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1 Introduction

Information aggregation is an essential process of gathering relevant information

from multiple sources by using a proper aggregation technique. Many techniques,

such as the weighted average operator [1], the weighted geometric mean operator

[2], harmonic mean operator [3], weighted harmonic mean (WHM) operator [3],

ordered weighted average (OWA) operator [4], ordered weighted geometric opera-

tor [5, 6], weighted OWA operator [7], induced OWA operator [8], induced ordered

weighted geometric operator [9], uncertain OWA operator [10], hybrid aggrega-

tion operator [11] and so on, have been developed to aggregate data information.

However, yet most of existing aggregation operators do not take into account the

information about the relationship between the values being fused. Yager [12]

introduced a tool to provide more versatility in the information aggregation pro-

cess, i.e., developed a power-average (PA) operator and a power OWA (POWA)

operator. In some situations, however, these two operators are unsuitable to deal

with the arguments taking the forms of multiplicative variables because of lack

of knowledge, or data, and decision makers’ limited expertise related to the prob-

lem domain. Based on this tool, Xu and Yager [29] developed additional new

geometric aggregation operators, including the power-geometric (PG) operator,

weighted PG operator and power-ordered weighted geometric (POWG) operator,

whose weighting vectors depend upon the input arguments and allow values being

aggregated to support and reinforce each other.

In this thesis, we will develop some new fuzzy aggregation operators, and apply

them to group decision making. In order to do this, the remainder of this thesis

is arranged in following chapters. In Chapter 2, we first review some aggregation

operators, including the WAA, WQM and WCHM operators. Then, in Chapter 3,

we develop fuzzy aggregation operators including fuzzy quadratic mean (FQM),

fuzzy weighted quadratic mean (FWQM), fuzzy ordered weighted quadratic mean

(FOWQM), fuzzy contraharmonic mean (FCHM), fuzzy weighted contraharmonic

mean (FWCHM), and fuzzy ordered weighted contraharmonic mean (FOWCHM)

operators, and investigate some properties of the FOWQM and FOWCHM op-
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erators, such as commutativity, idempotency, monotonicity and boundedness. In

Chapter 4, we utilize the FWQM and FHQM (or the FWCHM and FHCHM) op-

erators to propose approaches to multiple attribute group decision making with

triangular fuzzy information. Chapter 5 illustrates the presented approaches with

a practical example.

2 Basic aggregation operators

In this chapter, we review some basic aggregation techniques and some of their

fundamental characteristics.

Definition 2.1 [1] Let WAA : Rn → R, if

WAA(a1, a2, . . . , an) =
n∑
j=1

wjaj, (1)

where R is the set of real numbers, aj (j = 1, 2, . . . , n) is a collection of pos-

itive real numbers, and w = (w1, w2, . . . , wn)T is the weight vector of aj (j =

1, 2, . . . , n), with wj ≥ 0 and
∑n
j=1wj = 1, then WAA is called the weighted

arithmetic averaging (WAA) operator. Especially, if wi = 1, wj = 0, j 6= i,

then WAA(a1, a2 . . . , an) = ai; if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the WAA operator is

reduced to the arithmetic averaging (AA) operator, i.e.,

AA(a1, a2, . . . , an) =
1

n

n∑
j=1

aj. (2)

Definition 2.2 [3] Let WQM : (R+)n → R+, if

WQM(a1, a2, . . . , an) =

 n∑
j=1

wja
2
j

 1
2

, (3)

where R+ is the set of all positive real numbers, aj (j = 1, 2, . . . , n) is a collection

of positive real numbers, and w = (w1, w2, . . . , wn)T is the weight vector of aj

(j = 1, 2, . . . , n), with wj ≥ 0 and
∑n
j=1wj = 1, then WQM is called the weighted
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quadratic mean (WQM) operator. Especially, if wi = 1, wj = 0, j 6= i, then

WQM(a1, a2 . . . , an) = ai; if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the WQM operator is

reduced to the quadratic mean (QM) operator, i.e.,

QM(a1, a2, . . . , an) =

(∑n
j=1 a

2
j

n

) 1
2

. (4)

Definition 2.3 [3] Let WCHM : (R+)n → R+, if

WCHM(a1, a2, . . . , an) =

∑n
j=1wja

2
j∑n

j=1wjaj
, (5)

where R+ is the set of all positive real numbers, aj (j = 1, 2, . . . , n) is a collection

of positive real numbers, and w = (w1, w2, . . . , wn)T is the weight vector of aj

(j = 1, 2, . . . , n), with wj ≥ 0 and
∑n
j=1wj = 1, then WCHM is called the

weighted contraharmonic mean (WCHM) operator. Especially, if wi = 1, wj = 0,

j 6= i, then WCHM(a1, a2, . . . , an) = ai; if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the WCHM

operator is reduced to the contraharmonic mean (CHM) operator, i.e.,

CHM(a1, a2, . . . , an) =

∑n
j=1 a

2
j∑n

j=1 aj
. (6)

The WAA, WQM and WCHM operators first weight all the given data, and

then aggregate all these weighted data into a collective one. Yager [4] introduced

and studied the OWA operator that weights the ordered positions of the data

instead of weighting the data themselves.

Definition 2.4 [4] An OWA operator of dimension n is a mapping OWA : Rn →
R that has an associated vector ω = (ω1, ω2, . . . , ωn)T such that ωj ≥ 0 and∑n
j=1 ωj = 1. Furthermore,

OWA(a1, a2, . . . , an) =
n∑
j=1

ωjbj, (7)

where bj is the jth largest of ai (i = 1, 2, . . . , n). Especially, if ωi = 1, ωj = 0,

j 6= i, then bn ≤ OWA(a1, a2, . . . , an) = bi ≤ b1; if ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then

OWA(a1, a2, . . . , an) =
1

n

n∑
j=1

bj =
1

n

n∑
j=1

aj = AA(a1, a2, . . . , an). (8)
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3 New fuzzy aggregation operators

The above aggregation techniques can only deal with the situation that the ar-

guments are represented by the exact numerical values, but are invalid if the

aggregation information is given in other forms, such as triangular fuzzy number

[15], which is a widely used tool to deal with uncertainty and fuzzyness, described

as follows:

Definition 3.1 [15] A triangular fuzzy number â can be defined by a triplet

[aL, aM , aU ]. The membership function µâ(x) is defined as:

µâ(x) =


0, x < aL;

x−aL
aM−aL , aL ≤ x ≤ aM ;
x−aU
aM−aU , aM ≤ x ≤ aU ;

0, x > aU

where aU ≥ aM ≥ aL ≥ 0, aL and aU stand for the lower and upper values of

â, respectively, and aM stands for the modal value [15]. Especially, if and two

of aL, aM and aU are equal,then â is reduced to an interval number; if all aL, aM

and aU are equal, then â is reduced to a real number. For convenience, we let Ω

be the set of all triangular fuzzy numbers.

Let â = [aL, aM , aU ] and b̂ = [bL, bM , bU ] be two triangular fuzzy numbers,

then some operational laws defined as follows [15]:

1) â+ b̂ = [aL, aM , aU ] + [bL, bM , bU ] = [aL + bL, aM + bM , aU + bU ];

2) λâ = λ[aL, aM , aU ] = [λaL, λaM , λaU ];

3) â× b̂ = [aL, aM , aU ]× [bL, bM , bU ] = [aLbL, aMbM , aUbU ]

4) 1
â

= 1
[aL,aM ,aU ]

= [ 1
aU
, 1
aM
, 1
aL

].

In order to compare two triangular fuzzy numbers, Xu [13] provided the fol-

lowing definition:
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Definition 3.2 [13] Let â = [aL, aM , aU ] and b̂ = [bL, bM , bU ] be two triangular

fuzzy numbers, then the degree of possibility of â ≥ b̂ is defined as follows:

p(â ≥ b̂) = δmax

{
1−max

(
bM − aL

aM − aL + bM − bL
, 0

)
, 0

}

+(1− δ) max

{
1−max

(
bU − aM

aU − aM + bU − bM
, 0

)
, 0

}
, δ ∈ [0, 1] (9)

which satisfies the following properties:

0 ≤ p(â ≥ b̂) ≤ 1, p(â ≥ â) = 0.5, p(â ≥ b̂) + p(b̂ ≥ â) = 1. (10)

Here, δ reflects the decision maker’s risk-bearing attitude. If δ > 0.5, then

the decision maker is risk lover; If δ = 0.5, then the decision maker is neutral to

risk; If δ < 0.5, then the decision maker is risk avertor.

In the following, we shall give a simple procedure for ranking of the triangular

fuzzy numbers âi (i = 1, 2, . . . , n). First, by using Equation (9), we compare each

âi with all the âj (j = 1, 2, . . . , n), for simplicity, let pij = p(âi ≥ âj), then we

develop a possibility matrix [16, 10] as

P =


p11 p12 . . . p1n

p21 p22 . . . p2n
...

pn1 pn2 . . . pnn

 , (11)

where pij ≥ 0, pij + pji = 1, pii = 1
2
, i, j = 1, 2, . . . , n.

Summing all elements in each line of matrix P , we have pi =
∑n
j=1 pij, i =

1, 2, . . . , n. Then, in accordance with the values of pi (i = 1, 2, . . . , n), we rank

the âi (i = 1, 2, . . . , n) in descending order.

3.1 Fuzzy quadratic mean operators

Based on operational laws, we extend the WQM operator (3) to fuzzy environ-

ment:
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Definition 3.3 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of triangu-

lar fuzzy numbers, and let FWQM : Ωn → Ω, if

FWQM(â1, â2, . . . , ân) =

 n∑
j=1

wj â
2
j

 1
2

(12)

where w = (w1, w2, . . . , wn)T be the weight vector of âj (j = 1, 2, . . . , n), with

wj ≥ 0 and
∑n
j=1wj = 1, then FWQM is called a fuzzy weighted quadratic mean

(FWQM) operator.

Especially, if wi = 1, wj = 0, j 6= i, then FWQM(â1, â2, . . . , ân) = âi; if

w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the FWQM operator is reduced to the fuzzy quadratic

mean (FQM) operator:

FQM(â1, â2, . . . , ân) =

(∑n
j=1 â

2
j

n

) 1
2

. (13)

By the operational laws and Equation (12), we have

FWQM(â1, â2, . . . , ân) =

 n∑
j=1

wj â
2
j

 1
2

=

 n∑
j=1

wj[a
L
j , a

M
j , a

U
j ]2

 1
2

=


 n∑
j=1

wj(a
L
j )2

 1
2

,

 n∑
j=1

wj(a
M
j )2

 1
2

,

 n∑
j=1

wj(a
U
j )2

 1
2

 (14)

and then by Equation (13), we have

FQM(â1, â2, . . . , ân) =

(∑n
j=1(a

L
j )2

n

) 1
2

,

(∑n
j=1(a

M
j )2

n

) 1
2

,

(∑n
j=1(a

U
j )2

n

) 1
2

 (15)

Especially, if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n)

are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n), then the

FWQM operator is reduced to the uncertain weighted quadratic mean (UWQM)
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operator:

UWQM(ã1, ã2, . . . , ãn) =

 n∑
j=1

wj ã
2
j

 1
2

=


 n∑
j=1

wj(a
L
j )2

 1
2

,

 n∑
j=1

wj(a
U
j )2

 1
2

 . (16)

If w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the UWQM operator is reduced to the uncertain

quadratic mean (UQM) operator:

UQM(ã1, ã2, . . . , ãn) =

(∑n
j=1(ã

2
j)

n

) 1
2

=

(∑n
j=1(a

L
j )2

n

) 1
2

,

(∑n
j=1(a

U
j )2

n

) 1
2

 . (17)

If aLj = aUj = aj, for all j = 1, 2, . . . , n, then Equations (16)and (17) are,

respectively, reduced to the WQM operator (3) and the QM operator (4).

Example 3.4 Given a collection of triangular fuzzy numbers: â1 = [2, 3, 4],

â2 = [1, 2, 4], â3 = [2, 4, 6], â4 = [1, 3, 5], let w = (0.3, 0.1, 0.2, 0.4)T be the weight

vector of âi (i = 1, 2, 3, 4), then by Equation (14), we have

FWQM(â1, â2, â3, â4) =


 n∑
j=1

wj(a
L
j )2

 1
2

,

 n∑
j=1

wj(a
M
j )2

 1
2

,

 n∑
j=1

wj(a
U
j )2

 1
2


= [1.5811, 3.1464, 4.8580].

Based on the OWA and FQM operators and Definition 3.2, we define a fuzzy

ordered weighted quadratic mean (FOWQM) operator as below:

Definition 3.5 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers. A FOWQM operator of dimension n is a mapping

FOWQM : Ωn → Ω, that has an associated vector ω = (ω1, ω2, . . . , ωn)T such

that ωj ≥ 0 and
∑n
j=1 ωj = 1. Furthermore,

FOWQM(â1, â2, . . . , ân) =

 n∑
j=1

ωj â
2
σ(j)

 1
2

7



=


 n∑
j=1

ωj(a
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(a
M
σ(j))

2

 1
2

,

 n∑
j=1

ωj(a
U
σ(j))

2

 1
2

 , (18)

where aσ(j) =
[
aLσ(j), a

M
σ(j), a

U
σ(j)

]
(j = 1, 2, . . . , n), and (σ(1), σ(2), . . . , σ(n)) is a

permutation of (1, 2, . . . , n) such that âσ(j−1) ≥ âσ(j) for all j.

However, if there is a tie between âi and âj by their average (âi + âj)/2 in

process of aggregation. If k items are tied, then we replace these by k replicas

of their average. The weighting vector ω = (ω1, ω2, . . . , ωn)T can be determined

by using some weight determining methods like the normal distribution based

method, see Refs [17, 18, 19] for more details.

Similarly to the OWA operator, the FOWQM operator has the following prop-

erties:

Theorem 3.6 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of triangular

fuzzy numbers, the following are valid:

(1) Idempotency: If all âj (j = 1, 2, . . . , n) are equal, i.e., âj = â, for all i,

then

FOWQM(â1, â2, . . . , ân) = â.

(2) Boundedness:

â− ≤ FOWQM(â1, â2, . . . , ân) ≤ â+,

where â− = [minj(a
L
j ),minj(a

M
j ),minj(a

U
j )], â+ = [maxj(a

L
j ),maxj(a

M
j ),maxj(a

U
j )].

(3) Monotonicity: Let â∗j = [aL∗j , a
M∗
j , aU∗j ] (j = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then if aLj ≤ aL∗j , aMj ≤ aM∗j and aUj ≤ aU∗j for all j,

then

FOWQM(â1, â2, . . . , ân) ≤ FOWQM(â∗1, â
∗
2, . . . , â

∗
n).

(4) Commutativity: Let â′j = [aL
′

j , a
M ′
j , aU

′
j ] (j = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then

FOWQM(â1, â2, . . . , ân) = FOWQM(â′1, â
′
2, . . . , â

′
n),

8



where (â′1, â
′
2, . . . , â

′
n) is any permutation of (â1, â2, . . . , ân).

Especially, if ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then the FOWQM operator is reduced to the

FQM operator; if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n)

are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n), then the

FOWQM operator is reduced to the uncertain ordered weighted quadratic mean

(UOWQM) operator:

UOWQM(ã1, ã2, . . . , ãn) =

 n∑
j=1

ωj ã
2
σ(j)

 1
2

=


 n∑
j=1

ωj(a
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(a
U
σ(j))

2

 1
2

 , (19)

where ãσ(j) = [aLσ(j), a
U
σ(j)], (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n)

such that ãσ(j−1) ≥ ãσ(j) for all j. If there is a tie between ãi and ãj, then we

replace each of ãi and ãj by their average (ãi + ãj)/2 in process of aggregation.

If k items are tied, then we replace these by k replicas of their average.

If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the UOWQM operator is reduced

to the ordered weighted quadratic mean (OWQM)operator:

OWQM(a1, a2, . . . , an) =

 n∑
j=1

ωjb
2
j

 1
2

(20)

where bj is the jth largest of aj(j = 1, 2, . . . , n). The OWQM operator (20) has

some special cases:

(1) If ω = (1, 0, . . . , 0)T , then

OWQM(a1, a2, . . . , an) = max{ai} = b1. (21)

(2) If ω = (0, 0, . . . , 1)T , then

OWQM(a1, a2, . . . , an) = min{ai} = bn. (22)

9



(3) If ωj = 1, wi = 0, i 6= j, then

bn ≤ OWQM(a1, a2, . . . , an) = bj ≤ b1. (23)

(4) If ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then

OWQM(a1, a2, . . . , an) =

(∑n
j=1 b

2
j

n

) 1
2

=

(∑n
j=1 a

2
j

n

) 1
2

= QM(a1, a2, . . . , an). (24)

Example 3.7 Given a collection of triangular fuzzy numbers: â1 = [3, 4, 6],

â2 = [1, 2, 4], â3 = [2, 4, 5], â4 = [1, 3, 5], and â5 = [2, 5, 7]. To rank these

triangular fuzzy numbers, we first compare each triangular fuzzy number âi with

all triangular fuzzy number âj(j = 1, 2, 3, 4, 5) by using Equation (9) (without

loss of generality, set σ = 0.5), let pij = p(âi ≥ âj) (j = 1, 2, 3, 4, 5), then we

utilize these possibility degrees to construct the following matrix P = (pij)5×5:

P =



0.5000 1 0.6667 0.8750 0.3750

0 0.5000 0 0.2917 0

0.3333 1 0.5000 0.7083 0.2000

0.1250 0.7083 0.2917 0.5000 0.1000

0.6250 1 0.8000 0.9000 0.5000

 .

Summing all elements in each line of matrix P , we have

p1 = 3.4167, p2 = 0.7917, p3 = 2.7417, p4 = 1.7250, p5 = 3.8250

and then we rank the triangular fuzzy number âi (i = 1, 2, 3, 4, 5) in descending

order in accordance with the values of pi (i = 1, 2, 3, 4, 5):

âσ(1) = â5, âσ(2) = â1, âσ(3) = â3, âσ(4) = â4, âσ(5) = â2.

Suppose that the weighting vector ω = (ω1, ω2, ω3, ω4, ω5)
T of the FOWQM op-

erator is ω = (0.1117, 0.2365, 0.3036, 0.3265, 0.1117)T (derived by the normal dis-

tribution based method [17]), then by Equation (18), we get

FOWQM(â1, â2, â3, â4, â5)

=


 n∑
j=1

ωj(a
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(a
M
σ(j))

2

 1
2

,

 n∑
j=1

ωj(a
U
σ(j))

2

 1
2


= [2.0562, 3.8496, 5.6149].
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Clearly, the fundamental characteristic of the FWQM operator is that it con-

siders the importance of each given triangular fuzzy number, whereas the fun-

damental characteristic of the FOWQM operator is the reordering step, and it

weights all the ordered positions of the triangular fuzzy numbers instead of weigh-

ing the given triangular fuzzy numbers themselves. By combining the advantages

of the FWQM and FOWQM operators, in the following, we develop a fuzzy hy-

brid quadratic mean (FHQM) operator that weights both the given triangular

fuzzy numbers and their ordered positions.

Definition 3.8 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of trian-

gular fuzzy numbers. A FHQM operator of dimension n is a mapping FHQM :

Ωn → Ω, which has an associated vector ω = (ω1, ω2, . . . , ωn)T with ωj ≥ 0 and∑n
j=1 ωj = 1, such that

FHQM(â1, â2, . . . , ân) =

 n∑
j=1

ωj ˙̂a
2

σ(j)

 1
2

=


 n∑
j=1

ωj(ȧ
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
M
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
U
σ(j))

2

 1
2

 , (25)

where ˙̂aσ(j) =
[
ȧLσ(j), ȧ

M
σ(j), ȧ

U
σ(j)

]
is the jth largest of the weighted triangular fuzzy

numbers ˙̂aj ( ˙̂aj = nwj âj, j = 1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight

vector of âj (j = 1, 2, . . . , n) with wj ≥ 0 and
∑n
j=1wj = 1, and n is the balancing

coefficient.

Especially, if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then ˙̂aj = âj, j = 1, 2, . . . , n, in this case,

the FHQM operator is reduced to the FOWQM operator; if ω = ( 1
n
, 1
n
, . . . , 1

n
)T ,

then

FHQM(â1, â2, . . . , ân) =

 n∑
j=1

ωj ˙̂a
2

σ(j)

 1
2

=


 n∑
j=1

nw2
j (a

L
σ(j))

2

 1
2

,

 n∑
j=1

nw2
j (a

M
σ(j))

2

 1
2

,

 n∑
j=1

nw2
j (a

U
σ(j))

2

 1
2

 (26)
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which we call the generalized fuzzy weighted quadratic mean (GFWQM) operator.

Moreover, if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n)

are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n), then the

FHQM operator is reduced to the uncertain hybrid quadratic mean (UHQM)

operator:

UHQM(ã1, ã2, . . . , ãn) =

 n∑
j=1

ωj ˙̃a
2

σ(j)

 1
2

=


 n∑
j=1

nw2
j (a

L
σ(j))

2

 1
2

,

 n∑
j=1

nw2
j (a

U
σ(j))

2

 1
2

 , (27)

where ˙̃aσ(j) is the jth largest of the weighted interval numbers ˙̃aj ( ˙̃aj = nwj ãj, j =

1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight vector of ãj (j = 1, 2, . . . , n)

with wj ≥ 0 and
∑n
j=1wj = 1, and n is the balancing coefficient. Especially,

if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then ˙̃aj = ãj, j = 1, 2, . . . , n, in this case, the UHQM

operator is reduced to the UOWQM operator.

If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the UHQM operator is reduced

to the hybrid quadratic mean (HQM) operator:

HQM(a1, a2, . . . , an) =

 n∑
j=1

ωj ȧ
2
σ(j)

 1
2

, (28)

where ȧσ(j) is the jth largest of the weighted interval numbers ȧj (ȧj = nwj ãj, j =

1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight vector of aj (j = 1, 2, . . . , n)

with wj ≥ 0 and
∑n
j=1wj = 1, and n is the balancing coefficient. Especially, if

w = ( 1
n
, 1
n
, . . . , 1

n
)T , then ȧj = aj, j = 1, 2, . . . , n, in this case, the HQM operator

is reduced to the OWQM operator.

Example 3.9 Given a collection of triangular fuzzy numbers: â1 = [2, 4, 5], â2 =

[1, 3, 4], â3 = [2, 3, 5], â4 = [3, 4, 5], and â5 = [2, 5, 8], and w = (0.20, 0.25, 0.15,

0.25, 0.15)T be the weight vector of âj (j = 1, 2, 3, 4, 5). Then we get the weighted

12



triangular fuzzy numbers:

˙̃a1 = [2, 4, 5], ˙̃a2 = [1.25, 3.75, 5], ˙̃a3 = [1.5, 2.25, 3.75],

˙̃a4 = [3.75, 5, 6.25], ˙̃a5 = [1.5, 3.75, 6].

By using Equation (11) (without loss of generality, set δ = 0.5), we construct the

following matrix:

P =



0.5000 0.5833 0.9545 0.0385 0.4864

0.4167 0.5000 0.8462 0 0.4154

0.0455 0.1538 0.5000 0 0.1250

0.9615 1 1 0.5000 0.8571

0.5136 0.5846 0.8750 0.1429 0.5000

 .

Summing all elements in each line of matrix P , we have

p1 = 2.5628, p2 = 2.1782, p3 = 0.8243, p4 = 4.3187, p5 = 2.6160

and then we rank the triangular fuzzy number âi (i = 1, 2, 3, 4, 5) in descending

order in accordance with the values of pi (i = 1, 2, 3, 4, 5):

˙̂aσ(1) = ˙̂a4, ˙̂aσ(2) = ˙̂a5, ˙̂aσ(3) = ˙̂a1, ˙̂aσ(4) = ˙̂a2, ˙̂aσ(5) = ˙̂a3.

Suppose that ω = (0.1117, 0.2365, 0.3036, 0.3265, 0.1117)T is the weighting vector

of the FHQM operator (derived by the normal distribution based method [17]),

then by Equation (25), we get

FHQM(â1, â2, â3, â4, â5) =

 n∑
j=1

ωj ˙̂a
2

σ(j)

 1
2

=


 n∑
j=1

ωj(ȧ
L
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
M
σ(j))

2

 1
2

,

 n∑
j=1

ωj(ȧ
U
σ(j))

2

 1
2


= [2.0196, 4.0166, 5.4955].
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3.2 Fuzzy contraharmonic mean operators

Similar to the FWQM operator, based on operational laws, we extend the WCHM

operator (3) to fuzzy environment:

Definition 3.10 Let âj = [aLj , a
M
j , a

U
j ](j = 1, 2, . . . , n) be a collection of trian-

gular fuzzy numbers, and let FWCHM : Ωn → Ω, if

FWCHM(â1, â2, . . . , ân) =

∑n
j=1wj â

2
j∑n

j=1wj âj

=

[∑n
j=1wj(aj

L)2∑n
j=1wjaj

U
,

∑n
j=1wj(aj

M)2∑n
j=1wjaj

M
,

∑n
j=1wj(aj

U)2∑n
j=1wjaj

L

]
, (29)

where w = (w1, w2, . . . , wn)T be the weight vector of âj(j = 1, 2, . . . , n) with

wj ≥ 0 and
∑n
j=1wj = 1, then FWCHM is called a fuzzy weighted contraharmonic

mean (FWCHM) operator.

Especially, if wi = 1, wj = 0, j 6= i, then FWCHM(â1, â2, . . . , ân) = âi; if

w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the FWCHM operator is reduced to the FCHM operator:

FCHM(â1, â2, . . . , ân) =

∑n
j=1 â

2
j∑n

j=1 âj

=

[∑n
j=1(aj

L)2∑n
j=1 aj

U
,

∑n
j=1(aj

M)2∑n
j=1 aj

M
,

∑n
j=1(aj

U)2∑n
j=1 aj

L

]
. (30)

Especially,if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n)

are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n), then the

FWCHM operator (29) is reduced to the uncertain ordered weighted contrahar-

monic mean (UCHM) operator:

UWCHM(ã1, ã2, . . . , ãn) =

∑n
j=1wj ã

2
j∑n

j=1wj ãj
=

[∑n
j=1wj(aj

L)2∑n
j=1wjaj

U
,

∑n
j=1wj(aj

U)2∑n
j=1wjaj

L

]
. (31)

If w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the UWCHM operator is reduced to the uncertain

contraharmonic mean (UCHM) operator:

UCHM(ã1, ã2, . . . , ãn) =

∑n
j=1 ã

2
j∑n

j=1 ãj
=

[∑n
j=1(aj

L)2∑n
j=1 aj

U
,

∑n
j=1(aj

U)2∑n
j=1 aj

L

]
. (32)
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If aLj = aUj = aj, for all j = 1, 2, . . . , n, then Equations (31) and (32) are

respectively reduced to the WCHM operator (5) and the CHM operator(6).

Example 3.11 Given a collection of triangular fuzzy numbers: â1 = [2, 3, 4],

â2 = [1, 2, 4], â3 = [2, 4, 6], â4 = [1, 3, 5], let w = (0.3, 0.1, 0.2, 0.4)T be the weight

vector of âi(i = 1, 2, 3, 4), then by Equation (29), we have

FWCHM(â1, â2, â3, â4) =

[∑n
j=1wj(aj

L)2∑n
j=1wjaj

U
,

∑n
j=1wj(aj

M)2∑n
j=1wjaj

M
,

∑n
j=1wj(aj

U)2∑n
j=1wjaj

L

]
= [0.5208, 3.1935, 15.7333].

Based on the OWA and FCHM operators, we define a fuzzy ordered weighted

contraharmonic mean (FOWCHM) operator as below:

Definition 3.12 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers. A FOWCHM operator of dimension n is a mapping

FOWCHM : Ωn → Ω, that has an associated vector ω = (ω1, ω2, . . . , ωn)T such

that ωj ≥ 0 and
∑n
j=1 ωj = 1. Furthermore,

FOWCHM(â1, â2, . . . , ân) =

∑n
j=1 ωj â

2
σ(j)∑n

j=1wj âσ(j)

=

∑n
j=1 ωj(a

L
σ(j))

2∑n
j=1 ωja

U
σ(j)

,

∑n
j=1 ωj(a

M
σ(j))

2∑n
j=1 ωja

M
σ(j)

,

∑n
j=1 ωj(a

U
σ(j))

2∑n
j=1 ωja

L
σ(j)

 , (33)

where aσ(j) =
[
aLσ(j), a

M
σ(j), a

U
σ(j)

]
(j = 1, 2, . . . , n), and (σ(1), σ(2), . . . , σ(n)) is a

permutation of (1, 2, . . . , n) such that âσ(j−1) ≥ âσ(j) for all j.

Similarly to the Theorem 3.6, the FOWCHM operator has the following prop-

erties:

Theorem 3.13 Let âj = [aLj , a
M
j , a

U
j ](j = 1, 2, . . . , n) be a collection of triangular

fuzzy numbers, the following are valid:

(1) Idempotency: If all âj(j = 1, 2, . . . , n) are equal, i.e., âj = â, for all j,

then

FOWCHM(â1, â2, . . . , ân) = â.
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(2) Boundedness:

â− ≤ FOWCHM(â1, â2, . . . , ân) ≤ â+,

where â− = [minj(a
L
j ),minj(a

M
j ),minj(a

U
j )], â+ = [maxj(a

L
j ),maxj(a

M
j ),maxj(a

U
j )].

(3) Monotonicity: Let â∗j = [aL∗j , a
M∗
j , aU∗j ](j = 1, 2, . . . , n) be a collection of

triangular fuzzy numbers, then if aLj ≤ aL∗j , a
M
j ≤ aM∗j and aUj ≤ aU∗j for all j,

then

FOWCHM(â1, â2, . . . , ân) ≤ FOWCHM(â∗1, â
∗
2, . . . , â

∗
n).

(4) Commutativity: Let â′j = [aL
′

j , a
M ′
j , aU

′
j ](j = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then

FOWCHM(â1, â2, . . . , ân) = FOWCHM(â′1, â
′
2, . . . , â

′
n),

where (â′1, â
′
2, . . . , â

′
n) is any permutation of (â1, â2, . . . , ân).

Especially, if ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then the FOWCHM operator is reduced

to the FCHM operator; if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j =

1, 2, . . . , n) are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n),

then the FOWCHM operator is reduced to the uncertain ordered weighted con-

traharmonic mean (UOWCHM) operator:

UOWCHM(ã1, ã2, . . . , ãn) =

∑n
j=1 ωj ã

2
σ(j)∑n

j=1 ωj ãσ(j)

=

∑n
j=1 ωj(a

L
σ(j))

2∑n
j=1 ωja

U
σ(j)

,

∑n
j=1 ωj(a

U
σ(j))

2∑n
j=1 ωja

L
σ(j)

 , (34)

where ãσ(j) = [aLσ(j), a
U
σ(j)], (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n)

such that ãσ(j−1) ≥ ãσ(j) for all j. If there is a tie between ãi and ãj, then we

replace each of ãi and ãj by their average (ãi + ãj)/2 in process of aggregation.

If k items are tied, then we replace these by k replicas of their average.
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If aLj = aUj = aj, for all j = 1, 2, . . . , n, then the UOWCHM operator is

reduced to the ordered weighted contraharmonic mean (OWCHM) operator:

OWCHM(a1, a2, . . . , an) =

∑n
j=1 ωjbj

2∑n
j=1 ωjbj

, (35)

where bj is the jth largest of aj (j = 1, 2, . . . , n). Then the OWCHM operator

(35) has some special cases:

(1) If ω = (1, 0, . . . , 0)T , then

OWCHM(a1, a2, . . . , an) = max{ai} = b1. (36)

(2) If ω = (0, 0, . . . , 1)T , then

OWCHM(a1, a2, . . . , an) = min{ai} = bn. (37)

(3) If ωj = 1, ωi = 0, i 6= j, then

bn ≤ OWCHM(a1, a2, . . . , an) = bj ≤ b1. (38)

(4) If ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then

OWCHM(a1, a2, . . . , an) =

∑n
j=1 bj

2∑n
j=1 bj

=

∑n
j=1 aj

2∑n
j=1 aj

= CHM(a1, a2, . . . , an). (39)

Example 3.14 Given a collection of triangular fuzzy numbers: â1 = [3, 4, 6],

â2 = [1, 2, 4], â3 = [2, 4, 5], â4 = [1, 3, 5], and â5 = [2, 5, 7]. To rank these

triangular fuzzy numbers, we first compare each triangular fuzzy number âi with

all triangular fuzzy number âj (j = 1, 2, 3, 4, 5) by using Equation (11) (without

loss of generality, set σ = 0.5), let pij = p(âi ≥ âj) (j = 1, 2, 3, 4, 5), then we

utilize these possibility degrees to construct the following matrix P = (pij)5×5:

P =



0.5000 1 0.6667 0.8750 0.3750

0 0.5000 0 0.2917 0

0.3333 1 0.5000 0.7083 0.2000

0.1250 0.7083 0.2917 0.5000 0.1000

0.6250 1 0.8000 0.9000 0.5000

 .
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Summing all elements in each line of matrix P , we have

p1 = 3.4167, p2 = 0.7917, p3 = 2.7417, p4 = 1.7250, p5 = 3.8250

and then we rank the triangular fuzzy number âi (i = 1, 2, 3, 4, 5) in descending

order in accordance with the values of pi (i = 1, 2, 3, 4, 5):

âσ(1) = â5, âσ(2) = â1, âσ(3) = â3, âσ(4) = â4, âσ(5) = â2.

Suppose that the weighting vector w = (w1, w2, w3, w4)
T of the FOWCHM oper-

ator is ω = (0.1117, 0.2365, 0.3036, 0.3265, 0.1117)T (derived by the normal dis-

tribution based method [17]), then by Equation (33), we get

FOWCHM(â1, â2, â3, â4, â5)

=

∑n
j=1 ωj(a

L
σ(j))

2∑n
j=1 ωja

U
σ(j)

,

∑n
j=1 ωj(a

M
σ(j))

2∑n
j=1 ωja

M
σ(j)

,

∑n
j=1 ωj(a

U
σ(j))

2∑n
j=1 ωja

L
σ(j)


= [0.7292, 3.7787, 15.9364].

Similar to the FHQM operator, by combining the advantages of the FWCHM

and FOWCHM operators, in the following, we develop a fuzzy hybrid contra-

harmonic mean (FHCHM) operator that weights both the given triangular fuzzy

numbers and their ordered positions.

Definition 3.15 Let âj = [aLj , a
M
j , a

U
j ] (j = 1, 2, . . . , n) be a collection of trian-

gular fuzzy numbers. A FHCHM operator of dimension n is a mapping FHCHM :

Ωn → Ω, which has an associated vector ω = (ω1, ω2, . . . , ωn)T with ωj ≥ 0 and∑n
j=1 ωj = 1, such that

FHCHM(â1, â2, . . . , ân) =

∑n
j=1 ωj

˙̂a
2

σ(j)∑n
j=1 ωj

˙̂aσ(j)

=

∑n
j=1 ωj(ȧ

L
σ(j))

2∑n
j=1 ωj(ȧ

U
σ(j))

2
,

∑n
j=1 ωj(ȧ

M
σ(j))

2∑n
j=1 ωj(ȧ

M
σ(j))

2
,

∑n
j=1 ωj(ȧ

U
σ(j))

2∑n
j=1 ωj(ȧ

L
σ(j))

2

 , (40)

where ˙̂aσ(j) =
[
ȧLσ(j), ȧ

M
σ(j), ȧ

U
σ(j)

]
is the jth largest of the weighted triangular fuzzy

numbers ˙̂aj ( ˙̂aj = nwj âj, j = 1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight
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vector of âj (j = 1, 2, . . . , n) with wj ≥ 0 and
∑n
j=1wj = 1, and n is the balancing

coefficient.

Especially, if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then ˙̂aj = âj, j = 1, 2, . . . , n, in this case, the

FHCHM operator is reduced to the FOWCHM operator; if ω = ( 1
n
, 1
n
, . . . , 1

n
)T ,

then

FHCHM(â1, â2, . . . , ân) =

∑n
j=1 ωj

˙̂a
2

σ(j)∑n
j=1 ωj

˙̂aσ(j)

=

∑n
j=1 nw

2
j (a

L
σ(j))

2∑n
j=1wj(a

U
σ(j))

,

∑n
j=1 nw

2
j (a

M
σ(j))

2∑n
j=1wj(a

M
σ(j))

2
,

∑n
j=1 nw

2
j (a

U
σ(j))

2∑n
j=1wj(a

L
σ(j))

 (41)

which we call the generalized fuzzy weighted contraharmonic mean (GFWCHM)

operator. Moreover, if the triangular fuzzy numbers âj = [aLj , a
M
j , a

U
j ] (j =

1, 2, . . . , n) are reduced to the interval numbers ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n),

then the FHCHM operator is reduced to the uncertain hybrid contraharmonic

mean (UHCHM) operator:

UHCHM(ã1, ã2, . . . , ãn) =

∑n
j=1 ωj ˙̃a

2

σ(j)∑n
j=1 ωj ˙̃aσ(j)

, (42)

where ˙̃aσ(j) is the jth largest of the weighted interval numbers ˙̃aj ( ˙̃aj = nwj ãj,

j = 1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight vector of ãj (j = 1, 2, . . . , n)

with wj ≥ 0 and
∑n
j=1wj = 1, and n is the balancing coefficient. Especially,

if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then ˙̃aj = ãj, j = 1, 2, . . . , n, in this case, the UHCHM

operator is reduced to the UOWCHM operator.

If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the UHCHM operator is reduced

to the hybrid contraharmonic mean (HCHM) operator:

HCHM(a1, a2, . . . , an) =

∑n
j=1 ωj ȧ

2
σ(j)∑n

j=1 ωj ȧσ(j)
, (43)

where ȧσ(j) is the jth largest of the weighted interval numbers ȧj (ȧj = nwj ãj,

j = 1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight vector of aj (j = 1, 2, . . . , n)

with wj ≥ 0 and
∑n
j=1wj = 1, and n is the balancing coefficient. Especially, if
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w = ( 1
n
, 1
n
, . . . , 1

n
)T , then ȧj = aj, j = 1, 2, . . . , n, in this case, the HCHM operator

is reduced to the OWCHM operator.

Example 3.16 Given a collection of triangular fuzzy numbers: â1 = [2, 4, 5],

â2 = [1, 3, 4], â3 = [2, 3, 5], â4 = [3, 4, 5], and â5 = [2, 5, 8], and let w =

(0.20, 0.25, 0.15, 0.25, 0.15)T be the weight vector of âj (j = 1, 2, 3, 4, 5). Then we

get the weighted triangular fuzzy numbers:

˙̂a1 = [2, 4, 5], ˙̂a2 = [1.25, 3.75, 5], ˙̂a3 = [1.5, 2.25, 3.75],

˙̂a4 = [3.75, 5, 6.25], ˙̂a5 = [1.5, 3.75, 6].

By using Equation (11) (without loss of generality, set δ = 0.5), we construct the

following matrix:

P =



0.5000 0.5833 0.9545 0.0385 0.4864

0.4167 0.5000 0.8462 0 0.4154

0.0455 0.1538 0.5000 0 0.1250

0.9615 1 1 0.5000 0.8571

0.5136 0.5846 0.8750 0.1429 0.5000

 .

Summing all elements in each line of matrix P , we have

p1 = 2.5628, p2 = 2.1782, p3 = 0.8243, p4 = 4.3187, p5 = 2.6160

and then we rank the triangular fuzzy number âi (i = 1, 2, 3, 4, 5) in descending

order in accordance with the values of pi (i = 1, 2, 3, 4, 5):

˙̂aσ(1) = ˙̂a4, ˙̂aσ(2) = ˙̂a5, ˙̂aσ(3) = ˙̂a1, ˙̂aσ(4) = ˙̂a2, ˙̂aσ(5) = ˙̂a3.

Suppose that ω = (0.1117, 0.2365, 0.3036, 0.3265, 0.1117)T is the weighting vector

of the FHCHM operator, then by Equation (40), we get

FHCHM(â1, â2, â3, â4, â5) =

∑n
j=1 ωj

˙̂a
2

σ(j)∑n
j=1 ωj

˙̂aσ(j)

=

∑n
j=1 ωj(ȧ

L
σ(j))

2∑n
j=1 ωj(ȧ

U
σ(j))

,

∑n
j=1 ωj(ȧ

M
σ(j))

2∑n
j=1 ωj(ȧ

M
σ(j))

,

∑n
j=1 ωj(ȧ

U
σ(j))

2∑n
j=1 ωj(ȧ

L
σ(j))


= [0.7173, 3.9011, 15.4360].
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4 Approaches to multiple attribute group decision making with

triangular fuzzy information

For a group decision making with triangular fuzzy information, let X={x1, x2, . . . ,
xn} be a discrete set of n alternatives, and G = {G1, G2, . . . , Gm} be the set of

m attributes, whose weight vector is w = (w1, w2, . . . , wm)T with wi ≥ 0 and∑m
i=1wi = 1, and let D = {d1, d2, . . . , ds} be the set of decision makers, whose

weight vector is v = (v1, v2, . . . , vs)
T , where vk ≥ 0 and

∑s
k=1 vk = 1. Suppose

that A(k) = (â
(k)
ij )m×n is the decision matrix, where â

(k)
ij =

[
a
L(k)
ij , a

M(k)
ij , a

U(k)
ij

]
is an attribute value, which takes the form of triangular fuzzy number, of the

alternative xj ∈ X with respect to the attribute Gi ∈ G.

Then, we utilize the FWQM and FHQM (or the FWCHM and FHCHM)

operators to propose an approach to multiple attribute group decision making

with triangular fuzzy information, which involves the following steps:

Step 1. Normalize each attribute value â
(k)
ij in the matrix A(k) into a corre-

sponding element in the matrix R(k) = (r̂
(k)
ij )m×n (r̂

(k)
ij =

[
rij

L(k), rij
M(k), rij

U(k)
]
)

using the following formulas:

r̂
(k)
ij =

â
(k)
ij∑n

j=1 â
(k)
ij

=

[
aij

L(k)∑n
j=1 aij

U(k)
,

aij
M(k)∑n

j=1 aij
M(k)

,
aij

U(k)∑n
j=1 aij

L(k)

]
,

for benefit attribute Gi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , s, (44)

r̂
(k)
ij =

1/â
(k)
ij∑n

j=1(1/â
(k)
ij )

=

[
1/aij

U(k)∑n
j=1(1/aij

L(k))
,

1/aij
M(k)∑n

j=1(1/aij
M(k))

,
1/aij

L(k)∑n
j=1(1/aij

U(k))

]
,

for cost attribute Gi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , s. (45)

Step 2. Utilize the FWQM operator:

r̂
(k)
j = FWQM(r̂

(k)
1j , r̂

(k)
2j , . . . , r̂

(k)
mj) =

(
m∑
i=1

wi(r̂
(k)
ij )2

) 1
2

=

( m∑
i=1

wi(r̂
L(k)
ij )2

) 1
2

,

(
m∑
i=1

wi(r̂
M(k)
ij )2

) 1
2

,

(
m∑
i=1

wi(r̂
U(k)
ij )2

) 1
2

 (46)
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or the FWCHM operator:

r̂
(k)
j = FWCHM(r̂

(k)
1j , r̂

(k)
2j , . . . , r̂

(k)
mj) =

∑m
i=1wi(r̂

(k)
ij )2∑m

i=1wir̂
(k)
ij

=

∑m
i=1wi(r̂

L(k)
ij )2∑m

i=1wir̂
U(k)
ij

,

∑m
i=1wi(r̂

M(k)
ij )2∑m

i=1wir̂
M(k)
ij

,

∑m
i=1wi(r̂

L(k)
ij )2∑m

i=1wir̂
U(k)
ij

 (47)

to aggregate all the elements in the jth column ofR(k) and get the overall attribute

value r̂
(k)
j of the alternative xj corresponding to the decision maker dk.

Step 3. Utilize the FHQM operator:

r̂j = FHQM(r̂
(1)
j , r̂

(2)
j , . . . , r̂

(s)
j ) =

(
s∑

k=1

ωk( ˙̂rj
(σ(k))

)2
) 1

2

=

( s∑
k=1

ωk(ṙ
L(σ(k))
j )2

) 1
2

,

(
s∑

k=1

ωk(ṙ
M(σ(k))
j )2

) 1
2

,

(
s∑

k=1

ωk(ṙ
U(σ(k))
j )2

) 1
2

 (48)

or the FHCHM operator:

r̂j = FHCHM(r̂
(1)
j , r̂

(2)
j , . . . , r̂

(s)
j ) =

∑s
k=1 ωk(

˙̂rj
(σ(k))

)2∑s
k=1 ωk

˙̂rj
(σ(k))

=

∑s
k=1 ωk(ṙ

L(σ(k))
j )2∑s

k=1 ωkṙ
U(σ(k))
j

,

∑s
k=1 ωk(ṙ

M(σ(k))
j )2∑s

k=1 ωkṙ
M(σ(k))
j

,

∑s
k=1 ωk(ṙ

L(σ(k))
j )2∑s

k=1 ωkṙ
U(σ(k))
j

 (49)

to aggregate the overall attribute values r̂
(k)
j (k = 1, 2, . . . , s) corresponding to the

decision maker dk (k = 1, 2, . . . , s) and get the collective overall attribute value

r̂j, where ˙̂rj
(σ(k))

= [ṙ
L(σ(k))
j , ṙ

M(σ(k))
j , ṙ

U(σ(k))
j ] is the kth largest of the weighted

data ˙̂rj
(k)

( ˙̂rj
(k)

= svkr̂
(k)
j , k = 1, 2, . . . , s), ω = (ω1, ω2, . . . , ωs)

T is the weighting

vector of the FHQM (or FHCHM) operator, with ωk ≥ 0 and
∑s
k=1 ωk = 1.

Step 4. Compare each r̂j with all r̂i (i = 1, 2, . . . , n) by using Equation (11),

and let pij = p(r̂i ≥ r̂j), and then construct a possibility matrix P = (pij)n×n,

where pij ≥ 0, pij + pji = 1, pii = 0.5, i, j = 1, 2, . . . , n. Summing all elements

in each line of matrix P , we have pi =
∑n
j=1 pij, i = 1, 2, . . . , n, and then reorder
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r̂j (j = 1, 2, . . . , n) in descending order in accordance with the values of pj (j =

1, 2, . . . , n).

Step 5. Rank all the alternatives xj (j = 1, 2, . . . , n) by the ranking of r̂j

(j = 1, 2, . . . , n), and then select the most desirable one.

Step 6. End.

5 Illustrative example

In this chapter, we use a multiple attribute group decision making problem of

determining what kind of air-conditioning systems should be installed in a li-

brary(adopted from [20, 13]) to illustrate the proposed approach.

A city is planning to build a municipal library. One of the problems facing

the city development commissioner is to determine what kind of air-conditioning

systems should be installed in the library. The contractor offers five feasible

alternatives, which might be adapted to the physical structure of the library.

The alternatives xj (j = 1, 2, 3, 4, 5) are to be evaluated using triangular fuzzy

numbers by the three decision makers dk (k = 1, 2, 3) (whose weight vector

is v = (0.4, 0.3, 0.3)T ) under three major impacts: economic, functional, and

operational. Two monetary attributes and six nonmonetary attributes (that

is, G1: owning cost ($/ft2), G2: operating cost ($/ft2), G3: performance (∗),

G4: noise level (Db), G5: maintainability (∗), G6: reliability (%), G7: flexibil-

ity (∗), G8: safety (∗), where ∗ unit is from 0 − 1 scale, three attributes G1,

G2, and G4 are cost attributes, and the other five attributes are benefit at-

tributes, suppose that the weight vector of the attributes Gi (i = 1, 2, . . . , 8)

is w = (0.05, 0.08, 0.14, 0.12, 0.18, 0.21, 0.05, 0.17)T ) emerged from three impacts

is Tables 1-3.

To select the best air-conditioning system, we first utilize the approach based

on the FWQM and FHQM operators, the main steps are as follows:

Step 1. By using Equations (44) and (45), we normalize each attribute

value â
(k)
ij in the matrices A(k) (k = 1, 2, 3) into the corresponding element in the

matrices R(k) = (r̂ij)8×5 (k = 1, 2, 3) (Tables 4-6):
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Table 1: Triangular fuzzy number decision matrix A(1)

x1 x2 x3 x4 x5

G1 [3.5, 4.0, 4.7] [1.7, 2.0, 2.3] [3.5, 3.8, 4.2] [3.5, 3.8, 4.5] [3.3, 3.8, 4.0]

G2 [5.5, 6.0, 6.5] [4.8, 5.1, 5.5] [4.5, 5.2, 5.5] [4.5, 4.7, 5.0] [5.5, 5.7, 6.0]

G3 [0.7, 0.8, 0.9] [0.5, 0.56, 0.6] [0.5, 0.6, 0.7] [0.7, 0.85, 0.9] [0.6, 0.7, 0.8]

G4 [35, 40, 45] [70, 73, 75] [65, 68, 70] [40, 42, 45] [50, 55, 60]

G5 [0.4, 0.45, 0.5] [0.4, 0.44, 0.6] [0.7, 0.76, 0.8] [0.9, 0.97, 1.0] [0.5, 0.54, 0.6]

G6 [95, 98, 100] [70, 73, 75] [80, 83, 90] [90, 93, 95] [85, 90, 95]

G7 [0.3, 0.35, 0.5] [0.7, 0.75, 0.8] [0.8, 0.9, 1.0] [0.6, 0.75, 0.8] [0.4, 0.5, 0.6]

G8 [0.7, 0.74, 0.8] [0.5, 0.53, 0.6] [0.6, .68, 0.7] [0.7, 0.8, 0.9] [0.8, .85, 0.9]

Step 2. Utilize the FWQM operator (46) to aggregate all elements in the jth

column R(K) and get the overall attribute value r̂
(k)
j :

r̂
(1)
1 = [0.1736, 0.2029, 0.2436] , r̂

(1)
2 = [0.1473, 0.1751, 0.2167] ,

r̂
(1)
3 = [0.1689, 0.1985, 0.2354] , r̂

(1)
4 = [0.2043, 0.2422, 0.2759] ,

r̂
(1)
5 = [0.1687, 0.1991, 0.2370] ,

r̂
(2)
1 = [0.1770, 0.2044, 0.2417] , r̂

(2)
2 = [0.1622, 0.1878, 0.2191] ,

r̂
(2)
3 = [0.1744, 0.1974, 0.2314] , r̂

(2)
4 = [0.1977, 0.2342, 0.2676] ,

r̂
(2)
5 = [0.1717, 0.1979, 0.2333] ,

r̂
(3)
1 = [0.0714, 0.0795, 0.0892] , r̂

(3)
2 = [0.0573, 0.0638, 0.0772] ,

r̂
(3)
3 = [0.0699, 0.0831, 0.0959] , r̂

(3)
4 = [0.0782, 0.0879, 0.1004] ,

r̂
(3)
5 = [0.0704, 0.0781, 0.0890] .

Step 3. Utilize the FHQM operator (48) (suppose that its weight vector

is ω = (0.243, 0514, 0.243)T determined by using the normal distribution based

method [17], let σ = 0.5) to aggregate the overall attribute value r̂
(k)
j (k = 1, 2, 3)

corresponding to the decision maker dk (k = 1, 2, 3), and get the collective overall
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Table 2: Triangular fuzzy number decision matrix A(2)

x1 x2 x3 x4 x5

G1 [4.0, 4.3, 4.5] [2.1, 2.2, 2.4] [5.0, 5.1, 5.2] [4.3, 4.4, 4.5] [3.0, 3.3, 3.5]

G2 [6.0, 6.3, 6.5] [5.0, 5.1, 5.2] [4.5, 4.7, 5.0] [5.0, 5.1, 5.3] [7.0, 7.5, 8.0]

G3 [0.7, 0.8, 0.9] [0.4, 0.5, 0.6] [0.5, .55, 0.6] [0.7, 0.75, 0.8] [0.7, 0.8, 0.9]

G4 [37, 38, 39] [70, 73, 75] [65, 66, 67] [40, 42, 45] [50, 52, 55]

G5 [0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.8, 0.85, 0.9] [0.8, 0.95, 1.0] [0.4, 0.44, 0.5]

G6 [92, 93, 95] [70, 75, 80] [83, 84, 85] [90, 91, 92] [90, 93, 95]

G7 [0.4, 0.45, 0.5] [0.8, 0.85, 0.9] [0.7, 0.73, 0.8] [0.7, 0.85, 0.9] [0.4, 0.45, 0.5]

G8 [0.6, 0.7, 0.8] [0.6, 0.65, 0.7] [0.5, 0.6, 0.7] [0.7, 0.76, 0.8] [0.7, 0.8, 0.9]

Table 3: Triangular fuzzy number decision matrix A(3)

x1 x2 x3 x4 x5

G1 [4.3, 4.4, 4.6] [2.2, 2.4, 2.5] [4.5, 4.8, 5.0] [4.7, 4.9, 5.0] [3.1, 3.2, 3.4]

G2 [6.4, 6.7, 7.0] [5.0, 5.2, 5.5] [4.7, 4.8, 4.9] [5.5, 5.7, 6.0] [6.0, 6.5, 7.0]

G3 [0.8, 0.85, 0.9] [0.5, 0.6, 0.7] [0.6, 0.7, 0.8] [0.7, 0.8, 0.9] [0.7, 0.75, 0.8]

G4 [36, 38, 40] [72, 73, 75] [67, 68, 70] [45, 48, 50] [55, 57, 60]

G5 [0.4, 0.46, 0.5] [0.4, 0.45, 0.6] [0.8, 0.95, 1.0] [0.8, 0.85, 0.9] [0.5, 0.55, 0.6]

G6 [93, 94, 95] [77, 78, 80] [85, 87, 90] [90, 94, 95] [90, 96, 100]

G7 [0.4, 0.5, 0.6] [0.8, 0.9, 1.0] [0.8, 0.86, 0.9] [0.6, 0.7, 0.8] [0.5, 0.57, 0.6]

G8 [0.7, 0.78, 0.8] [0.5, 0.55, 0.6] [0.6, 0.68, 0.7] [0.8, 0.85, 0.9] [0.8, 0.85, 0.9]
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Table 4: Normalized triangular fuzzy number decision matrix R(1)

x1 x2 x3 x4 x5

G1 [0.12, 0.16, 0.21] [0.25, 0.32, 0.43] [0.14, 0.17, 0.21] [0.13, 0.17, 0.21] [0.14, 0.17, 0.22]

G2 [0.15, 0.18, 0.21] [0.18, 0.21, 0.24] [0.18, 0.20, 0.25] [0.20, 0.23, 0.25] [0.16, 0.19, 0.21]

G3 [0.18, 0.23, 0.30] [0.13, 0.16, 0.20] [0.13, 0.17, 0.23] [0.18, 0.24, 0.30] [0.15, 0.20, 0.27]

G4 [0.22, 0.26, 0.32] [0.13, 0.14, 0.16] [0.14, 0.15, 0.17] [0.22, 0.25, 0.28] [0.16, 0.19, 0.23]

G5 [0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.24, 0.28] [0.26, 0.31, 0.34] [0.14, 0.17, 0.21]

G6 [0.21, 0.22, 0.24] [0.15, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.23] [0.19, 0.21, 0.23]

G7 [0.08, 0.11, 0.18] [0.19, 0.23, 0.29] [0.22, 0.28, 0.36] [0.16, 0.23, 0.29] [0.11, 0.15, 0.21]

G8 [0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.19, 0.21] [0.18, 0.22, 0.27] [0.21, 0.24, 0.27]

attribute value r̂j:

r̂1 = [0.1568, 0.1818, 0.2160] , r̂2 = [0.1385, 0.1619, 0.1939] ,

r̂3 = [0.1536, 0.1771, 0.2086] , r̂4 = [0.1791, 0.2119, 0.2417] ,

r̂5 = [0.1523, 0.1771, 0.2095] .

Step 4. Compare each r̂j with all r̂i (i = 1, 2, 3, 4, 5) by using Equation

(11) (without loss of generality, set δ = 0.5), and let pij = p(r̂i ≥ r̂j), and then

construct a possibility matrix:

P =



0.5 0.8558 0.5869 0.0553 0.5882

0.1442 0.5 0.2209 0 0.2301

0.4131 0.7791 0.5 0 0.5031

0.9447 1 1 0.5 1

0.4118 0.7699 0.4969 0 0.5

 .

Summing all elements in each line of matrix P , we have

p1 = 2.5861, p2 = 1.0952, p3 = 2.1953, p4 = 4.4447, p5 = 2.1786

and then we reorder r̂j (j = 1, 2, 3, 4, 5) in descending order in accordance with

the values of pj (j = 1, 2, 3, 4, 5):

r̂4 > r̂1 > r̂3 > r̂5 > r̂2.
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Table 5: Normalized triangular fuzzy number decision matrix R(2)

x1 x2 x3 x4 x5

G1 [0.15, 0.16, 0.19] [0.28, 0.32, 0.36] [0.13, 0.14, 0.15] [0.15, 0.16, 0.17] [0.19, 0.21, 0.25]

G2 [0.17, 0.18, 0.19] [0.21, 0.22, 0.23] [0.21, 0.24, 0.26] [0.20, 0.22, 0.23] [0.13, 0.15, 0.17]

G3 [0.18, 0.24, 0.30] [0.11, 0.15, 0.20] [0.13, 0.16, 0.20] [0.18, 0.22, 0.27] [0.18, 0.24, 0.30]

G4 [0.25, 0.27, 0.29] [0.13, 0.14, 0.15] [0.15, 0.15, 0.16] [0.22, 0.24, 0.27] [0.18, 0.20, 0.21]

G5 [0.11, 0.15, 0.21] [0.14, 0.17, 0.21] [0.22, 0.26, 0.31] [0.22, 0.29, 0.34] [0.11, 0.13, 0.17]

G6 [0.21, 0.21, 0.22] [0.16, 0.17, 0.19] [0.19, 0.19, 0.20] [0.20, 0.21, 0.22] [0.20, 0.21, 0.22]

G7 [0.11, 0.14, 0.17] [0.22, 0.26, 0.30] [0.19, 0.22, 0.27] [0.19, 0.26, 0.30] [0.19, 0.14, 0.17]

G8 [0.15, 0.20, 0.26] [0.15, 0.19, 0.23] [0.13, 0.17, 0.23] [0.18, 0.22, 0.26] [0.18, 0.23, 0.29]

Table 6: Normalized triangular fuzzy number decision matrix R(3)

x1 x2 x3 x4 x5

G1 [0.15, 0.17, 0.18] [0.28, 0.30, 0.35] [0.14, 0.15, 0.17] [0.14, 0.15, 0.16] [0.20, 0.23, 0.25]

G2 [0.16, 0.17, 0.19] [0.20, 0.22, 0.24] [0.22, 0.24, 0.25] [0.18, 0.20, 0.22] [0.16, 0.17, 0.20]

G3 [0.20, 0.23, 0.27] [0.12, 0.16, 0.21] [0.15, 0.19, 0.24] [0.17, 0.22, 0.27] [0.17, 0.20, 0.24]

G4 [0.26, 0.28, 0.31] [0.14, 0.15, 0.16] [0.15, 0.16, 0.17] [0.21, 0.22, 0.25] [0.17, 0.19, 0.20]

G5 [0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.24, 0.28] [0.26, 0.31, 0.34] [0.14, 0.17, 0.21]

G6 [0.21, 0.22, 0.24] [0.15, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.23] [0.19, 0.21, 0.23]

G7 [0.08, 0.11, 0.18] [0.19, 0.23, 0.29] [0.22, 0.28, 0.36] [0.16, 0.23, 0.29] [0.11, 0.15, 0.21]

G8 [0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.19, 0.21] [0.18, 0.22, 0.27] [0.21, 0.24, 0.27]
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Step 5. Rank all the alternatives xj (j = 1, 2, 3, 4, 5) by the ranking of r̂j

(j = 1, 2, 3, 4, 5):

x4 � x1 � x3 � x5 � x2

and thus the most desirable alternative is x4.

Next, we utilize the approach based on the FWCHM and FHCHM operators

to select best alternative(s), the main steps are as follows:

Step 1′. See Step 1.

Step 2′. Utilize the FWCHM operator (47) to aggregate all elements in the

jth column R(k) and get the overall attribute value r̂
(k)
j :

r̂
(1)
1 = [0.1263, 0.2076, 0.3530] , r̂

(1)
2 = [0.1040, 0.1804, 0.3272] ,

r̂
(1)
3 = [0.1234, 0.2013, 0.3325] , r̂

(1)
4 = [0.1528, 0.2452, 0.3777] ,

r̂
(1)
5 = [0.1208, 0.2007, 0.3376] ,

r̂
(2)
1 = [0.1316, 0.2084, 0.3413] , r̂

(2)
2 = [0.1229, 0.1928, 0.3057] ,

r̂
(2)
3 = [0.1346, 0.2016, 0.3138] , r̂

(2)
4 = [0.1483, 0.2365, 0.3638] ,

r̂
(2)
5 = [0.1293, 0.2021, 0.3229] ,

r̂
(3)
1 = [0.1479, 0.2093, 0.3008] , r̂

(3)
2 = [0.1196, 0.1815, 0.2989] ,

r̂
(3)
3 = [0.1355, 0.2170, 0.3376] , r̂

(3)
4 = [0.1530, 0.2235, 0.3340] ,

r̂
(3)
5 = [0.1409, 0.2004, 0.2921] ,

Step 3′. Utilize the FHCHM operator (49) (suppose that its weight vector

is ω = (0.243, 0.514, 0.243)T determined by using the normal distribution based

method [17], let δ = 0.5) to aggregate the overall attribute value r̂
(k)
j (k = 1, 2, 3)

corresponding to the decision maker dk(k = 1, 2, 3),and get the collective overall

attribute value r̂j:

r̂1 = [0.0634, 0.2542, 1.0615] , r̂2 = [0.0507, 0.2243, 1.0426] ,

r̂3 = [0.0631, 0.2484, 0.9940] , r̂4 = [0.0774, 0.2948, 1.0861] ,

r̂5 = [0.0618, 0.2457, 1.0001] .
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Step 4′. Compare each r̂j with all r̂i (i = 1, 2, 3, 4, 5) by using Equation

(11) (without loss of generality, set δ = 0.5), and let pij = p(r̂i ≥ r̂j), and then

construct a possibility matrix:

P =



0.5 0.5367 0.5158 0.4563 0.5179

0.4633 0.5 0.4785 0.4201 0.4806

0.4842 0.5215 0.5 0.4397 0.5021

0.5437 0.5799 0.5603 0.5 0.5622

0.4821 0.5194 0.4979 0.4378 0.5

 .

Summing all elements in each line of matrix P , we have

p1 = 2.5267, p2 = 2.3426, p3 = 2.4475, p4 = 2.7460, p5 = 2.4372

and then we reorder r̂j(j = 1, 2, 3, 4, 5) in descending order in accordance with

the values of pj(j = 1, 2, 3, 4, 5):

r̂4 > r̂1 > r̂3 > r̂5 > r̂2.

Step 5′. Rank all the alternatives xj (j = 1, 2, 3, 4, 5) by the ranking of r̂j

(j = 1, 2, 3, 4, 5):

x4 � x1 � x3 � x5 � x2

and thus the most desirable alternative is x4.

From the above analysis, the results obtained by the proposed approach are

very similar to the ones obtained Xu’s approach [13], but our approach is more

flexible than that of Xu [13] because it can provide the decision makers more

choices as parameters are assigned different values.
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