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Huynh Thanh Canh 
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ABSTRACT 
 

The objective of this study is to present a simplified model of 

interlocked caisson system which can be used for dynamic analysis and 

damage assessment. The following approaches are performed to obtain the 

objective. Firstly, a conceptual dynamic model of the interlocked caisson 

system is designed on the basis of the characteristics of existing harbor 

caisson structures. A mass-spring-dashpot model considering only the sway 

motion is proposed. In the simplified model, each caisson unit is connected 

to adjacent ones by adding springs and dashpots to represent the condition 

of interlocking mechanisms. Secondly, the simplified model of the 

interlocked caisson system is evaluated for vibration analysis. A 3-D finite 

element model of the caisson system is utilized to examine the accuracy of 

the simplified model’s vibration responses. Thirdly, the simplified model of 

the caisson system is employed for damage assessment. A damage detection 

method based on modal strain energy is formulated to localize damage in 

the caisson system. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 Background 

A breakwater is constructed to provide safe spaces for ship anchorage 

and to protect harbor facilities from the action of waves. It is designed to 

absorb the wave energy from open sea, either by its mass or by revetment 

slope with armor units. Among various breakwater types, caisson 

breakwaters have been widely used since they provide extremely stable 

structures even in rough and deep seas (Takahashi, 2002). 

Over the last decades, severe failure events of caisson breakwaters 

have been reported from Japan, Italy, Spain, and etc. (Oumeraci, 1994). 

Despite considerable lessons that have been learned from those failure 

events (Franco, 1994; Oumeraci, 1994; Tanimoto and Takahashi, 1994), the 

structural failures have still been observed in recent years (Maddrell, 2005; 

Taro, 2012). Meanwhile, structural health monitoring (SHM) has become 

the key to ensure the safety and serviceability of caisson breakwater systems. 

The adequate assessment of the structural safety and performance is 

prerequisite to estimate the failure probabilities for the design and 

maintenance of the breakwater system (Oumeraci et al., 2001). 

Related to damage types in caisson breakwaters, it can be clarified into 

sliding, overturning and settlement. They are called global damages. Before 

the actual collapse occurs, it is generally preceded by small defects, so-

called local damages such as seabed scour or erosion at the foundation 

(Oumercaci, 1994). Therefore, it is very important to capture the incipient 

local defects in structure-foundation interface in time before they become 

the global damages. 

Up to now, vibration-based damage monitoring for civil structures has 

been widely studied via examining the change in measured vibration 

response (Doebling et al., 1996; Sohn et al., 2003). The problems concerned 

with structural damage detection, localization and characterization can be 
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solved by damage detection theories such as modal sensitivity methods, 

modal flexibility methods, genetic algorithm, artificial neural network, etc. 

(Wu et al., 1992; Pandey and Biswas, 1994; Kim and Stubbs, 1995; Yun and 

Bahng 2000; Chou and Ghaboussi, 2001; Koo et al., 2009; Park et al., 2009). 

Also, many sensor systems have been proposed for vibration-based SHM of 

civil structures. However, most of SHM systems have been applied to inland 

structures such as bridges and buildings (Wong, 2004; Glisic et al., 2005; 

Jang et al., 2010; Ho et. al, 2012). Many challenges still remain to develop 

efficient SHM systems for offshore structures such as breakwaters. 

Over the past three decades, many researchers have investigated global 

structural failures of caisson-type breakwaters such as overturning, sliding 

or settlement by numerical analyses as well as experimental model tests 

(Yamamoto et al., 1981; Kobayashi et al., 1987; Sekiguchi and Ohmaki, 

1992; Sekiguchi and Kobayashi, 1994). A few researchers have analyzed 

vibration responses of coastal structures considering soil-structure or fluid-

soil-structure interactions (Yang et al., 2001, Kim et al., 2005). Recently, a 

few researchers have attempted to monitor the health status of caisson 

structures using changes in modal parameters (Park et al., 2011; Lee et al., 

2011 and 2012; Yoon et al., 2012). Those studies have mostly concentrated 

on mono-caisson systems which have potential damage in structure-

foundation interface. For damage assessment in a real caisson breakwater, 

the following main issues should be considered: (1) the submerged 

condition of the coastal structure limits the accessibility for vibration 

measurement; and (2) the harbor caisson system consists of multiple caisson 

segments which are normally interconnected with each other by shear-keys 

to resist against the incident wave force acting perpendicular to the front 

wall. 

On the demand to support dynamic analysis of caisson-type 

breakwater, a few simplified dynamic models were proposed with small 

differences in the recent years (Smirnov and Moroz, 1983; Marinski and 

Oumeraci, 1992; Goda, 1994; Oumeraci and Kortenhaus, 1994; Vink, 1997). 
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To simulate dynamic behaviors of a caisson, the analytical model of a rigid 

body on an elastic half-space foundation is usually used (Barkan, 1962; 

Richart, 1970). The elasticity of the foundation is described via the 

coefficient of soil reaction (so-called modulus of subgrade reaction or bed 

constant). However, most of the previous simplified models did not 

represent the effect of longitudinal caisson array. Therefore, a simplified 

model of interlocked caissons should be developed to improve the 

understanding of dynamic behaviors of the caisson system. Furthermore, the 

simplified model can be utilized to formulate a damage detection method for 

the health status assessment of the caisson systems. 

Concerned with the above-mentioned issues, the simplified model of 

the interlocked caisson system is developed in this study. 

 

1.2 Objective and Scope 

This study presents a simplified model of interlocked caisson system 

which can be used for dynamic analysis and damage assessment. In order to 

achieve the goal, the following tasks are performed: 

1. A conceptual dynamic model of the interlocked caisson system is 

designed on the basis of the characteristics of existing harbor 

caisson structures. The mass-spring-dashpot model allowing only 

the sway motion is proposed. In the simplified model, each 

caisson unit is connected to adjacent ones by adding springs and 

dashpots to represent the condition of interlocking mechanisms. 

2. The simplified model of the interlocked caisson system is 

evaluated for vibration analysis. A 3-D finite element (FE) model 

of the caisson system is utilized to examine the accuracy of the 

simplified model’s vibration responses. 

3. The simplified model is employed for damage assessment. A 

damage detection method based on modal strain energy (MSE) is 

formulated to localize damage in the caisson system. 

 



 
 

4

1.3 Organization of the Thesis 

The remaining work is divided into 4 chapters. In Chapter 2, a 

conceptual dynamic model of interlocked caissons is designed based on the 

basis of the characteristics of existing harbor caisson structures. Structural 

parameters of the simplified model are identified. In Chapter 3, the 

simplified model of the interlocked caisson system is evaluated for vibration 

analysis. A caisson system of three units is selected as the target structure. 

Next, a 3-D FE model of the target caisson structure is established using 

SAP2000 software. Forced vibration analysis is performed to obtain 

vibration responses of the caisson system. Then, the 3-D FE model is 

simplified using the conceptual dynamic model proposed in Chapter 2. 

Vibration features (i.e., power spectral density, natural frequency and mode 

shape) of the simplified model are compared with those of the 3-D FE 

model for the validation of vibration analysis. In Chapter 4, the simplified 

model of the caisson system is employed for damage assessment. A damage 

detection method based on modal strain energy is formulated to localize 

damage the caisson system. Finally, Chapter 5 summarizes research details 

of this thesis and future researches on the simplified model of the 

interlocked caisson system for damage assessment. 
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CHAPTER 2 
A SIMPLIFIED MODEL OF INTERLOCKED CAISSONS 

 

2.1 Introduction 

Simplified model of caisson-type breakwater is a model which is 

represented by a few degrees of freedom (DOFs) of the caisson such as 

translational and rotational motions. Over the last decades, many researchers 

have worked on developing simplified models of harbor caisson structures 

(Smirnov and Moroz, 1983; Marinski and Oumeraci, 1992; Goda, 1994; 

Oumeraci and Kortenhaus, 1994; Vink, 1997). To simulate dynamic 

behaviors of a caisson, the analytical model of a rigid body on an elastic 

half-space foundation is usually used (Barkan, 1962; Richart, 1970). The 

elasticity of the foundation is described via the coefficient of soil reaction 

(so-called modulus of subgrade reaction or bed constant). However, most of 

the previous simplified models did not represent the effect of longitudinal 

caisson array. In fact, each caisson unit in a caisson system interacts not 

only with surrounding media (i.e., sea water and soil) but also with adjacent 

units via their contacting interfaces (Lamberti and Marteinelli, 1998). Based 

on the existing caisson models, a mass-spring-dashpot array model is 

designed in this chapter. 

 

2.2 Equations of Motion 

As shown in Fig. 2.1, the caisson system is subjected to an impulsive 

breaking wave force that results in forced vibration responses. Since the 

wave action is usually perpendicular to the caisson array axis (i.e., x-

direction), the vibration in the impact direction (i.e., y-direction) is relatively 

larger than other directions (Lee et al., 2011 and 2012; Yoon et al., 2012). 

Therefore, only the sway motion of caissons (i.e., y-direction) is taken into 

account in this study. Based on a few existing simplified models, a planar 

model of three interlocked caissons is proposed as shown in Fig. 2.2. In the 

simplified model, caissons are treated as rigid bodies on elastic half-space 
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foundations which can be described via the horizontal springs and dashpots. 

To represent the condition of interlocking mechanism, springs and dashpots 

are also simulated between adjacent caissons unit. 

 

Fig. 2.1 A caisson system of three units 

 

Fig. 2.2 Simplified dynamic model of three caisson units 
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Fig. 2.3 Free-body diagrams of simplified dynamic model 
 
The equations of motion obtained by equating to zero the sum of 

forces in the free body diagrams (see Fig. 2.3) as follows: 

   

 
   
 

1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 1 1

2 2 2 2 2 2 2 2 1 2 2 1 3 3 2 3 3 2 2

3 3 3 3 3 3 3 3 2 3 3 2 4 3

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) (

F F S S S S

F F S S S S

F F S S S

mu c u k u c u k u c u u k u u P t

mu c u k u c u u k u u c u u k u u P t

mu c u k u c u u k u u c u k

         

           
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     4 3 3) ( ) 0S u P t 

 (2.1)  

where mj is the total horizontal mass of the jth caisson; kFj and cFj separately 

represent the y-directional spring and dashpot of the jth caisson’s foundation 

(j=1-3); kSk and cSk respectively represent the y-directional spring and 

dashpot of the kth shear-key connection (k=1-4);               are, 

respectively, the horizontal acceleration, velocity and displacement of the jth 

caisson; and Pj(t) is the external force placed at the center of gravity of the 

jth caisson. 

The above differential equations can be written in a matrix notation as: 

   

1 1 1 1 2 2 1

2 2 2 2 2 3 3 2

3 3 3 3 3 4 3

1 1 2 2

2 2 2 3 3

3 3 3 4

0 0 0

0 0

0 0 0

0

               

0

F S S S

S F S S S

S F S S

F S S S

S F S S S

S F S S

m u c c c c u

m u c c c c c u

m u c c c c u

k k k k

k k k k k

k k k k

       
                
             
   

     
    

 

 
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1 1

2 2

3 3

( )

( )

( )

u P t

u P t

u P t

   
      
      

 (2.2a) 

or                        [ ] [ ]M u C u K u P     (2.2b) 

,  and j j ju u u 
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where [M], [C], and [K] are the mass, damping and stiffness matrices given, 

respectively, by: 

                  
1

2

3

0 0

0 0

0 0

m

M m

m

 
   
  

 (2.3) 

 
1 1 2 2

2 2 2 3 3

3 3 3 4

0

0

F S S S

S F S S S

S F S S

c c c c

C c c c c c

c c c c
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      
    

 (2.4) 

 
1 1 2 2

2 2 2 3 3

3 3 3 4

0

0
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S F S S S

S F S S

k k k k

K k k k k k
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 (2.5) 

and the terms      are, respectively, the acceleration, 

velocity, displacement and external force vectors given by:   
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3

,
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u u
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,

u

u u

u
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

 



 
1

2

3

,

u

u u

u

 
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 
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1

2

3
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P t
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P t
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 (2.6) 

 

2.3 Determination of Structural Parameters 

Mass Parameter 

When the caisson is oscillated by an impact load, the surrounding media 

(i.e., soil and water) are forced to move with the structure. Therefore, the 

total horizontal mass of the jth caisson (mj) includes not only the mass of the 

caisson itself (mcaij) but also the horizontal hydrodynamic (mhydj) and the 

horizontal geodynamic masses (mgeoj) as follows: 

                                 
cai hyd geo

j j j jm m m m    (2.7) 

       , ,  and u u u P 
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For calculating the horizontal hydrodynamic mass, the following 

equation presented by Oumeraci and Kortenhaus (1994) is used: 

                  20.543hyd
j j w wm L H  (2.8) 

in which the quantities Lj and Hw represent the jth caisson’s length and the 

water level, as shown in Fig. 2.1; and the quantity w is the mass density of 

sea water. 

According to Richart et al. (1970), the horizontal geodynamic mass 

can be computed as: 

                 

3

2

0.76

2

j j
s

geo
j

B L

m





 
 
 


 (2.9) 

where s and  are respectively the mass density and Poisson’s ratio of the 

foundation soil; and Bj is the jth caisson’s width, as sketched in Fig. 2.1. 

 

Stiffness Parameter 

It is commonly accepted in geotechnical engineering that the horizontal 

spring constant (kFj) of the elastic foundation is the function of the 

horizontal modulus of subgrade reaction (b) as, the jth caisson width (Bj) and 

length (Lj), follows: 

                    Fj j jk bL B  (2.10) 

The modulus of subgrade reaction of various soil types, which has the 

unit of pressure per length, can be found in literature by Bowles (1996).  

The same formulas have also been adopted by Goda (1994) and Vink (1997).  

Unlike the foundation mound, the theoretical basis for determination of 

the shear-keys’ stiffness is weaker since it depends on the linking capacity 

between contacted units in the real caisson breakwater (Lamberti and 

Martinelli, 1998; Oumeraci et al., 2001). Normally, caisson segments are 

designed with the uniform linking capacity, where kS2 = kS3. Since the rest 
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of caisson array is not represented in the planar model, the stiffness of the 

last shear-keys (i.e., kS1 and kS4) is smaller than that of the middle shear-keys 

(i.e., kS2 and kS3). This condition can be expressed as: 

                                1 4 2 3S S S Sk k ak ak    (2.11) 

where a is an empirical value ranging from 0 to 1 (Lamberti and Martinelli, 

1998). In computation, the stiffness parameters are obtained by adjusting the 

vibration responses of the simplified model to fit those of the 3-D FE model. 

 

Damping Parameter 

In this study, the Rayleigh damping, which is often used in the 

dynamic mathematical model, for simulation of dynamic hehaviors of 

structures is used to simulate the energy dissipation in the caisson system. 

The Rayleigh damping is assumed to be proportional to the mass and 

stiffness matrices (Wilson, 2004): 

                      C M K    (2.12) 

in which  is the mass-proportional damping coefficient; and  is the 

stiffness-proportional damping coefficient. Due to the orthogonality 

conditions of the mass and stiffness matrices, this equation can be rewritten 

as: 

                                     
1

2 2
n

n
n

  


   (2.13) 

where n is the critical-damping ratio for mode n; and n is the nth natural 

frequency. 

If the damping ratios (e.g., i and j) corresponding to two specific 

frequencies (e.g., i and j) are known, the two Rayleigh damping factors 

(i.e.,  and ) can be evaluated from the following equation: 
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
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

 
              
 

                           (2.14) 

When damping for both frequencies is set to an equal value, i = j = , 

the Rayleigh damping factors are calculated as (Wilson, 2004): 

 
2

i j


 




 and  i j    (2.15) 
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CHAPTER 3 
VALIDATION OF SIMPLIFIED MODEL FOR VIBRATION 

ANALYSIS 
 

3.1 Introduction 

The simplified model of the interlocked caisson system is evaluated 

for the accuracy of vibration analysis. Firstly, a caisson system consisting of 

three interlocked caisson units is selected as the target structure. Secondly, a 

3-D FE model of the target structure is established using SAP2000 software. 

Forced vibration analysis is performed to examine dynamic behaviors of the 

target structure. Thirdly, the 3-D FE model is simplified using the proposed 

conceptual dynamic model presented in Chapter 2. Finally, vibration 

features such as power spectral density, natural frequency and mode shape 

of the simplified model are compared with those of the 3-D FE model. 

 

3.2 Target Caisson Structure  

A lab-scaled caisson system consisting of three concrete caisson 

modules (i.e., Caisson 1, Caisson 2 and Caisson 3) was chosen as the target 

caisson structure. The geometry of the target caisson-type breakwater is 

sketched in Fig. 3.1. As shown in the figure, caissons are designed with 

shear-key connections to prevent them from shear motions. The caissons are 

filled with sand and covered by concrete caps with the thickness of 0.06 m. 

The width, height and length of a caisson unit are 0.34 m, 0.4 m and 0.34 m, 

respectively. The foundation consists of a 0.08 m thick mound of medium-

dense sand and a 0.02 m thick layer of medium gravel. The whole caisson 

system is placed on the sea bed of dense sand. The water depth measured 

from the sea bed at both sides of the caisson system is 0.42 m. 
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The concrete properties and mix design are shown in Table 3.1. The 

elastic modulus of concrete is calculated using its 28-day compressive 

strength (i.e., 28 MPa) according to ACI Committee 318 (2005). The 

material properties of foundation soils (i.e., medium-dense sand and 

medium gravel) are selected using Handbook of Geotechnical Investigation 

and Design Tables (Look, 2007). The selected values are provided in Table 

3.2. 

Table 3.1 Concrete properties and mix design 

 

Table 3.2 Material properties of foundation soils 

  Medium gravel Medium-dense sand 

Mass density (kg/m3) 2100 2000 

Elastic modulus (MPa) 50 30 

Poisson's ratio 0.3 0.325 

 

 

 

 

 

 

Unit weight (kg/m3) 28-day 

strength 

(MPa) 
Water Cement Sand Gravel Admixture

160 340 922 979 3.4 21 

Mass density  

(kg/m3) 

Elastic modulus 

(GPa) 
Poisson’s ratio  

2400 24 0.2 
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3.3 3-D FE Analysis of Target Caisson Structure 

3.3.1 3-D FE Model 

A 3-D FE model of the target caisson structure is simulated using 

SAP2000 software as shown in Fig. 3.2a. In the 3-D FE model, the elastic 

characteristic of the sea bed (dense sand) is described by an area spring 

system (see Fig. 3.2c). According to the previous experimental studies on 

foundation analysis by Bowles (1996), the spring constant for dense sand is 

recommended to be 64 to 128 MN/m/m2. Therefore, 96 MN/m/m2 is 

selected for the spring constant of the sea bed. The interlocking condition is 

simulated by y-directional 1-D links at the shear-keys, as described in Fig. 

3.2b. In this study, the stiffness of links is assumed to be 25 MN/m/m2.  

Due to additional hydrodynamic damping effects, the damping ratios of 

caisson breakwaters are relatively higher than those of general concrete 

structures (e.g., 3%). In the previous experimental studies by Gao et al. 

(1988), the damping ratios of real caisson structures are found to be 3.2-

7.5%. Hence, 5% of the damping ratio is assumed for all modes in the 3-D 

FE model. 

To simulate the submerged condition of the target caisson structure, the 

effective mass of sea water (Mw) is added to the 3-D numerical model, as 

shown in Fig. 3.2c. The added mass of sea water is calculated by 

Westergaard’s hydrodynamic water pressure equation (Westergaard, 1933) 

as follows: 

                               
2

1

7
.

8

h

w w wh
M H h dh   (3.1) 

where Mw is the hydrodynamic mass; w is the water density; Hw and h are 

the depth from water level to the foundation and that to the action point of 

hydrodynamic pressure, respectively. It should be noted that Eq. (2.8) is a 

simplified form of Eq. (3.1) when h1 = 0 and h2 = Hw. 
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(a) 3-D FE model 

Links

Shear-key

Caisson 1 Caisson 2 Caisson 3
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(b) Interlocking conditions 
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Sand filled
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y

Unit: mm
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Medium gravel
       layer

Hw = 420

Medium-dense sand mound

 

(c) Boundary conditions 

Fig. 3.2 3-D FE model of target caisson structure 
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3.3.2 Forced Vibration Analysis 

In order to obtain vibration responses of the caisson system, forced 

vibration analysis is designed considering limited accessibilities. An impact 

force, which has corresponding direction of incident wave (i.e., y-direction), 

is applied perpendicularly to the front wall of Caisson 2 as denoted in Fig. 

3.3. The impact force is assumed to be a half sine function with 10 N-power 

and 0.01 s-duration. The y-directional acceleration responses are measured 

at nine points (i.e., 1-9) on the top of the caisson caps as shown in Fig. 3.3. 

The sampling frequency is set as 1 kHz. 

 

Fig. 3.3 Impact excitation and acceleration acquisition points 

 

Fig. 3.4 shows acceleration signals in y-direction of points 2, 5 and 8.  

It is observed that the vibration of Caisson 2 is propagated into Caisson 1 

and Caisson 3. However, the vibration amplitude of the unexcited caisson 

are only about a half of that of the excited one. This implies that a certain 

amount of energy is apparently subtracted from the excited caisson by wave 

propagation along the caisson system. This observation is similar to 

previous experimental studies reported by Lamberti and Martinelli (1998). 
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(c) Point 8 (Caisson 3) 

Fig. 3.4 Y-directional acceleration signals of 3-D FE model 

 

3.3.3 Vibration Modal Analysis 

FDD Method 

The frequency domain decomposition (FDD) method (Otte et al., 

1990; Yi and Yun, 2004) is used to extract modal parameters such as natural 

frequency and mode shape. The singular values of the power spectral 

density (PSD) function matrix S( ) are used to estimate the natural 

frequencies instead of the PSD functions themselves as follows: 

S( ) = U( )T( )V( ) (3.2)  

where  is the diagonal matrix consisting of the singular values ( ’s) and U 

and V are unitary matrices. Since S( ) is symmetric, U becomes equal to V. 

In this FDD method, the natural frequencies can be determined from the 

peak frequencies of the singular value, and the mode shape from any of the 

column vectors of U( ) at the corresponding peak frequencies. Generally 
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the first singular value 1( ) among ’s (i=1, …, N) is used to estimate the 

modal parameters except in some special cases such as with two or more 

identical excitations. 

 

Modal Parameters 

The y-directional acceleration responses measured at points 1, 3, 4, 6, 7 

and 9 on the top of the caissons (see Fig. 3.3) are used to extract natural 

frequencies and mode shapes of the 3-D FE model. The singular values of 

the FDD procedure are shown in Fig. 3.5. In the frequency range of 0-200 

Hz, three peaks that are selected for the target modes are 25.33 Hz, 47.59 Hz 

and 71.32 Hz, as listed in Table 3.3. The corresponding mode shapes are 

shown in Fig. 3.6. It is noted in the figure that the three caissons mostly 

move together in the same phase for mode 1 and mode 3 while the opposite 

phase is observed for the mode 2. 

 

Fig. 3.5 Singular values of FDD procedure for 3-D FE model 
 

Table 3.3. Natural frequencies of 3-D FE model  

Natural frequency (Hz) 

Mode 1 Mode 2 Mode 3 

25.33 47.59 71.32 
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(a) Mode 1 

 

 
(b) Mode 2 

 

 
(c) Mode 3 

Fig. 3.6 Y-directional mode shapes of 3-D FE model 
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3.4 Simplified Model of 3-D FE Simulation 

 

Fig. 3.7 Simplified model of 3-D FE simulation 
 

The simplified model of the 3-D FE model is established using the 

proposed theoretical model (in Chapter 2), as shown in Fig. 3.7. An impact 

force P2(t) in y-direction is placed at Caisson 2 to excite the caisson system. 

The function of impact excitation P2(t) is described in Fig. 3.3. Structural 

parameters of the simplified model are determined as follows: 

 

Mass Matrix 

By using Eqs. (2.7)-(2.9), the mass parameters of the simplified model 

of the 3-D FE model are computed as: 

            1 2 3 100.43 42.68 6.40 149.52 m m m kg        (3.3) 

Then, from Eq. (2.3), the mass matrix is obtained as: 

                     
149.52 0 0

0 149.52 0  

0 0 149.52

M kg

 
   
  

 (3.4) 
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Stiffness Matrix 

The stiffness parameters are determined by matching vibration 

responses of the simplified model and the 3-D FE model using try-and-error 

method. The modulus of subgrade reaction of the foundation mound is 

selected as 25x106 N/m3 which is equivalent with that of medium dense 

sand (Bowles, 1996). By using Eq. (2.10), the spring constants of the 

foundation mound are calculated as: 

                  6 6
1 2 3 25 10 0.34 0.34 2.89 10 /F F Fk k k x x x x N m     (3.5) 

By assuming kS1 = kS4 = 0.5kS2 = 0.5kS3 (Martinelli and Lamberti, 

2011), the stiffness of the middle and last shear-keys are obtained as: 

                  6 6
2 3 1.1 2.89 10 3.179 10 /S Sk k x x x N m    (3.6a) 

          6 6
1 4 2 30.5 0.5 0.5 3.179 10 1.590 10 /S S S Sk k k k x x x N m      (3.6b) 

On substituting Eqs. (3.8), (3.9) and (3.10) into Eq. (2.5), the stiffness 

matrix is obtained as: 

              6

7.658 3.179 0

10 3.179 9.248 3.179  /

0 3.179 7.658

K x N m

 
    
  

 (3.7) 

 

Damping Matrix 

For calculating the damping parameter, the first two natural 

frequencies (f1 = 25.33 Hz and f2 = 47.59 Hz) and the critical damping ratio 

(5%) of the 3-D FE model are utilized to calculate the two Rayleigh 

damping coefficients (see Eq. (2.15)). The calculated mass-proportional 

damping coefficients () and stiffness-proportional damping coefficient () 

are, respectively, 10.387 and 0.000218. Then, the damping matrix is 

computed using Eq. (2.12) as the following: 
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  3

3.223 0.693 0

10 0.693 3.569 0.693  /

0 0.693 3.223

C x Ns m

 
    
  

 (3.8) 

Equations of Motion 

Substituting Eq. (3.4), (3.7) and (3.8) into Eq. (2.2a), the equations of 

motion of the target caisson breakwater are written as: 

1 1
3

2 2

3 3

6

149.52 0 0 3.223 0.693 0

0 149.52 0 10 0.693 3.569 0.693  

0 0 149.52 0 0.693 3.223

7.658 3.179 0

                                     10 3.179 9.248 3.

u u

u x u

u u

x

       
              
             


  

 

 

 

1

2 2

3

0

179 = ( )

0 3.179 7.658 0

u

u P t

u

     
    
    
         

  (3.9) 

To solve the above equations of motion, the Runge–Kutta scheme 

supported in Matlab R2012b is utilized (Press et al., 1988). In the 

calculation process of vibration responses, the time interval is selected as 

0.001 second. 
 
3.5 Validation of Simplified Model’s Vibration Responses 

3.5.1 Vibration Response in Time Domain 

Difference in Acceleration Acquisition Coordinates 

 
Fig. 3.8 Difference in acceleration acquisition coordinates between 3-D FE 

model and simplified model 
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Simplified model

 
(b) Caisson 2 
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(c) Caisson 3 

Fig. 3.9 Y-directional acceleration signals of 3-D FE model and simplified 

model with different acceleration acquisition coordinates 
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It is noted that the acceleration acquisition coordinate used in the 

simplified model is differed from that in the 3-D FE model, as described in 

Fig. 3.8. In the 3-D FE model, acceleration signals on the top of caissons are 

measured, whereas acceleration signals of the simplified model are 

computed at the mass centroids of the caissons. The difference in 

acceleration acquisition coordinates causes the difference in amplitudes of 

acceleration signals obtained from the simplified model and the 3-D FE 

model, as shown in Fig. 3.9. The vibration amplitudes of the simplified 

model are only about half of those of the 3-D FE model. To validate the 

accuracy of the simplified model in vibration analysis, the acceleration 

signals of the simplified model should be compared with those measured at 

the caissons’ centroids of the 3-D FE model. However, it is almost 

impossible to measure directly these signals from real caisson breakwaters. 

 

Estimation of Equivalent Vibration Responses 

In order to match the acceleration acquisition coordinates between the 

simplified model and the 3-D FE model, the following procedure is 

performed by estimating the acceleration signals of the mass centroids of the 

caissons from the ones measured on the caisson caps in the 3-D FE model. 

Firstly, y-directional acceleration signals of additional locations on the front 

walls (i.e., points 10, 11 and 12) are measured as shown in Fig. 3.10a. By 

comparing the acceleration signals of the upper points (i.e., 3, 6 and 9) and 

the lower points (i.e., 10, 11 and 12), the inclinations of the caissons can be 

obtained. Secondly, the mass centroid of each caisson is computed 

considering the added mass of sea water by Eq. (3.1) and added mass of soil 

by Eq. (2.9), as indicated in Fig. 3.10b. Thirdly, for each caisson unit, the 

acceleration signal of the mass centroid (i.e., C1, C2 or C3) is linearly-

estimated based on its inclination (i.e., 1, 2 or 3) and the measured signal 

at the top center location (i.e., point 2, point 5 or point 8). 
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(a) Additional acceleration acquisition points 10, 11 and 12 
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b) Linear relationships of acceleration signals  

Fig. 3.10 Estimation of y-directional acceleration signals of caissons’ 

centroids 
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(b) Centroid of Caisson 2 
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(c) Centroid of Caisson 3 

Fig. 3.11 Y-directional acceleration signals of caissons’ centroids in 

3-D FE model 
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(a) Centroid of Caisson 3 

Fig. 3.12 Y-directional acceleration signals of 3-D FE model and simplified 

model with equivalent acceleration acquisition coordinates 
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Fig. 3.11 shows the comparison between the estimated y-directional 

acceleration signals and the true ones of the caissons’ centroids. It is noted 

that the true signals are measured directly at the caissons’ centroids in the 3-

D FE model. As observed in the figure, the estimated signals show good 

agreement with the true ones. Next, the estimated y-directional acceleration 

signals at the caissons’ centroids in the 3-D FE model are used to compare 

with those of the simplified model, as sketched in Fig. 3.12. It can be seen in 

the figure that the signals of both models are well-matched. 

 

3.5.2 Vibration Response in Frequency Domain 

The PSDs of y-directional acceleration signals of the caissons’ centroids 

are computed using Fast Fourier Transform (FFT) for the both models (i.e., 

simplified model and 3-D FE model), as shown in Fig. 3.13. It can be seen 

that the magnitudes and frequencies of the first two peaks obtained from the 

two models are well-matched. The FDD method (Otte et al., 1990; Yi and 

Yun, 2004) is performed to extract modal parameters from the acceleration 

signals. The extracted mode shapes and corresponding natural frequencies 

are sketched in Fig 3.14 and given in Table 3.4, respectively. It can be seen 

that the modal parameters of the simplified model are similar to those of the 

3-D FE model.  
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Fig. 3.13 The PSDs of y-directional acceleration signals 3-D FE model and 

simplified model 

 

Table 3.4 Natural frequencies of 3-D FE model and simplified model 

Mode 
Natural frequency of target caisson breakwater (Hz) 

FE model Simplified model Variation 

Mode 1 25.33 25.88 2.13% 

Mode 2 47.59 47.36 -0.49% 
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(a) Mode 1 

 

(b) Mode 2 
Fig. 3.14 Y-directional mode shapes of 3-D FE model and simplified model 

 

     
(a) Mode 1 (b) Mode 2 

Fig. 3.15 Mode shapes of 3-D FE model by modal analysis 
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In order to improve the understanding of mode shapes of target caisson 

structure, modal analysis of the 3-D FE model is carried out in SAP2000 

software. The first and second mode shapes of the target caisson breakwater 

are shown in Fig. 3.15. It is observed that three caissons mostly move 

together in the same phase for the first mode, but in the opposite phase for 

the second mode. These results are well comparable with those sketched in 

Fig. 3.14. 

From these above observations, it is concluded that the simplified model 

of the interlocked caissons successfully represents the horizontal vibrations 

of the 3-D FE model. Hence, the proposed model can be used for dynamic 

analysis of interlocked caisson systems. 
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CHAPTER 4 
FEASIBILITY OF SIMPLIFIED MODEL FOR STRUCTURAL 

DAMAGE ASSESSMENT 
 

4.1 Introduction 

In this chapter, the simplified model of the interlocked caissons is 

employed for the structural damage assessment. Firstly, a damage detection 

method is formulated on the basic modal strain energy (MSE)-based damage 

detection theories. Secondly, several damage cases are simulated in the 

structure-foundation interface of the 3-D FE model with regarding the loss 

of foundation materials. Thirdly, the MSE-based method is performed to 

predict damaged caissons in the 3-D FE model. 

 

4.2 Modal Strain Energy-based Damage Detection 

The simplified model of the interlocked caissons is utilized to design a 

damage detection model on the basic MSE-based damage detection method 

by Kim et al. (2002). For a linear, undamaged caisson system, as shown in 

Fig. 2.2, the ith modal strain energy, Ui, is written by: 

                          2 2
1

1 1

1 1
( )

2 2j j

nc n

i ij F ij ij S
j j

U k k   
 

     (4.1) 

where nc is the number of caisson units; n is the number of shear-key 

connections; ij is the ith modal displacement at the jth caisson; kFj represents 

the stiffness of the jth caisson’s foundation; and kSj is the stiffness of the jth 

shear-key connection.  

The contribution of the jth caisson’s foundation to the ith modal strain 

energy, Uij, is defined as: 

                                            21

2 jij ij FU k  (4.2) 

Then, the fraction of the undamaged modal strain energy (i.e., the 

undamaged modal sensitivity) of the ith mode and the jth caisson is given by: 
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ij

ij
i

U
F

U
  (4.3) 

For the caisson system with only foundation damage, the damaged 

modal sensitivity of the ith mode and the jth caisson can be expressed as: 

                                             

*
*

*

ij
ij

i

U
F

U
  (4.4) 

in which the quantities Uij
* and Ui

* are calculated by: 

                                            * *2 *1

2 Fj
ij ijU k  (4.5) 

                        * *2 * * * 2
1

1 1

1 1
( )

2 2j j

nc n

i ij F ij ij S
j j

U k k   
 

     (4.6) 

For damage localization in the caisson system, a damage index j for the 

jth caisson is defined via the ratio between the relative change in the modal 

sensitivity for the ith mode with respect to the jth caisson and the relative 

change in the stiffness of the jth caisson’s foundation as follows: 

                                     

*

*

/

/
j j

ij ij
j

F F

F F

k k
   (4.7) 

in which j >1 indicates damage at the jth caisson. 

On substituting Eqs. (4.2), (4.3), (4.4) and (4.5) into Eq. (4.7), and by 

rearranging, the damage localization index j of the jth caisson is simplified 

as the following: 

                                   

*2

2 *

ij i
j

ij i

U

U





  (4.8) 

in which the ith modal strain energies of pre- and post-damage cases can be 

expressed as: 
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1

2i i iU M  (4.9a) 

                                          * * *1

2i i iU M  (4.9b) 

where Mi and Mi
* are the ith modal masses; i and i

* are the ith eigenvalues. 

It is assumed that the ith modal mass remains unchanged during the 

damaging event. Then, the relationship between the quantities Ui and Ui
* is 

simplified as: 

                                             
* *
i i

i i

U

U




  (4.10) 

By substituting Eq. (4.10) into Eq. (4.8), a damage localization index 

j of the jth caisson is computed for nm measured modes as follows: 

2*

1

2 *

1

nm

ij i
i

j nm

ij i
i

 


 









 (4.11) 

in which the components of the right hand side of Eq. (4.11) are measurable 

from the real caisson structure. 

If we treat damage location indices as normally distributed random 

variables, the normalized damage indices are defined according to the 

standard rule as: 

( )j
jZ 



 



  (4.12) 

where  and  are the mean and the standard deviation of the collection of 

j values, respectively. Next, the damage is localized utilizing hypothesis 

testing. The null hypothesis (i.e., Ho) is that the structure is undamaged at 

the jth element and alternate hypothesis (i.e., H1) is that the structure is 

damaged at the jth element. For damage localization, the following decision 
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rule is defined: first, select H1 if Zj < Zo; or choose Ho if Zj > Zo, where Zo is 

statistical confidence level of the localization test. 
 
4.3 Verification of MSE-based Damage Detection 

4.3.1 Description of Simulated Damage 

As a damage scenario, it is assumed that the structure-foundation 

interface of the caissons is scoured under extreme wave loading. Three 

damage cases of the foundation (i.e., Damage 1, Damage 2 and Damage 3) 

are simulated by removing armor gravel elements as shown in Fig. 4.1.  

Only single damage is made in each damage scenario. The percentage loss 

of the gravel layer of Caisson 1 in Damage 1, of Caisson 2 in Damage 2 and 

of Caisson 3 in Damage 3 are 2.7%, 10.5% and 6.9%, respectively. In 

Damage 2 and Damage 3, the damaged areas are expanded to the 

foundation-caisson contact region. 

160

y

x

160

60

210

160

60

140

60

Caisson 1 Caisson 2 Caisson 3

 

 (a) Undamaged (b) Damage 1 (c) Damage 2 (d) Damage 3 

Fig. 4.1 Foundation damage cases 
 

4.3.2 Damage Monitoring Results 

For detecting foundation damage, y-directional acceleration signals of 

the points 2, 5 and 8 of the 3-D FE model (see Fig. 3.3) before and after the 

damaging event are measured. Next, the natural frequencies and mode 

shapes are extracted from those signals (by FDD method). Table 4.1 

summarizes the natural frequencies of the caisson system for all damage 

cases. Only the first and the second modes are listed due to that these modes 

well match with those of the simplified model. As given in the table, natural 

frequencies are decreased according to the damage growth. Fig. 4.2 shows 
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the y-directional mode shapes of the 3-D FE model. It is observed that the 

relative motions between caissons are changed after the damaging events, 

and the first mode is more sensitive to the foundation damage than the 

second one. 
 

Table 4.1. Natural frequencies of 3-D FE model with foundation damage 

Case Damage scenario 
Natural frequency (Hz) 

Mode 1 Mode 2 

Undamaged - 25.33 47.59 

Damage 1 Removed 2.7% of armor gravel 25.13 (-0.78%) 47.54 (-0.11%) 

Damage 2 Removed 10.5% of armor gravel 24.77 (-2.25%) 46.98 (-1.31%) 

Damage 3 Removed 6.9% of armor gravel 24.85 (-1.92%) 47.43 (-0.33%) 

Parentheses indicate variation (%) of natural frequencies with respect to undamaged case 

 

(a) Model 1 

 

(b) Mode 2 

Fig. 4.2 Y-directional mode shapes of 3-D FE model with foundation 

damage 
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Next, the MSE-based method is employed to predict damage locations 

in the 3-D FE model. The normalized damage index is calculated by Eqs. 

(4.11) and (4.12). Damage localization results are illustrated in Fig. 4.3. 

Here, the criterion value Zo is chosen as 1.26 which is corresponding to the 

confidence level of 90%. It is found that for all damage cases with different 

damage severities, the MSE-based method has successfully localized the 

damaged caissons. 

      

 
Fig 4.3 Damage localization results in 3-D FE model 
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CHAPTER 5 
CONCLUSION 

 

In this study, a simplified model of interlocked caisson system, which 

can be used for dynamic analysis and damage assessment, was presented. 

The following approaches are performed to obtain the objective. Firstly, a 

conceptual dynamic model of the interlocked caisson system was designed 

on the basis of the characteristics of existing harbor caisson structures. A 

mass-spring-dashpot model considering only the sway motion was proposed. 

In the simplified model, each caisson unit was connected to adjacent ones 

by adding springs and dashpots to represent the condition of the interlocking 

mechanism. Secondly, the simplified model of the interlocked caisson 

system was evaluated for vibration analysis. A 3-D finite element model of 

the caisson system was utilized to examine the accuracy of the simplified 

model’s vibration responses. Thirdly, the simplified model of the caisson 

system was employed for damage assessment. A damage detection method 

based on modal strain energy is formulated to localize damage in the caisson 

system. 

From the observations in this study, the following conclusions have been 

made: 

(1) The proposed planar model successfully estimated the horizontal 

vibration of the caisson system. The vibration features (i.e., 

power spectral density, natural frequency and mode shape) of the 

simplified model were well consistent with those of the 3-D FE 

model. Hence, the planar model was reliable for the dynamic 

analysis of the caisson system. 

(2) The MSE-based damage detection method formulated for the 

simplified planar model successfully identified damage locations 

with high confidence level. 

Despite the feasibility of the proposed planar model of the caisson 

system for vibration analysis and damage estimation, several issues still 
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remain. The damage severity in the foundation should be studied extensively 

by quantifying its magnitude. The proposed simplified model should be 

experimentally verified on real or lab-scaled caisson breakwaters for the 

structural health assessment. 
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