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1 Introduction

Multiple attribute group decision making (MAGDM) is the common phenomenon

in modern life, which is to select the optimal alternative(s) from several alterna-

tives or to get their ranking by aggregating the performances of each alternative

under several attributes, in which the aggregation techniques play an important

role. Considering the relationships among the aggregated arguments, we can

classify the aggregation techniques into two categories, the ones which consider

the aggregated argument dependently. For the first category, the well-known

ordered weighted averaging (OWA) operator [1,2] is the representative, on the

basis of which a lot of generalizations have been developed, such as the ordered

weighted geometric (OWG) operator [3,4,5], the ordered weighted harmonic mean

(OWHM) operator [6], the continuous ordered weighted averaging (C-OWA) op-

erator [7], the continuous ordered weighted geometric(C-OWG)operator [8], and

so on. The second category can reduce to two subcategories: the first subcate-

gory focuses on changing the weight vector of the aggregation operators, such as

the Choquet integral-based aggregation operators [9], in which the correlations

of the aggregated arguments are measured subjectively by the decision makers,

and the representatives of another subcategory are the power averaging (PA) op-

erator [11] and the power geometric (PG) operator [12], both of which allow the

aggregated arguments to support each other in aggregation process, on the ba-

sis of which the weighted vector is determined. The second subcategory focuses

on the aggregated arguments such as the Bonferroni meas (BM) operator [13].

Yager [14] provided an interpretation of BM operator as involving a product of

each argument with the average of the other arguments, a combined averaging

and “anding” operator. Beliakov et al. [15] presented a composed aggregation

technique called the generalized Bonferroni mean (GBM) operator, which models

the average of the conjunctive expressions and the average of remaining. In fact,

they extended the BM operator by considering the correlations of any three ag-

gregated arguments instead of any two. However, both the BM operator and the

GBM operator ignore some aggregation information and the weight vector of the
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aggregated arguments. To overcome this drawback, Xia et al. [16] developed the

generalized weighted Bonferroni mean (GWBM) operator as the weighted version

of the GBM operator. Based on the GBM operator and geometric mean oper-

ator, they also developed the generalized Bonferroni geometric mean (GBGM)

operator. The fundamental characteristic of the GWBM operator is that it fo-

cuses on the group opinions, while the GBGM operator gives more importance to

the individual opinions. Because of the usefulness of the aggregation techniques,

which reflect the correlations of arguments, most of them have been extended to

fuzzy, intuitionistic fuzzy or hesitant fuzzy environment [17-21].

Harmonic mean is the reciprocal of arithmetic mean of reciprocal, which is a

conservative average to be used to provide for aggregation lying between the max

and min operators, and is widely used as a tool to aggregate central tendency

data [22]. In the existing literature, the harmonic mean is generally considered as

a fusion technique of numerical data information. However, in many situations,

the input arguments take the form of triangular fuzzy numbers because of time

pressure, lack of knowledge and people’s limited expertise related with problem

domain. Therefore, “How to aggregate fuzzy data by using the harmonic mean?”

is an interesting research topic and is worth paying attention to. So Xu [22]

developed the fuzzy harmonic mean operators such as fuzzy weighted harmonic

mean (FWHM) operator, fuzzy ordered weighted harmonic mean(FOWHM) op-

erator and fuzzy hybrid harmonic mean (FHHM) operator, and applied them to

MAGDM, Wei [23] developed fuzzy induced ordered weighted harmonic mean

(FIOWHM) operator and then, based on the FWHM and FIOWHM opera-

tors, presented the approach to MAGDM. Sun and Sun [24] further applied the

BM operator to fuzzy environment, and introduced the fuzzy Bonferroni har-

monic mean (FBHM) operator and the fuzzy ordered Bonferroni harmonic mean

(FOBHM) operator, and applied the FOBHM operator to multiple attribute de-

cision making. In this thesis, we will develop some new harmonic aggregation

operators, including the generalized fuzzy weighted Bonferroni harmonic mean

(GFWBHM) operator and generalized fuzzy ordered weighted Bonferroni har-

monic mean (GFOWBHM) operator, and apply them to MAGDM.
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In order to do this, the remainder of this thesis is arranged in following sec-

tions. Chapter 2 first review some aggregation operators, including the BM,

GBM, and GWBM operators. The some basis concepts related to triangular fuzzy

numbers and some operational laws of triangular fuzzy numbers are introduced.

The desirable properties of the FBHM and FOBHM operators are discussed. We

extend them, by considering the correlations of any three aggregated arguments

instead of any two, to develop generalized fuzzy weighted Bonferroni harmonic

mean (GFWBHM) operator and generalized fuzzy ordered weighted Bonferroni

harmonic mean (GFOWBHM) operator. Especially, all these operators can be

reduced to aggregate interval or real numbers. Chapter 3 presents an approach

to MAGDM based on the GFWBHM and GFOWBHM operators. Chapter 4

illustrates the presented approach with a practical example, and verify and show

the advantages of the presented approach. Chapter 5 ends the paper with some

concluding remarks.

3



2 Generalized fuzzy Bonferroni harmonic mean operators

The Bonferroni mean operator was initially proposed by Bonferroni [13] and was

also investigated intensively by Yager [14]:

Definition 2.1 Let p, q ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnegative

numbers. If

BMp,q(a1, a2, . . . , an) =

 1

n(n− 1)

n∑
i,j=1
i 6=j

api a
q
j


1
p+q

, (1)

then BMp,q is called the Bonferroni mean (BM) operator.

Beliakov et al. [15] further extended the BM operator by considering the

correlations of any three aggregated arguments instead of any two.

Definition 2.2 Let p, q, r ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonneg-

ative numbers. If

GBMp,q,r(a1, a2, . . . , an) =

 1

n(n− 1)(n− 2)

n∑
i,j,k=1
i6=j 6=k

api a
q
ja
r
k


1

p+q+r

, (2)

then GBMp,q,r is called the generalized Bonferroni mean (GBM) operator.

Especially, if r = 0, then the GBM operator reduces to the BM operator.

However, it is noted that both the BM operator and the GBM operator do not

consider the situation that i = j or j = k or i = k, and the weight vector of the

aggregated arguments is not also considered. To overcome this drawback, Xia et

al. [16] defined the weighted version of the GBM operator.

Definition 2.3 Let p, q, r ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonnega-

tive numbers with the weight vector w = (w1, w2, . . . , wn)T such that wi > 0, i =
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1, 2, . . . , n and
∑n
i=1 wi = 1. If

GWBMp,q,r(a1, a2, . . . , an) =

 n∑
i,j,k=1

wiwjwka
p
i a
q
ja
r
k

 1
p+q+r

, (3)

then GWBMp,q,r is called the generalized weighted Bonferroni mean (GWBM)

operator.

Some special cases can be obtained as the change of the parameters:

(1) If r = 0, then the GWBM operator is reduced to the following:

GWBMp,q,0(a1, a2, . . . , an) =

 n∑
i,j,k=1

wiwjwka
p
i a
q
j

 1
p+q

=

(
n∑
i=1

wiwja
p
i a
q
j

n∑
k=1

wk

) 1
p+q

=

(
n∑
i=1

wiwja
p
i a
q
j

) 1
p+q

, (4)

which is the weight Bonferroni mean (WBM) operator.

(2) If q = 0 and r = 0, then the GWBM operator is reduced to the following:

GWBMp,0,0(a1, a2, . . . , an) =

 n∑
i,j,k=1

wiwjwka
p
i

 1
p

=

 n∑
i=1

wia
p
i

n∑
j=1

wj
n∑
k=1

wk

 1
p

=

(
n∑
i=1

wia
p
i

) 1
p

, (5)

which is the generalized weighted averaging operator. Furthermore, in this case,

let us look at the GWBM operator for some special cases of p.

1) If p = 1, the GWBM operator is reduced to the weighted averaging (WA)

operator.
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2) If p → 0, then the GWBM operator is reduced to the weighted geometric

(WG) operator.

3) If p→ +∞, then the GWBM operator is reduced to the max operator.

The above aggregation techniques can only deal with the situation that the

arguments are represented by the exact numerical values, but are invalid if the

aggregation information is given in other forms, such as triangular fuzzy number

[25], which is a widely used tool to deal with uncertainty and fuzzyness, described

as follows:

Definition 2.4 [25] A triangular fuzzy number â can be defined by a triplet

[aL, aM , aU ]. The membership function µâ(x) is defined as:

µâ(x) =


0, x < aL;
x−aL
aM−aL , aL ≤ x ≤ aM ;
x−aU
aM−aU , aM ≤ x ≤ aU ;

0, x > aU ,

where aU ≥ aM ≥ aL ≥ 0, aL and aU stand for the lower and upper values of

â, respectively, and aM stands for the modal value [25]. Especially, if any two of

aL, aM and aU are equal, then â is reduced to an interval number; if all aL, aM and

aU are equal, then â is reduced to a real number. For convenience, we let Ω be

the set of all triangular fuzzy numbers. Let â = [aL, aM , aU ] and b̂ = [bL, bM , bU ]

be two triangular fuzzy numbers, then some operational laws defined as follows

[25]:

1) â+ b̂ = [aL, aM , aU ] + [bL, bM , bU ] = [aL + bL, aM + bM , aU + bU ];

2) λâ = λ[aL, aM , aU ] = [λaL, λaM , λaU ];

3) â× b̂ = [aL, aM , aU ]× [bL, bM , bU ] = [aLbL, aMbM , aUbU ];

4) 1
â

= 1
[aL,aM ,aU ]

= [ 1
aU

1
aM

1
aL

].

In order to compare two triangular fuzzy numbers, Xu [22] provided the fol-

lowing definition:
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Definition 2.5 Let â = [aL, aM , aU ] and b̂ = [bL, bM , bU ] be two triangular fuzzy

numbers, then the degree of possibility of â ≥ b̂ is defined as follows:

p(â ≥ b̂) = δmax

{
1−max

(
bM − aL

aM − aL + bM − bL
, 0

)
, 0

}

+(1− δ) max

{
1−max

(
bU − aM

aU − aM + bU − bM
, 0

)
, 0

}
, δ ∈ [0, 1] (6)

which satisfies the following properties:

0 ≤ p(â ≥ b̂) ≤ 1, p(â ≥ â) = 0.5, p(â ≥ b̂) + p(b̂ ≥ â) = 1. (7)

Here, δ reflects the decision maker’s risk-bearing attitude. If δ > 0.5, then the

decision maker is risk lover; If δ = 0.5, then the decision maker is neutral to risk;

If δ < 0.5, then the decision maker is risk avertor.

In the following, we shall give a simple procedure for ranking of the triangular

fuzzy numbers âi (i = 1, 2, . . . , n). First, by using (6), we compare each âi with

all the âj (j = 1, 2, . . . , n), for simplicity, let pij = p(âi ≥ âj), then we develop a

possibility matrix [26,27] as

P =


p11 p12 . . . p1n

p21 p22 . . . p2n
...

pn1 pn2 . . . pnn

 , (8)

where pij ≥ 0, pij + pji = 1, pii = 1
2
, i, j = 1, 2, . . . , n.

Summing all elements in each line of matrix P , we have pi =
∑n
j=1 pij, i =

1, 2, . . . , n. Then, in accordance with the values of pi (i = 1, 2, . . . , n), we rank

the âi (i = 1, 2, . . . , n) in descending order.

To aggregate the triangular fuzzy correlated information, based on the BM

and weighted harmonic mean operators, Sun and Sun [24] developed the fuzzy

Bonferroni harmonic mean operator. Because this operator consider the weight
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vector of the aggregated arguments, we redefine this operator as fuzzy weighted

Bonferroni harmonic mean operator:

Definition 2.6 [24] Let âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n) be a collection of

triangular fuzzy numbers, w = (w1, w2, . . . , wn)T be the weight vector of âi (i =

1, 2, . . . , n), where wi indicates the importance degree of âi, satisfying wi > 0,

i = 1, 2, . . . , n and
∑n
i=1wi = 1. If

FWBHMp,q(â1, â2, . . . , ân) =
1(∑n

i,j=1
wiwj
âpi â

q
j

) 1
p+q

=

 1(∑n
i,j=1

wiwj
(aLi )

p(aLj )
q

) 1
p+q

+
1(∑n

i,j=1
wiwj

(aMi )p(aMj )q

) 1
p+q

+
1(∑n

i,j=1
wiwj

(aUi )
p(aUj )

q

) 1
p+q


(9)

where p, q ≥ 0, then FWBHMp,q is called the fuzzy weighted Bonferroni harmonic

mean (FWBHM) operator.

Especially, if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the FWBHM operator is reduced to

the following:

FBHMp,q(â1, â2, . . . , ân) =
1(

1
n2

∑n
i,j=1

1
âpi â

q
j

) 1
p+q

, (10)

which we call the fuzzy Bonferroni harmonic mean (FBHM) operator.

In addition, a special case can obtained as the change of parameter: If q = 0,

then the FWBHM operator is reduced to the following:

FWBHMp,0(â1, â2, . . . , ân) =
1(∑n

i,j=1
wiwj
âpi

) 1
p

=
1(∑n

i=1
wi
âpi

∑n
j=1wj

) 1
p

=
1(∑n

i=1
wi
âpi

) 1
p
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=

 1(∑n
i=1

wi
(aLi )

p

) 1
p

,
1(∑n

i=1
wi

(aMi )p

) 1
p

,
1(∑n

i=1
wi

(aUi )
p

) 1
p

 ,
(11)

which we call the fuzzy weighted generalized harmonic mean (FWGHM) operator.

On the bases of the operational laws of triangular fuzzy numbers, the FWBHM

operator has the following properties:

Theorem 2.7 Let p, q ≥ 0, and âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, the following are valid:

(1) Idempotency: If all âi (i = 1, 2, . . . , n) are equal, i.e., âi = â, for all i,

then

FWBHMp,q(â1, â2, . . . , ân) = â.

(2) Boundedness:

â− ≤ FWBHMp,q(â1, â2, . . . , ân) ≤ â+,

where â− = [mini(a
L
i ),mini(a

M
i ),mini(a

U
i )], â+ = [maxi(a

L
i ),maxi(a

M
i ),maxi(a

U
i )].

(3) Monotonicity: Let â∗i = [aL∗i , a
M∗
i , aU∗i ] (i = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then if aLi ≤ aL∗i , aMi ≤ aM∗i and aMI ≤ aU∗i for all i,

then

FWBHMp,q(â1, â2, . . . , ân) ≤ FWBHMp,q(â∗1, â
∗
2, . . . , â

∗
n).

(4) Commutativity: Let â′i = [aL′i , a
M ′
i , aU ′i ] (i = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then

FWBHMp,q(â1, â2, . . . , ân) = FWBHMp,q(â′1, â
′
2, . . . , â

′
n),

where (â′1, â
′
2, . . . , â

′
n) is any permutation of (â1, â2, . . . , ân).
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Proof . (2) and (4) are can be proven easily, and we only prove (1) and (3).

(1) Since âi = â, we have

FWBHMp,q(â1, â2, . . . , ân) =
1(∑n

i,j=1
wiwj
âpâq

) 1
p+q

=
1(∑n

i,j=1
wiwj
âp+q

) 1
p+q

=
â(∑n

i=1wi
∑n
j=1wj

) 1
p+q

= â.

(3) Since aLi ≤ aL∗i , aMi ≤ aM∗i and aMI ≤ aU∗i for all i, then (aLi )p(aLj )q ≤
(aL∗i )p(aL∗j )q, (aMi )p(aMj )q ≤ (aM∗i )p(aM∗j )q and (aUi )p(aUj )q ≤ (aU∗i )p(aU∗j )q. Hence

we have

FWBHMp,q(â1, â2, . . . , ân) =
1(∑n

i,j=1
wiwj
âpi â

q
j

) 1
p+q

=

 1(∑n
i,j=1

wiwj
(aLi )

p(aLj )
q

) 1
p+q

,
1(∑n

i,j=1
wiwj

(aMi )p(aMj )q

) 1
p+q

,
1(∑n

i,j=1
wiwj

(aUi )
p(aUj )

q

) 1
p+q



≤

 1(∑n
i,j=1

wiwj
(aL∗i )p(sL∗j )q

) 1
p+q

,
1(∑n

i,j=1
wiwj

(aM∗i )p(aM∗j )q

) 1
p+q

,
1(∑n

i,j=1
wiwj

(aU∗i )p(aU∗j )q

) 1
p+q


=

1(∑n
i,j=1

wiwj
(â∗i )

p(â∗j )
q

) 1
p+q

= FWBHMp,q(â∗1, â
∗
2, . . . , â

∗
n).

Especially, if the triangular fuzzy numbers âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n)

are reduced to the interval numbers ãi = [aLi , a
U
i ] (i = 1, 2, . . . , n), then the

FWBHM operator (9) is reduced to the uncertain weighted Bonferroni harmonic

mean (UWBHM) operator:

UWBHMp,q(ã1, ã2, . . . , ãn) =
1(∑n

i,j=1
wiwj
ãpi ã

q
j

) 1
p+q

10



=

 1(∑n
i,j=1

wiwj
(aLi )

p(aLj )
q

) 1
p+q

,
1(∑n

i,j=1
wiwj

(aUi )
p(aUj )

q

) 1
p+q

 .
(12)

If w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the UWBHM operator is reduced to the uncertain

Bonferroni harmonic mean (UBHM) operator:

UBHMp,q(ã1, ã2, . . . , ãn) =
1(

1
n2

∑n
i,j=1

1
ãpi ã

q
j

) 1
p+q

=

 1(
1
n2

∑n
i,j=1

1
(aLi )

p(aLj )
q

) 1
p+q

,
1(

1
n2

∑n
i,j=1

1
(aUi )

p(aUj )
q

) 1
p+q

 . (13)

If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the UWBHM operator (12) is

reduced to the weighted Bonferroni harmonic mean (WBHM) operator:

WBHMp,q(a1, a2, . . . , an) =
1(∑n

i,j=1
wiwj
api a

q
j

) 1
p+q

. (14)

If w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the WBHM operator is reduced to the Bonferroni

harmonic mean (BHM) operator:

BHMp,q(a1, a2, . . . , an) =
1(

1
n2

∑n
i,j=1

1
api a

q
j

) 1
p+q

. (15)

Example 2.8 Given a Collection of triangular fuzzy numbers: â1 = [2, 3, 4],

â2 = [1, 2, 4], â3 = [2, 4, 6], â4 = [1, 3, 5], let w = (0.3, 0.1, 0.2, 0.4)T be the weight

vector of âi (i = 1, 2, 3, 4), then by FWBHM operator (9) (let p = q = 2), we

have

FWBHM2,2(â1, â2, â3, â4)

11



=

 1(∑4
i,j=1

wiwj
(aLi )

2(aLj )
2

) 1
4

,
1(∑4

i,j=1
wiwj

(aMi )2(aMj )2

) 1
4

,
1(∑4

i,j=1
wiwj

(aUi )
2(aUj )

2

) 1
4


= [1.27, 2.95, 4.64].

Based on the OWA and FWBHM operators and Definition 2.5, we define fuzzy

ordered weight Bonferroni harmonic mean (FOWBHM) operator as below:

Definition 2.9 Let âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n) be a collection of triangular

fuzzy numbers. For p, q ≥ 0, a fuzzy ordered weighted Bonferroni harmonic mean

(FOWBHM) operator of dimension n is a mapping FOWBHMp,q : Ωn → Ω, that

has an associated vector ω = (ω1, ω2, . . . , ωn)T such that ωi ≥ 0 and
∑n
i=1 ωi = 1.

Furthermore,

FOWBHMp,q(â1, â2, . . . , ân) =
1(∑n

i,j=1
ωiωj

âp
σ(i)

âq
σ(j)

) 1
p+q

=

 1(∑n
i,j=1

ωiωj
(aL
σ(i)

)p(aL
σ(j)

)q

) 1
p+q

,
1(∑n

i,j=1
ωiωj

(aM
σ(i)

)p(aM
σ(j)

)q

) 1
p+q

,

1(∑n
i,j=1

ωiωj
(aU
σ(i)

)p(aU
σ(j)

)q

) 1
p+q

 , (16)

where âσ(i) = [aLσ(i), a
M
σ(i), a

U
σ(i)] (i = 1, 2, . . . , n), and (σ(1), σ(2), . . . , σ(n)) is a

permutation of (1, 2, . . . , n) such that âσ(i−1) ≥ âσ(i) for all i.

However, if there is a tie between âi and âj, then we replace each of âi and âj by

their average (âi+ âj)/2 in process of aggregation. If k items are tied, then we re-

place these k replicas of their average. The weighting vector ω = (ω1, ω2, . . . , ωn)T

can be determined by using some weight determining methods like the normal

12



distribution based method, see Refs [28,29,30] for more details.

If ω = ( 1
n
, 1
n
, . . . , 1

n
)T then the FOWBHM operator is reduced to the FBHM

operator; in addition, if q = 0. then the FOWBHM operator is reduced to the

following:

FOWBHMp,0(â1, â2, . . . , ân) =
1(∑n

i,j=1
ωiωj
âp
σ(i)

) 1
p

=
1(∑n

i=1
ωi
âp
σ(i)

∑n
j=1 ωj

) 1
p

=
1(∑n

i=1
ωi
âp
σ(i)

) 1
p

=

 1(∑n
i=1

ωi
(aL
σ(i)

)p

) 1
p

,
1(∑n

i=1
ωi

(aM
σ(i)

)p

) 1
p

,
1(∑n

i=1
ωi

(aU
σ(i)

)p

) 1
p

 ,(17)

which we call the fuzzy ordered weighted generalized harmonic mean (FOWGHM)

operator.

Especially, if the triangular fuzzy numbers âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n)

are reduced to the interval numbers ãi = [aLi , a
U
i ] (i = 1, 2, . . . , n), then the

FOWBHM operator is reduced to the uncertain ordered weighted Bonferroni

harmonic mean (UOWBHM) operator:

UOWBHMp,q(ãi, ã2, . . . , ãn) =
1(∑n

i,j=1
ωiωj

ãp
σ(i)

ãq
σ(j)

) 1
p+q

=

 1(∑n
i,j=1

ωiωj
(aL
σ(i)

)p(aL
σ(j)

)q

) 1
p+q

,
1(∑n

i,j=1
ωiωj

(aU
σ(i)

)p(aU
σ(j)

)q

) 1
p+q

 , (18)

13



where ãσ(i) = [aLσ(i), a
U
σ(i)

] (i = 1, 2, . . . , n), and (σ(1), σ(2), . . . , σ(n)) is a permu-

tation of (1, 2, . . . , n) such that ãσ(i−1) ≥ ãσ(i) for all i. If there is a tie between âi

and âj, then we replace each of âi and âj by their average (âi + âj)/2 in process

of aggregation. If k items are tied, then we replace these by k replicas of their

average.

If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the UOWBHM operator is reduced

to the ordered weighted Bonferroni harmonic mean (OWBHM) operator:

OWBHMp,q(a1, a2, . . . , an) =
1(∑n

i,j=1
ωiωj
bpi b

q
j

) 1
p+q

, (19)

where bi is the ith largest of ai (i = 1, 2, . . . , n). The OWBHM operator (19) has

some special cases:

(1) If ω = (1, 0, . . . , 0)T , then

OWBHMp,q(a1, a2, . . . , an) = max{ai} = b1. (20)

(2) If ω = (0, 0, . . . , 1)T , then

OWBHMp,q(a1, a2, . . . , an) = min{ai} = bn. (21)

(3) If ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then

OWBHMp,q(a1, a2, . . . , an) =
1(

1
n2

∑n
i,j=1

1
bpi b

q
j

) 1
p+q

=
1(

1
n2

∑n
i,j=1

1
api a

q
j

) 1
p+q

= BHMp,q(a1, a2, . . . , an). (22)

Example 2.10 Given a collection of triangular fuzzy numbers: â1=[3,4,6], and

â2=[1,2,4], â3=[2,4,5], â4=[3,5,6], and â5=[2,5,7]. To rank these triangular fuzzy

number, we first compare each triangular fuzzy number âi with all triangular

fuzzy numbers âj (j = 1, 2, 3, 4, 5) by using (6) (without loss of generality, set

14



δ = 0.5), let pij = p(âi ≥ âj) (i, j = 1, 2, 3, 4, 5), then we utilize these possibility

degrees to construct the following matrix P = (pij)5×5:

P =



0.500 1 0.667 0.333 0.375

0 0.500 0 0 0

0.333 1 0.500 0.125 0.200

0.667 1 0.875 0.500 0.467

0.625 1 0.800 0.533 0.500

 ,

Summing all elements in each line of matrix P, we have

p1 = 2.875, p2 = 0.500, p3 = 2.158, p4 = 3.509, p5 = 3.458.

and then we rank the triangular fuzzy numbers âi (i = 1, 2, 3, 4, 5) in descending

order in accordance with the values of pi (i = 1, 2, 3, 4, 5):

âσ(1) = â4, âσ(2) = â5, âσ(3) = â1, âσ(4) = â3, âσ(5) = â2.

Suppose that the weight vector of the FOWBHM operator is ω = (0.1117, 0.2365,

0.3036, 0.2365, 0.1117)T (derived by the normal distribution based method [28]),

then by (16) (let p = q = 2), we get

FOWBHM2,2(â1, â2, â3, â4, â5)

=

 1(∑5
i,j=1

ωiωj
(aLi )

2(aLj )
2

) 1
4

,
1(∑5

i,j=1
ωiωj

(aMi )2(aMj )2

) 1
4

,
1(∑5

i,j=1
ωiωj

(aUi )
2(aUj )

2

) 1
4


= [1.901, 3.632, 5.509]

Both the FWBHM and FOWBHM operators, however, can only deal with

the situation that there are correlations between any two aggregated arguments,

but not the situation that there exist connections among any three aggregated

arguments.

To solve this issue, and motivated by Definition 2.3, we define the following:

15



Definition 2.11 Let âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers, w = (w1, w2, . . . , wn)T be the weight vector of âi (i =

1, 2, . . . , n), where wi indicates the importance degree of âi, satisfying wi > 0,

i = 1, 2, . . . , n and
∑n
i=1wi = 1. For p, q, r ≥ 0, if

GFWBHMp,q,r(â1, â2, . . . , ân) =
1(∑n

i,j,k=1
wiwjwk
âpi â

q
j â
r
k

) 1
p+q+r

=

 1(∑n
i,j,k=1

wiwjwk
(aLi )

p(aLj )
q(aL

k
)r

) 1
p+q+r

,
1(∑n

i,j,k=1
wiwjwk

(aMi )p(aMj )q(aM
k

)r

) 1
p+q+r

,

1(∑n
i,j,k=1

wiwjwk
(aUi )

p(aUj )
q(aU

k
)r

) 1
p+q+r

 . (23)

then GFWBHMp,q,r is called generalized fuzzy weighted Bonferroni harmonic

mean (GFWBHM) operator.

Especially, if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the GFWBHM operator is reduced to

the following:

GFBHMp,q,r(â1, â2, . . . , ân) =
1(

1
n3

∑n
i,j,k=1

1
âpi â

q
j â
r
k

) 1
p+q+r

, (24)

which we call the generalized fuzzy Bonferroni harmonic mean (GFBHM) oper-

ator.

In addition, some special cases can be obtained as the change of parameters:

(1) If r = 0, then the GFWBHM operator is reduced to

GFWBHMp,q,0(â1, â2, . . . , ân) =
1(∑n

i,j,k=1
wiwjwk
âpi â

q
j

) 1
p+q
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=
1(

(
∑n
k=1wk)

∑n
i,j=1

wiwj
âpi â

q
j

) 1
p+q

=
1(∑n

i,j=1
wiwj
âpi â

q
j

) 1
p+q

(25)

which is the FWBHM operator.

(2) If q = 0 and r = 0, then the GFWBHM operator is reduced to

GFWBHMp,0,0(â1, â2, . . . , ân) =
1(∑n

i,j,k=1
wiwjwk
âpi

) 1
p

=
1(

(
∑n
j=1wj)(

∑n
k=1wk)

∑n
i,j=1

wi
âpi

) 1
p

=
1(∑n

i=1
wi
âpi

) 1
p

(26)

which is FWGHM operator. In this case, if p = 1, then FWGHM operator is

reduced to FWHM operator.

Similar to the FWBHM operator, the GFWBHM operator has the following

properties:

Theorem 2.12 Let p, q, r ≥ 0, and âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n) be a

collection of triangular fuzzy numbers, the following are valid:

(1) Idempotency: If all âi (i = 1, 2, . . . , n) are equal, i.e., âi = â, for all i,

then

GFWBHMp,q,r(â1, â2, . . . , ân) = â.

(2) Boundedness:

â− ≤ GFWBHMp,q,r(â1, â2, . . . , ân) ≤ â+,

17



where â− = [mini(a
L
i ),mini(a

M
i ),mini(a

U
i )], â+ = [maxi(a

L
i ),maxi(a

M
i ),maxi(a

U
i )].

(3) Monotonicity: Let â∗i = [aL∗i , a
M∗
i , aU∗i ] (i = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then if aLi ≤ aL∗i , aMi ≤ aM∗i and aUI ≤ aU∗i for all i,

then

GFWBHMp,q,r(â1, â2, . . . , ân) ≤ GFWBHMp,q,r(â∗1, â
∗
2, . . . , â

∗
n).

(4) Commutativity: Let â′i = [aL′i , a
M ′
i , aU ′i ] (i = 1, 2, . . . , n) be a collection

of triangular fuzzy numbers, then

GFWBHMp,q,r(â1, â2, . . . , ân) = GFWBHMp,q,r(â′1, â
′
2, . . . , â

′
n),

where (â′1, â
′
2, . . . , â

′
n) is any permutation of (â1, â2, . . . , ân).

Especially, if the triangular fuzzy numbers âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n)

are reduced to the interval numbers ãi = [aLi , a
U
i ] (i = 1, 2, . . . , n), then the

GFWBHM operator (18) is reduced to the generalized uncertain weighted Bon-

ferroni harmonic mean (GUWBHM) operator:

GUWBHMp,q,r(ã1, ã2, . . . , ãn) =
1(∑n

i,j,k=1
wiwjwk
ãpi ã

q
j ã
r
k

) 1
p+q+r

=

 1(∑n
i,j,k=1

wiwjwk
(aLi )

p(aLj )
q(aL

k
)r

) 1
p+q+r

,
1(∑n

i,j,k=1
wiwjwk

(aUi )
p(aUj )

q(aU
k
)r

) 1
p+q+r

 . (27)

If w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the GUWBHM operator is reduced to the generalized

uncertain Bonferroni harmonic mean (GUBHM):

GUBHM p,q,r(ã1, ã2, . . . , ãn) =
1(

1
n3

∑n
i,j,k=1

1
ãpi ã

q
j ã
r
k

) 1
p+q+r

=

 1(
1
n3

∑n
i,j,k=1

1
(aLi )

p(aLj )
q(aL

k
)r

) 1
p+q+r

,
1(

1
n3

∑n
i,j,k=1

1
(aUi )

p(aUj )
q(aU

k
)r

) 1
p+q+r

 .(28)
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If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the GUWBHM operator is reduced

to the generalized weighted Bonferroni harmonic mean (GWBHM) operator:

GWBHMp,q,r(a1, a2, . . . , an) =
1(∑n

i,j,k=1
wiwjwk
api a

q
ja
r
k

) 1
p+q+r

. (29)

In this case, if p = 1 and q = r = 0, the GWBHM operator is reduced to the

weighted harmonic mean (WHM) operator.

Example 2.13 Consider the four triangular fuzzy numbers âi and their weight

vector w given in Example 2.8. Then by the GFWBHM operator (23) (without

of generalization, let p = q = r = 3), we have

GFWBHM3,3,3(â1, â2, â3, â4)

=

 1(∑4
i,j,k=1

wiwjwk
(aLi )

3(aLj )
3(aL

k
)3

) 1
9

,
1(∑4

i,j,k=1
wiwjwk

(aMi )3(aMj )3(aM
k

)3

) 1
9

,

1(∑4
i,j,k=1

wiwjwk
(aUi )

3(aUj )
3(aU

k
)3

) 1
9


= [1.21, 2.89, 4.59].

Definition 2.14 Let âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers. For p, q, r ≥ 0, a generalized fuzzy ordered weighted

Bonferroni harmonic mean (GFOWBHM) operator of dimension n is a mapping

GFOWBHMp,q,r : Ωn → Ω, that has an associated vector ω = (ω1, ω2, . . . , ωn)T

such that ωi ≥ 0 and
∑n
i=1 ωi = 1. Furthermore,

GFOWBHMp,q,r(â1, â2, . . . , ân) =
1(∑n

i,j,k=1
ωiωjωk

âp
σ(i)

âq
σ(j)

âr
σ(k)

) 1
p+q+r
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=

 1(∑n
i,j,k=1

ωiωjωk
(aL
σ(i)

)p(aL
σ(j)

)q(aL
σ(k)

)r

) 1
p+q+r

,
1(∑n

i,j,k=1
ωiωjωk

(aM
σ(i)

)p(aM
σ(j)

)q(aM
σ(k)

)r

) 1
p+q+r

,

1(∑n
i,j,k=1

ωiωjωk
(aU
σ(i)

)p(aU
σ(j)

)q(aU
σ(k)

)r

) 1
p+q+r

 ,
(30)

where âσ(i) = [aLσ(i), a
M
σ(i), a

U
σ(i)] (i = 1, 2, . . . , n), and (σ(1), σ(2), . . . , σ(n)) is a

permutation of (1, 2, . . . , n) such that âσ(i−1) ≥ âσ(i) for all i.

However, if there is a tie between âi and âj, then we replace each of âi and âj

by their average (âi + âj)/2 in process of aggregation. If k items are tied, then

we replace these by k replicas of their average.

If ω = ( 1
n
, 1
n
, . . . , 1

n
)T then the GFOWBHM operator is reduced to the GF-

BHM operator. Moreover, some special cases can be obtained as the change of

parameters: If r = 0, then the GFOWBHM operator is reduced to FOWBHM

operator; if r = 0 and q = 0, then GFOWBHM operator is reduced to FOWGHM

operator.

Especially, if the triangular fuzzy numbers âi = [aLi , a
M
i , a

U
i ] (i = 1, 2, . . . , n)

are reduced to the interval numbers ãi = [aLi , a
U
i ] (i = 1, 2, . . . , n), then the

GFOWBHM operator is reduced to the generalized uncertain ordered weighted

Bonferroni harmonic mean (GUOWBHM) operator:

GUOWBHMp,q,r(ã1, ã2, . . . , ãn) =
1(∑n

i,j,k=1
ωiωjωk

ãp
σ(i)

ãq
σ(j)

ãr
σ(k)

) 1
p+q+r
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=

 1(∑n
i,j,k=1

ωiωjωk
(aL
σ(i)

)p(aL
σ(j)

)q(aL
σ(k)

)r

) 1
p+q+r

,
1(∑n

i,j,k=1
ωiωjωk

(aU
σ(i)

)p(aU
σ(j)

)q(aU
σ(k)

)r

) 1
p+q+r

 ,
(31)

where ãσ(i) = [aLσ(i), a
U
σ(i)], and (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . .,n)

such that ãσ(i−1) ≥ ãσ(i) for all i. If there is a tie between ãi and ãj, then we

replace each of ãi and ãj by their average (ãi + ãj)/2 in process of aggregation.

If k items are tied, then we replace these by k replicas of their average.

If aLi = aUi = ai, for all i = 1, 2, . . . , n, then the GUOWBHM operator is re-

duced to the generalized ordered weighted Bonferroni harmonic mean (GOWBHM)

operator:

GOWBHMp,q,r(a1, a2, . . . , an) =
1(∑n

i,j,k=1
ωiωjωk
bpi b

q
jb
r
k

) 1
p+q+r

, (32)

where bi is the ith largest of ai (i = 1, 2, . . . , n). In this case, if p = 1 and

q = r = 0, then the GOWBHM operator is reduced to the ordered weighted

harmonic mean (OWHM) operator.

The GOWBHM operator (32) has some special cases:

(1) If ω = (1, 0, . . . , 0)T , then

GOWBHMp,q,r(a1, a2, . . . , an) = max{ai} = b1. (33)

(2) If ω = (0, 0, . . . , 1)T , then

GOWBHMp,q,r(a1, a2, . . . , an) = min{ai} = bn. (34)

(3) If ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then

GOWBHMp,q,r(a1, a2, . . . , an) =
1(

1
n3

∑n
i,j,k=1

1
bpi b

q
jb
r
k

) 1
p+q+r
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=
1(

1
n3

∑n
i,j,k=1

1
api a

q
ja
r
k

) 1
p+q+r

, (35)

which we call the generalized Bonferroni harmonic mean (GBHM) operator.

Example 2.15 Consider the four triangular fuzzy numbers âi and their weight

vector w given in Example 2.10. Then by the GFOWBHM operator (30) (let

p = q = r = 3), we have

GFOWBHM3,3,3(â1, â2, â3, â4, â5)

=

 1(∑5
i,j,k=1

wiwjwk
(aL
σ(i)

)3(aL
σ(j)

)3(aL
σ(k)

)3

) 1
9

,
1(∑5

i,j,k=1
wiwjwk

(aM
σ(i)

)3(aM
σ(j)

)3(aM
σ(k)

)3

) 1
9

,

1(∑5
i,j,k=1

wiwjwk
(aU
σ(i)

)3(aU
σ(j)

)3(aU
σ(k)

)3

) 1
9

,


= [1.751, 3.410, 5.422]

In the following chapter, we will apply the developed operators to multiple at-

tribute group decision making.
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3 An approach to multiple attribute group decision making with

triangular fuzzy information

For a group decision making with triangular fuzzy information, let X = {x1, x2,
. . . , xn} be a discrete set of n alternatives, and G = {G1, G2, . . . , Gm} be the

set of m attributes, whose weight vector is w = (w1, w2, . . . , wn)T with wi ≥ 0

and
∑m
i=2wi = 1, and let D = {d1, d2, . . . , ds} be the set of decision makers,

whose weight vector is v = (v1, v2, . . . , vs)
T , where vk ≥ 0 and

∑s
k=1 vk = 1.

Suppose that A(k) = (â
(k)
ij )m×n is the triangular fuzzy decision matrix, where

â
(k)
ij = [a

L(k)
ij , a

M(k)
ij , a

U(k)
ij ] is an attribute value, which takes the form of triangular

fuzzy number, given by the decision maker dk ∈ D, for the alternative xj ∈ X
with respect to the attribute Gi ∈ G.

In the following, we apply the GFWBHM and GFOWBHM operators to group

decision making with triangular fuzzy information.

Step 1. Normalize each attribute value â
(k)
ij in the matrix A(k) into a corre-

sponding element in the matrix R(k) = (r̂
(k)
ij )m×n (r̂

(k)
ij = [r̂

L(k)
ij , r̂

M(k)
ij , r̂

U(k)
ij ]) using

the following formulas:

r̂
(k)
ij =

â
(k)
ij∑n

j=1 â
(k)
ij

=

 a
L(k)
ij∑n

j=1 a
U(k)
ij

,
a
M(k)
ij∑n

j=1 a
M(k)
ij

,
a
U(k)
ij∑n

j=1 a
L(k)
ij

 , for benefit attribute Gi,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , s. (36)

r̂
(k)
ij =

1/â
(k)
ij∑n

j=1(1/â
(k)
ij )

=

 1/a
U(k)
ij∑n

j=1(1/a
L(k)
ij )

,
1/a

M(k)
ij∑n

j=1(1/a
M(k)
ij )

,
1/a

L(k)
ij∑n

j=1(1/a
U(k)
ij )

 , for cost attribute Gi,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , s. (37)
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Step 2. Utilize the GFWBHM operator (23):

r̂
(k)
j = GFWBHMp,q,r(r̂

(k)
1j , r̂

(k)
2j , . . . , r̂

(k)
mj) =

1(∑m
i,h,l=1

wiwhwl
(r̂

(k)
ij )p,(r̂

(k)
ij )q ,(r̂

(k)
ij )r

) 1
p+q+r

=


1(∑m

i,h,l=1
wiwhwl

(r
L(k)
ij )p,(r

L(k)
ij )q ,(r

L(k)
ij )r

) 1
p+q+r

,
1(∑m

i,h,l=1
wiwhwl

(r
M(k)
ij )p,(r

M(k)
ij )q ,(r

M(k)
ij )r

) 1
p+q+r

,

1(∑m
i,h,l=1

wiwhwl
(r
U(k)
ij )p,(r

U(k)
ij )q ,(r

U(k)
ij )r

) 1
p+q+r

 ,
(38)

to aggregate all the elements in the jth column ofR(k) and get the overall attribute

value r̂
(k)
j of the alternative xj corresponding to the decision maker dk.

Step 3. Utilize the GFOWBHM operator (30):

r̂j = GFOWBHMp,q,r(r̂
(1)
j , r̂

(2)
j , . . . , r̂

(s)
j ) =

1(∑s
k,h,l=1

ωkωhωl

( ˙̂r
σ(k)
j )p( ˙̂r

σ(h)
j )q( ˙̂r

σ(l)
j )r

) 1
p+q+r

=


1(∑s

k,h,l=1
ωkωhωl

(ṙ
L(σ(k))
j )p(ṙ

L(σ(h))
j )q(ṙ

L(σ(l))
j )r

) 1
p+q+r

,

1(∑s
k,h,l=1

ωkωhωl
(ṙ
M(σ(k))
j )p(ṙ

M(σ(h))
j )q(ṙ

M(σ(l))
j )r

) 1
p+q+r

,

1(∑s
k,h,l=1

ωkωhωl
(ṙ
U(σ(k))
j )p(ṙ

U(σ(h))
j )q(ṙ

U(σ(l))
j )r

) 1
p+q+r

 (39)
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to aggregate the overall attribute values r̂
(k)
j (k = 1, 2, . . . , s) corresponding to

the decision maker dk (k = 1, 2, . . . , s) and get the collective overall attribute

value r̂j, where ˙̂r
(σ(k))

j = [ṙ
L(σ(k))
j , ṙ

M(σ(k))
j , ṙ

(Uσ(k))
j ] is kth largest of the weighted

data ˙̂r
(k)

j ( ˙̂r
(k)

j = svkr̂
(k)
j , k = 1, 2, . . . , s), ω = (ω1, ω2, . . . , ωs)

T is the weighting

vector of the GFOWBHM operator, with ωk ≥ 0 and
∑s
k=1 ωk = 1.

Step 4. Compare each r̂j with all r̂i (i = 1, 2, . . . , n) by using (6), and let

pij = p(r̂i ≥ r̂j), and then construct the possibility matrix P = (pij)n×n, where

pij ≥ 0, pij + pji = 1, pii = 0.5, i, j = 1, 2, . . . , n. Summing all elements in

each line of matrix P , we have pi =
∑n
j=1 pij, i = 1, 2, . . . , n, and then reorder

r̂j (j = 1, 2, . . . , n) in descending order in accordance with the values of pj (j =

1, 2, . . . , n).

Step 5. Rank all alternatives sj (j = 1, 2, . . . , n) by the ranking of r̂j (j =

1, 2, . . . , n), and then select the most desirable one.

Step 6. End.
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4 Example illustrations

In this chapter, we use a multiple attribute group decision making problem of

determining what kind of air-conditioning systems should be installed in a library

(adopted from [32,22]) to illustrate the proposed approach.

A city is planning to build a municipal library. One of the problem facing

the city development commissioner is to determine what kind of air-conditioning

systems should be installed in the library. The contractor offers five feasible

alternatives, which might be adapted to the physical structure of the library.

The alternatives xj (j = 1, 2, 3, 4, 5) are to be evaluated using triangular fuzzy

numbers by the three decision makers dk (k = 1, 2, 3)(whose weight vector is

v = (0.4, 0.3, 0.3)T ) under three major impacts: economic, functional, and oper-

ational. Two monetary attributes and six nonmonetary attributes (that is, G1:

owning cost ($/ft2), G2: operating cost ($/ft2), G3: performance(∗), G4: noise

level (Db), G5: maintainability(∗), G6: reliability (%), G7: flexibility(∗), G8:

safety(∗), where ∗ unit is from 0-1 scale, three attributes G1, G2, and G4 are cost

attributes, and the other five attributes are benefit attributes, suppose that the

weight vector od the attributes Gi (i = 1, 2, . . . , 8) is w = (0.05, 0.08, 0.14, 0.12,

0.18, 0.21, 0.05, 0.17)T ) emerged from three impacts is Tables 1-3.

Table 1: Triangular fuzzy number decision matrix A(1)

x1 x2 x3 x4 x5

G1 [3.5, 4.0, 4.7] [1.7, 2.0, 2.3] [3.5, 3.8, 4.2] [3.5, 3.8, 4.5] [3.3, 3.8, 4.0]

G2 [5.5, 6.0, 6.5] [4.8, 5.1, 5.5] [4.5, 5.2, 5.5] [4.5, 4.7, 5.0] [5.5, 5.7, 6.0]

G3 [0.7, 0.8, 0.9] [0.5, 0.56, 0.6] [0.5, 0.6, 0.7] [0.7, 0.85, 0.9] [0.6, 0.7, 0.8]

G4 [35, 40, 45] [70, 73, 75] [65, 68, 70] [40, 42, 45] [50, 55, 60]

G5 [0.4, 0.45, 0.5] [0.4, 0.44, 0.6] [0.7, 0.76, 0.8] [0.9, 0.97, 1.0] [0.5, 0.54, 0.6]

G6 [95, 98, 100] [70, 73, 75] [80, 83, 90] [90, 93, 95] [85, 90, 95]

G7 [0.3, 0.35, 0.5] [0.7, 0.75, 0.8] [0.8, 0.9, 1.0] [0.6, 0.75, 0.8] [0.4, 0.5, 0.6]

G8 [0.7, 0.74, 0.8] [0.5, 0.53, 0.6] [0.6, 0.68, 0.7] [0.7, 0.8, 0.9] [0.8, 0.85, 0.9]
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Table 2: Triangular fuzzy number decision matrix A(2)

x1 x2 x3 x4 x5

G1 [4.0, 4.3, 4.5] [2.1, 2.2, 2.4] [5.0, 5.1, 5.2] [4.3, 4.4, 4.5] [3.0, 3.3, 3.5]

G2 [6.0, 6.3, 6.5] [5.0, 5.1, 5.2] [4.5, 4.7, 5.0] [5.0, 5.1, 5.3] [7.0, 7.5, 8.0]

G3 [0.7, 0.8, 0.9] [0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.7, 0.75, 0.8] [0.7, 0.8, 0.9]

G4 [37, 38, 39] [70, 73, 75] [65, 66, 67] [40, 42, 45] [50, 52, 55]

G5 [0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.8, 0.85, 0.9] [0.8, 0.95, 1.0] [0.4, 0.44, 0.5]

G6 [92, 93, 95] [70, 75, 80] [83, 84, 85] [90, 91, 92] [90, 93, 95]

G7 [0.4, 0.45, 0.5] [0.8, 0.85, 0.9] [0.7, 0.73, 0.8] [[0.7, 0.85, 0.9] [0.4, 0.45, 0.5]

G8 [0.6, 0.7, 0.8] [0.6, 0.65, 0.7] [0.5, 0.6, 0.7] [0.7, 0.76, 0.8] [0.7, 0.8, 0.9]

Table 3: Triangular fuzzy number decision matrix A(3)

x1 x2 x3 x4 x5

G1 [4.3, 4.4, 4.6] [2.2, 2.4, 2.5] [4.5, 4.8, 5.0] [4.7, 4.9, 5.0] [3.1, 3.2, 3.4]

G2 [6.4, 6.7, 7.0] [5.0, 5.2, 5.5] [4.7, 4.8, 4.9] [5.5, 5.7, 6.0] [6.0, 6.5, 7.0]

G3 [0.8, 0.85, 0.9] [0.5, 0.6, 0.7] [0.6, 0.7, 0.8] [0.7, 0.8, 0.9] [0.7, 0.75, 0.8]

G4 [36, 38, 40] [72, 73, 75] [67, 68, 70] [45, 48, 50] [55, 57, 60]

G5 [0.4, 0.46, 0.5] [0.4, 0.45, 0.6] [0.8, 0.95, 1.0] [0.8, 0.85, 0.9] [0.5, 0.55, 0.6]

G6 [93, 94, 95] [77, 78, 80] [85, 87, 90] [90, 94, 95] [90, 96, 100]

G7 [0.4, 0.5, 0.6] [0.8, 0.9, 1.0] [0.8, 0.86, 0.9] [0.6, 0.7, 0.8] [0.5, 0.57, 0.6]

G8 [0.7, 0.78, 0.8] [0.5, 0.55, 0.6] [0.6, 0.68, 0.7] [0.8, 0.85, 0.9] [0.8, 0.85, 0.9]
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In the following, we utilize the decision procedure to select the best air-

conditioning system:

Step 1. By using (36) and (37), we normalize each attribute value â
(k)
ij in

the matrices A(k) (k = 1, 2, 3) into the corresponding element in the matrices

R(k) = (r̂ij)8×5 (k = 1, 2, 3) (Tables 4-6):

Table 4: Normalized triangular fuzzy number decision matrix R(1)

x1 x2 x3 x4 x5

G1 [0.12, 0.16, 0.21] [0.25, 0.32, 0.43] [0.14, 0.17, 0.21] [0.13, 0.17, 0.21] [0.14, 0.17, 0.22]

G2 [0.15, 0.18, 0.21] [0.18, 0.21, 0.24] [0.18, 0.20, 0.25] [0.20, 0.23, 0.25] [0.16, 0.19, 0.21]

G3 [0.18, 0.23, 0.30] [0.13, 0.16, 0.20] [0.13, 0.17, 0.23] [0.18, 0.24, 0.30] [0.15, 0.20, 0.27]

G4 [0.22, 0.26, 0.32] [0.13, 0.14, 0.16] [0.14, 0.15, 0.17] [0.22, 0.25, 0.28] [0.16, 0.19, 0.23]

G5 [0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.24, 0.28] [0.26, 0.31, 0.34] [0.14, 0.17, 0.21]

G6 [0.21, 0.22, 0.24] [0.15, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.23] [0.19, 0.21, 0.23]

G7 [0.08, 0.11, 0.18] [0.19, 0.23, 0.29] [0.22, 0.28, 0.36] [0.16, 0.23, 0.29] [0.11, 0.15, 0.21]

G8 [0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.19, 0.21] [0.18, 0.22, 0.27] [0.21, 0.24, 0.27]

Step 2. Utilize the GFWBHM operator (38) (let p = q = r = 3) to aggregate

all elements in the jth column R(k) and get the overall attribute value r̂
(K)
j :

r̂
(1)
1 = [0.1390, 0.1753, 0.2187], r̂

(1)
2 = [0.1347, 0.1586, 0.1927],

r̂
(1)
3 = [0.1581, 0.1852, 0.2178], r̂

(1)
4 = [0.1900, 0.2289, 0.2651],

r̂
(1)
5 = [0.1565, 0.1911, 0.2311],

r̂
(2)
1 = [0.1480, 0.1851, 0.2248], r̂

(2)
2 = [0.1434, 0.1706, 0.1992],

r̂
(2)
3 = [0.1561, 0.1792, 0.2057], r̂

(2)
4 = [0.1927, 0.2228, 0.2477],

r̂
(2)
5 = [0.1499, 0.1761, 0.2098],

r̂
(3)
1 = [0.1459, 0.1811, 0.2704], r̂

(3)
2 = [0.1370, 0.1607, 0.1938],

r̂
(3)
3 = [0.1679, 0.1921, 0.2173], r̂

(3)
4 = [0.1883, 0.2138, 0.2395],

r̂
(3)
5 = [0.1678, 0.1922, 0.2215],

Step 3. Utilize the GFOWBHM operator (39) (suppose that its weight vector

is ω = (0.243.0.514.0.243)T determined by using the normal distribution based
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Table 5: Normalized triangular fuzzy number decision matrix R(2)

x1 x2 x3 x4 x5

G1 [0.15, 0.16, 0.19] [0.28, 0.32, 0.36] [0.13, 0.14, 0.15] [0.15, 0.16, 0.17] [0.19, 0.21, 0.25]

G2 [0.17, 0.18, 0.19] [0.21, 0.22, 0.23] [0.21, 0.24, 0.26] [0.20, 0.22, 0.23] [0.13, 0.15, 0.17]

G3 [0.18, 0.24, 0.30] [0.11, 0.15, 0.20] [0.13, 0.16, 0.20] [0.18, 0.22, 0.27] [0.18, 0.24, 0.30]

G4 [0.25, 0.27, 0.29] [0.13, 0.14, 0.15] [0.15, 0.15, 0.16] [0.22, 0.24, 0.27] [0.18, 0.20, 0.21]

G5 [0.11, 0.15, 0.21] [0.14, 0.17, 0.21] [0.22, 0.26, 0.31] [0.22, 0.29, 0.34] [0.11, 0.13, 0.17]

G6 [0.21, 0.21, 0.22] [0.16, 0.17, 0.19] [0.19, 0.19, 0.20] [0.20, 0.21, 0.22] [0.20, 0.21, 0.22]

G7 [0.11, 0.14, 0.17] [0.22, 0.26, 0.30] [0.19, 0.22, 0.27] [0.19, 0.26, 0.30] [0.19, 0.14, 0.17]

G8 [0.15, 0.20, 0.26] [0.15, 0.19, 0.23] [0.13, 0.17, 0.23] [0.18, 0.22, 0.26] [0.18, 0.23, 0.29]

Table 6: Normalized triangular fuzzy number decision matrix R(3)

x1 x2 x3 x4 x5

G1 [0.15, 0.17, 0.18] [0.28, 0.30, 0.35] [0.14, 0.15, 0.17] [0.14, 0.15, 0.16] [0.20, 0.23, 0.25]

G2 [0.16, 0.17, 0.19] [0.20, 0.22, 0.24] [0.22, 0.24, 0.25] [0.18, 0.20, 0.22] [0.16, 0.17, 0.20]

G3 [0.20, 0.23, 0.27] [0.12, 0.16, 0.21] [0.15, 0.19, 0.24] [0.17, 0.22, 0.27] [0.17, 0.20, 0.24]

G4 [0.26, 0.28, 0.31] [0.14, 0.15, 0.16] [0.15, 0.16, 0.17] [0.21, 0.22, 0.25] [0.17, 0.19, 0.20]

G5 [0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.29, 0.34] [0.22, 0.26, 0.31] [0.14, 0.17, 0.21]

G6 [0.20, 0.21, 0.22] [0.17, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.22] [0.20, 0.21, 0.23]

G7 [0.10, 0.14, 0.19] [0.21, 0.25, 0.32] [0.21, 0.24, 0.29] [0.15, 0.20, 0.26] [0.13, 0.16, 0.19]

G8 [0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.18, 0.21] [0.21, 0.23, 0.26] [0.21, 0.23, 0.26]
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method [28], let δ = 0.5 and p = q = r = 3) to aggregate the overall attribute

value r̂
(k)
j (k = 1, 2, 3) corresponding to the decision maker dk (k = 1, 2, 3) and

get the collective overall attribute value r̂j:

r̂1 = [0.1459, 0.1816, 0.2195], r̂2 = [0.1395, 0.1649, 0.1962],

r̂3 = [0.1592, 0.1837, 0.2111], r̂4 = [0.1909, 0.2218, 0.2493],

r̂5 = [0.1552, 0.1830, 0.2191].

Step 4. Compare each r̂j with all r̂i (i = 1, 2, 3, 4, 5) by using (6) (without

loss of generality, set δ = 0.5), and let pij = p(r̂i ≥ r̂j) and then construct a

possibility matrix:

P =



0.5 0.7387 0.4598 0 0.4610

0.2613 0.5 0.1638 0 0.1921

0.5402 0.8365 0.5 0 0.5010

1 1 1 0.5 1

0.5390 0.8079 0.1990 0 0.5

 .

Summing all elements in each line of matrix P , we have

p1 = 2.1595, p2 = 1.1171, p3 = 2.3774, p4 = 4.5, p5 = 2.3459

and then reorder r̂j (j = 1, 2, 3, 4, 5) in descending order in accordance with the

values of pj (j = 1, 2, 3, 4, 5):

r̂4 > r̂3 > r̂5 > r̂1 > r̂2.

Step 5. Rank all the alternatives xj (j = 1, 2, 3, 4, 5) by the ranking of r̂j

(j = 1, 2, 3, 4, 5):

x4 > x3 > x5 > x1 > x2.

and thus the most desirable alternative is x4.

From the above analysis, the results obtained by the proposed approach are

very similar to the ones obtained Xu’s approach [22], but our approach is more

flexible than that of Xu [22] because it can provide the decision makers more

choices as parameters are assigned different values.
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5 Conclusions

In this thesis, we have extended the GWBM operator to the triangular fuzzy en-

vironment and developed the fuzzy harmonic aggregation operators including the

FWBHM and GFWBHM operators. Based on the these operators and Yager’s

OWA operator, we have developed the FOWBHM operator and the GFOWBHM

operator, respectively, and discussed their properties and special cases. It has

been pointed out that if all the input fuzzy data are reduced to the interval or

numerical data, then the GFWBHM operator is reduced to the GUWBHM oper-

ator and GWBHM operator, respectively; the GFOWBHM operator is reduced to

the GUOWBHM operator and GOWBHM operator, respectively. In these situa-

tions, the WHM (resp. OWHM) operator is the special case of the GWBHM (res.

GOWBHM) operator. Based on the GFWBHM and and GFOWBHM operators,

we have developed an approach to multiple attribute group decision making with

triangular fuzzy information and have also applied the proposed approach the

problem of determining what kind of air-conditioning systems should be installed

in the library. Furthermore, the comparison of the proposed approach with other

existing approaches is presented. The merit of the proposed approach is that it

is more flexible than the classical ones because it can provide the decision makers

more choices as parameters are assigned different values. Apparently, the pro-

posed aggregation techniques and decision making method can also extended to

the interval-valued triangular fuzzy environment.
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