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1 Introduction

Let X be a real Banach space with norm || - || and let X* be the dual of X.
Denote by (-,-) the duality product. The normalized duality mapping from X
to X™ is defined by

Jo={a" € X" (z,2") = |lz||* = "]}

for x € X. When {z,} is a sequence in X, we denote the strong convergence of
{z,} to x € X by z, — x and the weak convergence by x, — z.

Recall that a Banach-space X is said to be strictly conuvez [38] if ||(z+y)/2]] < 1
for all x, y € X with ||z|| =jy|| =1 and = # y. It is also said to be uniformly
convezx if ||z, —'ynl| — 0 forrany two sequences {z,}, {y,} in X such that
[znll = llynll =1 and [|(zn +yn)/2]| = 1.

Let S(X) =42 € X : ||z|| = 1} be the unit sphere of X. Then the Banach
space X 1is said to be smooth provided

tyll —
Sl + gl = el
t—0 t

(1.1)

exists for each z, y € S(X)- It-is also said to be uniformly smooth if the limit
in (1.1) is attained uniformly for z,y € S(X). It is well known that if X is
smooth, then the duality mapping J is single-valued and norm-to-weak* contin-
uous. Furthermore, if X is uniformly smooth, then J is norm-to-norm uniformly
continuous on each bounded subset of X . Some properties of the duality map-
ping have been given in [12, 34, 38]. A Banach space X is said to have the
Kadec-Klee property if a sequence {x,} of X satisfying that =, — x € X and
|znll = ||x||, then z, — x. It is known that if X is uniformly convex, then X

has the Kadec-Klee property; see [12, 16, 38] for more details.



Let X be a smooth Banach space and let ¢ : X x X — R be defined by
o(x,y) = ||zl = 2(z, Jy) + yl?, =y X,

The purpose of this paper is systematically to classify the implications con-
cerning to several nonlinear mappings. In section 2, we suggest several examples
of nonlinear mappings which are comparable each other and we finally raise an
open question; see Question 2.20. In section 3, after introducing three projec-
tions on Banach spaces and their characteristics, we prove an equivalent condi-
tion between norm convergenee and ¢-convergence; see Proposition 3.6. Finally,
in section 4, we classify several ¢-nonlinear mappings recently studied by many

authors and give some examples which are comparable each other.

2 Several nonlinear mappings

Let C' be a nonempty closed convex subset of a real Banach space X and let

T :C — C be a mapping.

Definition 2.1. The mapping-7'-is said to be Lipschitzian if
[T =Tyl < Lllz—yll, =yeC,

where L := Ly denotes the Lipschitz constant of T'. Obviously, it is equivalent
to the following property: for each n € N, there exists a constant k, > 0 such
that

[Tz = Ty[| < knlle —yll, 2,yeC. (2.1)

For a Lipschitzian mapping 1T, we say:

o T is uniformly k-Lipschiztain if k, = k for all n € N;



e T is nonexpansive if k, =1 for all n > 1;
o T is asymptotically nonezpansive [13] if lim,, o k, = 1.

The first non-Lipschitzian mapping was introduce by Kirk [27]; we say that

T is a mapping of asymptotically nonexpansive type if

limsup sup([[ 7"z — T"y|| — [ — y[}) < 0 (2:2)

n—oo yeC

for every x € C', and TV is continuous for some N > 1. In 1993, Bruck et al [7]

introduced the stronger definition than (ANT) as follows:

Definition 2.2. ([7]) 7 is said to be asymptotically nonexpansive in the inter-

mediate sense provided T is unifermly continuous and

limsup sup ([|[T"z = T"yl[ =|lz = y[|) < 0. (2:3)

n—oo  I,Ye

Note that if we define

¢ := sup ([[T"z = T"[ = |lz — yl}) V 0, (2.4)

z,yeC

where a V b := max{a, b}, then(2.3) ensures that ¢, — 0 and
[T = Ty|| < |z =yl + cn (2.5)

for all z,y € C and n > 1. Obviously, (2.5) implies (2.3) in case ¢, — 0.

Therefore, we conclude:

Proposition 2.3. T' satisfies (2.3) < (2.5) holds for some sequence {c,} with

c, — 0.

For the purpose of unifying nonlinear mappings mentioned above, Alber et al

[5] introduced the following definition:



Definition 2.4. ([5]) T is said to be total asymptotically nonexpansive if there
exist two nonnegative real sequences {«,} and {3,} with «,, 5, — 0, 7 € T'(R,)

and ng € N such that
[Tz = T"y[| < |lz — yll + anT([lz —yll) + Boy 2y €C, n=ng,  (2.6)

where 7 € T'(R,) if and only if 7 is strictly increasing, continuous on R, and

7(0) =0.

Now it is natural to consider more stronger one than the concept of mappings

which are total asymptotically nonexpansive.

Definition 2.5. T is said to be square total asymptotically nonexpansive if (2.6)

in Definition 2.4 can be replaced by
1772 — Tyl < llz — ylfEat @at(llz = yII*) + 5. (2.7)
for all z,y € C and n > my, where mg €N, @y, 3, — 0 and 7€ I'(R").

Remark 2.6. Note that the property (2.6) with a,, = 0 for-all n > 1 reduces to
(2.5) with B, = ¢,; moreover, if we take 7(¢) =t for-all t > 0 and 5, = 0 for all
n > 1 in (2.6), it is reduced to (2.1) with k, = 1+ a,,.

Now we summarize the connection between the classes of nonlinear mappings

considered above. We use the following notation:



= the class of nonexpansive mappings

)
(L) = the class of Lipschiztian mappings
UC) = the class of uniformly continuous mappings
y g
(UL) = the class of uniformly Lipschiztian mappings
AN) = the class of asymptotically nonexpansive mappings
( ymp y p pping
(TAN) = the class of totally asymptotically nonexpansive mappings
(2TAN) = the class of square totally asymptotically nonexpansive mappings
(ANIS) = the class of asymptotically nonexpansive mappings in the intermediate sense

We say that T"is AN, ANIS and TAN, in abbreviated forms, for T" belonging
to the classes (AN), (ANIS) and (TAN).

Remark 2.7. The following implications holds.
(i) (N) € (AN) C (UL) c (D)C (UQ).

(ii) (ANIS) U (AN)-C (TAN):

(i) Assume § := diam(C') < oco; then

17" =Ty < o=yl + an sup 7(||lz —yl) + B,
T,ye

<z =yl + anr(6) + Bn

= ||x_y||+CN7 $ay€Can217

where ¢, := a,7(0) + f, — 0. Hence we conclude: if C' is bounded and T

is TAN, then T satisfies (2.5); in particular, (AN) C (ANIS) by (i).
(iv) If C is bounded, then (TAN) = (% TAN).

5



(v) Tx = /z is uniformly continuous but not Lipschitzian on [0,00). Also,

Tx = 2z is Lipschitzian but not uniformly k-Lipschitzian.

Here we introduce an example of a Lipschiztian mapping which is AN but not

nonexpansive. The following example is originally due to [13] in ¢? spaces.

Example 2.8. ([23]; see Example3.13). Let B denote the unit ball in the space
X =P, where 1 < p < co. Obuiously, X is uniformly convex and uniformly

smooth. Let T : B — B be defined by
Lrls (O, ZE%, )\11’2, )\2%3, .. )

for all © = (x1,29,23,...) € B, where 0 < X\, < 1 for all n > 1 and
[ A =13 Then:

(a) T is Lipschitzian, i.e., |Tx — Ty|p<2|lz —y||, z,y€C;
(b) T is AN, i.e;, | T" e =yl <211 Nillz —yll, zweC, neN;
(¢) T is not nonéxpanSive.

Proof. Noticing that, for © =(x1; z2,..+) € B,

n n—1 n n+1
T'r = (0,...,O,H)\Z’x%,H)\ixQ,H)\ixg,...).
i=1 i=1 i=2

Thus we have |77z — T™y|| < 2T]'= \illz — || for all n > 2. Obviously, since
21175 \i L 1, T is AN. On the other hand, since | T2 — Ty| = $>1=lz—y
for z = (1,0,0,...) and y = (1/2,0,0,...), T is not nonexpansive. a

1
2n—1

Remark 2.9. Consider either \, :=1 — — or \, := exp (% ) to get a

)7

sequence satisfying that 0 < A, < 1 and [[>2, A\, = 1 Indeed, for the second

R



case, since 0 < exp(—z) < 1 for all > 0, we must find a sequence {w,} such

that

ﬁ)\ Hexp —q,) = exp(— Zan = -
n=1

n=1

This is equivalent to

oo

- 1 1
;O‘"Ilnzzz(zn—1_%>

n=

because

1 1 1
<2k:—1 )_n+1+n+2+”'+n+n

3 lkglwc/n F /

Furthermore, since 1 — z < exp(—z) for all z € (0,1), we observe

ian:oo = ﬁ(l—an):()
n=1 n=1

e\v

dx =1In 2.

S

for all «a,, € (0,1) since

0< H(l — @)L H exp(=@n) = exp(= Z an) =0

Recall that {f,} converges uniformly to f on C' if

1= 711 sup [ fu(2) = £ ()] =0

as n — oo, where f,, f:C(C X)— C. We say that T"z converges uniformly
to p on C' whenever {f, := T"} converges uniformly to a point p € C on C,
that is,

sup [Tz —p|| = 0 as n — oco.
zeC



Proposition 2.10. If T"x converges uniformly to some point p € C' on C, then

T satisfies (2.5).
Proof. Let ¢, :=sup, ¢ [|[T"2 — T"y||. Then ¢, — 0 since

0<¢,= sup [T"z — T"y|| < sup |7z — p|| +sup [l]p — T"y[| — 0
z,yeC zeC yeC

as n — 0o. From the construction of ¢, it readily follows that
T — T y|| < ¢p, z,y€C, n>1,
which immediately implies (2.5). O
Remark 2.11. However, the converse of Proposition 2.10 does not hold in general;
see Example 2.18:
As a direct’ consequence of Proposition2.10, we introduce non-Lipschitzian

mappings which are asymptotically nonexpansive in the intermediate sense.

Example 2.12. ([20]). Let € = [-1,1] and 0 < |k| < 1. For each z € C,
let T: C — C be'defined by

k7 gings A% (Y
T s Y37
0, if = 0.
Then F(T) = {0} and T"x converges uniformly to 0 on C. Since T is clearly
uniformly continuous, it follows from Proposition 2.10 that T is ANIS. However,

T is not Lipschitzian; see Example 4.3 of [20] for the proof.

Example 2.13. ([25]). Let X = R and C = [0,1]. For each x € C, let
T:C — C be defined by




where a € (0,1). Then F(T) = {a} and T"x = « for all x € C, n > 2; hence
T is ANIS as in Example 2.12. However, T is not Lipschitzian; see Example 3.9
of [25] for the proof.

Example 2.14. ([17]). Let X = R and C = [0,1]. For each z € C, let
T:C — C be defined by

(V2=1)/5—a+ J5 f0<z<1/2
vz, if1/2 <z <1.

Then F(T) = {1} and T"ax converges uniformly to-1 on C; hence T is ANIS

Tx

as in Example 2.12. However, T is not Lipschitzian; see Example 1.2 of [17] for

more details.

A mapping satisfying the property (2.3) do not always guarantee its non-

Lipschitz. The following two examples are uniformly Lipschitzian ANIS map-

pings.

Example 2.15. ([24]). » Let X = R and C = [0,1]. For each x € C, let
T:C — C be defined by

kx, if 0 <z <1/2;
Te =3 F=(k—1), if1/2<z<k;
0, ifk <z <1,

where 1/2 < k < 1. Then F(T) = {0} and T"z converges uniformly to 0 on C'.
Obuviously, T is uniformly continuous. By Proposition 2.10, T is ANIS. Further-
more, T is uniformly Lipschitzian. Indeed, if 0 < z < 1/2 and 1/2 <y < k,



then T"x = k"x and T"y = 2kn1(k5 —x). Therefore, we see that
Y S R
Wo—g g 2k—1(k_y)‘

'f”(x—%) : zzfil[('f—b ~ (k=]

i3 <

|T"x — T"y|

INA
o
3

|z —yl.

2k:—1 2k —1

The remaining cases are obvious. Hence T is uniformly -Lipschitzian.

T
Example 2.16. ([17]; see Example 1.3). For any k > 0, let {a,} be a sequence
of positive numbers such that a,, | 0 and []°2,(1 +a) = k. Set

b —1 >1
n — B n (e .
2n+1(1 1 an)

Let T : C'— C' be defined by

(14+a1)z+1/2, ifzec|0,b];
1/2+1/4, if x € [by,1/2]

Tx

and

'MI

I
_

(1+a) (e =S B L Fe ]
n+1

n
> 3 R DEEI
1= 1= =1

EHERL
] > 9

and T1 =1. Then F(T) = {1} and T"x converges uniformly to 1 on C. Since

Ty =

3
|

w|,_.

T is continuous on C', T is also uniformly continuous on C'. By Proposition 2.10,

T is ANIS. Furthermore, T is uniformly k-Lipschitzian.

Remark 2.17. (i) Since 14+ < ¢® for all z € R, we easily find a sequence {a,} of
positive numbers such that a, } 0 and [[°_,(1+a,) = k(> 1). Indeed, since the

10



sequence {s,}, s, := [[;_;(1+ ay), of its nth partial sums is strictly increasing

and
H(]- + an> S H ea‘n — eZ?LO:l Qan — elnk — ]C’
n=1 n=1

it suffices to find a (convergent) geometric series replaced with a,, :==r", 0 <r <1

such that

ian ir” 1ir:1nk;

S
—

(ii) Note that if we take a, =0 in Example2.16, then T is clearly nonexpan-

sive.

As a slight modification of Example 2.16, we shall give an example of a uni-
formly Lipschitzian ANIS mapping defined a (unbounded) closed convex subset

C on which is not converges uniformly.

Example 2.18. Consider C := [0,00) C R. Let T be defined on [0,1] as in
Ezample 2.16 and define Tax =-x_on [1,00). Since T"x converges uniformly to
1 on [0,1], setting ¢, := sup{{|T"c —T™y|| : z,y-€0,1]} — 0, then T satisfies
(2.5), i.e.,

[Tz =T Y| < [z =yl +cn, zy€C, n>1
In view of Example 2.16, T is uniformly k-Lipschitzian. Therefore, T : C — C
is ANIS.

Now we introduce an example of a mapping which is k-lipschitzian involution

but not ANT.

11



Example 2.19. ([22]). Let X :=R, C := [—4,1], where 1 < k < 2. Define a
mapping T : C'— C by

—kx, if —
%x, if O

IN

|/\ e

5]

IN B

= A
\.CD

Ty :=

Then:
(a) T?x ==z for all x € C (hence, T*" ' =T for alln>1);
(b) T is uniformly k-lipschitzian;
(¢) T does not satisfy(2.2); hence it is not ANT.

Indeed, it suffice to show: T is not ANT. To this end, for each x € C,

limsup sup{|T"z' = T"y| — | — y|}
n—oo  yelC
> sup{|Ty| = [y| py€ [=1/k, 1]}
L supf(h = Dyl Sl g < 0)
1 1

= (%-1)-=148~>0
(k—1) 7 ;>0

Finally, we raise a question-as-follows.

Question 2.20. Find either uniformly Lipschitzian or non-Lipschitzian map-

pings which are TAN but not ANIS.

3 Projections on Banach spaces

Let X be areal normed space with its dual X*. In 1994, Alber [2, 3, 4] introduced
the Lyapunov functional V : X x X* — R defined by

V(z,z*) = ||z||* = 2(x,2*) + |2*]?, 2 € X, 2" € X*. (3.1)

12



Here we list below some properties of the Lyapunov functional V' from [4]:
(i) V(z,x*) is continuous;
(i) V(z,x*) is convex relative to  when z* is fixed and relative to 2* when
x is fixed;
(i) (el = llz*[)?* < V@, 2*) < (=] + [l2*[)?;
(iv) V(x,z*) =0 if and only if z* € J(z).
In fact, if V(z,2*) = 0, by (iii) we see ||z|| = ||z*||. Also, (x,z*) = ||z||* = ||=*|*.

From the definition of J, it follows that * € Jx. The converse is obvious.

Let X be a smooth 'Banach space. Since the normalized duality mapping J
from X to X* is single-valued, the Lyapunov functional ¢ : X x X — R is well
defined as

o(z,y) =V (z, ly) = |zll* -2z + lyl>, zye X (3.2)

Also, we shall list some basic properties pertaining to the Lyapunov functional

o:

[zl +1lyl)?, 2y e X.

Proposition 3.1.  (a) (|lz|| =yll)* </é(z,y) < (
(b) o(z,y) = d(z,2) + ¢(2,9) + 2(x — 2, J2 = Jy), =z,y,z€ X.
(¢) d(x,y) = (x, Jo — Jy) + (y — =, Jy) < ||z|| [Tz = Jyl| + [ly — 2| ly|-

(d) If X is strictly convex, then ¢(x,y) = 0 if and only if x = y for any
z,y € X see [30].

(e) &(,y) is weakly lower semicontinuous on X; see Lemma 2.3.2 in [28].

Moreover, it is continuous and convex on X while ¢(x,-) is only continuous.

13



(f) &(-,y) is strictly convex if and only if X is strictly conver.

(g) If X is uniformly convezx and smooth and {x,},{z,} are two sequences of X
such that either {x,} or{z,} is bounded, then ¢(z,,z,) = 0 < ||x,—2z,| = 0;

see Proposition 2.9 of [19] and Propposition 2.9 of [23].
(h) If X s reflexive, smooth, strictly convex Banach space, then X has the

Kadec-Klee property if and only if X satisfies the following property (KT):

(KT) Given a sequence{x;}-in a X € (S) and x(#0) € X,
d(%n,x) = 04f and only if x,= z;
see Proposition 2.10 of [23]:

Theorem 3.2. ([39]). Let r > 0 and let X be a Banach space. Then X is

uniformly convez if and only if there exists g € I'[0,00) such that
o+ ylI* = ol + 2¢y, J@)) + g([gll)s™ 2.y € By, j(a) € Ja, (3.3)

where B, := {x € X ||z|}.€ r} and g € T'[0,00) S ¢.:]0,00) — [0,00) is a

continuous, strictly increasing, and convex function-on [0,00) with g(0) = 0.

Using Theorem 3.2, Kamimura and Takahashi [19] proved the following result

to deduce strong convergence of a proximal type algorithm in Banach spaces.

Proposition 3.3. ([19]) Let X be a uniformly convex and smooth Banach space
and let {x,},{z,} be two sequences of X . If ¢(xp,2,) — 0 and either {z,} or

{z,} is bounded, then ||z, — z,|| = 0.

Remark 3.4. Note that the converse of Proposition 3.3 remains true; see Propo-

sition 2.7 of [23].

14



Proposition 3.5. ([23]; see Proposition2.9). Let X be a uniformly convex and
smooth Banach space and let {x,},{z,} be two sequences of X . If either {x,}

or {z,} is bounded, then ¢(x,,z,) — 0 if and only if ||z, — z,]| — 0.
More generally, we can prove

Proposition 3.6. Let X be a uniformly convexr and smooth Banach space and
let {x,},{z.} be two sequences of X . If either {x,} or {z,} is bounded, then

&(Tn, 2m) = 0 as n,m — oo if and only if ||z, — 2| — 0 as n,m — co.

Proof. (=) Since ¢(x,,2m) — 0 as n,m — oo, {é(xy,,zn)} is bounded. If
one of {z,} and {z;} is bounded, so is the other by (a) of Proposition3.1. By
Theorem 3.2, there exists g € ['«(R,) suchthat

9llyn + zl) | < o = (0 = 20) IFE = Wenll® — 2(yn =2, J2m)

= o 1* = l2mllF =20, T 2m) + 2] 2m1”

= O(UMgm):

It follows from ¢(z,,, zm) =0 asn, m — oo that g(|[xp=2]) — 0 as n,m — .
Then the properties of ¢ yield that ||z, — z,|| = 0-as n,m — co.

(<) Since x, — 2z, — 0 as n,m — oo, it is not hard to see that if either
{z,} or {z,} is bounded, then the other is also bounded. Now let = € X be

fixed. Then noticing that

|60, 2) = G(zm, )| = [llzall* = l2m ] + 2(2m — 20, J2) |

izl = lzm [zl + 2mll) + 2l2m = za] [l2]]

A

< llen = zmll(lznll + [lzmll + 2{jz])) — 0

15



as n,m — oo and using the identity equation (b) of Proposition 3.1, we have

0< (b(xna Zm) = ¢(xn>$) - (b(Zmax) + 2<xn — Zm, JT — sz>

< | o(an, @) = (zm, ) [ + 2[|zn — zul| (2] + [[2m]]) = 0
as n,m — oo. The proof is complete. O

Remark 3.7. In particular, taking z, = x,, for all n € N, it follows from Propo-
sition 3.6 that ¢(z,,2,) — 0 as n,m — oo if and only if {z,} is a Cauchy

sequence in X ; hence it converges.

Let C' be a nonempty subset of a real Banach space X. We say that C is
said to be a Chebyshev set if to each x € X there exists a unique xy € C' such
that

x & || = d(z,C) =itz — y||.
v o]} = (e, 0) = o ]
In this case, we may define the nearest point projection (or called metric projec-

tion) Po : X — C by assigning xy to z.

Proposition 3.8. ([15]; see Proposition 3.4; pp.13).
Let C be a convex Chebyshev-set in X and.x€ X. Then, vo = Pex if and
only if there exists j € J(x — o) such that (y —axq,j) <0 for all y € C.

Let X be a reflexive and strictly convex Banach space and let C' be a
nonempty closed convex subset of X. For every (fixed) x € X, consider
fly) = |Jlx —y||* for y € X. Then f : X — [0,00) is a proper strictly con-
vex and continuous function and f(y) — oo as ||ly|| = oo. By Theorem 1.2 of

[6], there exists a unique zy € C' such that

f(xo) = ;ggf (%)
& |z — x| Zgggﬂw—yll =d(z,0). (3.4)

16



Therefore, the closed convex subset C' of a reflexive and strictly convex Banach
space X is a Chebyshev set and hence Py : X — C' is a nearest point projec-
tion (or metric projection) on X. Combined with Proposition 3.8, we have the

following

Proposition 3.9. Let C' be a nonempty closed convexr subset of a reflexive,

strictly conver and smooth Banach space X . Then
ro=Pex & (y—uxo,J(r—120)) <0, yeC. (3.5)

The following definition is-originally due to Definition 6.2 in [4] based on uni-

formly convex and uniformly smooth Banach spaces.

Definition 3.10. (][29]; see Definition 1.1)Let X be a Banach space with its dual
X*. Let C be a nonempty closed convex subset of X. An operator 7, : X* — 2¢
is called a generalized projection on X* if it associates with an arbitrary fixed

point x* € X* the set of all minimal points of V(z,2*) over C', namely,
r €q,x* & Viz,@* =1nf V(vz").
veC
m,x* C C' is then called a generalized projection of the point z*.

We list below some properties of the generalized projection m, on X* from

[29]:

Proposition 3.11. (a) If X is reflexive, then w x* (# 0) is bounded, closed,

and convex for any x* € X*.
(b) For each x € C and j, € J(x), we have x € Tcj, .
(¢) If X is smooth, then, for given z* € X* and x € C,
renxt & (x—va"—Jr)>0, veCl.
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(d) If X is smooth, then for given x* € X* and x € mw,x*, the following
inequality holds:

Vv, Jr) < V(v,2") = V(z,2"), wveC.

(e) The operator m, : X* — C is single valued if and only if X is strictly

conver.

(f) If X is reflexive, smooth, strictly convez, and has the Kadec-Klee property,

then w, : X* — C is continuous.

Recall that if X is a smooth Banach space, then the.Lyapunov functional

¢: X x X — R is well defined by
o(2yy) =V(z, Jy), @y €X.

Proposition 3.12. ([19]: see Proposition 3).
Let X be a reflexive, smooth, and strictly convex Banach space, let C' be a
nonempty closed convex subset of X, and let x € X . Then there exists a unique

element xo € C' such that
(w0, ) = Inf ¢(2, ).

Definition 3.13. ([2, 4, 19]). Then a mapping II, : X — C defined by

Moz =z for each x € X is called the generalized projection; see [2, 4, 19].

Remark 3.14. In Hilbert spaces, notice that the generalized projection is clearly

coincident with the metric projection.

Proposition 3.15. ([2, 4, 19]) Let C be a nonempty closed convezr subset of a

real Banach space X and let v € X .
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(a) If X is smooth, then

xg=1ex & (y—xo,Jr—Jrg) <0, yel. (3.6)

(b) If X 1is reflexive, smooth, and strictly convex, then

¢y, lex) + o(llow, x) < d(y, x), yel. (3.7)

4 Nonlinear mappings relative to ¢

Let X be a real Banach space and let C' be a nonempty closed convex subset of

X.

Definition 4.1. A point p.in C is said to be an asymptotic fixed point of
T [35] if C' contains a sequence {z,} which converges weakly to p such that

lim,, oo (2, — Tx,) ='0. The set of asymptotic fixed points of 7' will be denoted

A

by F(T).

Definition 4.2. A mapping f : C — X is said to be demiclosed on C' if the
graph of f,
G(f) ={lzy)rely= f(x)}
is closed in C'x X, where C' is equipped with the weak topology and X the strong
topology. In other words, for any sequence {z,} in C', the following implication
holds:
T, =z, flr,) 2y = z€C f(r)=y.

See the page 108 of [14] for more related results.

Remark 4.3. Obviously, F(T) c F(T). Furthermore, note that if I — T is
demiclosed on C', then F(T) C F(T).
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Definition 4.4. Let X be smooth. A mapping T : C — C is said to be
relatively totally asymptotically nonexpansive (RTAN) if Fp # 0, Fp = Fy and
for each n > 1, there exist two nonnegative real sequences {a,} and {3,} with

Qn, B — 0, T € T'(Ry) and ng € N such that

¢(p, T"x) < ¢(p,x) + an7(d(p, ) + P, z€C, peFr,nzmny,  (41)

where 7 € I'(R;) if and only if 7 is strictly increasing, continuous on R, and
7(0) = 0. In particular, we say that T is relatively asymptotically nonexpansive in
the intermediate sense (RANIS) if o, = 0; relatively-asymptotically nonexpansive
(RAN) [1, 31, 26] if 7(t) =t for all ¢ > 0 and S, = 0; relatively nonexpansive
(RN) [8, 9, 10, 30, 23] if a,, B, =0 in (4.3), in turns.

As an analogue, we accept the following dual concepts:

Definition 4.5. Let X be smooth. A mapping T : C' — C is said to be
generalized total asymptotically nonexpansive (GTAN) if Fr # (), Fr = Fr and
there exist two nonnegative real sequences {«,} and. {5,} with «a,, 5, — 0,

7 € I'(Ry) and ny € N.such that
¢<Tnl’, q) S Qﬁ(l’, Q) + Q{nT(gb(l', Q)) + an YIS Ca qc FTa n Z ng. (42)

In particular, we say that T is generalized asymptotically nonexpansive in the
intermediate sense (GANIS) if o, = 0; generalized asymptotically nonexpansive
(GAN) if 7(¢t) =t for all t > 0 and f,, = 0; generalized nonexpansive (GN) [18]
if a,, B, =0 in (4.2), in turns.

Removing the condition Fpr = FT in the above definitions, we can define

quasi- ¢-nonlinear mappings.
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Definition 4.6. Let X be smooth. A mapping T : C — C is said to be
totally quasi-¢-asymptotically nonexpansive (TQ-¢-AN) [11, 36] if Fr # () and
there exist two nonnegative real sequences {«,} and {f,} with «,,5, — 0,

T € I'(Ry) and ng € N such that

o(p, T"x) < ¢(p,z) + anm(P(p,x)) + 5o, x€C, pE Fr, n>nyg. (4.3)

In particular, we say that T is quasi-¢-asymptotically nonexpansive in the in-
termediate sense (Q-¢-ANIS) if «,, = 0; quasi-¢-asymptotically nonexpansive
(Q-¢-AN) [32, 40] if 7(t) =+t for all t > 0 and B;-= 0; quasi-p-nonexpansive
(Q-¢-N) [32, 40] if ay, 5, =0 in (4.3), in turns.

We first introduce examplesiof quasi- g-nonexpansive mapping.

Example 4.7. From (3.7) note that if X € (R) N (S) N (SC), then
¢y, lom) < ¢y, z), w€ X, yeC, (4.4)

that is, o : X —'C is quasi-¢ nonexpansive because.of Fr,=C # 0.

Example 4.8. ([30, 32]). Let X be a Banach space and let X € (R)N(S)N(SC).
Let A be a mazimal monotone operator of X into X* and J, = (J +1rA)~J be
the resolvent for A with v >0 and F(J,) = A~'0. Then

(a) J, = (J+71A)" T : X — D(A) is quasi-¢-nonexpansive; see [32].

(b) Furthermore, if X € (US), then F(J,) = A~'0 = F(J,) and J, is relatively

nonezpansive; see [30].

We next introduce an example of a mapping which is quasi- -nonexpansive

but not relatively nonexpansive, which is originally due to [37].
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Example 4.9. ([37]) Let X be any smooth Banach space, and xo # 0 be any
element of X . Define a mapping T : E — E as

T (% + 2n1+1>-1'0a if v = (1/2 + 1/271)1,0;,
xr =
—z, ifx £ (1/241/2M)x9, n>1.

Then F(T) = {0} and T is quasi-¢-nonexpansive but not relatively nonexpan-

sive.

Also, we introduce an example of a uniformly Lipschitzian mapping which is

relatively asymptotically nenexpansive but not relatively nonexpansive.

Example 4.10. (|26]; see Example 3.7). Let X =7, where 1 < p < 00, and
C ={x = (r1,29,...) € X;z5 > 0}. Then C is a closed convex subset of X .
Note that C' s not bounded. Obuviously, X s uniformly conver and uniformly
smooth. Let {\,} and {\,} be sequences of real numbers satisfying the following
properties:

(i) 0 <A <1l, X, >1, \, Ttand X\, |1,

(i) A1 A =1 and Xl iy < 1 for all n-and je.

(for examples, consider either A, = 1 — L de= 1+

Ay = e ) Then we define T : C — C' by

1 — ,—1/n
T 0T A =€ ,

Txr = (O, 5\1| sin ZL’l|, )\21’2, 5\2[E37 /\35(]4, 5\31‘57 e )

forall x = (x1,x9,23,...) € C. Obviously, F(T) = {0}, where 0 = (0,0,...) € C,
and T s both AN and RAN. However, T 1is not relatively nonexpansive.
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