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Decision Support in Machine Vision System for Monitoring of TFT-LCD Glass 
Substrates Manufacturing with Data Mining Techniques 

Ali Yousefian Jazi 

Department of Chemical Engineering, The Graduate School, 
Pukyong National University 

Abstract 

 
The visual appearance of manufactured products is often one of the major quality 

attributes for certain types of products, which are used mainly for display purposes or used 

as the exterior part of other products. TFT-LCD (Thin Film Transistor – Liquid Crystal 

Display) glass substrates can serve as a representative case. Inline defect inspection plays an 

important role in production yields quality improvement in TFT-LCD manufacturing. The 

main objective of this work is presenting one decision support system for monitoring of 

TFT-LCD glass substrates manufacturing by using data mining techniques. This study 

employs optical system design to make an inline surface defect inspection system in cold 

process section which is carried out according to CRISP-DM standard for data mining 

process methodology. This study also develops an image processing methodology, wavelet 

co-occurrence signature, to extract the features from images and different statistical, 

heuristical and machine learning algorithms such as principle component analysis, simulated 

annealing, support vector machine (SVM), multilayer perceptron (MLP) and ensemble 

techniques are used as feature reduction and classification as well. Finally, the results of 

different feature selection methods and classifiers are compared and the best is proposed as a 

suitable methodology for an automatic inspection system in cold process of TFT-LCD glass 

substrates manufacturing.    
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Chapter 1 

1. DATA MINING PROCESS 
 
CRISP-DM Methodology 

The life cycle of a data mining project consists of six phases, shown in 

Fig. 1.1 [1]. The sequence of the phases is not rigid. Moving back and forth 

between different phases is always required. The outcome of each phase 

determines which phase, or particular task of a phase, has to be performed 

next. The arrows indicate the most important and frequent dependencies 

between phases. The outer circle in Fig. 1.1 symbolizes the cyclical nature of 

data mining itself. Data mining does not end once a solution is deployed. The 

lessons learned during the process and from the deployed solution can trigger 

new, often more-focused business questions. Subsequent data mining 

processes will benefit from the experiences of previous ones. In the following, 

we will describe each phase: 

 

 

Fig. 1.1. Phases of the CRISP-DM methodology 
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1.1 Business Understanding 
 

This initial phase focuses on understanding the project objectives and 

requirements from a business perspective, and then converting this 

knowledge into a data mining problem definition, and a preliminary plan 

designed to achieve the objectives.  

 

1.1.1 Determine Business Objectives 
 

The first objective of the data analyst is to understand thoroughly, from a 

business perspective, what the client really wants to accomplish. Often the 

client has many competing objectives and constraints that must be properly 

balanced. The analyst’s goal is to uncover important factors, at the beginning, 

that can influence the outcome of the project. A possible consequence of 

neglecting this step is to expend a great deal of effort producing the right 

answers to the wrong questions.  

 

1.1.2 Assess Situation 
 

This task involves more detailed fact-finding about all of the resources, 

constraints, assumptions and other factors that should be considered in 

determining the data analysis goal and project plan. In the previous task, the 

objective is to get to the crux of the situation quickly. Here, the analyst wants 

to flesh out the details. 

 

1.1.3 Determine Data Mining Goals 
 

A business goal states objectives in business terms. A data mining goal 

states project objectives in technical terms. For example, the business goal 

might be “increase the quality of products in TFT-LCD manufacturing.” A 
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data mining goal might be “detect the defects and their location on the 

surface of glass substrates in LCD panel.”  

 

1.1.4 Produce Project Plan 
 

Describe the intended plan for achieving the data mining goals and 

thereby achieving the business goals. The plan should specify the anticipated 

set of steps to be performed during the rest of the project including an initial 

selection of tools and techniques. 

 

1.2 Data Understanding 
 

The data understanding phase starts with an initial data collection. It 

proceeds with activities  

• to get familiar with the data,  

• to identify data quality problems,  

• to discover first insights into the data, or  

• to detect interesting subsets to form hypotheses for hidden 

information.  

 

1.2.1 Collect Initial Data 
 

Acquire within the project the data (or access to the data) listed in the 

project resources. This initial collection includes data loading if necessary for 

data understanding. For example, if applying a specific tool for data 

understanding, it makes perfect sense to load the data into this tool. This 

effort may lead to initial data preparation steps.  
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1.2.2 Describe Data 
 

Examine the “gross” or “surface” properties of the acquired data and 

report on the results.  

 

1.2.3 Explore Data 
 

This task tackles the data mining questions that can be addressed using 

querying, visualization and reporting. These analyses may address the data 

mining goals directly. They may also contribute to or refine the data 

description and quality reports and feed into the transformation and other 

data preparation needed for further analysis.  

 

1.2.4 Verify Data Quality 
 

Examine the quality of the data, addressing questions such as: is the data 

complete? Is it correct? Are these missing values? If so how are they 

represented, where do they occur and how common are they? 

 

1.3 Data Preparation 
 

The data preparation phase covers all activities to construct the final 

dataset (data that will be fed into the modeling tool(s)) from the initial raw 

data. Data preparation tasks are likely to be performed multiple times, and 

not in any prescribed order. Tasks include table, record, and attribute 

selection as well as transformation and cleaning of data for modeling tools.  

 

1.3.1 Select Data 
 

Decide on the data to be used for analysis. Criteria include relevance to 

the data mining goals, quality and technical constraints such as limits on data 
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volume or data types. Note that data selection covers selection of attributes 

(columns) as well as selection of records (rows) in a table.  

 

1.3.2 Clean Data 
 

Raise the data quality to the level required by the selected analysis 

techniques. Problems that can occur with “dirty data” include missing data, 

empty values, non-existent values, and incomplete data. Data cleaning may 

involve selection of clean subsets of the data, the insertion of suitable 

defaults or more ambitious techniques such as replacing the dirty data with 

derived values, or building separate models for those entities that possess 

dirty data. However, these approaches can introduce additional problems. 

Specifically, filtering the problematic data can introduce sample bias into the 

data and using data overlays could introduce missing values.  

 

1.3.3 Construct Data 
 

This task includes constructive data preparation operations such as the 

production of derived attributes, entire new records, or transformed values 

for existing attributes.  

 

1.3.4 Integrate Data 
 

Two methods used for integrating data are merging data and generating 

aggregate values. In these methods information is combined from multiple 

tables or other information sources to create new records or values. For 

example, merging tables refers to joining together two or more tables that 

have different information about the same objects; generating aggregate 

values refers to computing new values computed by summarizing 

information from multiple records, tables or other information sources.  
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1.3.5 Format Data 
 

Formatting transformations refer to primarily syntactic modifications 

made to the data that do not change its meaning, but might be required by the 

modeling tool. 

 

1.4 Modeling 
 

In this phase, various modeling techniques are selected and applied, and 

their parameters are calibrated to optimal values. Typically, several 

techniques can be applied to the same data mining problem type. Some 

techniques require a specific form of data. Therefore, stepping back to the 

data preparation phase is often needed.  

 

1.4.1 Select Modeling Technique 
 

As the first step in modeling, select the actual modeling technique to be 

used. If a tool was selected in business understanding (Phase 1), this task 

refers to selecting the specific modeling technique, e.g., building decision 

trees or generating a neural network.  

 

1.4.2 Generate Test Design 
 

Prior to building a model, a procedure needs to be defined to test the 

model’s quality and validity. For example, in supervised data mining tasks 

such as classification, it is common to use error rates as quality measures for 

data mining models. Therefore, if the test design specifies that the dataset 

should be separated into training and test sets, the model is built on the 

training set and its quality estimated on the test set.  
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1.4.3 Build Model 
 

The purpose of building models is to use the predictions to make more 

informed business decisions. The most important goal when building a model 

is stability, which means that the model should make predictions that will 

hold true when it’s applied to yet unseen data. Regardless of the data mining 

technique being used, the basic steps used for building predictive models are 

the same.  

Models are created using data from the past in order for the model to 

make predictions about the future. This process is called training the model. 

In this step, the data mining algorithms find patterns that are of predictive 

value. Next, the model is refined using the test set. The model needs to be 

refined to prevent it from memorizing the training set. This step ensures that 

the model is more general (i.e. stable) and will perform well on unseen data. 

Then, the performance of the model is estimated using the evaluation set. The 

evaluation set is entirely separate and distinct from the training and test sets. 

The evaluation set (or hold out set) is used to assess the expected accuracy of 

the model when it is applied to data outside the model set. Finally, the model 

is applied to the score set. The score set is not pre-classified and is not part of 

the model set used to create the data model. The outcomes for the score set 

are not known in advance. The final model is applied to the score set to make 

predictions. The predictive sores will, presumably, be used to make more 

informed business decisions.  

Overfitting. A problem that can occur is that model created can overfit 

the data. Overfitting means that the specification of a model is in large part 

an artifact of the idiosyncrasies of the data set used to build it (i.e., the 

training set). Overfitting occurs when a model essentially memorizes the data 

on which was built. The model should learn the patterns in order to recognize 

them in future unseen datasets, but the model should not memorize the 
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patterns. The problem with the model memorizing the training set, is that 

when the model scores an unknown record, it will use the results from the 

model set if there is a match, and if not, it will produce a random guess. In 

that case the model is entirely unstable, i.e. it will do no better than random 

for the score set.  

 

1.4.4 Assess Model 
 

The model should now be assessed to ensure that it meets the data 

mining success criteria and passes the desired test criteria. This step is a 

purely technical assessment based on the outcome of the modeling tasks. 

Two tools commonly used to assess the performance of different models are 

the lift chart and the confusion matrix. 

A lift chart, sometimes called a cumulative gains chart, or a banana chart, 

is a measure of model performance. It shows how responses, (i.e., to a direct 

mail solicitation, or a surgical treatment for instance) are changed by 

applying the model. This change ratio, which is hopefully, the increase in 

response rate, is called the “lift”. A lift chart indicates which subset of the 

dataset contains the greatest possible proportion of positive responses. The 

higher the lift curve is from the baseline, the better the performance of the 

model since the baseline represents the null model, which is no model at all.  

A confusion matrix, sometimes called a classification matrix, is used to 

assess the prediction accuracy of a model. It measures whether a model is 

confused or not; that is, whether the model is making mistakes in its 

predictions. At the conclusion of the model building and assessment 

processes, the most appropriate model will be the model that meets the 

business objectives. 
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1.5 Evaluation 

1.5.1 Evaluate Results 
 

Previous evaluation steps dealt with factors such as the accuracy and 

generality of the model. This step assesses the degree to which the model 

meets the business objectives and seeks to determine if there is some 

business reason why this chosen model is deficient. Another option of 

evaluation is to test the model(s) on test applications in the real application if 

time and budget permits.  

 

1.5.2 Review Process 
 

At this point the resultant model appears to be satisfactory and appears 

to satisfy business needs. It is now appropriate to make a more thorough 

review of the data mining project in order to determine if there is any 

important factor or task that has somehow been overlooked.  

 

1.5.3 Determine Next Steps 
 

According to the assessment results and the process review, the analyst 

decides how to proceed at this stage. The analyst needs to decide whether  

• to finish the project and move on to deployment (Phase 6) or  

• to initiate further iterations or  

• to set up new data mining projects. 

 

1.6 Deployment 
 

Creation of the model is generally not the end of the project. Even if the 

purpose of the model is to increase knowledge of the data, the knowledge 

gained will need to be organized and presented in a way that the client can 
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use. Depending on the requirements, the deployment phase can be as simple 

as generating a report or as complex as implementing a repeatable data 

mining process. In many cases it will be the client, not the data analyst, who 

will carry out the deployment steps. However, even if the analyst will not 

carry out the deployment effort it is important for the client to understand up 

front what actions will need to be carried out to make use of the models 

created.  

 

1.6.1 Plan Deployment 
 

To deploy the data mining result(s) into the business, this task takes the 

evaluation results and develops a strategy for deployment. If a general 

procedure was identified to create the relevant model(s), this procedure is 

documented here for later deployment.  

 

1.6.2 Plan Monitoring and Maintenance 
 

Monitoring and maintenance are important issues if the data mining 

result becomes part of the day-to-day business and its environment. A careful 

preparation of a maintenance strategy helps to avoid unnecessarily long 

periods of incorrect usage of data mining results. To monitor the deployment 

of the data mining result(s), the project needs a detailed plan on the 

monitoring process. This plan takes into account the specific type of 

deployment.  

 

1.6.3 Produce Final Report 
 

At the end of the project, the project leader and the team write up a final 

report. Depending on the deployment plan, this report may be only a 

summary of the project and its experiences (if they have not already been 
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documented as an ongoing activity) or it may be a final and comprehensive 

presentation of the data mining result(s).  

 

1.6.4 Review Project 
 

Assess what went right and what went wrong, what was done well and 

what needs to be improved. 
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Chapter 2 

2. MANUFACTURING OVERVIEW 
 

2.1 Sheet Glass Manufacturing 
 

There are two different commercial processes (also called “hot” 

processes) for manufacturing a continuous sheet of glass for TFT-LCD glass 

substrates: (1) the floating process [2] and (2) the fusion process [3]. In the 

floating process, molten glass with a temperature around 1,100°C is 

continuously delivered onto a bath of molten tin. Since the density of molten 

glass is lower than that of molten tin, the glass spreads on the flat layer of tin 

forming a continuous sheet of flat glass with uniform thickness. This 

thickness can be controlled by manipulating the rate at which the sheet of 

glass is pulled out of the tin bath. The continuous sheet of flat glass is then 

pulled into a long kiln (called lehr) for annealing and further cooling to room 

temperature (Fig. 2.1). In the fusion process, molten glass is delivered into a 

trough, called an “isopipe”, where the molten glass overfills the isopipe until 

the glass flows evenly over both edges of the isopipe. It then fuses at the 

bottom of the isopipe, at which it flows downward with gravity and is further 

drawn down to form a continuous sheet of flat glass (Fig. 2.2).  

 

 

 

Fig. 2.1. Floating process [4] 
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Fig. 2.2. Fusion process [4] 

 

The continuous sheet of flat glass from a hot process is then rolled out of 

a hot process to be cut and inspected in a cold process. The cold process 

consists of cutting, chamfering, and surface polishing steps, with cleaning 

and inspection steps after each of the other steps. A schematic diagram of this 

cold process, including packaging, is shown in Fig. 2.3 The final product, a 

TFT-LCD glass substrate, has thickness of 0.7mm (or 0.5mm) and varying 

sizes according to a so-called TFT-LCD generation. For example, the size of 

a glass substrate of generation 7 is 1870×2200 or 1950×2250 (in mm). 

 

 

 
Fig. 2.3. Flow chart of cold process 
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2.2 Necessity of Using Automatic Optical Inspection (AOI) 
system 
 

The visual appearance of manufactured products is an important quality 

attribute. It is an essential determining factor for product quality, especially 

in the case that those products are used as the exterior part of other 

manufactured products. One representative of those types of products 

includes sheet glass, or Thin Film Transistor-Liquid Crystal Display (TFT-

LCD), glass substrates for Liquid Crystal Display (LCD) panels.  

TFT-LCD has become the most popular Flat Panel Display (FPD) 

during the past decade, and the manufacturing of high quality TFT-LCD 

glass substrates with dimensions more than 2×2 m2 is pushing the envelope 

for producing very large FPDs  (bigger than of 100–inch). However, one of 

the main weaknesses that remain with manufacturing larger glass substrates 

is their surface defects, such as surface warp and surface waviness. For 

example, the sheets with large warps, on the order of a few hundred 

micrometers, pose severe quality problems to the LCD panel industry.  

Increased competition in this demand led the market of LCD panel 

manufacturers, as well as their raw material suppliers, such as sheet glass 

manufacturers, to make every effort to improve production yields. Nowadays, 

because of increasing the competition between sheet glass manufacturing, 

every manufacturer has been making efforts to improve product yields. 

Traditionally, the quality control has been often done by visual inspection of 

human operators. But, quality inspection by skilled human inspector is 

limited, open to discrepancy, time-consuming and costly for training the 

skillful human inspectors. On the other hand, Because of stochastic nature of 

the visual appearance of the products, inspection of surface waviness by 

human eyes is difficult and wrong judgments are easily made due to human 

subjectivity and eye fatigues. Recently, machine vision is being used to 
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automate and improve this process [5]-[7]. Since, developing an Automatic 

Optical Inspection (AOI) system will significantly contribute to the quality 

improvement of products in sheet glass manufacturing, using the AOI 

systems become more popular in these days. However, some manufacturing 

processes, such as sheet glass manufacturing, in which more than simple 

physical transformation of the raw materials or parts occurs, have certain 

types of surface defects that can hardly be detected by typical AOI.  

In such manufacturing processes, defects are hard to define or measure; 

in other words, defects have stochastic appearances. For example, froth 

bubbles have very complex patterns that continuously vary in shape, size, 

direction, etc. There can be no discontinuous class of patterns because 

different patterns merge together to form more complex patterns [8]. For this 

reason, inspection of such stochastic defects is left for a trained human 

inspector. But, as mentioned before, inconsistency in human judgment has 

yet to be resolved in order to ensure reliable quality control; the same 

situations can be found in glass substrate manufacturing. 

Another main difficulty in this type of the problem arises from the fact 

that prior information or knowledge is very limited: no accurate class labels 

are often available, nor is prior knowledge about important aspects of visual 

appearance often available. This limitedness of prior information, as well as 

the stochastic nature of the visual appearance of the products, makes it much 

more difficult to apply machine vision to the problems.  

In AOI systems, first, the properties of products are specified using 

visual information then, they are automated by employing machine vision 

techniques [9]. An inline automatic optical inspection system has many 

advantages, such as increasing the production quality by elimination of 

human errors [10], and decreasing the time and costs in the process as well. 

In the past few years, AOI technology has been widely used in many 
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industries such as TFT-LCD for defect inspection and classification. There 

are two parts in the structure of these systems: the images are scanned and 

features are extracted in the first part, then defects are detected and classified 

by using one classification model. Fig. 2.4 shows the work-flow of the whole 

procedure (offline and online) for an automatic inspection system for the 

surface defects on TFT-LCD glass substrates which is the contribution of this 

work. 

 

 
Fig. 2.4. Work-flow for automatic inspection system for surface defects on TFT-LCD glass 
substrates 

 

2.3 Imaging Process 
 

Since a glass substrate is reflective, as well as transparent, imaging glass 

substrates for detecting surface defects is somewhat tricky. Therefore, in the 

imaging process two kinds of images can be captured, reflective and 

transparent. Transmission images, which are taken of the light transmitting 

through the glasses, and reflection images, which are the light reflecting off 
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the glass substrates (Fig. 2.5). A TFT-LCD glass substrate has a thickness of 

0.7mm (or 0.5mm) but their sizes are different based on the TFT-LCD’s 

generation. In this work, we have worked on glass substrate of generation 8, 

which are 2200×2500mm. Because of the large size of mother glasses (glass 

substrates), and also limitations of the camera’s resolution, it is not possible 

to take a photo of the whole surface of the mother glass and to capture 

defects with size of sub-millimeter by using single camera. Therefore, each 

mother glass was divided into 30 and 20 sections (sub-glasses) for imaging in 

transmission and reflection images, respectively. 

 

 

 
(a) 

 

 

(b) 

Fig. 2.5. Online (a) transmission and (b) reflection imaging system in inspection step of cold 

process.  

 

On the other hand, the uniformity of pixel intensity of the sub-glass 

images can be affected by lighting conditions including environmental 

factors and the position of the sub-glasses. Fig. 2.6 shows the mean and 

standard deviation of pixel intensities for some sub-glasses on the edges (11th, 

20th, 21th and 30th) and in the middle (14th, 15th and 16th) of the glass 

substrates (mother glasses) in transmission images. As shown in this figure, 

the differences of mean and standard deviation of intensity between the sub-

glasses on the edges and those in the center of the mother glasses can be 
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clearly seen. Fig. 2.7 also shows the mean and standard deviation of the pixel 

intensities for the 10 mother glasses and corresponding sub-glasses which are 

all ordered in imaging time. As shown in this figure, the differences in mean 

and standard deviation of intensity between the sub-glasses on the edges and 

those in the center of the mother glasses, as well as between the mother 

glasses, can be seen clearly. Also lighting conditions change over time as 

light sources age. This non-uniform and time-varying nature of lighting 

conditions is one of the most challenging problems in machine vision and 

this is one of the reasons why wavelet transform was chosen in this study. It 

is known that wavelet transform is inherently robust to lighting conditions 

due to its ability of multi-resolution analysis [8,11,12]. 

 

 

 

(a) 
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(b) 

Fig. 2.6. (a) Mean and (b) Standard deviation of pixel intensities for some sub-glasses in the 

edges (11th, 20th, 21th and 30th) and in the middle (14th, 15th and 16th) of glass substrates. 

 

 

 

 
(a) 
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(b) 

Fig. 2.7. (a) Mean and (b) Standard deviation of pixel intensities for 10 mother glasses and 

all their ordered sub-glasses based on capturing time. 

 

2.4 Surface Defects 
 

An LCD panel consists of two glass substrates (called color filter glass 

and TFT glass), and a backlight unit. Liquid crystal fills the gap between the 

two glass substrates (see also Fig. 2.8). Since the gap is on the order of a few 

micrometers, surface defects over a length scale of a few micrometers can 

cause local brightness variation on an LCD TV screen, often called “mura” in 

the industry. Since surface defects on glass substrates greatly affect the most 

important quality of the final product, picture quality of an LCD TV, the 

LCD panel industry defines following defects that determine the surface 

quality of glass substrates [13]-[16]: (1) air bubbles and particles, (2) surface 

flaws or scratches, (3) surface roughness, (4) surface waviness, and (5) 

surface warp. The focus of this work is on the second and fourth defects 

which are characterized in transmission and reflection images, respectively, 

because the surface flaws or scratches and the surface waviness defects can 

be seen best in corresponding images. Other defects can be detected well 

using AOI or other equipment. For example, the first defect, air bubbles 
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(inside a glass substrate) and particles (inside or on a glass substrate) can be 

detected very well using inline AOI system, known as a “particle counter”. 

 

 

Fig. 2.8. Structure of a LCD panel. 

 
 

Most surface defects can be easily seen by the bare eyes of expert human 

inspectors of those images. Samples of transmission and reflection images of 

glass substrates with and without surface flaws or scratches and waviness 

with some explanation of the defects are shown in Fig. 2.9 and 2.10 It should 

be noted that not all of these defects are easily visible to untrained eyes. 

These images show fractions of an entire glass substrate and a number of 

these “sub-glass” images depend on TFT-LCD generation, or the size of the 

glass substrates. 

As can be seen in Fig. 2.10, the waviness surface defect can be observed 

to be similar to something heterogeneous, such as conveyor belt marks and 

water marks, which occur for a variety of reasons. Though, these 

heterogeneous examples can also cause local brightness variation in the 

images, conveyer marks have low-frequency characteristics while waviness 

has mid-frequency characteristics, actually, they are not defect on the glass 

substrates. Therefore, this study does not consider them as a defect on the 

glass substrates. These marks should be distinguished from our target defect, 
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waviness, in feature extraction part. This can be a part of our objective to use 

wavelet transform in this work. 

 

   

Defect type A 

 

   

Defect type B 
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Defect type C 

Fig. 2.9. Examples of the three types of surface defects on transmission images. b) Type A 

has amorphous ripples. c) Type B has a few long arc-shaped lines. d) Type C has several 

faint diagonal lines. 

 

 

 

Fig. 2.10. Sample of reflection image: a sub-glass with waviness defect, conveyor belt and 

water marks. 
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Chapter 3 

3. DATA PREPARATION 
 
 

3.1 Feature Extraction 
 

Seen from the figure of different surface defects on glass substrates (Fig. 

2.9 and 2.10), detecting these defects is closely related to texture analysis 

since the image texture can be defined as a function of the spatial variation in 

pixel intensities [17]. Wavelet texture analysis is known as a very powerful, 

state-of-the-art method for extracting textural features from images [18]. 

Wavelet co-occurrence signature [19], which is a multiscale extension of the 

Grey Level Co-occurrence Matrix (GLCM) method [20], one of the oldest 

but still one of the most popular methods in texture analysis, is used in this 

work to extract the features from sub-images.  

As shown in Fig. 3.1(a) and (b), since, the defect type C and waviness 

are not captured in the approximation wavelet sub-images, while local 

lighting non-uniformity and some image features such as conveyor belt 

marks, guide bar marks and water marks are in transmission and reflection 

images, the approximation wavelet detail is excluded from subsequent 

feature extraction steps to remove the non-uniform lighting variation and 

some image marks in sub-images. Fig. 3.1(c) also shows the feature 

extraction methodology which is used in this study. 
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(a) 

 

                                                                            (b) 
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(c) 

Fig. 3.1. (a) the left is the raw image with defect type C (it also has local lighting non-

uniformity between top side and the rest) and the right is the reconstructed image from level 

4 approximation sub-image, (b) the left is the raw image with waviness (top-right) and also 

conveyor belt marks, guide bar marks, water marks and the right is the reconstructed image 

from level 4 approximation sub-image and (c) proposed feature extraction methodology. 

 

3.1.1 Grey Level Co-occurrence Matrix (GLCM) 
 

Let I be a given grey scale image. Let N be the total number of grey 

levels in the image. The Grey Level Co-occurrence Matrix defined by 

Haralick is a square matrix G of order N, where the (i,j)th entry of G 

represents the number of occasions a pixel with intensity i is adjacent to a 

pixel with  intensity j. The normalized co-occurrence matrix is obtained by 

dividing each element of G by the total number of co-occurrence pairs in G. 

The adjacency can be defined to take place in each of the four directions 

(horizontal, vertical, left and right diagonal) as shown in Fig. 3.2. The 

Haralick texture features are calculated for each of these directions of 

adjacency [20]. 
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Fig. 3.2. The four directions of adjacency for calculating the Haralick texture features  

 
 

The texture features are calculated by averaging over the four directional 

co-occurrence matrices. To extend these concepts to n-dimensional Euclidean 

space, we precisely define grey scale images in n-dimensional space and the 

above mentioned directions of adjacency in n-dimensional images. Following 

are the suggested textural features by Haralick [20]. 

Textural Features 
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åå=
i j

jipf 2
1 )},({  

2) Contrast: 

å
-

=

=- ï
ï
þ

ïï
ý

ü

ï
ï
î

ïï
í

ì

å
=

å
=

=
1

0

2
2

1 1
),(

gN

n

nji

gN

i

gN

j

nf jip  

3) Correlation: 

 

yx

y
i j

xjipij

f
ss

mmåå -

=

),()(

3
 

4) Sum of Squares: Variance 

 

),()(
2

4 jipif
i j
åå -= m  

5) Inverse Difference Moment: 

åå
-+

=
i j

jip
ji

f ),(
)(1

1
25

 

6) Sum Average: 

å
=

+=
gN

i
yx iipf

2

2
6 )(  

7) Sum Variance: 

å
=

+-=
gN

i
yx ipfif

2

2

2
87 )()(  

8) Sum Entropy: 

 

)}(log{)(
2

2
8 ipipf yx

N

i
yx

g

+
=

+å-=  

θ = 135°  θ = 45°  
θ = 90°  

θ = 0°  



 

28 
 

9) Entropy: 
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10) Difference Variance: 

 

f10 = variance of px-y 
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3.1.2 Wavelet Co-occurrence Signature 
 

It can be observed in Fig. 2.9 and 2.10 that the defects on a glass 

substrate often appear in pixel regions. The main difference between a 

normal pixel region and a defective one is its appearance, i.e., the spatial 

variation of pixel intensities. Because image texture can be defined as a 

function of the local spatial variation in pixel intensities [17], there is a 

specific type of texture in the defective pixel region, while the gray-level 

distribution of a normal one is almost uniform. Since texture is one of the 

important characteristics used for identifying objects or regions of interest in 

an image, detecting the different surface defects on glass substrates is closely 

related to texture analysis.  
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A wide variety of techniques have been proposed and used for analyzing 

texture, such as gray-level co-occurance matrix, Fractals, Gabor filters, 

variations of wavelet transform [17,21,22,23]. In General, methods for 

texture analysis can fall into one of four categories: (1) structural methods, (2) 

model-based methods, (3) statistical methods, and (4) transform-based 

methods [23]. The gray-level co-occurrence matrix (GLCM) method [20], is 

the oldest but still one of the most popular methods in statistical methods and 

texture analysis in general. 

Haralick et al. [20] proposed the use of GLCM, which is related to the 

second order statistics of pixel intensities in an image, to characterize its 

texture using 14 textural features calculated from GLCMs. In this method, 

one can easily manipulate parameters such as distance (d), angle (q), and 

gray level (G) in the calculation of G×G GLCMs from an image. In many 

applications, GLCMs with d = 1 or 2, q = 0°, 45°, 90°, and/or 135°, and G 

much lower than 32 were enough to provide good results with affordable 

computational cost. Van de Wouwer [19] applied this method to wavelet 

detail coefficients to get GLCMs and corresponding textural features, 

wavelet co-occurrence signatures. In other words, wavelet co-occurrence 

signatures are higher order statistics based on the co-occurrence matrix of 

two-dimensional (2-D) wavelet detail coefficients (also called wavelet sub-

images). For more details about wavelet texture analysis, GLCM, and 

wavelet co-occurrence signatures, please refer to the references [17]-[20]. 

 

3.2 Feature Reduction & Selection 

3.2.1 Principal Component Analysis (PCA) 
 

The most popular statistical method for dimensionality reduction of a 

large data set is the Karhunen-Loeve (K-L) method, also called Principal 
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Component Analysis (PCA). Principal component analysis is a method of 

transforming the initial data set represented by vector samples into a new set 

of vector samples with derived dimensions. The goal of this transformation is 

to concentrate the information about the differences between samples into a 

small number of dimensions. More formally, the basic idea can be described 

as follows: 

I. Firstly the data set procured from the experiment are normalized as 
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where )( jxi
¢  is the new value of the normalized data for jth parameter in ith 

experiment, )( jxi is the value of jth parameter in ith experiment. 

II. The new normalized multi-response array for m parameters and n 

experiment can be represented by matrix x¢as 
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III. The correlation coefficient array ( jlR ) of matrix x¢ is written as 

Follows 
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where ))(),(cov( lxjx ii
¢¢ is the covariance of sequences )( jxi

¢  and )(lxi
¢ ; 

)(lxi¢
s  is 

the standard deviation of sequence )(lxi
¢ . 

IV. The eigenvalues and eigenvectors of matrix ( jlR ) are calculated. 

V. The PC are computed as follows 
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where )(kpi  is the kth PC corresponding to ith experiment, )( jvk  is jth 

element of kth eigenvector. 

VI. The total principal component index (TPCI) corresponding to ith 

experiment ( ip ) is computed as follows 
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where eig(k) is the kth eigenvalue. 

VII. The TPCI for each experiment is used to realize the average factor 

effect at each level. The optimum parameter level that corresponds to the 

maximum TPCI is also predicted. 

3.2.2 Parallel Genetic Algorithm (PGA) 
 

Since increasing the dimensionality of the feature space will also result 

in an increased complexity of the interactions among the features and 

increase the degree of noise [24,25],  Parallel Genetic Algorithm (PGA) was 

used, which is an extended version of the genetic algorithm, for reducing the 

dimension of the feature space in this study. Let },,,{ 21 qxxxC K=  be the set 

containing all of q possible features, and W  be the collection of all subsets of 

C. The goal of feature selection is to find the best features WÎw . In a 

Genetic Algorithm (GA) each individual w  is represented by a binary string 

of length q, which is treated as the genetic code (DNA) of w . Starting with a 

randomly generated population of size m }),,,({ 21 mwww K , a new generation 
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is produced with three genetic operations: selection, reproduction, and 

mutation. 

Zhu & Chipman [26] first demonstrated that the GAs, although 

seemingly natural for the feature selection problem, are not actually easy to 

use or are hardly effective and they proposed a very simple modification. 

Their idea was to run a number of GAs in parallel without allowing each GA 

to fully converge, and then to unify the information from all of the individual 

GAs at the end. They also specified the appropriate stopping criterion as 

follow: given a collection of binary sequences of length q (with each 

sequence containing p bits), let jr  be the frequency that the jth bit is equal to 

1. Then the average “per bit” entropy of this collection is given by 
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                                                    (3.7) 

Therefore, the GA can be regarded as having converged when the 

entropy of the population is sufficiently close to 0, that is, below a 

prespecified threshold δ (e.g., δ = 0.05). jr , which is the percentage of last-

generation candidates in all of the parallel paths that contain feature j, is used 

as an importance measure to rank the feature j.  

It was shown with a simulation study that parallel evolution, or PGA, is 

competitive in its ability to recover the correct model. The strength and 

usefulness of parallel evolution was also illustrated with both simulated and 

real datasets indicating its general ability to be implemented as a feature 

selection tool for more complex statistical models. For more details about 

PGA, please refer to the reference [26].  

 

3.3 Synthetic minority over-sampling technique (SMOTE) 
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Imbalance data learning have increasingly attracted many researchers for 

more than a decade. The problem of imbalanced data is often associated with 

asymmetric costs of misclassifying elements of different classes (i.e., 

algorithm generally gives more important to correctly classify the majority 

class samples). One way to solve class imbalance problem is creating or 

modifying algorithm which includes the cost-sensitive method. The other 

way is using data-preprocessing techniques like sampling which is applied on 

data in which either new samples are added or existing samples are removed. 

Process of removing a sample known as under-sampling and process of 

adding new sample in existing is known as over-sampling. 

Synthetic minority over-sampling technique (SMOTE) is well known as 

an over-sampling method which was proposed by Chawla et al. [27]. Here 

the minority class is over-sampled by creating "synthetic" instances in the 

feature space rather than by over-sampling with replacement. This approach 

is motivated by a technique presented by Ha and Bunke [28] in handwritten 

character recognition.  

The minority classes are over-sampled by taking each minority class and 

creating synthetic instances of it along the line segments joining any/all of 

the k nearest neighbors’ minority class, where k is predetermined. Depending 

upon the required over-sampling amount (b), synthetic data points are 

generated by randomly selecting data points. For instance, if b = 300% and k 

= 5, then one out of five nearest neighbors of x0 is randomly chosen for three 

times repeatedly. Each time a random kth neighbor is selected to create a line 

connecting x0 to this neighbor and then a single synthetic instance is created 

by randomly selecting a point on the line. Therefore, synthetic instance xnew 

can be defined as a following: 
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where )(
0
tx  is the tth nearest neighbors of x0 in the minority class and ]1,0[Îd  

is a random number. The procedure is repeated for all the minority samples. 

More information on the SMOTE algorithm and its pseudo code can be 

found in the work by Chawla et al. [27]. 
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Chapter 4 

4. MODELING 
 
 

4.1 Multi-layer Perceptron (MLP) 
 

Generally Artificial Neural Networks (ANNs) are basic input and output 

devices, with the neurons organized into layers. Simple perceptrons consist 

of a layer of input neurons, coupled with a layer of output neurons, and a 

single layer of weights between them. The learning process consists of 

finding the correct values for the weights between the input and output layer. 

The schematic representation given in Fig. 4.1 is often how neural nets are 

depicted in artificial neural networks are composed of input, hidden and 

output layers, and connections.  

 

 

Fig. 4.1. Multilayer perceptron network 

 

 

Fig. 4.2. Multilayer perceptron: 3 inputs, a hidden layer with 4 neurons and 2 outputs. 
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Generally data is presented at the input layer, the network then processes 

the input by multiplying it by the weight layer. The result of this 

multiplication is processed by the output layer nodes, using a function that 

determines whether or not the output node fires. The process of finding the 

correct values for the weights is called the learning rule, and the process 

involves initializing the weight matrix to a set of random numbers between -1 

and +1. Then as the network learns, these values are changed until it has been 

decided that the network has solved the problem. Finding the correct values 

for the weights is effected using a learning paradigm called supervised 

learning. 

The principle weakness of the simple perceptron was that it could only 

solve problems that were linearly separable. A Multi-Layers Perceptron 

(MLP) is a particular of artificial neural network [29]. An example of a 

multilayer network with three inputs, a hidden layer with four neurons and 

two outputs is shown in Fig. 4.2 MLPs can be developed to learn the 

relationship between inputs and outputs. They are composed of sets of 

embedded linear and nonlinear functions. In the MLPs, the actual output y 

can be defined by (Fig. 4.1) 
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where superscript 1 denotes hidden layer and superscript 2 denotes output 

layer. R, 1S and 2S demonstrate the numbers of the input, hidden and output 

units, respectively. Also, f, w and b represent transfer function, synaptic 

weight parameter and bias, respectively. Following is the transfer function f 

which is used in this study: 

Log–sigmoid: ( )
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One of the most critical tasks in neural network design is the selection of 

appropriate number of hidden layers. Unlike the input and output layers, one 
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starts with no past information as to the number of hidden layers. If a 

network has too few or too many hidden nodes, it faces some problems such 

as following the noise in the data and leading to poor generalization for 

untrained data. Moreover, with increasing number of hidden layers, training 

becomes very time-consuming. Discovering the optimal values of neural 

network parameters is important to achieve a good forecast and estimation 

performance. In this study, the parameters of MLP model are selected by 

simulated annealing. 

 

4.2 Support Vector Machine (SVM) 
 

A training data set is defined by D={(x1,y1),…,(xn,yn)} where xi
NÂÎ , 

}1,1{-Îiy  and n is the number of training data points. Support Vector 

Machines (SVMs) are learning machines, which mean that a linear function 

of f(x) = wTΦ(x)+b is used to solve the classification problems in a higher 

dimensional version of x, Φ(x). The best line is defined to be a line which 

minimizes the following cost function: 
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where 
ix  is the corresponding error at the ith point, C is the penalty parameter 

and )( ixF maps ix  into a higher-dimensional space.  

The minimization of (4.3) is a standard problem in optimization theory: 

minimization with constraints. This can be solved by applying the 

Lagrangian theory. With the help of Lagrange theory, the dual formulation 

becomes: 
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According to ia  Lagrange multipliers, the decision function is written as 

following: 
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where ),( xxK i  is named the kernel function. In this study, the following 

Radial Basis Function (RBF) was used: 

)exp(),(
2

jiji xxK xx --= g                                                                        (4.6) 

where g  is the kernel parameter [30]-[32]. 

 

4.3 Simulated Annealing (SA) 
 

Choosing the optimal values for parameters of SVM and MLP is 

important to get the good results [33,34]. For this reason, simulated 

Annealing (SA) algorithm was used in this study. With the graphical 

description in Fig. 4.3 [35], a summary of SA algorithm steps is as follows: 

In the first step, chose )0(x as an initial solution and compute the value 

of the objective function, )( )0(xF . After that, until the stopping criterion is met, 

do the following for n starting from 0: 

draw a solution, x, at random in the neighborhood )( )(nV x  of  )(nx . 

If )()( )(nFF xx £  then )1( +® nxx . 

If )()( )(nFF xx >  then draw a number ρ at random in [0,1] and if 

),,( )(nnp xx£r  then )1( +® nxx  else  )1()( +® nn xx . 
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The function is often taken to be a Boltzmann function inspired from 

thermodynamics models: 

,
1

exp),,( )(

÷÷
ø

ö
çç
è

æ
D-= n

n

n F
T

np xx          )()( )(n
n FFF xx -=D                                  (4.7) 

where nT  is the temperature at step n, which is a non-increasing function of 

the iteration counter n. In the so-called geometric cooling schedule, the 

temperature is kept unchanged during each successive stage, where a stage 

consists of a constant number L of consecutive iterations. Therefore, the SA 

has converged when the algorithm reaches L or 05.0)()( )()1( £-+ nn FF xx . After 

each stage, the temperature is multiplied by a constant factor of )1,0(Îa . In 

this work, 95.0=a  , 01.00 =T  and the initial solution )0(x  was selected 

randomly as well as defined classification accuracy in section 5.1.2 (Eq. 5.1) 

was used as an objective function.  

 

 
Fig. 4.3. A flow chart of simulated annealing 
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4.4 Classification and Regression Tree (CART) 
 

Focusing on the data provided, this model creates a model of tree-shaped 

structure using inductive reasoning [36]. An important thing which we should 

consider in create the CART models is the construction of the “right-sized” 

tree [37]. In the extreme, if a tree grows so large that each terminal node 

contains only one entry, it may completely classify the training data, but will 

most probable gain significant errors in the testing data. This event is referred 

to as “overfitting”. CART carry outs a tree-pruning procedure to avoid 

overfitting by using either cross-validation or a testing data set after a large 

tree is grown [37]. The analyses with the pruning provide an optimal tree to 

get purpose of prediction. The best predictor in the CART structure is chosen 

based on a variety of impurity or diversity measures (Gini, twoing and least-

squared deviation). In this study, we used measure of Gini impurity that is 

used for categorical targets.  

Gini Impurity Measure: 

The Gini index at node t, g(t), is defined as 

 å
¹

=
lk

tlptkptg )()()(                                                                                   (4.8) 

or 

å-=
k

tkptg )(1)( 2                                                                                       (4.9) 

where k and l are categories of the target variable. Suppose that m is the 

number of categories in this variable. When the objects in a node are equally 

distributed across the categories, the Gini index gets its maximum value of 1- 

(1/m). The Gini index will be 0 if all objects in the node belong to the same 

category. The following formula for Gini index is defined when the costs of 

misclassification are specified 

å
¹

=
lk

tlptkpklCtg )()()()(                                                                           (4.10) 
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where )( klC  is the probability of misclassifying a category k case as category 

l. The best split, s, is the one that maximizes the following function: 

 )()()(),( RRLL tgptgptgts --=F                                                          (4.11) 

where Lp  and Rp  are the proportions of objects in t that send to the left ( Lt ) 

or right (
Rt ) child nodes, respectively. The value of s is reported as the 

improvement in the tree [37]. 

 

4.5 Cost-sensitive C5.0 Classifier 
 

The C5.0 algorithm is a new generation of machine learning algorithms 

based on decision trees. It means that the decision trees are built from list of 

possible attributes and set of training cases, and then the trees can 

be used to classify subsequent sets of test cases. C5.0 was developed as an 

improved version of well-known and widely used C4.5 classifier and it has 

several important advantages over its ancestor. The generated rules are more 

accurate and the time used to generate them is lower. In C5.0 several new 

techniques were introduced: 

• boosting: several decision trees are generated and combined to 

improve the predictions. 

• variable misclassification costs: it makes it possible to avoid errors 

which can result in a harm. 

• new attributes: dates, times, timestamps, ordered discrete attributes. 

• values can be marked as missing or not applicable for particular cases. 

• supports sampling and cross-validation. 

Suppose there are C classes, and Cost[i,c] (i, c є [1,…,C]) denote the cost 

of misclassifying a member of the ith class as being the cth class, and Cost[i] 

denote the cost of the ith class. Cost[i] is usually derived from Cost[i,c]. 
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There are many possible rules for the derivation, among which a popular one 

is å
=

=
C

c

ciCostiCost
1

],[][  [38].  

Threshold-moving is another benefit of using C5.0 classifier which 

moves the output threshold toward inexpensive classes such that examples 

with higher costs become harder to classify and more likely to be 

misclassified. Concretely, let Oi (i є [1,…,C]) denote the real-value output of 

a C5.0 decision tree, å
=

=
C

i
iO

1

1and 0 ≤ Oi ≤ 1. In standard classifiers, the class 

returned is, 
i

i

Oargmax
; while in threshold-moving, the class returned is 

*
i

i

Oargmax . *
iO is calculated according to (1), where η is a normalization term 

such that å
=

=
C

i
iO

1

* 1and    0 ≤ O*
i ≤ 1. 

å
=

=
C

c
ii ciCostOO

1

* ],[h
                                                                                  (4.12) 

The presented threshold-moving algorithm is similar to the cost-

sensitive classification method [39]. Provost in his paper said that “the 

bottom line is that when studying problems with imbalanced data, using the 

classifiers produced by standard machine learning algorithms without 

adjusting the output threshold may well be a critical mistake” [40]. It has 

also been declared that trying other methods, such as sampling, without 

trying to simply set the threshold may be misleading [40]. Maloof showed 

that threshold-moving is as effective as sampling methods in solving the class 

imbalance problem [41]. 
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4.6 Ensemble Technique 
 

Ensemble learning methods train multiple component learners and then 

combine their predictions. Therefore, ensemble techniques improve the 

predictive power when compared with single learners; ensemble learning has 

been a hot topic during the past few years [42]. Zhou & Liu [43] proposed 

hard-ensemble and soft-ensemble, i.e. the combination of classifiers via hard 

or soft voting schemes and concluded soft-ensemble may cause negative 

effect on some seriously imbalanced data sets. The only difference between 

hard-ensemble and soft-ensemble is that using the binary votes and real-value 

votes, respectively. Therefore, the hard-ensemble is used to combine the 

classifiers’ predictions. 

In hard ensemble, every component learner votes for a class and then the 

class receiving the largest number of votes is returned. In this work, different 

cost-sensitive learners are trained with the threshold-moving algorithms. 

Therefore, it is feasible to combine these learners into an ensemble which 

uses binary votes of classification decisions of the component learners. 
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Chapter 5 

5. EXPERIMENTAL RESULTS 
 
 

5.1 Transmission Images (Experiment I) 

5.1.1 Data Preparation and Preprocessing 
 

For this study, 1182 sub-glass images were collected from production 

lines that were labeled by expert inspectors. There are four classes, including 

on-specification sub-glass (labeled as OK), and off-specification sub-glass 

that have one of three different types of defects (labeled as A, B, C). A 

training set of 826 sub-glass images was chosen from total of 1182 sub-glass 

images by random selection, and the remaining 356 images including 248, 48, 

11 and 49 samples in OK, A, B, and C class, respectively, were used as a 

testing set. In the training set, there are 588 sub-glasses in the OK class, 110, 

22 and 106 sub-glasses are in the A, B and C classes, respectively. 

Among 14 GLCM features proposed by Haralick et al. [20], four 

features (angular second moment, contrast, energy, entropy) were extracted 

from the GLCMs of wavelet sub-images after applying a 4 level wavelet 

decomposition on the substrate sub-images using bior1.3 wavelet function 

(biorthogonal wavelets with an order one reconstruction filter and an order 

three decomposition filter). As for GLCMs, the values of the design 

parameters used were d = 2, q = 45° and 135°, and G = 32. The design 

parameters of the wavelets transform and the GLCMs were found to be 

appropriate by trial and error. All 12 detailed wavelet sub-images (4 levels×3 

directions (horizontal, vertical, and diagonal) = 12 sub-images) were used, 

and two GLCMs (45° and 135°) were calculated from each wavelet sub-
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image. Since four GLCM features were calculated from each GLCM, there 

are a total of 96 wavelet co-occurrence features extracted from one sub-

image of a glass substrate; which were used as a feature vector for the sub-

glass image. Therefore, the training set is an 826×96 matrix and the test set is 

a 356×96 matrix. 

Fig. 5.1 shows the importance plots from the PGA for 75 parallel paths; 

each path is evolved for 24 generations. Also, mutation and crossover rates of 

0.05 and 0.5, respectively, were used for each GA. In general, the number of 

features to be selected must be determined. This can easily be done by 

plotting the importance of the features from the largest to the smallest and 

looking for a large gap. Fig. 5.1 shows that the first seven features are clearly 

separated from the rest [26]. The feature ID’s for the seven selected features 

are 23, 41, 42, 49, 85, 89, and 90. Since all GLCM features were calculated 

from wavelet sub-images having different spatial frequencies, only certain 

frequency regions capture the textural characteristics that can discriminate 

between the different surface defects best. Further investigation revealed that 

among the seven selected features, six features were calculated from the 

same resolution, four of them were from the angular second moment, and 

two of them were from the contrast, which are related to uniformity and local 

variation of texture, respectively. 

 
Fig. 5.1. Ordered importance plot for features by using PGA 
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5.1.2. Results and Discussion 
 

Before applying classification techniques, score plots of the first three 

principal components of the features were plotted in Fig. 5.2 so as to see the 

characteristics of the classification problem. One can easily see that none of 

the four classes are linearly separable and the use of non-linear classification 

techniques may be desirable. In this investigation SVMs were used, which 

are considered to be the state-of-the-art classification method for pattern 

recognition, and the radial basis function was employed as the kernel 

function. The use of the radial basis function is inspired from the empirical 

findings that radial basis kernels tend to give good performance under 

general smoothness circumstances, and therefore should be considered, 

especially if no additional knowledge of the data is available.  

As there is no structured way to choose the optimal parameters of SVMs, 

the values of parameters were found by a Simulated Annealing (SA) 

algorithm employing classification accuracy as the objective function to 

maximize. Table 5.1 shows the optimal values of the SVM parameters 

resulting from the SA analysis for classification of the four different classes 

of glass substrates. As shown in this table, the optimal kernel (γ) for SVM 

when using and when not using feature selection is 0.5 and 0.9, as well as 

penalty parameter (C) is 17 and 24, respectively.   

Table 5.1. The optimal values of the SVM parameters resulting from the simulated annealing 
algorithm. 

 SVM parameters 

kernel parameter 

(γ) 

penalty parameter 

(C) 

Without 

Feature Selection 

 
0.5 

 
17 

With 

Feature Selection 

 
0.9 

 
24 
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Fig. 5.2. Scatter plots of first three principal components 
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The training and testing results for the automatic inspection system are 

summarized in Table 5.2. This table shows the performance of the proposed 

system with and without using feature selection for the classification of TFT-

LCD glass substrates. The training result with and without feature selection 

was nearly the same, but testing results were different. The best test accuracy 

value for classification using SVM with and without feature selection was 

77.53% and 83.13%, respectively. In addition, the proposed method needs to 

be robust to the parameters of the cooling schedule of SA. Table 5.2 also 

shows the results of the simulation for different cooling schedules of SA 

under different 0T , where L=100, 95.0=a . So, the optimized SVM with 

feature selection can classify four classes with the most satisfactory 

performance. The accuracy which was used to evaluate the performance of 

the proposed method in experiments I and II is defined below: 

n

TTTT
Accuracy CBAOK +++

=                                                                          (5.1) 

where TOK, TA, TB and TC are the number of samples correctly classified as 

the classes OK, A, B, and C, respectively, and n is the total number of sample 

images used in the training and testing sets.  

 

Table 5.2. Performance of the proposed method 

 

Fig. 5.3 shows the performance of the proposed method in predicting 

each of the four classes using the gain charts. The lift and gain are useful 

                         0T  

 
Accuracy(%) 

0.01 0.1 1 

Train Test Train Test Train Test 

Without 
Feature Selection 

100 77.53 99.99 77.51 99.99 77.52 

With 
Feature Selection 

100 83.13 100 83.13 100 83.13 
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tools for measuring the value of a predictive model [44]. The basic idea of lift 

and gain is to sort the predicted target values in decreasing order of purity 

based on some target category, and then compare the proportion of cases 

within the category in each bin with the overall proportion. The sorted row 

index numbers computed in the previous step are divided into n partitions, 

where n is the number of bins. In this work, 10 bins were used. The lift and 

gain values show how much improvement the model provides in picking out 

the best of the cases. A gain chart displays the cumulative percent of the 

target value on the vertical axis and the cumulative percent of population on 

the horizontal axis. Cumulative gain is the ratio of the expected outcome 

using the model to prioritize the prospects divided by the expected outcome 

of randomization. The straight, diagonal line shows the expected return if no 

model is used on the population. The shaded area between the lines shows 

the improvement (gain) from the model. The gain of 1.00 means that no 

selective targeting is done. As shown in Fig. 5.3, for the OK class, prediction 

is better by 2.8155 times when using optimized SVM as compared to the 

expected return of no model or randomization; this is comparable to an 

average gain of 1.1568, 1.2409, and 2.2047 for defect type A, B, and C, 

respectively. Fig. 5.3(a) and (d) also show about 80 and 70 percent, 

respectively, of the samples in the class OK and defect type C are in the first 

bin [45].   
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a) OK 

 

 

b) Defect type A 

 

c) Defect type B 
d) Defect type C 

Fig 5.3. Gain charts for classification of four classes of glass substrates using optimized 
SVM. 

 

5.2. Transmission Images (Experiment II) 

5.2.1. Data Preparation and Preprocessing 
 

After applying 4th-level wavelet decomposition on the sub-glass images 

using the bior1.3 wavelet function (biorthogonal wavelets with a first order 

reconstruction filter and a third order decomposition filter), a total of 22 

GLCM features were extracted from the GLCMs of the wavelet detail sub-

images excluding the approximation sub-image. As shown in Fig. 3.1(a), 

since, the defect type C is not captured in the approximation wavelet sub-

image, while local lighting non-uniformity is, the approximation wavelet 

detail is excluded from subsequent feature extraction steps to remove the 

non-uniform lighting variation in sub-images. Therefore, 12 detailed wavelet 
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sub-images (4 levels × 3 directions (horizontal, vertical, and diagonal) = 12 

sub-images) were used, and two GLCMs (45° and 135°) were calculated 

from each wavelet sub-image. As for the GLCMs, the values of the design 

parameters used were d = 2, θ = 45° and 135°, and G =32. In addition to 

Haralick’s original 14 GLCM features, 8 aditional features were extracted. 

They are Autocorrelation, Cluster prominence, Cluster shade, Dissimilarity, 

Energy, Homogeneity, Inverse difference and Maximum probability [46,47]. 

Since 22 GLCM features were calculated from each GLCM, there are a total 

of 528 wavelet co-occurrence signatures extracted from each sub-glass image 

that are then used as a feature vector for the image. Therefore, the entire 

dataset which is extracted from proposed feature extraction methodology (Fig. 

3.1(c)) is now an 1182×528 matrix.  

Since some of these extracted features are strongly correlated with each 

other, using a procedure to select a subset or linear combinations of the 

features can be good [20]. In this work, PCA was used for dimension 

reduction. In PCA, only the terms corresponding to the K largest eigenvalues 

are kept. The value of K, the number of components deemed sufficient, is 

determined based on Eq. 3.6. Fig. 5.4 shows the scree plot from the PCA 

performed on the data. The value of threshold was chosen to be equal to 0.9, 

and 34 principal components were retained as the features for the three 

classification methods. In other words, 90% of the variations in the original 

528 features are explained by 34 principal components.   

Furthermore, since our dataset has 855, 134, 37 and 156 observations in 

the OK, A, B and C classes, respectively, we face the issue of an imbalance in 

the dataset. In this case, we used SMOTE with k=5 as the number of 

neighbors. After using SMOTE to increase the number of observations in the 

minority classes, the number of observations in the resulting balanced dataset 

is 855, 570, 285 and 570 in each class. Therefore, the final dataset is a 
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2280×34 matrix, which is then randomly divided into a training (70% of the 

final dataset) dataset and a testing (30% of the final dataset) dataset. After 

modeling the training data using the CART, optimized MLP and SVM, the 

performance was verified by classifying the testing dataset. 

 

Fig. 5.4. The scree plot from the first 34 principal components of our data. 

 

5.2.2. Results and Discussion 

The radial basis function was employed as the kernel function of the 

SVM, which is inspired by the empirical findings that radial basis kernels 

tend to give good performance under general smoothness circumstances, 

especially if additional knowledge of the data is unavailable. Then, SA is 

carried out to find the optimized value of (C,γ) in the SVM and the number 

of nodes in each hidden layer of the MLP structure. The Kernel parameter 

and the penalty parameter for the SVM were found to be 0.8 and 16, 

respectively.  

Shenouda carried out the comparison of different MLP transfer functions 

in classification problems and showed that the sigmoid transfer function 

outperforms the others [48]. Therefore, in this work, the sigmoid function 

was used as a transfer function and 0.001 was chosen as the learning rate for 

MLP. There are a number of training algorithms used to train a MLP; back 
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propagation is one of the most important training algorithms that is used 

frequently for obtaining the weights and bias [49,50]. Furthermore, by trial 

and error, we achieved the MLP with 2 hidden layers, 39 neurons in the first 

hidden layer and 26 neurons in the second hidden layer, by using SA.  

The corresponding MLP and SVM parameters for the classification of 

four different defects on TFT-LCD glass substrates are summarized in Table 

5.3 and 5.4. CART structures display a hierarchical system of decision rules 

for classifying the objects according to the features of the predictor variables. 

Table 5.5 summarizes the rules and the classified results from the tree built 

from the data. Table 5.5 also indicates that the third principal component 

(PC3) plays the most important role in the rule induction. According to Table 

5.5, we can see that if an observation whose PC3, PC6 and PC16 values are 

greater than 0.477, -0.409 and -0.402, respectively, it falls into the terminal 

node whose classified class is OK. 

The results obtained from the proposed CART, MLP and SVM models 

indicate that the optimized SVM model with the SA algorithm is better for 

classifying TFT-LCD glass substrates than the CART and MLP models. 

However, we have a new situation when the imbalanced dataset was used. 

With the imbalanced dataset, MLP outperforms the support vector machine; 

however these results in Table 5.6 substantiate earlier findings that SVM 

performs better than MLP when balanced dataset are used. The CART had 

the lowest accuracy of 69.4% and 67.2% for imbalanced and balanced data, 

respectively, followed by the proposed MLP of 78.6%, 87.9% and SVM of 

74.5%, 89.5%.  

Tables 5.7, 5.8 and 5.9 show the confusion matrices for the proposed 

methods. They show the number of cases classified correctly in each class by 

individual method for the balanced data. For example, Table 5.9 shows the 

confusion matrix for the optimized SVM model that is applied to the testing 
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dataset consisting of 717 instances that are roughly split evenly between the 

four classes. We can see from this Table that this method correctly classified 

215 sub-glasses in the OK class, 167, 86 and 174 sub-glasses in the defect 

types A, B and C classes, respectively. This is the best accuracy when 

compared with the others. 

 

Table 5.3. The optimal values of the MLP parameters resulting from the simulated annealing 

algorithm. 

 

 

 

 

 

Table 5.4. The optimal values of the SVM parameters resulting from the simulated annealing 

algorithm. 

 

 

 

 

 

Table 5.5. CART analytic rules 

Rule Class 

PC3 <= 0.477  

 PC8 <= 0.357  

  PC2 <= -0.125  

   PC6 <= 0.743  

    PC2 <= -1.712   

    PC2 > -1.712   

   PC6 > 0.743   

    PC1 <= -1.166    

 

 

 

 

C 

B 

 

A 

MLP Parameters  

No. of neurons in first hidden layer 39 

No. of neurons in second hidden layer 26 

SVM Parameters  

kernel parameter (γ) 0.8 

penalty parameter (C) 16.0 
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    PC1 > -1.166    

  PC2 > -0.125 

   PC4 <= 0.031  

    PC8 <= -0.730    

    PC8 > -0.730    

   PC4 > 0.031  

    PC5 <= 1.165   

    PC5 > 1.165   

 PC8 > 0.357  

  PC11 <= -0.890  

  PC11 > -0.890  

   PC12 <= -0.801  

   PC12 > -0.801   

PC3 > 0.477  

 PC6 <= -0.409  

  PC6 <= -2.356    

  PC6 > -2.356  

   PC33 <= 0.877   

    PC4 <= 0.608    

    PC4 > 0.608    

   PC33 > 0.877   

 PC6 > -0.409  

  PC16 <= -0.402  

   PC3 <= 1.073   

    PC14 <= 0.303   

    PC14 > 0.303   

   PC3 > 1.073   

  PC16 > -0.402   

OK 

 

 

C 

OK 

 

C 

OK 

 

OK 

 

OK 

A 

 

 

B 

 

 

A 

C 

OK 

 

 

 

A 

OK 

OK 

OK 
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Table 5.6. Accuracy of CART, optimized MLP and SVM for both imbalanced and balanced 

data. 

 

 

Table 5.7. Confusion matrix of CART model for the testing dataset. 

 

 

Table 5.8. Confusion matrix of proposed MLP model for the testing dataset. 

Accuracy (%) 
Imbalanced Data Balanced Data 

Train Test Train Test 

CART 80.6 69.4 75.1 67.2 

Optimized MLP 79.1 78.6 88.4 87.9 

Optimized SVM 99.3 74.5 99.7 89.5 

 Classification Result 

OK A B C Total 

CART 

OK 158 48 12 30 248 

A 57 120 9 6 192 

B 15 12 53 9 89 

C 14 19 4 151 188 

Total     717 

 Classification Result 

OK A B C Total 

Optimiz

ed MLP 

OK 208 24 11 5 248 

A 24 167 1 0 192 

B 4 2 82 1 89 

C 9 2 4 173 188 

Total     717 
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Table 5.9. Confusion matrix of proposed SVM model for the testing dataset. 

 

The CART analysis has a number of advantages over the other 

classification methods. One is that they are scalable for large problems and 

can handle smaller data sets than NN models [51]. The other advantage is 

that it is inherently non-parametric. In other words, no hypotheses are made 

regarding the underlying distribution of values of the features. Furthermore, 

CART can handle categorical features with either ordinal or non-ordinal 

structure. Thus, the use of this model became popular. On the other hand, the 

need for pruning in the decision tree algorithms makes CART less attractive.  

Neural networks and SVMs show more potential for multi-classification 

problems. Brown worked on multimodal classification problems where the 

data sets are large with few attributes and showed that NNs do better than 

CART models [52]. Also, in a previous work by Burbidge et al. [53], a SVM 

classifier outperformed other standard machine learning methods. One of the 

most important disadvantages of these models is that there is no structured 

way to choose the optimal parameters of the MLP and SVM. In this study, 

the parameters of these algorithms are determined using simulated annealing, 

which produce nearly optimal results. 

 Classification Result 

OK A B C Total 

Optimiz

ed SVM 

OK 215 24 2 7 248 

A 21 167 0 4 192 

B 3 0 86 0 89 

C 10 1 3 174 188 

Total     717 
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The comparison of the obtained results from the proposed SVM, MLP 

and CART models using balanced data indicated that the MLP and SVM 

models were, in general, better for the classification of defects than the 

CART model. This might be due to the stochastic nature of the defects in the 

images. On the other hand, the proposed MLP models in the current study 

were more effective in using the balanced data for defect detection of TFT-

LCD glass substrates than the SVM model when the evaluation criteria are 

compared. However, the accuracy of the MLP model using balanced data 

was not considerably higher than the proposed SVM model (see Table 5.6). 

5.3. Reflection Images 

5.3.1. Data Preparation and Preprocessing 
 

In this study, 4540 sub-glass images were taken by the installed cameras 

above the conveyor belt in the cold process and were labeled by expert 

inspectors as OK or NG. As mentioned in section 2.3, since each 20 sub-

glasses belong to one mother glass. 227 mother glasses are considered in our 

study. The data set has 535 and 92 defective sub-glasses and mother glasses, 

respectively. Therefore, the ratios of class imbalance are approximately 0.1 

and 0.4 for sub-glass and mother glass, respectively, which the ratio for the 

mother glass is not as much high as the ratio for the sub-glass. For testing our 

proposed algorithm, a total of 40 mother glasses including 17 defective 

glasses, were selected as a testing data set and the remaining were used to 

train the classifiers.  

In this work, 4th-level wavelet decomposition was applied by the bior1.3 

wavelet function (biorthogonal wavelets with a first order reconstruction 

filter and a third order decomposition filter). Then, GLCM features were 

extracted from the GLCMs of the wavelet detail sub-images. As shown in Fig. 

3.1(b), since, the waviness is not captured in the approximation wavelet sub-



 

59 
 

image, while image features such as conveyor belt marks, guide bar marks, 

(some of) water marks are. Therefore, approximation coefficients which 

mostly contain lighting variation across the glass were excluded in 

calculating GLCMs and recovering features. Furthermore, as shown in Fig. 

2.10, the waviness is only in the horizontal direction in sub-images, in other 

word, this direction contains most of information related to waviness. 

Therefore, 4 horizontal wavelet coefficients were extracted and only one 

GLCM (90°) was calculated from each wavelet sub-image. Finally, 8 features, 

including: (1) Autocorrelation, (2) Cluster prominence, (3) Cluster shade, (4) 

Dissimilarity, (5) Energy, (6) Homogeneity, (7) Inverse difference, (8) 

Maximum probability, in addition to the 14 GLCM features which were 

defined by Haralick [45,46] were calculated from each GLCM with the 

parameters d = 2, θ = 90° and G =32. Therefore, there are a total of 4×22=88 

wavelet co-occurrence signatures extracted from one sub-glass image. After 

using the wavelet co-occurrence signature, the entire dataset is a 4540 × 88 

matrix. 

 

5.3.2. Results and Discussion 
 

According to the imaging process for reflection images, each mother 

glass was divided into 20 sub-glasses. Therefore, the important points for 

manufactures are indicating the defective mother glasses and finding the 

location of these defects; both mother glass and sub-glass accuracy should be 

in our decision criterion. Therefore, the decision criterion in this part is 

defined as follows: 

2

SAMA
DC

+
=

                                                                                            (5.2) 

where MA and SA are mother glass accuracy and sub-glass accuracy, 

respectively. 
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M

M
NG

M
OK

n

TT
MA

+
=

                                                                                           (5.3) 

S

S
NG

S
OK

n

TT
SA

+
=

                                                                                            (5.4)
 

where M
OKT , M

NGT , S
OKT and S

NGT  are the number of qualified (OK) and defective 

(NG) mother glasses and sub-glasses which are correctly classified, 

respectively. Moreover, nM and nS are the total number of mother glass and 

sub-glass samples. Also, for calculating MA, each mother glass with at least 

one defective sub-glass is labeled as an NG glass in this work.  

In this study, C5.0 with a variety of cost matrices was investigated as 

classifiers for the ensemble technique. C5.0 is a cost-sensitive learning 

algorithm which considers the cost information when building and pruning 

the induced decision tree. Due to the high ratio of class imbalance for sub-

glass, using the more cost for false positive can be helpful to get the high 

accuracy in sub-glass. On the other hand, since each mother glass with at 

least one defective sub-glass is labeled as an NG glass, we can put more 

importance in NG class and also have the high mother glass accuracy by 

using the more cost for false negative. Therefore, we evaluate more than one 

cost ratio; this actually increases the generality of our results. As shown in 

Tables 5.10, 5.11 and 5.12, for our experiments, a false positive prediction, 

CFP, and false negative prediction for the majority of experiments, CFN, is 

evaluated for values of 1 and 2 in the training the decision tree. The 

confusion matrices of the sub-glass and mother glass for all three C5.0 

classifiers with different cost matrices are shown in Tables 5.13 through 5.18. 

The effect of each cost matrix on classifying the observations into each class 

based on its own defined cost can easily be concluded from these tables. In 

the confusion matrix with cost matrix 1 (Tables 5.13, 5.14), all of the 

observations in the majority class are truly classified; moreover, the mother 
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glass accuracy sharply decreased in the case of using cost matrix 3 as the 

classifier (Fig. 5.5). Therefore, we can conclude that a cost value equal to 2 

can be the maximum value for the costs in this problem.  Table 5.19 shows 

the mother glass accuracy (MA) and sub-glass accuracy (SA) for each 

classifier on the testing data. As one can see from Table 5.13 through 5.19, 

increasing the false negative cost, CFN, causes the sub-glass and mother glass 

accuracy to decrease and increase, respectively. On the other hand, increasing 

the false positive cost, CFP, gives us a higher SA and lower MA.  

 

Table 5.10. Cost matrix 1. 
 

Cost 
Matrix 

 
OK 

 
NG 

OK 0 2 
NG 1 0 

 

Table 5.11. Cost matrix 2. 
 

Cost 
Matrix 

 
OK 

 
NG 

OK 0 1 
NG 1 0 

 

 
 
Table 5.12. Cost matrix 3. 
 

Cost 
Matrix 

 
OK 

 
NG 

OK 0 1 
NG 2 0 

 

 
 
 
Table 5.13. Sub-glass confusion matrix for cost matrix 1on testing data.  
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 594 0 
NG 132 74 

 
 
 
Table 5.14. Mother glass confusion matrix for cost matrix 1 on testing data. 
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 23 0 
NG 8 9 
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Table 5.15. Sub-glass confusion matrix for cost matrix 2 on testing data. 
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 578 16 
NG 105 101 

 
 
 
 
Table 5.16. Mother glass confusion matrix for cost matrix 2 on testing data. 
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 18 5 
NG 4 13 

 
 
 
 
Table 5.17. Sub-glass confusion matrix for cost matrix 3 on testing data. 
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 550 44 
NG 72 134 

 
 
 
 
Table 5.18. Mother glass confusion matrix for cost matrix 3 on testing data. 
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 10 13 
NG 3 14 
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Fig. 5.5. Sub-glass and mother glass accuracy for C5.0 classifier with different cost matrices. 

 
 
 
Table 5.19. Comparison between the accuracy of classifiers with different cost matrices. 
 

  Cost1 Cost2 Cost3 Ensemble 
ACCUURACY 

(%) 
SA 83.5 84.88 85.5 86.37 
MA 80 77.5 60 82.5 
DF 81.5 81.19 72.75 84.44 

 

Because we are interested in the case where both the sub-glass and 

mother glass accuracies are high, a combination of all three classifiers can be 

a good way to reach this goal. On the other hand, time is an important 

parameter in these systems; therefore, an ensemble technique, which is a 

simple voting scheme, was selected to use the three classifiers results. 

Although, it is expected that the performance can be improved if more 

learners are included, the ensembles studied in this work contain only three 

component learners in order to control the computational cost of system. 

Tables 5.20, 5.21 show the sub-glass and mother glass confusion matrix 

for our proposed ensemble method on the testing data. As shown in Table 

5.21, from the 23 total defective mother glasses, 21 glasses were classified 

correctly as the OK class and just 5 mother glasses in the NG class were 

classified as qualified glasses. Table 10 also shows SA, MA and DF using 
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proposed ensemble technique are 86.37%, 82.5% and 84.44%, respectively. 

Therefore, this discloses that threshold-moving and the ensemble methods 

could be a viable alternative for making an inline automatic inspection 

system to detect the defects on the surface of TFT-LCD glass substrates. 

 

Table 5.20. Sub-glass confusion matrix for proposed ensemble method on testing data. 
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 585 9 
NG 100 106 

 
 
 
Table 5.21. Mother glass confusion matrix for proposed ensemble method on testing data. 
 

 PREDICTED 
 

ACTUAL 
 OK NG 

OK 21 2 
NG 5 12 

 

6. Conclusion 
 

This study has successfully developed an automatic inspection system 

for detecting surface flaws or scratches and surface waviness on produced 

glass substrates in a cold process of sheet glass manufacturing. The novelties 

of this system are: (1) using the special imaging process and two types of 

imaging, transmission and reflection, to show the different defects (2) 

separation of the defects from the other marks on the images through the 

proposed feature extraction method, and (3) detection of defects with high 

performance and reasonable complexity by using the proposed classification 

technique.  

This study has practical meaning because using feature selection 

methods enables higher classification accuracy, as well as shorter training 
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and testing time. In addition, the use of SA in finding the best parameters for 

classifiers provides optimal classification performance. In fact, this system 

can be operated in manufacturing to decrease the time and cost to train the 

human inspectors and increase the defect detection accuracy by removing the 

possibility of wrong judgments from the human inspectors. The experimental 

results using images from real production lines show that the proposed 

method can provide competitive performance for detecting different types of 

surface defects. 
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