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1 Introduction

Let X be a real Banach space with norm ‖ · ‖ and let X∗ be the dual of X .

Denote by 〈·, ·〉 the duality product. The normalized duality mapping from X

to X∗ is defined by

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for x ∈ X . When {xn} is a sequence in X , we denote the strong convergence of

{xn} to x ∈ X by xn → x and the weak convergence by xn ⇀ x .

Recall that a Banach space X is said to be strictly convex [38] if ‖(x+y)/2‖ < 1

for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y . It is also said to be uniformly

convex if ‖xn − yn‖ → 0 for any two sequences {xn}, {yn} in X such that

‖xn‖ = ‖yn‖ = 1 and ‖(xn + yn)/2‖ → 1.

Let S(X) = {x ∈ X : ‖x‖ = 1} be the unit sphere of X . Then the Banach

space X is said to be smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

(1.1)

exists for each x, y ∈ S(X). It is also said to be uniformly smooth if the limit

in (1.1) is attained uniformly for x, y ∈ S(X). It is well known that if X is

smooth, then the duality mapping J is single-valued and norm-to-weak∗ contin-

uous. Furthermore, if X is uniformly smooth, then J is norm-to-norm uniformly

continuous on each bounded subset of X . Some properties of the duality map-

ping have been given in [12, 34, 38]. A Banach space X is said to have the

Kadec-Klee property if a sequence {xn} of X satisfying that xn ⇀ x ∈ X and

‖xn‖ → ‖x‖ , then xn → x . It is known that if X is uniformly convex, then X

has the Kadec-Klee property; see [12, 16, 38] for more details.
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Let X be a smooth Banach space and let φ : X ×X → R be defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, x, y ∈ X.

The purpose of this paper is systematically to classify the implications con-

cerning to several nonlinear mappings. In section 2, we suggest several examples

of nonlinear mappings which are comparable each other and we finally raise an

open question; see Question 2.20. In section 3, after introducing three projec-

tions on Banach spaces and their characteristics, we prove an equivalent condi-

tion between norm convergence and φ-convergence; see Proposition 3.6. Finally,

in section 4, we classify several φ-nonlinear mappings recently studied by many

authors and give some examples which are comparable each other.

2 Several nonlinear mappings

Let C be a nonempty closed convex subset of a real Banach space X and let

T : C → C be a mapping.

Definition 2.1. The mapping T is said to be Lipschitzian if

‖Tx− Ty‖ ≤ L‖x− y‖, x, y ∈ C,

where L := LT denotes the Lipschitz constant of T . Obviously, it is equivalent

to the following property: for each n ∈ N , there exists a constant kn > 0 such

that

‖T nx− T ny‖ ≤ kn‖x− y‖, x, y ∈ C. (2.1)

For a Lipschitzian mapping T , we say:

• T is uniformly k -Lipschiztain if kn = k for all n ∈ N ;

2



• T is nonexpansive if kn = 1 for all n ≥ 1;

• T is asymptotically nonexpansive [13] if limn→∞ kn = 1.

The first non-Lipschitzian mapping was introduce by Kirk [27]; we say that

T is a mapping of asymptotically nonexpansive type if

lim sup
n→∞

sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (2.2)

for every x ∈ C , and TN is continuous for some N ≥ 1. In 1993, Bruck et al [7]

introduced the stronger definition than (ANT) as follows:

Definition 2.2. ([7]) T is said to be asymptotically nonexpansive in the inter-

mediate sense provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0. (2.3)

Note that if we define

cn := sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ∨ 0, (2.4)

where a ∨ b := max{a, b} , then (2.3) ensures that cn → 0 and

‖T nx− T ny‖ ≤ ‖x− y‖+ cn (2.5)

for all x, y ∈ C and n ≥ 1. Obviously, (2.5) implies (2.3) in case cn → 0.

Therefore, we conclude:

Proposition 2.3. T satisfies (2.3) ⇔ (2.5) holds for some sequence {cn} with

cn → 0.

For the purpose of unifying nonlinear mappings mentioned above, Alber et al

[5] introduced the following definition:
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Definition 2.4. ([5]) T is said to be total asymptotically nonexpansive if there

exist two nonnegative real sequences {αn} and {βn} with αn, βn → 0, τ ∈ Γ(R+)

and n0 ∈ N such that

‖T nx− T ny‖ ≤ ‖x− y‖+ αnτ(‖x− y‖) + βn, x, y ∈ C, n ≥ n0, (2.6)

where τ ∈ Γ(R+) if and only if τ is strictly increasing, continuous on R+ and

τ(0) = 0.

Now it is natural to consider more stronger one than the concept of mappings

which are total asymptotically nonexpansive.

Definition 2.5. T is said to be square total asymptotically nonexpansive if (2.6)

in Definition 2.4 can be replaced by

‖T nx− T ny‖2 ≤ ‖x− y‖2 + α̃nτ̃(‖x− y‖2) + β̃n, (2.7)

for all x, y ∈ C and n ≥ m0 , where m0 ∈ N , α̃n, β̃n → 0 and τ̃ ∈ Γ(R+).

Remark 2.6. Note that the property (2.6) with αn = 0 for all n ≥ 1 reduces to

(2.5) with βn = cn ; moreover, if we take τ(t) = t for all t ≥ 0 and βn = 0 for all

n ≥ 1 in (2.6), it is reduced to (2.1) with kn = 1 + αn .

Now we summarize the connection between the classes of nonlinear mappings

considered above. We use the following notation:
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(N) = the class of nonexpansive mappings

(L) = the class of Lipschiztian mappings

(UC) = the class of uniformly continuous mappings

(UL) = the class of uniformly Lipschiztian mappings

(AN) = the class of asymptotically nonexpansive mappings

(TAN) = the class of totally asymptotically nonexpansive mappings

(2 TAN) = the class of square totally asymptotically nonexpansive mappings

(ANIS) = the class of asymptotically nonexpansive mappings in the intermediate sense

We say that T is AN, ANIS and TAN, in abbreviated forms, for T belonging

to the classes (AN), (ANIS) and (TAN).

Remark 2.7. The following implications holds.

(i) (N) ⊂ (AN) ⊂ (UL) ⊂ (L) ⊂ (UC).

(ii) (ANIS) ∪ (AN) ⊂ (TAN).

(iii) Assume δ := diam(C) <∞ ; then

‖T nx− T ny‖ ≤ ‖x− y‖+ αn sup
x,y∈C

τ(‖x− y‖) + βn

≤ ‖x− y‖+ αnτ(δ) + βn

= ‖x− y‖+ cn, x, y ∈ C, n ≥ 1,

where cn := αnτ(δ) + βn → 0. Hence we conclude: if C is bounded and T

is TAN, then T satisfies (2.5); in particular, (AN) ⊂ (ANIS) by (i).

(iv) If C is bounded, then (TAN) = (2 TAN).
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(v) Tx =
√
x is uniformly continuous but not Lipschitzian on [0,∞). Also,

Tx = 2x is Lipschitzian but not uniformly k -Lipschitzian.

Here we introduce an example of a Lipschiztian mapping which is AN but not

nonexpansive. The following example is originally due to [13] in `2 spaces.

Example 2.8. ([23]; see Example 3.13). Let B denote the unit ball in the space

X = `p , where 1 < p < ∞. Obviously, X is uniformly convex and uniformly

smooth. Let T : B → B be defined by

Tx = (0, x2
1, λ1x2, λ2x3, . . .)

for all x = (x1, x2, x3, . . .) ∈ B , where 0 < λn < 1 for all n ≥ 1 and∏∞
n=1 λn = 1

2
. Then:

(a) T is Lipschitzian, i.e., ‖Tx− Ty‖ ≤ 2‖x− y‖, x, y ∈ C ;

(b) T is AN, i.e., ‖T n+1x− T n+1y‖ ≤ 2
∏n−1

i=1 λi‖x− y‖, x, y ∈ C, n ∈ N;

(c) T is not nonexpansive.

Proof. Noticing that, for x = (x1, x2, . . .) ∈ B ,

T nx =
( n︷ ︸︸ ︷

0, . . . , 0,
n−1∏
i=1

λi x
2
1,

n∏
i=1

λi x2,
n+1∏
i=2

λi x3, . . .
)
.

Thus we have ‖T nx − T ny‖ ≤ 2
∏n−1

i=1 λi‖x − y‖ for all n ≥ 2. Obviously, since

2
∏n−1

i=1 λi ↓ 1, T is AN. On the other hand, since ‖Tx− Ty‖ = 3
4
> 1

2
= ‖x− y‖

for x = (1, 0, 0, . . .) and y = (1/2, 0, 0, . . .), T is not nonexpansive.

Remark 2.9. Consider either λn := 1− 1
(n+1)2

or λn := exp
(

1
2n
− 1

2n−1

)
to get a

sequence satisfying that 0 < λn < 1 and
∏∞

n=1 λn = 1
2
. Indeed, for the second
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case, since 0 < exp(−x) < 1 for all x > 0, we must find a sequence {αn} such

that
∞∏
n=1

λn =
∞∏
n=1

exp(−αn) = exp(−
∞∑
n=1

αn) =
1

2
.

This is equivalent to

∞∑
n=1

αn = ln 2 =
∞∑
n=1

( 1

2n− 1
− 1

2n

)
because

sn :=
n∑
k=1

( 1

2k − 1
− 1

2k

)
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

=
1

n

n∑
k=1

1

1 + k/n
→
∫ 1

0

1

1 + x
dx = ln 2.

Furthermore, since 1− x ≤ exp(−x) for all x ∈ (0, 1), we observe

∞∑
n=1

αn =∞ ⇒
∞∏
n=1

(1− αn) = 0

for all αn ∈ (0, 1) since

0 ≤
∞∏
n=1

(1− αn) ≤
∞∏
n=1

exp(−αn) = exp(−
∞∑
n=1

αn) = 0.

Recall that {fn} converges uniformly to f on C if

‖fn − f‖ := sup
x∈C
‖fn(x)− f(x)‖ → 0

as n → ∞ , where fn, f : C (⊂ X) → C . We say that T nx converges uniformly

to p on C whenever {fn := T n} converges uniformly to a point p ∈ C on C ,

that is,

sup
x∈C
‖T nx− p‖ → 0 as n→∞ .
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Proposition 2.10. If T nx converges uniformly to some point p ∈ C on C , then

T satisfies (2.5).

Proof. Let cn := supx,y∈C ‖T nx− T ny‖ . Then cn → 0 since

0 ≤ cn = sup
x,y∈C

‖T nx− T ny‖ ≤ sup
x∈C
‖T nx− p‖+ sup

y∈C
‖p− T ny‖ → 0

as n→∞ . From the construction of cn it readily follows that

‖T nx− T ny‖ ≤ cn, x, y ∈ C, n ≥ 1,

which immediately implies (2.5).

Remark 2.11. However, the converse of Proposition 2.10 does not hold in general;

see Example 2.18.

As a direct consequence of Proposition 2.10, we introduce non-Lipschitzian

mappings which are asymptotically nonexpansive in the intermediate sense.

Example 2.12. ([20]). Let C :=
[
− 1
π
, 1
π

]
and 0 < |k| < 1. For each x ∈ C ,

let T : C → C be defined by

Tx :=

 kx sin 1
x
, if x 6= 0;

0, if x = 0.

Then F (T ) = {0} and T nx converges uniformly to 0 on C . Since T is clearly

uniformly continuous, it follows from Proposition 2.10 that T is ANIS. However,

T is not Lipschitzian; see Example 4.3 of [20] for the proof.

Example 2.13. ([25]). Let X = R and C = [0, 1]. For each x ∈ C , let

T : C → C be defined by

Tx =

 α, x ∈ [0, α];

α√
1−α

√
1− x, x ∈ [α, 1],
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where α ∈ (0, 1). Then F (T ) = {α} and T nx = α for all x ∈ C, n ≥ 2; hence

T is ANIS as in Example 2.12. However, T is not Lipschitzian; see Example 3.9

of [25] for the proof.

Example 2.14. ([17]). Let X = R and C = [0, 1]. For each x ∈ C , let

T : C → C be defined by

Tx =

 (
√

2− 1)
√

1
2
− x+ 1√

2
, if 0 ≤ x ≤ 1/2;

√
x, if 1/2 ≤ x ≤ 1.

Then F (T ) = {1} and T nx converges uniformly to 1 on C ; hence T is ANIS

as in Example 2.12. However, T is not Lipschitzian; see Example 1.2 of [17] for

more details.

A mapping satisfying the property (2.3) do not always guarantee its non-

Lipschitz. The following two examples are uniformly Lipschitzian ANIS map-

pings.

Example 2.15. ([24]). Let X = R and C = [0, 1]. For each x ∈ C , let

T : C → C be defined by

Tx =


kx, if 0 ≤ x ≤ 1/2;

k
2k−1

(k − x), if 1/2 ≤ x ≤ k;

0, if k ≤ x ≤ 1,

where 1/2 < k < 1. Then F (T ) = {0} and T nx converges uniformly to 0 on C .

Obviously, T is uniformly continuous. By Proposition 2.10, T is ANIS. Further-

more, T is uniformly Lipschitzian. Indeed, if 0 ≤ x ≤ 1/2 and 1/2 ≤ y ≤ k ,
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then T nx = knx and T ny = kn

2k−1
(k − x). Therefore, we see that

|T nx− T ny| =
∣∣∣knx− kn

2
+
kn

2
− kn

2k − 1
(k − y)

∣∣∣
=

∣∣∣kn(x− 1

2

)
+

kn

2k − 1

[(
k − 1

2

)
− (k − y)

]∣∣∣
≤ kn

∣∣∣x− 1

2

∣∣∣+
kn

2k − 1

∣∣∣y − 1

2

∣∣∣ ≤ k

2k − 1
|x− y|.

The remaining cases are obvious. Hence T is uniformly k
2k−1

-Lipschitzian.

Example 2.16. ([17]; see Example 1.3). For any k > 0, let {an} be a sequence

of positive numbers such that an ↓ 0 and
∏∞

n=1(1 + an) = k . Set

bn :=
1

2n+1(1 + an)
, n ≥ 1.

Let T : C → C be defined by

Tx =

 (1 + a1)x+ 1/2, if x ∈ [0, b1];

1/2 + 1/4, if x ∈ [b1, 1/2]

and

Tx =


(1 + an)

(
x−

n−1∑
i=1

1
2i

)
+

n∑
i=1

1
2i
, if x ∈

[ n−1∑
i=1

1
2i
,
n−1∑
i=1

1
2i

+ bn

]
;

n+1∑
i=1

1
2i
, if x ∈

[ n−1∑
i=1

1
2i

+ bn,
n∑
i=1

1
2i

]
, n ≥ 2

and T1 = 1. Then F (T ) = {1} and T nx converges uniformly to 1 on C . Since

T is continuous on C , T is also uniformly continuous on C . By Proposition 2.10,

T is ANIS. Furthermore, T is uniformly k -Lipschitzian.

Remark 2.17. (i) Since 1+x ≤ ex for all x ∈ R , we easily find a sequence {an} of

positive numbers such that an ↓ 0 and
∏∞

n=1(1+an) = k (> 1). Indeed, since the
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sequence {sn} , sn :=
∏n

k=1(1 + ak), of its nth partial sums is strictly increasing

and
∞∏
n=1

(1 + an) ≤
∞∏
n=1

ean = e
∑∞

n=1 an = eln k = k,

it suffices to find a (convergent) geometric series replaced with an := rn, 0 ≤ r < 1

such that

∞∑
n=1

an =
∞∑
n=1

rn =
r

1− r
= ln k

⇔ r =
ln k

1 + ln k
.

(ii) Note that if we take an ≡ 0 in Example 2.16, then T is clearly nonexpan-

sive.

As a slight modification of Example 2.16, we shall give an example of a uni-

formly Lipschitzian ANIS mapping defined a (unbounded) closed convex subset

C on which is not converges uniformly.

Example 2.18. Consider C := [0,∞) ⊂ R. Let T be defined on [0, 1] as in

Example 2.16 and define Tx = x on [1,∞). Since T nx converges uniformly to

1 on [0, 1], setting cn := sup{‖T nx − T ny‖ : x, y ∈ [0, 1]} → 0, then T satisfies

(2.5), i.e.,

‖T nx− T ny‖ ≤ ‖x− y‖+ cn, x, y ∈ C, n ≥ 1.

In view of Example 2.16, T is uniformly k -Lipschitzian. Therefore, T : C → C

is ANIS.

Now we introduce an example of a mapping which is k -lipschitzian involution

but not ANT.
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Example 2.19. ([22]). Let X := R, C := [− 1
k
, 1], where 1 < k < 2. Define a

mapping T : C → C by

Tx :=

 −kx, if − 1
k
≤ x ≤ 0;

− 1
k
x, if 0 ≤ x ≤ 1.

Then:

(a) T 2x = x for all x ∈ C (hence, T 2n−1 = T for all n ≥ 1);

(b) T is uniformly k -lipschitzian;

(c) T does not satisfy (2.2); hence it is not ANT.

Indeed, it suffice to show: T is not ANT. To this end, for each x ∈ C ,

lim sup
n→∞

sup
y∈C
{|T nx− T ny| − |x− y|}

≥ sup{|Ty| − |y| : y ∈ [−1/k, 1]}

= sup{(k − 1)|y| : −1/k ≤ y ≤ 0}

= (k − 1)
1

k
= 1− 1

k
> 0.

Finally, we raise a question as follows.

Question 2.20. Find either uniformly Lipschitzian or non-Lipschitzian map-

pings which are TAN but not ANIS.

3 Projections on Banach spaces

Let X be a real normed space with its dual X∗ . In 1994, Alber [2, 3, 4] introduced

the Lyapunov functional V : X ×X∗ → R defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, x ∈ X, x∗ ∈ X∗. (3.1)

12



Here we list below some properties of the Lyapunov functional V from [4]:

(i) V (x, x∗) is continuous;

(ii) V (x, x∗) is convex relative to x when x∗ is fixed and relative to x∗ when

x is fixed;

(iii) (‖x‖ − ‖x∗‖)2 ≤ V (x, x∗) ≤ (‖x‖+ ‖x∗‖)2 ;

(iv) V (x, x∗) = 0 if and only if x∗ ∈ J(x).

In fact, if V (x, x∗) = 0, by (iii) we see ‖x|| = ‖x∗‖ . Also, 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2 .

From the definition of J , it follows that x∗ ∈ Jx . The converse is obvious.

Let X be a smooth Banach space. Since the normalized duality mapping J

from X to X∗ is single-valued, the Lyapunov functional φ : X ×X → R is well

defined as

φ(x, y) = V (x, Jy) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, x, y ∈ X. (3.2)

Also, we shall list some basic properties pertaining to the Lyapunov functional

φ :

Proposition 3.1. (a) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2, x, y ∈ X .

(b) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, x, y, z ∈ X .

(c) φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 ≤ ‖x‖ ‖Jx− Jy‖+ ‖y − x‖ ‖y‖.

(d) If X is strictly convex, then φ(x, y) = 0 if and only if x = y for any

x, y ∈ X ; see [30].

(e) φ(·, y) is weakly lower semicontinuous on X ; see Lemma 2.3.2 in [28].

Moreover, it is continuous and convex on X while φ(x, ·) is only continuous.
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(f) φ(·, y) is strictly convex if and only if X is strictly convex.

(g) If X is uniformly convex and smooth and {xn}, {zn} are two sequences of X

such that either {xn} or {zn} is bounded, then φ(xn, zn)→ 0 ⇔ ‖xn−zn‖ → 0;

see Proposition 2.9 of [19] and Propposition 2.9 of [23].

(h) If X is reflexive, smooth, strictly convex Banach space, then X has the

Kadec-Klee property if and only if X satisfies the following property (KT):

(KT) Given a sequence {xn} in a X ∈ (S) and x(6= 0) ∈ X ,

φ(xn, x)→ 0 if and only if xn → x;

see Proposition 2.10 of [23].

Theorem 3.2. ([39]). Let r > 0 and let X be a Banach space. Then X is

uniformly convex if and only if there exists g ∈ Γ[0,∞) such that

‖x+ y‖2 ≥ ‖x‖2 + 2〈y, j(x)〉+ g(‖y‖), x, y ∈ Br, j(x) ∈ Jx, (3.3)

where Br := {x ∈ X : ‖x‖ ≤ r} and g ∈ Γ[0,∞) ⇔ g : [0,∞) → [0,∞) is a

continuous, strictly increasing, and convex function on [0,∞) with g(0) = 0.

Using Theorem 3.2, Kamimura and Takahashi [19] proved the following result

to deduce strong convergence of a proximal type algorithm in Banach spaces.

Proposition 3.3. ([19]) Let X be a uniformly convex and smooth Banach space

and let {xn}, {zn} be two sequences of X . If φ(xn, zn) → 0 and either {xn} or

{zn} is bounded, then ‖xn − zn‖ → 0.

Remark 3.4. Note that the converse of Proposition 3.3 remains true; see Propo-

sition 2.7 of [23].
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Proposition 3.5. ([23]; see Proposition 2.9). Let X be a uniformly convex and

smooth Banach space and let {xn}, {zn} be two sequences of X . If either {xn}

or {zn} is bounded, then φ(xn, zn)→ 0 if and only if ‖xn − zn‖ → 0.

More generally, we can prove

Proposition 3.6. Let X be a uniformly convex and smooth Banach space and

let {xn}, {zn} be two sequences of X . If either {xn} or {zn} is bounded, then

φ(xn, zm)→ 0 as n,m→∞ if and only if ‖xn − zm‖ → 0 as n,m→∞.

Proof. (⇒) Since φ(xn, zm) → 0 as n,m → ∞ , {φ(xn, zm)} is bounded. If

one of {xn} and {zm} is bounded, so is the other by (a) of Proposition 3.1. By

Theorem 3.2, there exists g ∈ Γc(R+) such that

g(‖yn − zm‖) ≤ ‖zm − (yn − zm)‖2 − ‖zm‖2 − 2〈yn − zm, Jzm〉

= ‖yn‖2 − ‖zm‖2 − 2〈yn, Jzm〉+ 2‖zm‖2

= φ(yn, zm).

It follows from φ(xn, zm)→ 0 as n,m→∞ that g(‖xn−zm‖)→ 0 as n,m→∞ .

Then the properties of g yield that ‖xn − zm‖ → 0 as n,m→∞ .

(⇐) Since xn − zm → 0 as n,m → ∞ , it is not hard to see that if either

{xn} or {zm} is bounded, then the other is also bounded. Now let x ∈ X be

fixed. Then noticing that

|φ(xn, x)− φ(zm, x)| = | ‖xn‖2 − ‖zm‖2 + 2〈zm − xn, Jx〉 |

≤ |‖xn‖ − ‖zm‖|(‖xn‖+ ‖zm‖) + 2‖zm − xn‖ ‖x||

≤ ‖xn − zm‖(‖xn‖+ ‖zm‖+ 2‖x‖)→ 0
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as n,m→∞ and using the identity equation (b) of Proposition 3.1, we have

0 ≤ φ(xn, zm) = φ(xn, x)− φ(zm, x) + 2〈xn − zm, Jx− Jzm〉

≤ |φ(xn, x)− φ(zm, x) |+ 2‖xn − zm‖(‖x‖+ ‖zm‖)→ 0

as n,m→∞ . The proof is complete.

Remark 3.7. In particular, taking zn = xn for all n ∈ N , it follows from Propo-

sition 3.6 that φ(xn, xm) → 0 as n,m → ∞ if and only if {xn} is a Cauchy

sequence in X ; hence it converges.

Let C be a nonempty subset of a real Banach space X . We say that C is

said to be a Chebyshev set if to each x ∈ X there exists a unique x0 ∈ C such

that

‖x− x0‖ = d(x,C) = inf
y∈C
‖x− y‖.

In this case, we may define the nearest point projection (or called metric projec-

tion) PC : X → C by assigning x0 to x .

Proposition 3.8. ([15]; see Proposition 3.4; pp.13).

Let C be a convex Chebyshev set in X and x ∈ X . Then, x0 = PCx if and

only if there exists j ∈ J(x− x0) such that 〈y − x0, j〉 ≤ 0 for all y ∈ C .

Let X be a reflexive and strictly convex Banach space and let C be a

nonempty closed convex subset of X . For every (fixed) x ∈ X , consider

f(y) = ‖x − y‖2 for y ∈ X . Then f : X → [0,∞) is a proper strictly con-

vex and continuous function and f(y) → ∞ as ‖y‖ → ∞ . By Theorem 1.2 of

[6], there exists a unique x0 ∈ C such that

f(x0) = inf
y∈C

f(y)

⇔ ‖x− x0‖ = inf
y∈C
‖x− y‖ = d(x,C). (3.4)
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Therefore, the closed convex subset C of a reflexive and strictly convex Banach

space X is a Chebyshev set and hence PC : X → C is a nearest point projec-

tion (or metric projection) on X . Combined with Proposition 3.8, we have the

following

Proposition 3.9. Let C be a nonempty closed convex subset of a reflexive,

strictly convex and smooth Banach space X . Then

x0 = PCx ⇔ 〈y − x0, J(x− x0)〉 ≤ 0, y ∈ C. (3.5)

The following definition is originally due to Definition 6.2 in [4] based on uni-

formly convex and uniformly smooth Banach spaces.

Definition 3.10. ([29]; see Definition 1.1). Let X be a Banach space with its dual

X∗ . Let C be a nonempty closed convex subset of X . An operator π
C

: X∗ → 2C

is called a generalized projection on X∗ if it associates with an arbitrary fixed

point x∗ ∈ X∗ the set of all minimal points of V (x, x∗) over C , namely,

x ∈ π
C
x∗ ⇔ V (x, x∗) = inf

v∈C
V (v, x∗).

π
C
x∗ ⊂ C is then called a generalized projection of the point x∗ .

We list below some properties of the generalized projection π
C

on X∗ from

[29]:

Proposition 3.11. (a) If X is reflexive, then π
C
x∗ (6= ∅) is bounded, closed,

and convex for any x∗ ∈ X∗ .

(b) For each x ∈ C and jx ∈ J(x), we have x ∈ πCjx .

(c) If X is smooth, then, for given x∗ ∈ X∗ and x ∈ C ,

x ∈ π
C
x∗ ⇔ 〈x− v, x∗ − Jx〉 ≥ 0, v ∈ C.
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(d) If X is smooth, then for given x∗ ∈ X∗ and x ∈ π
C
x∗ , the following

inequality holds:

V (v, Jx) ≤ V (v, x∗)− V (x, x∗), v ∈ C.

(e) The operator π
C

: X∗ → C is single valued if and only if X is strictly

convex.

(f) If X is reflexive, smooth, strictly convex, and has the Kadec-Klee property,

then π
C

: X∗ → C is continuous.

Recall that if X is a smooth Banach space, then the Lyapunov functional

φ : X ×X → R is well defined by

φ(x, y) = V (x, Jy), x, y ∈ X.

Proposition 3.12. ([19]: see Proposition 3).

Let X be a reflexive, smooth, and strictly convex Banach space, let C be a

nonempty closed convex subset of X , and let x ∈ X . Then there exists a unique

element x0 ∈ C such that

φ(x0, x) = inf
z∈C

φ(z, x).

Definition 3.13. ([2, 4, 19]). Then a mapping Π
C

: X → C defined by

ΠCx = x0 for each x ∈ X is called the generalized projection; see [2, 4, 19].

Remark 3.14. In Hilbert spaces, notice that the generalized projection is clearly

coincident with the metric projection.

Proposition 3.15. ([2, 4, 19]) Let C be a nonempty closed convex subset of a

real Banach space X and let x ∈ X .
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(a) If X is smooth, then

x0 = ΠCx ⇔ 〈y − x0, Jx− Jx0〉 ≤ 0, y ∈ C. (3.6)

(b) If X is reflexive, smooth, and strictly convex, then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), y ∈ C. (3.7)

4 Nonlinear mappings relative to φ

Let X be a real Banach space and let C be a nonempty closed convex subset of

X .

Definition 4.1. A point p in C is said to be an asymptotic fixed point of

T [35] if C contains a sequence {xn} which converges weakly to p such that

limn→∞(xn − Txn) = 0. The set of asymptotic fixed points of T will be denoted

by F̂ (T ).

Definition 4.2. A mapping f : C → X is said to be demiclosed on C if the

graph of f ,

G(f) := {(x, y) : x ∈ C, y = f(x)}

is closed in C×X , where C is equipped with the weak topology and X the strong

topology. In other words, for any sequence {xn} in C , the following implication

holds:

xn ⇀ x, f(xn)→ y ⇒ x ∈ C, f(x) = y.

See the page 108 of [14] for more related results.

Remark 4.3. Obviously, F (T ) ⊂ F̂ (T ). Furthermore, note that if I − T is

demiclosed on C , then F̂ (T ) ⊂ F (T ).
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Definition 4.4. Let X be smooth. A mapping T : C → C is said to be

relatively totally asymptotically nonexpansive (RTAN) if FT 6= ∅ , FT = F̂T and

for each n ≥ 1, there exist two nonnegative real sequences {αn} and {βn} with

αn, βn → 0, τ ∈ Γ(R+) and n0 ∈ N such that

φ(p, T nx) ≤ φ(p, x) + αnτ(φ(p, x)) + βn, x ∈ C, p ∈ FT , n ≥ n0, (4.1)

where τ ∈ Γ(R+) if and only if τ is strictly increasing, continuous on R+ and

τ(0) = 0. In particular, we say that T is relatively asymptotically nonexpansive in

the intermediate sense (RANIS) if αn ≡ 0; relatively asymptotically nonexpansive

(RAN) [1, 31, 26] if τ(t) = t for all t ≥ 0 and βn ≡ 0; relatively nonexpansive

(RN) [8, 9, 10, 30, 23] if αn, βn ≡ 0 in (4.3), in turns.

As an analogue, we accept the following dual concepts:

Definition 4.5. Let X be smooth. A mapping T : C → C is said to be

generalized total asymptotically nonexpansive (GTAN) if FT 6= ∅ , FT = F̂T and

there exist two nonnegative real sequences {αn} and {βn} with αn, βn → 0,

τ ∈ Γ(R+) and n0 ∈ N such that

φ(T nx, q) ≤ φ(x, q) + αnτ(φ(x, q)) + βn, x ∈ C, q ∈ FT , n ≥ n0. (4.2)

In particular, we say that T is generalized asymptotically nonexpansive in the

intermediate sense (GANIS) if αn ≡ 0; generalized asymptotically nonexpansive

(GAN) if τ(t) = t for all t ≥ 0 and βn ≡ 0; generalized nonexpansive (GN) [18]

if αn, βn ≡ 0 in (4.2), in turns.

Removing the condition FT = F̂T in the above definitions, we can define

quasi-φ-nonlinear mappings.

20



Definition 4.6. Let X be smooth. A mapping T : C → C is said to be

totally quasi-φ-asymptotically nonexpansive (TQ-φ-AN) [11, 36] if FT 6= ∅ and

there exist two nonnegative real sequences {αn} and {βn} with αn, βn → 0,

τ ∈ Γ(R+) and n0 ∈ N such that

φ(p, T nx) ≤ φ(p, x) + αnτ(φ(p, x)) + βn, x ∈ C, p ∈ FT , n ≥ n0. (4.3)

In particular, we say that T is quasi-φ-asymptotically nonexpansive in the in-

termediate sense (Q-φ-ANIS) if αn ≡ 0; quasi-φ-asymptotically nonexpansive

(Q-φ-AN) [32, 40] if τ(t) = t for all t ≥ 0 and βn ≡ 0; quasi-φ-nonexpansive

(Q-φ-N) [32, 40] if αn, βn ≡ 0 in (4.3), in turns.

We first introduce examples of quasi-φ-nonexpansive mapping.

Example 4.7. From (3.7) note that if X ∈ (R) ∩ (S) ∩ (SC), then

φ(y,ΠCx) ≤ φ(y, x), x ∈ X, y ∈ C, (4.4)

that is, ΠC : X → C is quasi-φ nonexpansive because of FΠC
= C 6= ∅.

Example 4.8. ([30, 32]). Let X be a Banach space and let X ∈ (R)∩(S)∩(SC).

Let A be a maximal monotone operator of X into X∗ and Jr = (J + rA)−1J be

the resolvent for A with r > 0 and F (Jr) = A−10. Then

(a) Jr = (J + rA)−1J : X → D(A) is quasi-φ-nonexpansive; see [32].

(b) Furthermore, if X ∈ (US), then F̂ (Jr) = A−10 = F (Jr) and Jr is relatively

nonexpansive; see [30].

We next introduce an example of a mapping which is quasi-φ-nonexpansive

but not relatively nonexpansive, which is originally due to [37].
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Example 4.9. ([37]) Let X be any smooth Banach space, and x0 6= 0 be any

element of X . Define a mapping T : E → E as

Tx =


(

1
2

+ 1
2n+1

)
x0, if x = (1/2 + 1/2n)x0;

−x, if x 6= (1/2 + 1/2n)x0, n ≥ 1.

Then F (T ) = {0} and T is quasi-φ-nonexpansive but not relatively nonexpan-

sive.

Also, we introduce an example of a uniformly Lipschitzian mapping which is

relatively asymptotically nonexpansive but not relatively nonexpansive.

Example 4.10. ([26]; see Example 3.7). Let X = `p , where 1 < p < ∞, and

C = {x = (x1, x2, . . .) ∈ X;xn ≥ 0}. Then C is a closed convex subset of X .

Note that C is not bounded. Obviously, X is uniformly convex and uniformly

smooth. Let {λn} and {λ̄n} be sequences of real numbers satisfying the following

properties:

(i) 0 < λn < 1, λ̄n > 1, λn ↑ 1 and λ̄n ↓ 1,

(ii) λn+1 λ̄n = 1 and λ̄n+j λj+1 < 1 for all n and j .

(for examples, consider either λn = 1 − 1
n+1

, λ̄n = 1 + 1
n+1

or λn = e−1/n ,

λ̄n = e1/(n+1) ). Then we define T : C → C by

Tx = (0, λ̄1| sinx1|, λ2x2, λ̄2x3, λ3x4, λ̄3x5, · · · )

for all x = (x1, x2, x3, . . .) ∈ C . Obviously, F (T ) = {0}, where 0 = (0, 0, . . .) ∈ C ,

and T is both AN and RAN. However, T is not relatively nonexpansive.
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