:.

1.2 Objective and Scope

This study presents a simplified model of interlocked caisson system
which can be used for dynamic analysis and damage assessment. In order to
achieve the goal, the following tasks are performed:

1. A conceptual dynamic model of the interlocked caisson system is
designed on the basis of the characteristics of existing harbor
caisson-structures. The mass-spring-dashpot model allowing only
the sway motion is proposed. In the simplified model, each
caisson unit is connected to-adjacent ones by adding springs and
dashpots to represent the condition of interlocking mechanisms.

2. The simplified model of the interlocked caisson system is
evaluated for vibration analysis. A 3-D finite element (FE) model
of the caisson system is utilized to examine the accuracy of the
simplified model’s vibration responses.

3. The simplified model is employed for damage assessment. A
damage detection method based on modal strain energy (MSE) is

formulated to localize damage in the caisson system.



1.3 Organization of the Thesis

The remaining work is divided into 4 chapters. In Chapter 2, a
conceptual dynamic model of interlocked caissons is designed based on the
basis of the characteristics of existing harbor caisson structures. Structural
parameters of the simplified model are identified. In Chapter 3, the
simplified model of the interlocked caisson system is evaluated for vibration
analysis. A caisson system of three units is selected as the target structure.
Next, a 3-D FE model of the target caisson structure is established using
SAP2000 software. Forced vibration analysis is performed to obtain
vibration responses of the caisson system. Then, the 3-D FE model is
simplified using the conceptual dynamic model proposed in Chapter 2.
Vibration features (i.e., power spectral density, natural frequency and mode
shape) of the simplified model are compared with those of the 3-D FE
model for the validation of vibration analysis. In Chapter 4, the simplified
model of the caisson system is employed for damage assessment. A damage
detection method based on modal strain energy is formulated to localize
damage the caisson system. Finally, Chapter 5 summarizes research details
of this thesis and future researches on the simplified model of the

interlocked caisson system for damage assessment.



CHAPTER 2
A SIMPLIFIED MODEL OF INTERLOCKED CAISSONS

2.1 Introduction

Simplified model of caisson-type breakwater is a model which is
represented by a few degrees of freedom (DOFs) of the caisson such as
translational and rotational motions. Over the last decades, many researchers
have worked on developing simplified models of harbor caisson structures
(Smirnov and Moroz, 1983; Marinski and Oumeraci, 1992; Goda, 1994;
Oumeraci and Kortenhaus, 1994; Vink, 1997). To simulate dynamic
behaviors of a caisson, the analytical model of a rigid body on an elastic
half-space foundation is usually used (Barkan, 1962; Richart, 1970). The
elasticity of the foundation is described via the coefficient of soil reaction
(so-called modulus of subgrade reaction or bed constant). However, most of
the previous simplified models did not represent the effect of longitudinal
caisson array. In fact, each caisson unit in a caisson system interacts not
only with surrounding media (i.e., sea water and soil) but also with adjacent
units via their contacting interfaces (Lamberti and Marteinelli, 1998). Based
on the existing caisson models, a mass-spring-dashpot array model is
designed in this chapter.

2.2 Equations of Motion

As shown in Fig. 2.1, the caisson system is subjected to an impulsive
breaking wave force that results in forced vibration responses. Since the
wave action is usually perpendicular to the caisson array axis (i.e., X-
direction), the vibration in the impact direction (i.e., y-direction) is relatively
larger than other directions (Lee et al., 2011 and 2012; Yoon et al., 2012).
Therefore, only the sway motion of caissons (i.e., y-direction) is taken into
account in this study. Based on a few existing simplified models, a planar
model of three interlocked caissons is proposed as shown in Fig. 2.2. In the

simplified model, caissons are treated as rigid bodies on elastic half-space



foundations which can be described via the horizontal springs and dashpots.
To represent the condition of interlocking mechanism, springs and dashpots

are also simulated between adjacent caissons unit.
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Fig. 2.3 Free-body diagrams of simplified dynamic model

The equations of motion obtained by equating to zero the sum of

forces in the free body diagrams (see Fig. 2.3)as follows:

1l +H(Cthy et ) +(Cith +ks1“1)_[cs2(az —)+h, (u, —”1)] —R(©)=0
Mgy +(Crlly +kpz%)+[csz(b.‘z =)+, (1, —”1)] _[CS3(Z’.t3 —1) +k 1y _uz)] -B(®)=0 2.1)
iy +(Cptly +kf3“3)+[cs3(1’.% —th) ks (1t _%)] —(Cgtiy +kgi,)—E (1) =0

where m; is the total horizontal mass of the j# caisson; krjand cr separately
represent the y-directional spring and dashpot of the j caisson’s foundation
(j=1-3); kst and csk respectively represent the y-directional spring and
dashpot of the k" shear-key connection (k=1-4); ,u jandu, are,
respectively, the horizontal acceleration, velocity and'displacement of the j*
caisson; and Pj(?) is the external force placed at the center of gravity of the

Jj™ caisson.
The above differential equations can be written in a matrix notation as:

mo 00 iy || cptegteg s 0 th
0 m 0 N, o+ 52 Cry TCsy TCs5 ~Cs3 i,
0 0 m|li 0 ~Cs3 Cps TCs3 TCsy | (5 (2.2a)
Ky + kg + kg, —ks, 0 U R()
+ —ks, ks + kg, + kg —kss u, p=1B(0)
0 —kgs ks + ks + kg, | |14 E()
or [M]{ii} +[C1u} +[ K {u} ={P} (2.2b)



where [M], [C], and [K] are the mass, damping and stiffness matrices given,

respectively, by:
m 0 0
[M] =10 m O (2.3)
0 0 my
Cpy +C51 T Csp ~Cs2 0
[C] = —Cq, Cpy +Csy +C5 —Cq, (24)
0 ~Cs3 Cpy T Cs3 T Cyy
kpy + ki + ks, —ks, 0
[K]z -l kpy + kg, + kg, 7 (2.5)
0 —kgs Ky + gy + Ky

and the terms {ii},{u},{u} and {P} are, respectively, the acceleration,

velocity, displacement and external force vectors given by:

Uy U, U R (@)
(Y iy b, () = g b, fu} 24y b, (P} =4 B.(D) 2.6)
i, u, u, B (1)

2.3 Determination of Structural Parameters

Mass Parameter

When the caisson is oscillated by an impact load, the surrounding media
(i.e., soil and water) are forced to move with the structure. Therefore, the
total horizontal mass of the j caisson (m;) includes not only the mass of the
caisson itself (me;) but also the horizontal hydrodynamic (m"%) and the

horizontal geodynamic masses (ms*;) as follows:

cai hyd geo
; tmy +m 2.7

m;=m j



For calculating the horizontal hydrodynamic mass, the following

equation presented by Oumeraci and Kortenhaus (1994) is used:
m' =0.543L,p H’ (2.8)

in which the quantities L; and H, represent the j caisson’s length and the
water level, as shown in Fig. 2.1; and the quantity pw is the mass density of
sea water.

According to Richart et al. (1970), the horizontal geodynamic mass

can be computed as:

BL )
0.76 p, (“J
me = d (2.9)

J 2—V

where ps and v are respectively the mass density and Poisson’s ratio of the
foundation soil; and B; is the j caisson’s width, as sketched in Fig. 2.1.

Stiffness Parameter

It is commonly accepted in geotechnical engineering that the horizontal
spring constant (kr;) of the elastic foundation is the function of the
horizontal modulus of subgrade reaction () as, the j” caisson width (B)) and
length (L)), follows:

ky, =bL B, (2.10)

The modulus of subgrade reaction of various soil types, which has the
unit of pressure per length, can be found in literature by Bowles (1996).
The same formulas have also been adopted by Goda (1994) and Vink (1997).

Unlike the foundation mound, the theoretical basis for determination of
the shear-keys’ stiffness is weaker since it depends on the linking capacity
between contacted units in the real caisson breakwater (Lamberti and
Martinelli, 1998; Oumeraci et al., 2001). Normally, caisson segments are

designed with the uniform linking capacity, where ks> = ks3. Since the rest



of caisson array is not represented in the planar model, the stiffness of the
last shear-keys (i.e., ks; and ks4) is smaller than that of the middle shear-keys

(i.e., ks2 and ks3). This condition can be expressed as:
kg = kg, = aks, = akg, (2.11)

where a is an empirical value ranging from 0 to 1 (Lamberti and Martinelli,
1998). In computation, the stiffness parameters are obtained by adjusting the

vibration responses of the simplified model to fit those of the 3-D FE model.

Damping Parameter

In this study, the Rayleigh damping, which is often used in the
dynamic mathematical model, for simulation of dynamic hehaviors of
structures is used to simulate the energy dissipation in the ‘caisson system.
The Rayleigh damping is.assumed to be proportional to the mass and
stiffness matrices (Wilson, 2004):

[Cl=alMl+ BIK] (2.12)

in which o is the mass-proportional damping coefficient; and g is the
stiffness-proportional -damping coefficient. Due to the ' orthogonality
conditions of the mass and stiffness matrices, this-€quation can be rewritten

as:

1 w
=——qg +2 2.13
g, 20, 5 s (2.13)

where &, is the critical-damping ratio for mode n; and @ is the n” natural
frequency.

If the damping ratios (e.g., & and &) corresponding to two specific
frequencies (e.g., @ and @) are known, the two Rayleigh damping factors

(i.e., o and p) can be evaluated from the following equation:

10
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When damping for both frequencies is set to an equal value, &= &= &
the Rayleigh damping factors are calculated as (Wilson, 2004):
28

a)l.+a)j
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CHAPTER 3
VALIDATION OF SIMPLIFIED MODEL FOR VIBRATION
ANALYSIS

3.1 Introduction

The simplified model of the interlocked caisson system is evaluated
for the accuracy of vibration analysis. Firstly, a caisson system consisting of
three interlocked caisson units is selected as the target structure. Secondly, a
3-D FE model of the target structure is established using SAP2000 software.
Forced vibration analysis is performed to examine dynamic behaviors of the
target structure. Thirdly, the 3-D FE model is simplified using the proposed
conceptual dynamic model presented in Chapter 2.- Finally, vibration
features such as power spectral density, natural frequency and mode shape
of the simplified model are eompared with those of the 3-D FE model.

3.2 Target Caisson Structure

A lab-scaled caisson system consisting of three concrete caisson
modules (i.e,, Caisson 1, Caisson 2 and Caisson 3) was chosen as the target
caisson structure. The geometry of the target caisson-type breakwater is
sketched in Fig. 3.1."As shown in the figure, caissons are designed with
shear-key connectionsto prevent them from shear motions. The caissons are
filled with sand and covered by concrete caps with the thickness of 0.06 m.
The width, height and length of a caisson unit are 0.34 m, 0.4 m and 0.34 m,
respectively. The foundation consists of a 0.08 m thick mound of medium-
dense sand and a 0.02 m thick layer of medium gravel. The whole caisson
system is placed on the sea bed of dense sand. The water depth measured

from the sea bed at both sides of the caisson system is 0.42 m.

12
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Fig. 3.1 Geometry of target caisson structure
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The concrete properties and mix design are shown in Table 3.1. The
elastic modulus of concrete is calculated using its 28-day compressive
strength (i.e., 28 MPa) according to ACI Committee 318 (2005). The
material properties of foundation soils (i.e., medium-dense sand and
medium gravel) are selected using Handbook of Geotechnical Investigation
and Design Tables (Look, 2007). The selected values are provided in Table
3.2.

Table 3.1 Concrete properties and mix design

Unit weight (kg/m?) 28-day
. strength
Water Cement Sand Gravel Admixture

(MPa)

160 340 922 979 34 21

Mass density Elastic modulus : )
Poisson’s ratio
(kg/m?) (GPa)
2400 24 0.2

Table 3.2 Material properties of foundation soils

Medium gravel Medium-dense sand
Mass density (kg/m?) 2100 2000
Elastic modulus (MPa) 50 30
Poisson's ratio 0.3 0.325

14



3.3 3-D FE Analysis of Target Caisson Structure
3.3.1 3-D FE Model

A 3-D FE model of the target caisson structure is simulated using
SAP2000 software as shown in Fig. 3.2a. In the 3-D FE model, the elastic
characteristic of the sea bed (dense sand) is described by an area spring
system (see Fig. 3.2¢). According to the previous experimental studies on
foundation analysis by Bowles (1996), the spring constant for dense sand is
recommended to be 64 to 128 MN/m/m’. Therefore, 96 MN/m/m? is
selected for the spring constant of the sea bed. The interlocking condition is
simulated by y-directional 1-D links at the shear-keys, as described in Fig.
3.2b. In this study, the stiffness of links is assumed to be 25 MN/m/m>.
Due to additional -hydrodynamic damping effects, the-damping ratios of
caisson breakwaters are relatively higher than those of general concrete
structures (e.g., 3%). In the previous experimental studies by Gao et al.
(1988), the damping ratios of real caisson structures are found to be 3.2-
7.5%. Hence, 5% of the damping ratio is assumed for all modes in the 3-D
FE model.

To simulate the submerged condition of the target caisson structure, the
effective mass of sea water (My) is added to the 3-D numerical model, as
shown in Fig. 3.2¢. The added mass of sea“water is calculated by
Westergaard’s hydrodynamic water pressure equation (Westergaard, 1933)

as follows:
hy
M, :Ihl g,ow,/HWh dh 3.1)

where M., is the hydrodynamic mass; ow is the water density; Hw and h are
the depth from water level to the foundation and that to the action point of
hydrodynamic pressure, respectively. It should be noted that Eq. (2.8) is a
simplified form of Eq. (3.1) when A; =0 and /2 = Hw.

15
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3.3.2 Forced Vibration Analysis

In order to obtain vibration responses of the caisson system, forced
vibration analysis is designed considering limited accessibilities. An impact
force, which has corresponding direction of incident wave (i.e., y-direction),
is applied perpendicularly to the front wall of Caisson 2 as denoted in Fig.
3.3. The impact force is assumed to be a half sine function with 10 N-power
and 0.01 s-duration. The y-directional acceleration responses are measured
at nine points (i.e., 1-9) on the top of the caisson caps as shown in Fig. 3.3.
The sampling frequency is set as 1 kHz.

Caisson 3
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Fig. 3.3 Impact excitation and acceleration-acquisition points

Fig. 3.4 shows acceleration signals-in-y-direction of points 2, 5 and 8.
It is observed that the vibration of Caisson 2 is propagated into Caisson 1
and Caisson 3. However, the vibration amplitude of the unexcited caisson
are only about a half of that of the excited one. This implies that a certain
amount of energy is apparently subtracted from the excited caisson by wave
propagation along the caisson system. This observation is similar to
previous experimental studies reported by Lamberti and Martinelli (1998).

17



0.015 ] 0.015 | 1
001 ] 00t | |
S o |
< 0.005 ‘ ] = 0.005 1‘“ ]
2 ‘UWM\NWWVWW e 0 ““PW‘W

y — © i R
g 0—— m U Py 5 —V hu“ |
8 -0.005 d | 2 -0.005 h\ 1
5} 3} \
< 0.01 < 0.01 1
0.015 ] 0.015
0 02 04 06 08 1 0 02 04 06 08 1
Time (sec.) Time (sec.)
(a) Point 2 (Caisson 1) (b) Point 5 (Caisson 2)
0.015
__0.01
(=) 1)
‘g’ 0.005 ’
= A
Qe bl S
2 -0.005 ‘
8 1
< 0.01
-0.015

0 0.2 0.4 0.6 0.8 1
Time (sec.)

(c) Point 8 (Caisson 3)
Fig. 3.4 Y-directional acceleration signals of 3-D FE model

3.3.3 Vibration Modal Analysis

FDD Method

The frequency domain-decomposition (FDD) method (Otte et al.,
1990; Yi and Yun, 2004) is used to extract modal parameters such as natural
frequency and mode shape. The singular values of the power spectral
density (PSD) function matrix S(w) are used to estimate the natural

frequencies instead of the PSD functions themselves as follows:
S(w) = U)X w)V(w) (3.2)

where X'is the diagonal matrix consisting of the singular values (o7’s) and U
and V are unitary matrices. Since S(@) is symmetric, U becomes equal to V.
In this FDD method, the natural frequencies can be determined from the
peak frequencies of the singular value, and the mode shape from any of the

column vectors of U(w) at the corresponding peak frequencies. Generally
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the first singular value oi(@w) among o7’s (i=1, ..., N) is used to estimate the
modal parameters except in some special cases such as with two or more

1dentical excitations.

Modal Parameters

The y-directional acceleration responses measured at points 1, 3, 4, 6, 7
and 9 on the top of the caissons (see Fig. 3.3) are used to extract natural
frequencies and mode shapes of the 3-D FE model. The singular values of
the FDD procedure are shown in Fig. 3.5. In the frequency range of 0-200
Hz, three peaks that are selected for the target modes are 25.33 Hz, 47.59 Hz
and 71.32 Hz, as listed in Table 3.3. The corresponding mode shapes are
shown in Fig. 3.6.-Tt is noted in the figure that the three caissons mostly
move together in the same phase for mode 1 and mode 3 while the opposite

phase is observed for the mode 2.

50

-50
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150

! L |
2000 40 80 120 160 200

Frequency (Hz)
Fig. 3.5 Singular values of FDD procedure for 3-D FE model

Table 3.3. Natural frequencies of 3-D FE model

Natural frequency (Hz)
Mode 1 Mode 2 Mode 3
25.33 47.59 71.32
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3.4 Simplified Model of 3-D FE Simulation

x-y planar model
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Fig. 3.7 Simplified model of 3-D FE simulation

The simplified model of the 3-D FE model is established using the
proposed theoretical model (in Chapter 2), as shown in Fig. 3.7. An impact
force P2(?) in y-direction is placed at Caisson 2 to excite the caisson system.
The function of impact excitation P2(z) is described in Fig. 3.3. Structural

parameters of the simplified model are determined as follows:

Mass Matrix
By using Egs. (2.7)-(2.9), the mass parameters of the simplified model
of the 3-D FE model are computed as:

m, =m, =m, =100.43 +42.68+6.40 =149.52 kg (3.3)

Then, from Eq. (2.3), the mass matrix is obtained as:

14952 0 0
[M]=| 0 149.52 0 |kg (3.4)
0 0  149.52
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Stiffness Matrix

The stiffness parameters are determined by matching vibration
responses of the simplified model and the 3-D FE model using try-and-error
method. The modulus of subgrade reaction of the foundation mound is
selected as 25x10° N/m* which is equivalent with that of medium dense
sand (Bowles, 1996). By using Eq. (2.10), the spring constants of the
foundation mound are calculated as:

ky =k, =kpy =25x10°x0.34x0.34 = 2.89x10° N / m (3.5)
By assuming ks; = ksg = 0.5ksz = 0.5ks3 (Martinelli and Lamberti,
2011), the stiffness of the middle and last shear-keys are obtained as:

kg = kgy =1.1x2.89x10° = 3.179x10° N /m (3.62)

kg, = kg, =05k, =0.5kg, =0.5x3.179x10° =1.590x10°N/m  (3.6b)

On substituting Egs. (3.8), (3.9) and (3.10) into Eq. (2.5), the stiffness

matrix is obtained as:

7.658~ —3.179 0
[K]=10x[=3.179 9.248 -3.179 N/m (3.7)
0" —3.179 17.658

Damping Matrix

For calculating the damping parameter, the first two natural
frequencies (f; = 25.33 Hz and f> = 47.59 Hz) and the critical damping ratio
(5%) of the 3-D FE model are utilized to calculate the two Rayleigh
damping coefficients (see Eq. (2.15)). The calculated mass-proportional
damping coefficients () and stiffness-proportional damping coefficient (f)
are, respectively, 10.387 and 0.000218. Then, the damping matrix is
computed using Eq. (2.12) as the following:
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3223 0693 0
[C]=10°x| -0.693 3.569 —0.693| Ns/m
0  —0.693 3.223

(3.8)

Equations of Motion
Substituting Eq. (3.4), (3.7) and (3.8) into Eq. (2.2a), the equations of
motion of the target caisson breakwater are written as:

149.52 0 0 i, 3223 -0.693 0 u,

0 149.52 0 ii, p+10°x| —=0.693  3.569 -0.693 | 1,
0 0 149.52 | | i, 0 =0.693 3.223 u, (3.9)

B3 "I 0 u, 0

+10°x| =3.179 = 9.248  =3.179 |Ju, +=1 P(¢)

0 =3.179. 7.658 | |u, 0

To solve the above equations of motion, the Runge—Kutta scheme
supported in Matlab R2012b is utilized (Press et al., 1988). In the
calculation ‘process of vibration responses, the time interval is selected as
0.001 second:

3.5 Validation of Simplified Model’s Vibration Responses
3.5.1 Vibration Response in. Time Domain

Difference in Acceleration Acquisition Coordinates

Topof Caisson
i
[ —
Caisson
ii
*—Pp
Mass centroid
% =
3-D FE model Simplified model

Fig. 3.8 Difference in acceleration acquisition coordinates between 3-D FE

model and simplified model
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Fig. 3.9 Y-directional acceleration signals of 3-D FE model and simplified
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It is noted that the acceleration acquisition coordinate used in the
simplified model is differed from that in the 3-D FE model, as described in
Fig. 3.8. In the 3-D FE model, acceleration signals on the top of caissons are
measured, whereas acceleration signals of the simplified model are
computed at the mass centroids of the caissons. The difference in
acceleration acquisition coordinates causes the difference in amplitudes of
acceleration signals obtained from the simplified model and the 3-D FE
model, as shown in Fig. 3.9. The vibration amplitudes of the simplified
model are only about half of those of the 3-D FE model. To validate the
accuracy of the simplified model in vibration analysis, the acceleration
signals of the simplified model should be compared with those measured at
the caissons’ centroids of the 3-D FE model. However, it is almost

impossible to measure directly these signals from real caisson breakwaters.

Estimation of Equivalent Vibration Responses

In order to match the acceleration acquisition coordinates between the
simplified model and the 3-D FE model, the following procedure is
performed by estimating the acceleration signals of the mass centroids of the
caissons from the ones measured on the caisson caps in the 3-D FE model.
Firstly, y-directional acceleration signals of additional locations on the front
walls (i.e., points 10,11 and 12) are measured as shown in Fig. 3.10a. By
comparing the acceleration signals of the upper points (i.e., 3, 6 and 9) and
the lower points (i.e., 10, 11 and 12), the inclinations of the caissons can be
obtained. Secondly, the mass centroid of each caisson is computed
considering the added mass of sea water by Eq. (3.1) and added mass of soil
by Eq. (2.9), as indicated in Fig. 3.10b. Thirdly, for each caisson unit, the
acceleration signal of the mass centroid (i.e., Ci, C2 or C3) is linearly-
estimated based on its inclination (i.e., a7, @2 or @3) and the measured signal

at the top center location (i.e., point 2, point 5 or point 8).
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Fig. 3.11 shows the comparison between the estimated y-directional
acceleration signals and the true ones of the caissons’ centroids. It is noted
that the true signals are measured directly at the caissons’ centroids in the 3-
D FE model. As observed in the figure, the estimated signals show good
agreement with the true ones. Next, the estimated y-directional acceleration
signals at the caissons’ centroids in the 3-D FE model are used to compare
with those of the simplified model, as sketched in Fig. 3.12. It can be seen in

the figure that the signals of both models are well-matched.

3.5.2 Vibration Response in Frequency Domain

The PSDs of y-directional acceleration signals-of the caissons’ centroids
are computed using Fast Fourier Transform (FFT) for the both models (i.e.,
simplified model and 3-D FE model), as shown in Fig. 3.13. It can be seen
that the magnitudes and frequencies of the first two peaks obtained from the
two models are well-matched. The FDD method (Otte et al., 1990; Yi and
Yun, 2004) is performed to extract modal parameters from the acceleration
signals. The extracted mode shapes and corresponding natural frequencies
are sketched in Fig 3.14 and given in Table 3.4, respectively. It can be seen
that the modal parameters of the simplified model are similar to those of the
3-D FE model.
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Table 3.4 Natural frequencies of 3-D FE model and simplified model

Natural frequency of target caisson breakwater (Hz)

Mode . .
FE model Simplified model Variation
Mode 1 25.33 25.88 2.13%
Mode 2 47.59 47.36 -0.49%
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In order to improve the understanding of mode shapes of target caisson
structure, modal analysis of the 3-D FE model is carried out in SAP2000
software. The first and second mode shapes of the target caisson breakwater
are shown in Fig. 3.15. It is observed that three caissons mostly move
together in the same phase for the first mode, but in the opposite phase for
the second mode. These results are well comparable with those sketched in
Fig. 3.14.

From these above observations, it is concluded that the simplified model
of the interlocked caissons successfully represents the horizontal vibrations
of the 3-D FE model. Hence, the proposed model can be used for dynamic

analysis of interlocked caisson systems.
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CHAPTER 4
FEASIBILITY OF SIMPLIFIED MODEL FOR STRUCTURAL
DAMAGE ASSESSMENT

4.1 Introduction

In this chapter, the simplified model of the interlocked caissons is
employed for the structural damage assessment. Firstly, a damage detection
method is formulated on the basic modal strain energy (MSE)-based damage
detection theories. Secondly, several damage cases are simulated in the
structure-foundation interface of the 3-D FE model with regarding the loss
of foundation materials. -Thirdly, the MSE-based method is performed to
predict damaged caissons in the 3-D FE model.

4.2 Modal Strain Energy-based Damage Detection

The simplified model of the interlocked caissons is utilized to design a
damage detection model on the basic MSE-based damage detection method
by Kim et al. (2002). For a linear, undamaged caisson system, as shown in

Fig. 2.2, the i"» modal strain energy, U, is written by:

1 nc 1 n
Ut 2oy, +5 2 (0, —4 1y D
2 sl ’ 2 j=1 -

where nc is the number of caisson units; n is the number of shear-key
connections; ¢ is the i modal displacement at the j* caisson; krj represents
the stiffness of the j” caisson’s foundation; and ks; is the stiffness of the j”
shear-key connection.

The contribution of the j” caisson’s foundation to the i modal strain

energy, Ui, 1s defined as:
1,
U, = §¢,ij] 4.2)

Then, the fraction of the undamaged modal strain energy (i.e., the

undamaged modal sensitivity) of the i mode and the j* caisson is given by:
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F=—"L (4.3)

For the caisson system with only foundation damage, the damaged

modal sensitivity of the i mode and the j caisson can be expressed as:

y (4.4)

in which the quantities Uj;" and U;" are calculated by:

* 1 * *
= qu;kpj (4.5)
* 1 4 *- * 1 w * *
Uf == > 8k +=2 (8, -8, ) ks (4.6)
2 j=1 5 2 = L

For damage localization in the caisson system, a damage index 7 for the
j™ caisson is defined via the ratio between the relative change in the modal
sensitivity for the i mode with respect to the j” caisson and the relative

change in the stiffness of the j” caisson’s foundation as follows:

Y Tk '

in which 7;>1 indicates damage at the j* caisson.

On substituting Egs. (4.2), (4.3), (4.4) and (4.5) into Eq. (4.7), and by
rearranging, the damage localization index 7 of the j caisson is simplified
as the following:

#U.
SU (4.8)

(/A

n, =

in which the i modal strain energies of pre- and post-damage cases can be

expressed as:

34



1

U, = EﬂiMi (4.9a)
Ui* = %j’:M i* (4'9b)

where M; and M;" are the i modal masses; A and A" are the i" eigenvalues.
It is assumed that the i modal mass remains unchanged during the
damaging event. Then, the relationship between the quantities U;and U;" is

simplified as:

I (4.10)

By substituting Eq. (4.10) into Eq. (4.8), a damage localization index

nj of the j* caisson is computed for nm measured modes as follows:

24
n,= ”1'—2 (4.11)
Z%’Ii
i=1

in which the components of the right hand side of Eq. (4.11) are measurable
from the real caisson structure.

If we treat damage location indices as normally distributed random
variables, the normalized damage indices are defined according to the
standard rule as:

Z, = M (4.12)

Ty

where 1, and o, are the mean and the standard deviation of the collection of
n; values, respectively. Next, the damage is localized utilizing hypothesis
testing. The null hypothesis (i.e., Ho) is that the structure is undamaged at
the j” element and alternate hypothesis (i.e., H;) is that the structure is

damaged at the j” element. For damage localization, the following decision
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rule is defined: first, select H; if Z; < Zo, or choose H, if Z; > Z,, where Zo s

statistical confidence level of the localization test.

4.3 Verification of MSE-based Damage Detection
4.3.1 Description of Simulated Damage

As a damage scenario, it is assumed that the structure-foundation
interface of the caissons is scoured under extreme wave loading. Three
damage cases of the foundation (i.e., Damage 1, Damage 2 and Damage 3)
are simulated by removing armor gravel elements as shown in Fig. 4.1.
Only single damage is made in each damage scenario. The percentage loss
of the gravel layer of Caisson1 in Damage 1, of Caisson 2 in Damage 2 and
of Caisson 3 in Damage 3 are 2.7%, 10.5% and 6:9%, respectively. In
Damage 2 and Damage 3, the damaged areas are expanded to the

foundation-caisson contact region.

Y Caisson 1 Caisson 2 Caisson 3

X

=160 —= =160 —=¢ l—il(xﬁa
(a) Undamaged (b) Damage'1 (c)Damage 2 (d) Damage 3

Fig. 4.1 Foundation damage cases

4.3.2 Damage Monitoring Results

For detecting foundation damage, y-directional acceleration signals of
the points 2, 5 and 8 of the 3-D FE model (see Fig. 3.3) before and after the
damaging event are measured. Next, the natural frequencies and mode
shapes are extracted from those signals (by FDD method). Table 4.1
summarizes the natural frequencies of the caisson system for all damage
cases. Only the first and the second modes are listed due to that these modes
well match with those of the simplified model. As given in the table, natural

frequencies are decreased according to the damage growth. Fig. 4.2 shows
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the y-directional mode shapes of the 3-D FE model. It is observed that the
relative motions between caissons are changed after the damaging events,
and the first mode is more sensitive to the foundation damage than the

second one.

Table 4.1. Natural frequencies of 3-D FE model with foundation damage

Natural frequency (Hz)
Case Damage scenario
Mode 1 Mode 2
Undamaged - 25.33 47.59

Damage 1  Removed 2.7% of armor gravel 25.13 (-0.78%)  47.54 (-0.11%)

Damage 2  Removed 10:5% of armor gravel ~ 24.77(-2.25%) 46.98 (-1.31%)

Damage 3 Removed 6.9% of armor gravel 24.85 (-1.92%)  47.43 (-0.33%)

Parentheses indicate variation (%) of natural frequencies with respect to undamaged case

0.5
Caisson 1 Caisson 2 Caisson 3
u 04 R, T T
"g ___________
= ——Undamaged
o,
5 'EEL BT, T W Damage1
----- Damage 2
— —Damage 3
0.2
0 034  Tqcation (m) — 088 1.02
(a) Model 1
0.6 1 i i ——Undamaged
° 0.4 - i ] e Damage1
=< | % | eee-- Damage 2
E 0.2 1 — —Damage 3
£ |
02 | Caisson 1 Caisson 2 Caisson 3
-0.4 i
0 0.34 Location (m) 0.68 1.02
(b) Mode 2

Fig. 4.2 Y-directional mode shapes of 3-D FE model with foundation

damage
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Next, the MSE-based method is employed to predict damage locations
in the 3-D FE model. The normalized damage index is calculated by Egs.
(4.11) and (4.12). Damage localization results are illustrated in Fig. 4.3.
Here, the criterion value Zo is chosen as 1.26 which is corresponding to the
confidence level of 90%. It is found that for all damage cases with different

damage severities, the MSE-based method has successfully localized the
damaged caissons.

-g 2 Damage 1 -g 2 f Damage 2
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Fig 4.3 Damage localization results in 3-D FE model
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CHAPTER 5
CONCLUSION

In this study, a simplified model of interlocked caisson system, which
can be used for dynamic analysis and damage assessment, was presented.
The following approaches are performed to obtain the objective. Firstly, a
conceptual dynamic model of the interlocked caisson system was designed
on the basis of the characteristics of existing harbor caisson structures. A
mass-spring-dashpot model considering only the sway motion was proposed.
In the simplified model, each caisson unit was connected to adjacent ones
by adding springs and dashpots to represent the condition of the interlocking
mechanism. Secondly, the simplified model of the interlocked caisson
system was evaluated for vibration analysis. A 3-D finite element model of
the caisson system was utilized to examine the accuracy of the simplified
model’s vibration responses. Thirdly, the simplified model of the caisson
system was employed for damage assessment. A damage detection method
based on modal strain energy is formulated to localize damage in the caisson
system.

From the observations in this study, the following conclusions have been
made:

(1) The proposed planar model successfully estimated the horizontal
vibration of the caisson system. The vibration features (i.e.,
power spectral density, natural frequency and mode shape) of the
simplified model were well consistent with those of the 3-D FE
model. Hence, the planar model was reliable for the dynamic
analysis of the caisson system.

(2) The MSE-based damage detection method formulated for the
simplified planar model successfully identified damage locations
with high confidence level.

Despite the feasibility of the proposed planar model of the caisson

system for vibration analysis and damage estimation, several issues still
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remain. The damage severity in the foundation should be studied extensively
by quantifying its magnitude. The proposed simplified model should be
experimentally verified on real or lab-scaled caisson breakwaters for the
structural health assessment.
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