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Chapter 1

Introduction

Information aggregation is an essential process of gathering relevant information

from multiple sources by using a proper aggregation technique. Many techniques,

such as the weighted average operator [12], the weighted geometric mean operator

[1], harmonic mean operator [4], weighted harmonic mean (WHM) operator [4],

ordered weighted average (OWA) operator [56], ordered weighted geometric op-

erator [5, 51], weighted OWA operator [31], induced OWA operator [63], induced

ordered weighted geometric operator [53], uncertain OWA operator [52], hybrid

aggregation operator [41], linguistic aggregation operators [59, 16, 19, 42, 26, 27]

and so on have been developed to aggregate data information. However, yet most

of existing aggregation operators do not take into account the information about

the relationship between the values being fused. Yager [58] introduced a tool to

provide more versatility in the information aggregation process, i.e., developed

a power average (PA) operator and a power OWA (POWA) operator. In some

situations, however, these two operators are unsuitable to deal with the argu-

ments taking the forms of multiplicative variables because of lack of knowledge,

or data, and decision makers’ limited expertise related to the problem domain.

So, based on this tool, Xu and Yager [55] developed additional new geometric

aggregation operators, including the power geometric (PG) operator, weighted

PG operator and power ordered weighted geometric (POWG) operator, whose
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weighting vectors depend upon the input arguments and allow values being ag-

gregated to support and reinforce each other, and applied them to group decision

making based on multiplicative preference relations.

Group decision making (i.e., multi-expert) is a typical decision making ac-

tivity where utilizing several experts alleviate some of the decision making diffi-

culties due to the problem’s complexity and uncertainty. In the real world, the

uncertainty, constraints, and even unclear knowledge of the experts imply that

decision makers cannot provide exact numbers to express their opinions. Lin-

guistic variables are a very useful tool to express a decision maker’s preference

information over objects in process of decision making under uncertain or vague

environments [64, 65]. In order to get a decision result, an important step is the

aggregation of linguistic variables. Over the last decades, various linguistic aggre-

gation operators have been proposed. We classify these operators into the follow-

ing categories: (1) the linguistic aggregation operators are based on the semantic

model, such as the linguistic approximation operator [7], linguistic OWA operator

[3, 14, 16, 18, 8, 10], linguistic weighted OWA operator [31] and inverse-LOWA

operator [13], these operators use linguistic terms as labels for fuzzy numbers

while the computations over them are done directly over those fuzzy numbers;

(2) the linguistic aggregation operators based on the symbolic model [14, 9, 28],

which make computations on the indexes of the linguistic labels; (3) the lin-

guistic aggregation operators, which compute with words directly, such as the

linguistic weighted averaging (LWA) operator [48], extended ordered weighted

averaging (EOWA) operator [44], extended ordered weighted geometric (EOWG)

operator [44], linguistic weighted arithmetic averaging (LWAA) operator [34, 37],

linguistic weighted geometric averaging (LWGA) operator [42], linguistic ordered

weighted geometric averaging (LOWGA) operator [42], linguistic hybrid geomet-

ric averaging (LHGA) operator [42], uncertain LWA (ULWA) operator [43, 38, 36],

uncertain linguistic hybrid aggregation (ULHA) operator [43], induced uncertain

LOWA (IULOWA) operator [47], uncertain linguistic ordered weighted geometric

(ULOWG) operator [46], induced uncertain linguistic ordered weighted geometric

(IULOWG) operator [46], induced linguistic generalized ordered weighted aver-
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aging (ILGOWA) operator [25], induced linguistic generalized hybrid averaging

(ILGHA) operator [25], induced linguistic quasi-arithmetic OWA (Quasi-ILOWA)

operator [25] and linguistic power aggregation operator [66]; (4) the linguistic ag-

gregation operators based on the 2-tuple linguistic representation model [19, 20],

which represent the linguistic information with a pair of values called 2-tuple,

composed by a linguistic term and number, including 2-tuple weighted averaging

operator [19], 2-tuple OWA operator [19], 2-tuple weighted geometric averaging

(TWGA) operator [39], 2-tuple ordered weighted geometric averaging (TOWGA)

operator [39] and 2-tuple hybrid geometric averaging (THGA) operator [39]. The

operators in (1) and (2) develop some approximation processes to express the

results in initial expression domain, which produce the consequent loss of infor-

mation and hence bring about the lack of precision, while the operators in (3)

and (4) allow a continuous representation of the linguistic information on its do-

main, and thus they can represent any counting of information obtained in an

aggregation process without any loss of information.

In this thesis, we consider and study three methods to solve multiple attribute

group decision making (MAGDM) problems under uncertain or linguistic envi-

ronment. We briefly summarize the contents of each chapter as follows.

Harmonic mean is a conservative average, which is widely used to aggregate

central tendency data. In Chapter 2, we develop some new harmonic aggregation

operators, including the power-harmonic (PH) operator, weighted PH operator,

and power-ordered weighted harmonic (POWH) operator, and apply them to

group decision making. In order to do this, we first review some aggregation op-

erators, including the PA, PG, POWA and POWG operators. Then, we develop

a PH operator and its weighted form based on the PA (or PG) operator and the

harmonic mean, and a POWH operator based on the POWA (POWG) operator

and the harmonic mean, and investigate some of their properties, such as commu-

tativity, idempotency and boundedness. The relationship among the PA, PG and

PH operators and the relationship the POWA, POWG and POWH operators are

also discussed. We utilize the weighted PH and POWH operators, respectively,
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to develop an approach to group decision making. Furthermore, we extend the

developed operators to the uncertain environment and develop an approach to

group decision making based on uncertain preference relations.

In the existing literature, the harmonic mean is generally considered as a

fusion technique of numerical data information. However, in many situations,

the input arguments take the form of 2-tuple linguistic variables because of time

pressure, lack of knowledge and people’s limited expertise related with problem

domain. Therefore, “how to aggregate 2-tuple linguistic variables by using the

harmonic mean?” is an interesting research topic and is worth paying attention

to. In Chapter 3, we focus our attention on developing some 2-tuple linguistic

harmonic (2TLH) operators. To do so, we present the basic concept related to

2-tuple linguistic representation, and develops some 2TLH operators, such as 2-

tuple linguistic weighted harmonic (2TLWH) operator, 2-tuple linguistic ordered

weighted harmonic (2TLOWH) operator and 2-tuple linguistic hybrid harmonic

(2TLHH) operator, and investigate some of their properties. An approach to

MAGDM based on the developed operators is presented. We illustrate the pre-

sented approach with a practical example, and verify and show the advantages of

the presented approach and makes a comparative study to the existing approach.

More and more multiple attribute decision making theories and methods un-

der linguistic environment have been developed. Current methods are under the

assumption that the attributes are at the same priority level. However, in real

and practical multiple attribute decision making problem, the attributes gen-

erally have different priority levels. To overcome this drawback, motivated by

the idea of prioritized aggregation operators [61], in Chapter 4, we develop some

2-tuple linguistic prioritized aggregation operators such as 2-tuple linguistic pri-

oritized weighted harmonic (2TLPWH) operator and 2-tuple linguistic prioritized

ordered weighted harmonic (2TLPOWH) operator. The prominent characteris-

tic of these operators is that they take into account prioritization among the

attributes. Then, we apply them to group decision making, with linguistic infor-

mation, in which the attributes are in different priority levels. Finally, an example

is used to illustrate the applicability of the developed approach.
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Chapter 2

Power harmonic operators and

their applications in group

decision making

The power average (PA) operator, power geometric (PG) operator, power or-

dered weighted average (POWA) operator and power ordered weighted geometric

(POWG) operator are the nonlinear weighted aggregation tools whose weighting

vectors depend on input arguments. In this chapter, we develop a power harmonic

(PH) operator and a power ordered weighted harmonic (POWH) operator, and

study some properties of these operators. Then we extends the PH and POWH

operators to uncertain environments, i.e, develop an uncertain PH (UPH) opera-

tor and its weighted form, and uncertain POWH (UPOWH) operator to aggregate

the input arguments taking the form of interval numbers. Moreover, we utilize

the weighted PH and POWH operators, respectively, to develop an approach to

group decision making based on preference relations and utilize the weighted UPH

and UPOWH operators, respectively, to develop an approach to group decision

making based on uncertain preference relations. Finally, an example is used to

illustrate the applicability of both the developed approaches.
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2.1 Power harmonic operators

Yager [58] introduced a nonlinear weighted average aggregation operation tool,

which is called PA operator, and can be defined as follows:

PA(a1, a2, . . . , an) =

∑n
i=1(1 + T (ai))ai∑n
i=1(1 + T (ai))

, (2.1)

where

T (ai) =
n∑

j=1,j 6=i
Sup(ai, aj) (2.2)

and Sup(a, b) is the support for a from b, which satisfies the following three

properties: 1) Sup(a, b) ∈ [0, 1], 2) Sup(a, b) = Sup(b, a), 3) Sup(a, b) ≥ Sup(x, y)

if |a− b| < |x− y|.
Yager [58], based on the OWA operator [56] and PA operator, also defined a

POWA operator as follows:

POWA(a1, a2, . . . , an) =
n∑
i=1

uiaindex(i), (2.3)

where index is an indexing function such that index(i) is the index of the ith

largest of the arguments aj (j = 1, 2, . . . , n), and thus aindex(i) is the ith largest

argument of aj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) are a collection of weights

such that

ui = g
(
Ri

TV

)
− g

(
Ri−1

TV

)
, Ri =

i∑
j=1

Vindex(j), TV =
n∑
i=1

Vindex(i),

Vindex(i) = 1 + T (aindex(i)) (2.4)

where g : [0, 1]→ [0, 1] is a basic unit-interval monotone (BUM) function having

the following properties: 1) g(0) = 0, 2) g(1) = 1, 3) g(x) ≥ g(y) if x > y,

and T (aindex(i)) denotes the support of the ith largest argument by all the other

arguments, i.e.,

T (aindex(i)) =
n∑

j=1,j 6=i
Sup(aindex(i), aindex(j)), (2.5)
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where Sup(aindex(i), aindex(j)) indicates the support of the jth largest argument for

the ith largest argument.

Based on the PA operator and the geometric mean, in the following, Xu and

Yager [55] defined the PG operator:

PG(a1, a2, . . . , an) =
n∏
i=1

a

1+T (ai)∑n

i=1
(1+T (ai))

i (2.6)

where aj (j = 1, 2, . . . , n) are a collection of arguments, and T (ai) satisfies the

condition (2.2). Based on the POWA operator and the geometric mean, Xu and

Yager [55] also defined the power ordered weighted geometric (POWG) operator

as follows:

POWG(a1, a2, . . . , an) =
n∏
i=1

auiindex(i) (2.7)

which satisfies the conditions (2.4) and (2.5), and aindex(i) is the ith largest argu-

ment of aj (j = 1, 2, . . . , n).

Based on PA operator and the harmonic mean, in the following, we define a

PH operator:

PH(a1, a2, . . . , an) =
1∑n

i=1
1+T (ai)∑n

i=1
(1+T (ai))ai

(2.8)

where aj (j = 1, 2, . . . , n) are a collection of arguments, and T (ai) satisfies the

condition (2.2). Clearly, the PH operator is a nonlinear weighted harmonic ag-

gregation operator, and the weight 1+T (ai)∑n

i=1
(1+T (ai))

of the argument ai depends on

all the input arguments aj (j = 1, 2, . . . , n) and allows the argument values to

support each other in the harmonic aggregation process.

Lemma 2.1.1 [21, 22, 67] Letting xi > 0, αi > 0, i = 1, 2, . . . , n, and
∑n
i=1 αi =

1, then

1∑n
i=1

αi
xi

≤
n∏
i=1

(xi)
αi ≤

n∑
i=1

αixi (2.9)

with equality if and only if x1 = x2 = · · · = xn.
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By Lemma 2.1.1, we have the following theorem.

Theorem 2.1.2 Assuming that aj (j = 1, 2, . . . , n) are a collection of arguments,

then we have

PH(a1, a2, . . . , an) ≤ PG(a1, a2, . . . , an) ≤ PA(a1, a2, . . . , an). (2.10)

Now, we discuss some properties of the PH operator.

Theorem 2.1.3 Letting Sup(ai, aj) = k, for all i 6= j, then

PH(a1, a2, . . . , an) =
n∑n
i=1

1
ai

(2.11)

which indicates that when all supports are the same, the PH operator is simply

the harmonic mean.

Especially, if Sup(ai, aj) = 0 for all i 6= j, i.e., all the supports are zero, then

there is no support in the harmonic aggregation process, and in this case, by the

condition (2.2), we have T (ai) = 0, i = 1, 2, . . . , n, then

1 + T (ai)∑n
i=1(1 + T (ai))

=
1

n
, i = 1, 2, . . . , n (2.12)

and thus, by (2.8) and (2.12), it is clear that the PH operator reduces to the

harmonic mean.

Theorem 2.1.4 Let aj (j = 1, 2, . . . , n) be a collection of arguments, then we

have the following properties.

1) (Commutativity): If (a′1, a
′
2, . . . , a

′
n) is any permutation of (a1, a2, . . . , an),

then

PH(a1, a2, . . . , an) = PH(a′1, a
′
2, . . . , a

′
n). (2.13)

2) (Idempotency): If aj = a for all j, then

PH(a1, a2, . . . , an) = a. (2.14)

3) (Boundedness):

min
i
ai ≤ PH(a1, a2, . . . , an) ≤ max

i
ai. (2.15)
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In (2.8), all the objects that are being aggregated are of equal importance.

In many situations, the weights of the objects should be taken into account, for

example, in group decision making, the decision makers usually have different

importance and thus, need to be assigned different weights. Suppose that each

object that is being aggregated has a weight indicating its importance, then we

define the weighted form of (2.8) as follows:

PHw(a1, a2, . . . , an) =
1∑n

i=1
wi(1+T ′(ai))∑n

i=1
wi(1+T ′(ai))ai

(2.16)

where

T ′(ai) =
n∑

j=1,j 6=i
wjSup(ai, aj) (2.17)

with the condition

wi ∈ [0, 1], i = 1, 2, . . . , n,
n∑
i=1

wi = 1. (2.18)

Obviously, the weighted PH operator has the properties, as described in The-

orem 2.1.2, as well as 2) and 3) of Theorem 2.1.4. However, Theorem 2.1.3 and

1) of Theorem 2.1.4 do not hold for the weighted PH operator.

Based on the POWA operator and the harmonic mean, we define a power

ordered weighted harmonic (POWH) operator as follows:

POWH(a1, a2, . . . , an) =
1∑n

i=1
ui

aindex(i)

(2.19)

which satisfies the conditions (2.4) and (2.5), and aindex(i) is the ith largest argu-

ment of aj (j = 1, 2, . . . , n).

Especially, if g(x) = x, then the POWH operator reduces to the PH operator,

In fact, by (2.4), we have

POWH(a1, a2, . . . , an) =
1∑n

i=1
ui

aindex(i)

=
1

∑n
i=1

g( Ri
TV )−g

(
Ri−1
TV

)
aindex(i)
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=
1∑n

i=1

Ri
TV
−Ri−1

TV

aindex(i)

=
1∑n

i=1

Vindex(i)
TV

aindex(i)

=
1∑n

i=1
1+T (ai)∑n

i=1
(1+T (ai))ai

= PH(a1, a2, . . . , an). (2.20)

By Lemma 2.1.1, we the following theorem.

Theorem 2.1.5 Assuming that aj (j = 1, 2, . . . , n) are a collection of arguments,

then we have

POWH(a1, a2, . . . , an) ≤ POWG(a1, a2, . . . , an) ≤ POWA(a1, a2, . . . , an).(2.21)

From Theorem 2.1.3 and (2.20), we have the following corollary.

Corollary 2.1.6 Letting Sup(ai, aj) = k for all i 6= j, and g(x) = x, then we

have

POWH(a1, a2, . . . , an) =
n∑n
i=1

1
ai

(2.22)

which indicates that when all supports are the same, the POWH operator is simply

the harmonic mean.

Similar to Theorem 2.1.4, we have the following theorem.

Theorem 2.1.7 Let aj (j = 1, 2, . . . , n) be a collection of arguments, then we

have the following properties.

1) (Commutativity): If (a′1, a
′
2, . . . , a

′
n) is any permutation of (a1, a2, . . . , an),

then

POWH(a1, a2, . . . , an) = POWH(a′1, a
′
2, . . . , a

′
n). (2.23)

2) (Idempotency): If aj = a for all j, then

POWH(a1, a2, . . . , an) = a. (2.24)

10



3) (Boundedness):

min
i
ai ≤ POWH(a1, a2, . . . , an) ≤ max

i
ai. (2.25)

From the above-mentioned theoretical analysis, the difference between the

weighted PH and POWH operators is that the weighted PH operator empha-

sizes the importance of each argument, while the POWH operator weights the

importance of the ordered position of each argument.

2.2 Approach to group decision making

Let us consider a group decision making problem. Let X = {x1, x2, . . . , xn} be a

finite set of alternatives and let D = {d1, d2, . . . , dm} be a set of decision makers,

whose weight vector is w = (w1, w2, . . . , wm)T , with wk ≥ 0, k = 1, 2, . . . ,m, and∑m
k=1wk = 1. The decision maker dk compare each pair of alternatives (xi, xj)

and provides his/her preference value a
(k)
ij over them and constructs the preference

relation Ak on the set X, which is defined as a matrix Ak = (a
(k)
ij )n×n under the

following condition:

a
(k)
ij ≥ 0, a

(k)
ij + a

(k)
ji = 1, a

(k)
ii =

1

2
, for all i, j = 1, 2, . . . , n. (2.26)

Then, we utilize the weighted PH operator to develop an approach to group

decision making based on preference relations, which involves the following steps.

Approach I.

Step 1: Calculate the supports

Sup(a
(k)
ij , a

(l)
ij ) = 1−

|a(k)ij − a
(l)
ij |∑m

l=1,l 6=k |a
(k)
ij − a

(l)
ij |
, l = 1, 2, . . . ,m (2.27)

which satisfy the support condition 1)-3) in Section 2.1.

Especially, if
∑m
l=1,l 6=k |a

(k)
ij − a

(l)
ij | = 0, then we stipulate Sup(a

(k)
ij , a

(l)
ij ) = 1.

11



Step 2: Utilize the weights wk (k = 1, 2, . . . ,m) of the decision makers dk

(k = 1, 2, . . . ,m) to calculate the weighted support T ′(a
(k)
ij ) of the preference

value a
(k)
ij by the other preference values a

(l)
ij (l = 1, 2, . . . ,m, and l 6= k)

T ′(a
(k)
ij ) =

m∑
l=1,l 6=k

wlSup(a
(k)
ij , a

(l)
ij ) (2.28)

and calculate the weights v
(k)
ij (k = 1, 2, . . . ,m) associated with the preference

values a
(k)
ij (k = 1, 2, . . . ,m)

v
(k)
ij =

wk
(
1 + T ′(a

(k)
ij )

)
∑m
k=1wk

(
1 + T ′(a

(k)
ij )

) , k = 1, 2, . . . ,m (2.29)

where v
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 v

(k)
ij = 1.

Step 3: Utilize the weighted PH operator to aggregate all the individual pref-

erence relations Ak = (a
(k)
ij )n×n (k = 1, 2, . . . ,m) into the collective preference

relation A = (aij)n×n, where

aij = PHw(a
(1)
ij , a

(2)
ij , . . . , a

(m)
ij ) =

1∑m
k=1

v
(k)
ij

a
(k)
ij

, i, j = 1, 2, . . . , n. (2.30)

Step 4: Utilize the normalizing rank aggregation method (NRAM) [54] given

by

vi =

∑n
j=1 aij∑n

i=1

∑n
j=1 aij

, i = 1, 2, . . . , n (2.31)

to derive the priority vector v = (v1, v2, . . . , vn)T of A = (aij)n×n, where vi > 0,

i = 1, 2, . . . , n, and
∑n
i=1 vi = 1.

Step 5: Rank all alternatives xi (i = 1, 2, . . . , n) in accordance with the priority

weights vi (i = 1, 2, . . . , n). The more the wight vi, the better the alternative xi

will be.

In the case where the information about the weights of decision makers is

unknown, then we utilize the POWH operator to develop an approach to group

decision making based on preference relations, which can be described as follows.

12



Approach II.

Step 1: Calculate the supports

Sup(a
index(k)
ij , a

index(l)
ij ) = 1−

|aindex(k)ij − aindex(l)ij |∑m
l=1,l 6=k |a

index(k)
ij − aindex(l)ij |

, l = 1, 2, . . . ,m (2.32)

which indicates the support of the lth largest preference value a
index(l)
ij for the

kth largest preference value a
index(k)
ij of a

(s)
ij (s = 1, 2, . . . ,m). Especially, if∑m

l=1,l 6=k |a
index(k)
ij − a

index(l)
ij | = 0, then we stipulate Sup(a

index(k)
ij , a

index(l)
ij ) = 1.

It is necessary to point out that the support measure is a similarity measure,

which can be used to measure the degree that a preference value provided by

a decision maker is close to another one provided by other decision maker in a

group decision making problem. Thus, Sup(a
index(k)
ij , a

index(l)
ij ) denotes the similar-

ity degree between the kth largest preference value a
index(k)
ij and the lth largest

preference value a
index(l)
ij .

Step 2: Calculate the support T (a
index(k)
ij ) of the kth largest preference value

a
index(k)
ij by the other preference values a

(l)
ij (l = 1, 2, . . . ,m, and l 6= k)

T (a
index(k)
ij ) =

m∑
l=1,l 6=k

Sup(a
index(k)
ij , a

index(l)
ij ) (2.33)

and by (2.4), calculate the weight u
(k)
ij associated with the kth largest preference

value a
index(k)
ij , where

u
(k)
ij = g

R(k)
ij

TVij

− g
R(k−1)

ij

TVij

 , R(k)
ij =

k∑
l=1

V
index(l)
ij ,

TVij =
m∑
l=1

V
index(l)
ij , V

index(l)
ij = 1 + T (a

index(l)
ij ) (2.34)

where u
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 u

(k)
ij = 1, and g is the BUM function

described in Section 2.1.

Step 3: Utilize the POWH operator to aggregate all the individual preference

relations Ak = (a
(k)
ij )n×n (k = 1, 2, . . . ,m) into the collective preference relation

13



A = (aij)n×n, where

aij = POWH(a
(1)
ij , a

(2)
ij , . . . , a

(m)
ij ) =

1∑m
k=1

u
(k)
ij

a
index(k)
ij

, i, j = 1, 2, . . . , n. (2.35)

Step 4: For this step, see Approach I.

Step 5: For this step, see Approach I.

In the above-mentioned two approaches, Approach I considers the situations

where the weighted PH operator to aggregate all the individual preference re-

lations into the collective preference relation and then the NRAM method to

derive its priority vector, and using this, we can rank and select the given alter-

natives. While Approach II considers the situations where the information about

the weights of decision makers is unknown and utilizes the POWH operator to

aggregate all the individual preference relations into collective preference relation,

then it also uses the NRAM method to find the final decision result.

2.3 Uncertain power harmonic operators

In this section, we consider the situations where the input arguments cannot be

expressed in exact numerical values, but value range (i.e., interval numbers) can

be obtained. We first review some operational laws, which are related to interval

numbers [35, 2].

Let ã = [aL, aU ] and b̃ = [bL, bU ] be two interval numbers, where aU ≥ aL > 0

and bU ≥ bL > 0, then we have the following operational laws.

1) ã+ b̃ = [aL, aU ] + [bL, bU ] = [aL + bL, aU + bU ].

2) ãb̃ = [aL, aU ] · [bL, bU ] = [albL, aU , bU ].

3) λã = λ[aL, aU ] = [λaL, λaU ], where λ > 0.

4) 1
ã

= 1
[aL,aU ]

= [ 1
aU
, 1
aL

].

5) ã
b̃

= [aL,aU ]
[bL,bU ]

= [a
L

bU
, a

U

bL
].

In order to rank interval numbers, we now introduce a possibility degree for-

mula [11] for the comparison between the interval numbers ã = [aL, aU ] and

14



b̃ = [bL, bU ]:

p(ã ≥ b̃) = min

{
max

(
aU − bL

aU − aL + bU − bL
, 0

)
, 1

}
, (2.36)

where p(ã ≥ b̃) is called the possibility degree of ã ≥ b̃, which satisfies

0 ≤ p(ã ≥ b̃) ≤ 1, p(ã ≥ b̃) + p(b̃ ≥ ã) = 1, p(ã ≥ ã) = 0.5. (2.37)

Let ãj = [aLj , a
U
j ] (j = 1, 2, . . . , n) be a collection of interval numbers, then

based on the previous operational laws of interval numbers, we extend the PH

operator to uncertain environments and define an UPH operator as follows:

UPH(ã1, ã2, . . . , ãn) =
1∑n

i=1
1+T (ãi)∑n

i=1
(1+T (ãi))ãi

(2.38)

where

T (ãi) =
n∑

j=1,j 6=i
Sup(ãi, ãj) (2.39)

and Sup(ã, b̃) is the support for ã from b̃, which satisfies the following three

properties: 1) Sup(ã, b̃) ∈ [0, 1], 2) Sup(ã, b̃) = Sup(b̃, ã), 3) Sup(ã, b̃) ≥ Sup(x̃, ỹ)

if d(ã, b̃) < d(x̃, ỹ), where d is a distance measure.

Similar to the PH operator, the UPH operator has the following properties.

Theorem 2.3.1 Letting Sup(ãi, ãj) = k for all i 6= j, then

UPH(ã1, ã2, . . . , ãn) =
n∑n
i=1

1
ãi

(2.40)

which indicates that when all the supports are the same, the UPH operator is

simply the uncertain harmonic mean.

Theorem 2.3.2 Let ãj (j = 1, 2, . . . , n) be a collection of interval numbers, then

we have the following properties.

15



1) (Commutativity): If (ã′1, ã
′
2, . . . , ã

′
n) is any permutation of (ã1, ã2, . . . , ãn),

then

UPH(ã1, ã2, . . . , ãn) = UPH(ã′1, ã
′
2, . . . , ã

′
n). (2.41)

2) (Idempotency): If ãj = ã for all j, then

UPH(ã1, ã2, . . . , ãn) = ã. (2.42)

3) (Boundedness):

min
i
ãi ≤ UPH(ã1, ã2, . . . , ãn) ≤ max

i
ãi. (2.43)

If the weights of the objects are taken into account, then we define the

weighted form of (2.38) as follows:

UPHw(ã1, ã2, . . . , ãn) =
1∑n

i=1
wi(1+T ′(ãi))∑n

i=1
wi(1+T ′(ãi))ãi

(2.44)

where

T ′(ãi) =
n∑

j=1,j 6=i
wjSup(ãi, ãj) (2.45)

with the condition

wi ∈ [0, 1], i = 1, 2, . . . , n,
n∑
i=1

wi = 1. (2.46)

Obviously, the weighted UPH operator has the properties of 2) and 3) in

Theorem 2.3.2. However, Theorem 2.3.1 and 1) of Theorem 2.3.2 do not hold for

the weighted UPH operator.

Based on the POWH operator and the possibility degree formula, we define a

UPOWH operator as follows:

UPOWH(ã1, ã2, . . . , ãn) =
1∑n

i=1
ui

ãindex(i)

(2.47)
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where ãindex(i) is the ith largest interval number of ãj (j = 1, 2, . . . , n), and

ui = g
(
Ri

TV

)
− g

(
Ri−1

TV

)
, Ri =

i∑
j=1

Vindex(j),

TV =
n∑
i=1

Vindex(i), Vindex(j) = 1 + T (ãindex(i)) (2.48)

and T (ãindex(i)) denotes the support of the ith largest interval number by all the

other interval numbers, i.e.,

T (ãindex(i)) =
n∑
j=1

Sup(ãindex(i), ãindex(j)) (2.49)

where Sup(ãindex(i), ãindex(j)) indicates the support of the jth largest interval num-

ber for the ith largest interval number (here, we can use the possibility degree

formula (2.36) to rank interval numbers).

Especially, if g(x) = x, then the UPOWH operator reduces to the UPH oper-

ator.

From Theorem 2.3.1, we have the following corollary.

Corollary 2.3.3 Letting Sup(ãindex(i), ãindex(j)) = k for all i 6= j, and g(x) = x,

then

UPOWH(ã1, ã2, . . . , ãn) =
n∑n
i=1

1
ãi

(2.50)

which indicates that when the supports are the same, the UPOWH operator is

simply the uncertain harmonic mean.

Similar to Theorem 2.3.2, we have the following theorem.

Theorem 2.3.4 Let ãj (j = 1, 2, . . . , n) be a collection of interval numbers, then

we have the following properties.

1) (Commutativity): If (ã′1, ã
′
2, . . . , ã

′
n) is any permutation of (ã1, ã2, . . . , ãn),

then

UPOWH(ã1, ã2, . . . , ãn) = UPOWH(ã′1, ã
′
2, . . . , ã

′
n). (2.51)
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2) (Idempotency): If ãj = ã for all j, then

UPOWH(ã1, ã2, . . . , ãn) = ã. (2.52)

3) (Boundedness):

min
i
ãi ≤ UPOWH(ã1, ã2, . . . , ãn) ≤ max

i
ãi. (2.53)

2.4 Approach to group decision making based

on uncertain preference relations

As mentioned in Section 2.2, in this section, we will apply the weighted UPH

and UPOWH operators to group decision making based on uncertain prefer-

ence relations. Let X = {x1, x2, . . . , xn} be a finite set of alternatives and

let D = {d1, d2, . . . , dm} be a set of decision makers, whose weight vector is

w = (w1, w2, . . . , wm)T , with wk ≥ 0, k = 1, 2, . . . ,m, and
∑m
k=1wk = 1. The

decision maker dk compare each pair of alternatives (xi, xj) and provides his/her

preference value range ã
(k)
ij = [a

L(k)
ij , a

U(k)
ij ] over them and constructs the uncertain

preference relation Ãk on the set X, which is defined as a matrix Ãk = (ã
(k)
ij )n×n

under the following condition:

a
U(k)
ij ≥ a

L(k)
ij > 0, a

L(k)
ij + a

U(k)
ji = 1, a

L(k)
ji + a

U(k)
ij = 1,

a
L(k)
ii = a

U(k)
ii =

1

2
, i, j = 1, 2, . . . , n. (2.54)

Then, we utilize the weighted UPH operator to develop an approach to group

decision making based on uncertain preference relations, which involves the fol-

lowing steps.

Approach III.

Step 1: Calculate the supports

Sup(ã
(k)
ij , ã

(l)
ij ) = 1−

d(ã
(k)
ij , ã

(l)
ij )∑m

l=1,l 6=k d(ã
(k)
ij , ã

(l)
ij )

, l = 1, 2, . . . ,m (2.55)
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which satisfy the support condition 1)-3) in Section 2.3. Here, without loss of

generality, we let

d(ã
(k)
ij , ã

(l)
ij ) =

1

2
(|aL(l)ij − a

L(k)
ij |+ |a

U(l)
ij − a

U(k)
ij |). (2.56)

Especially, if
∑m
l=1,l 6=k d(ã

(k)
ij , ã

(l)
ij ) = 0, then we stipulate Sup(ã

(k)
ij , ã

(l)
ij ) = 1.

Step 2: Utilize the weights wk (k = 1, 2, . . . ,m) of the decision makers dk

(k = 1, 2, . . . ,m) to calculate the weighted support T ′(ã
(k)
ij ) of the uncertain

preference value ã
(k)
ij by the other uncertain preference values ã

(l)
ij (l = 1, 2, . . . ,m,

and l 6= k)

T ′(ã
(k)
ij ) =

m∑
l=1,l 6=k

wlSup(ã
(k)
ij , ã

(l)
ij ) (2.57)

and calculate the weights v̇
(k)
ij (k = 1, 2, . . . ,m) associated with the uncertain

preference values ã
(k)
ij (k = 1, 2, . . . ,m)

v̇
(k)
ij =

wk
(
1 + T ′(ã

(k)
ij )

)
∑m
k=1wk

(
1 + T ′(ã

(k)
ij )

) , k = 1, 2, . . . ,m (2.58)

where v̇
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 v̇

(k)
ij = 1.

Step 3: Utilize the weighted UPH operator to aggregate all the individual

uncertain preference relations Ãk = (ã
(k)
ij )n×n (k = 1, 2, . . . ,m) into the collective

uncertain preference relation Ã = (ãij)n×n, where

ãij = [alij, a
U
ij] = UPHw(ã

(1)
ij , ã

(2)
ij , . . . , ã

(m)
ij )

=
1∑m

k=1

v̇
(k)
ij

ã
(k)
ij

, i, j = 1, 2, . . . , n. (2.59)

Step 4: Utilize the uncertain NRAM (UNRAM) given by

ṽi =

∑n
j=1 ãij∑n

i=1

∑n
j=1 ãij

, i = 1, 2, . . . , n (2.60)

to derive the uncertain priority vector ṽ = (ṽ1, ṽ2, . . . , ṽn)T of Ã = (ãij)n×n.
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Step 5: Compare each pair of the uncertain priority weights ṽi (i = 1, 2, . . . , n)

by using the possibility degree formula (2.36) and construct a possibility degree

matrix P = (pij)n×n, where pij = p(ṽi ≥ ṽj), i, j = 1, 2, . . . , n, which satisfy

pij ≥ 0 pij + pji = 1, pii = 0.5, i, j = 1, 2, . . . , n. Summing all the elements in

each line of the matrix P , we get

pi =
n∑
j=1

pij, i = 1, 2, . . . , n. (2.61)

Then we rank the uncertain priority weights ṽi (i = 1, 2, . . . , n) in descending

order in accordance with pi (i = 1, 2, . . . , n).

Step 6: Rank all alternatives xi (i = 1, 2, . . . , n) in accordance with the de-

scending order of the uncertain priority weights ṽi (i = 1, 2, . . . , n).

In the case where the information about the weights of decision makers is

unknown, then we utilize the UPOWH operator to develop an approach to group

decision making based on uncertain preference relations, which can be described

as follows.

Approach IV.

Step 1: Calculate the supports

Sup(ã
index(k)
ij , ã

index(l)
ij ) = 1−

d(ã
index(k)
ij , ã

index(l)
ij )∑m

l=1,l 6=k d(ã
index(k)
ij , ã

index(l)
ij )

, l = 1, 2, . . . ,m (2.62)

which indicates the support of lth largest uncertain preference value ã
index(l)
ij for

the kth largest uncertain preference value ã
index(k)
ij of ã

(s)
ij (s = 1, 2, . . . ,m) (here,

we can use Step 5 of Approach III to rank uncertain preference values). Especially,

if
∑m
l=1,l 6=k d(ã

index(k)
ij , ã

index(l)
ij ) = 0, then we stipulate Sup(ã

index(k)
ij , ã

index(l)
ij ) = 1.

Step 2: Calculate the support T (ã
index(k)
ij ) of the kth largest uncertain prefer-

ence value ã
index(k)
ij by the other uncertain preference values ã

(l)
ij (l = 1, 2, . . . ,m,

and l 6= k)

T (ã
index(k)
ij ) =

m∑
l=1,l 6=k

Sup(ã
index(k)
ij , ã

index(l)
ij ) (2.63)
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and by (2.48), calculate the weight u̇
(k)
ij associated with the kth largest uncertain

preference value ã
index(k)
ij , where

u̇
(k)
ij = g

 Ṙ(k)
ij

TV ′ij

− g
Ṙ(k−1)

ij

TV ′ij

 , Ṙ(k)
ij =

k∑
l=1

V
index(l)
ij ,

TV ′ij =
m∑
l=1

V
index(l)
ij , V

index(l)
ij = 1 + T (ã

index(l)
ij ) (2.64)

where u̇
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 u̇

(k)
ij = 1, and g is the BUM function

described in Section 2.1.

Step 3: Utilize the UPOWH operator to aggregate all the individual uncertain

preference relations Ãk = (ã
(k)
ij )n×n (k = 1, 2, . . . ,m) into the collective uncertain

preference relation Ã = (ãij)n×n, where

ãij = [aLij, a
U
ij] = UPOWH(ã

(1)
ij , ã

(1)
ij , . . . , ã

(m)
ij )

=
1∑m

k=1

u̇
(k)
ij

ã
index(k)
ij

, i, j = 1, 2, . . . , n. (2.65)

Step 4: For this step, see Approach III.

Step 5: For this step, see Approach III.

Step 6: For this step, see Approach III.

2.5 Illustrative example

Four university students share a house, where they intend to have broadband

Internet connection installed (adapted from [55, 33]). There are four options

available to choose from, which are provided by three Internet service providers.

1) Option 1 (x1): 1 Mbps broadband;

2) Option 2 (x2): 2 Mbps broadband;

3) Option 3 (x3): 3 Mbps broadband;

4) Option 4 (x4): 8 Mbps broadband.
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Since the Internet service and its monthly bill will be shared among the four

students dk (k = 1, 2, 3, 4) (whose weight vector w = (0.3, 0.3, 0.2, 0.2)T ), they

decide to perform a group decision analysis. Suppose that the students reveal

their preference relations for the options independently and anonymously and

construct the following preference relations, respectively:

A1 =


0.5 0.4 0.5 0.8

0.6 0.5 0.8 0.9

0.5 0.2 0.5 0.6

0.2 0.1 0.4 0.5

 , A2 =


0.5 0.8 0.7 0.4

0.2 0.5 0.6 0.6

0.3 0.4 0.5 0.8

0.6 0.4 0.2 0.5



A3 =


0.5 0.4 0.7 0.6

0.6 0.5 0.3 0.7

0.3 0.7 0.5 0.6

0.4 0.3 0.4 0.5

 , A4 =


0.5 0.7 0.7 0.5

0.3 0.5 0.4 0.4

0.3 0.6 0.5 0.9

0.5 0.6 0.1 0.5

 .

Since the weights of students are given, we then utilize Approach I to find the

decision result.

We first utilize (2.27) to calculate the supports Sup(a
(k)
ij , a

(l)
ij ) (i, j, k, l =

1, 2, 3, 4, k 6= l), which are contained in the matrices Skl = (Skl(a
(k)
ij , a

(l)
ij ))4×4

(k = 1, 2, 3, 4), respectively

S12 =


1 0.429 0.667 0.556

0.429 1 0.818 0.700

0.667 0.818 1 0.600

0.556 0.700 0.600 1

 , S13 =


1 1 0.667 0.778

1 1 0.545 0.800

0.667 0.545 1 1

0.778 0.800 1 1



S14 =


1 0.571 0.667 0.667

0.571 1 0.636 0.500

0.667 0.636 1 0.400

0.667 0.500 0.400 1

 , S21 =


1 0.556 0 0.429

0.556 1 0.714 0.500

0 0.714 1 0.600

0.429 0.500 0.600 1



S23 =


1 0.556 1 0.714

0.556 1 0.571 0.833

1 0.571 1 0.600

0.714 0.833 0.600 1

 , S24 =


1 0.889 1 0.857

0.889 1 0.714 0.667

1 0.714 1 0.800

0.857 0.667 0.800 1


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S31 =


1 1 0 0.600

1 1 0.444 0.667

0 0.444 1 1

0.600 0.667 1 1

 , S32 =


1 0.429 1 0.600

0.429 1 0.667 0.833

1 0.667 1 0.600

0.600 0.833 0.600 1



S34 =


1 0.571 1 0.800

0.571 1 0.889 0.500

1 0.889 1 0.400

0.800 0.500 0.400 1

 , S41 =


1 0.571 0 0.400

0.571 1 0.429 0.500

0 0.429 1 0.571

0.400 0.500 0.571 1



S42 =


1 0.857 1 0.800

0.857 1 0.714 0.800

1 0.714 1 0.857

0.800 0.800 0.857 1

 , S43 =


1 0.571 1 0.800

0.571 1 0.857 0.700

1 0.857 1 0.571

0.800 0.70 0.571 1

 .
Then, we utilize the weight vector w = (0.3, 0.3, 0.2, 0.2)T of the students dk

(k = 1, 2, 3, 4) and (2.28) to calculate the weighted supports T ′(a
(k)
ij ) (i, j, k =

1, 2, 3, 4) of the preference values a
(k)
ij (i, j, k = 1, 2, 3, 4), which are contained in

the matrices T ′k = (T ′(a
(k)
ij ))4×4 (k = 1, 2, 3, 4), respectively

T ′1 =


0.700 0.443 0.467 0.456

0.443 0.700 0.482 0.470

0.467 0.482 0.700 0.460

0.456 0.470 0.460 0.700

 , T ′2 =


0.700 0.456 0.400 0.443

0.456 0.700 0.471 0.450

0.400 0.471 0.700 0.460

0.443 0.450 0.460 0.700



T ′3 =


0.800 0.543 0.500 0.520

0.543 0.800 0.511 0.550

0.500 0.511 0.800 0.560

0.520 0.550 0.560 0.800

 , T ′4 =


0.800 0.543 0.500 0.520

0.543 0.800 0.514 0.530

0.500 0.514 0.800 0.543

0.520 0.530 0.543 0.800


and then utilize (2.29) to calculate the weights v

(k)
ij (i, j, k = 1, 2, 3, 4) associated

with the preference values a
(k)
ij (i, j, k = 1, 2, 3, 4), which are contained in the

matrices Vk = (v
(k)
ij )4×4 (k = 1, 2, 3, 4), respectively

V1 =


0.293 0.291 0.301 0.296

0.291 0.293 0.298 0.295

0.301 0.298 0.293 0.293

0.295 0.295 0.293 0.293

 , V2 =


0.293 0.294 0.288 0.293

0.293 0.293 0.296 0.292

0.287 0.296 0.293 0.293

0.293 0.292 0.293 0.293


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V3 =


0.207 0.207 0.205 0.206

0.208 0.207 0.203 0.208

0.206 0.203 0.207 0.208

0.206 0.208 0.208 0.207

 , V4 =


0.207 0.208 0.206 0.206

0.208 0.207 0.203 0.205

0.206 0.203 0.207 0.206

0.206 0.205 0.206 0.207

 .

Based on this, we utilize the weighted PH operator (2.30) to aggregate all the

individual preference relations Ak = (a
(k)
ij )4×4 (k = 1, 2, 3, 4) into the collective

preference relation

A =


0.5000 0.5237 0.6248 0.5383

0.3344 0.5000 0.4878 0.6157

0.3411 0.3499 0.5000 0.6992

0.3460 0.2121 0.2093 0.5000

 .

After this, we utilize the NRAM (2.31) to derive the priority vector of A

v = (0.3003, 0.2661, 0.2596, 0.1740)T .

Using this, we get the ranking of the options as follows:

x1 � x2 � x3 � x4.

In this case where the preferences constructed by students dk (k = 1, 2, 3, 4)

are uncertain preference relations, for example

Ã1 =


[0.5, 0.5] [0.3, 0.5] [0.4, 0.5] [0.7, 0.8]

[0.5, 0.7] [0.5, 0.5] [0.7, 0.8] [0.7, 0.9]

[0.5, 0.6] [0.2, 0.3] [0.5, 0.5] [0.5, 0.6]

[0.2, 0.3] [0.1, 0.3] [0.4, 0.5] [0.5, 0.5]

 ,

Ã2 =


[0.5, 0.5] [0.7, 0.8] [0.5, 0.7] [0.4, 0.6]

[0.2, 0.3] [0.5, 0.5] [0.5, 0.6] [0.6, 0.7]

[0.3, 0.5] [0.4, 0.5] [0.5, 0.5] [0.7, 0.9]

[0.4, 0.6] [0.3, 0.4] [0.1, 0.3] [0.5, 0.5]

 ,

Ã3 =


[0.5, 0.5] [0.4, 0.5] [0.5, 0.7] [0.4, 0.6]

[0.5, 0.6] [0.5, 0.5] [0.3, 0.4] [0.7, 0.8]

[0.3, 0.5] [0.6, 0.7] [0.5, 0.5] [0.5, 0.7]

[0.4, 0.6] [0.2, 0.3] [0.3, 0.5] [0.5, 0.5]

 ,
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Ã4 =


[0.5, 0.5] [0.6, 0.8] [0.6, 0.7] [0.3, 0.5]

[0.2, 0.4] [0.5, 0.5] [0.3, 0.4] [0.4, 0.5]

[0.3, 0.4] [0.6, 0.7] [0.5, 0.5] [0.7, 0.9]

[0.5, 0.7] [0.5, 0.6] [0.1, 0.3] [0.5, 0.5]

 .

Then we can utilize Approach III to derive the ranking of the four options, and

the following decision steps are need.

Step 1: Utilize (2.55) and (2.56) to calculate the supports Sup(ã
(k)
ij , ã

(l)
ij )

(i, j, k, l = 1, 2, 3, 4), which are contained in the matrices Skl = (Skl(ã
(k)
ij , ã

(l)
ij ))4×4

(k = 1, 2, 3, 4), respectively

S12 =


1 0.500 0.700 0.706

0.500 1 0.800 0.727

0.700 0.800 1 0.546

0.706 0.727 0.546 1

 , S13 =


1 0.929 0.700 0.706

0.929 1 0.600 0.909

0.700 0.600 1 0.909

0.706 0.909 0.909 1



S14 =


1 0.571 0.600 0.588

0.571 1 0.600 0.364

0.600 0.600 1 0.546

0.588 0.364 0.546 1

 , S21 =


1 0.500 0.250 0.286

0.500 1 0.667 0.667

0.250 0.667 1 0.444

0.286 0.667 0.444 1



S23 =


1 0.571 1 1

0.571 1 0.667 0.778

1 0.667 1 0.556

1 0.778 0.556 1

 , S24 =


1 0.929 0.750 0.714

0.929 1 0.666 0.555

0.750 0.666 1 1

0.714 0.555 1 1



S31 =


1 0.917 0.250 0.286

0.917 1 0.333 0.889

0.250 0.333 1 0.889

0.286 0.889 0.889 1

 , S32 =


1 0.500 1 1

0.500 1 0.667 0.778

1 0.667 1 0.556

1 0.778 0.556 1



S34 =


1 0.583 0.750 0.714

0.583 1 1 0.333

0.750 1 1 0.556

0.714 0.333 0.556 1

 , S41 =


1 0.500 0.334 0.364

0.500 1 0.333 0.588

0.334 0.333 1 0.444

0.364 0.588 0.444 1


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S42 =


1 0.917 0.833 0.818

0.917 1 0.667 0.765

0.833 0.667 1 1

0.818 0.765 1 1

 , S43 =


1 0.583 0.833 0.818

0.583 1 1 647

0.833 1 1 0.556

0.818 0.647 0.556 1

 .

Step 2: Utilize the weight vector w = (0.3, 0.3, 0.2, 0.2)T of the students dk

(k = 1, 2, 3, 4) and (2.57) to calculate the weighted supports T ′(ã
(k)
ij ) (i, j, k =

1, 2, 3, 4) of the uncertain preference values ã
(k)
ij (i, j, k = 1, 2, 3, 4), which are

contained in the matrices T ′k = (T ′(ã
(k)
ij ))4×4 (k = 1, 2, 3, 4), respectively

T ′1 =


0.700 0.450 0.470 0.471

0.450 0.700 0.480 0.473

0.470 0.480 0.700 0.455

0.471 0.473 0.455 0.700

 , T ′2 =


0.700 0.450 0.425 0.429

0.450 0.700 0.467 0.467

0.425 0.467 0.700 0.444

0.429 0.467 0.444 0.700



T ′3 =


0.800 0.542 0.525 0.529

0.542 0.800 0.500 0.567

0.525 0.500 0.800 0.544

0.529 0.567 0.544 0.800

 , T ′4 =


0.800 0.548 0.517 0.518

0.542 0.800 0.500 0.535

0.517 0.500 0.800 0.544

0.518 0.535 0.544 0.800


and then utilize (2.58) to calculate the weights v̇

(k)
ij (i, j, k = 1, 2, 3, 4) associated

with the uncertain preference values ã
(k)
ij (i, j, k = 1, 2, 3, 4), which are contained

in the matrices Vk = (v̇
(k)
ij )4×4 (k = 1, 2, 3, 4), respectively

V1 =


0.293 0.293 0.299 0.298

0.293 0.293 0.299 0.294

0.299 0.299 0.293 0.293

0.298 0.294 0.291 0.293

 , V2 =


0.293 0.293 0.289 0.290

0.293 0.293 0.297 0.293

0.289 0.297 0.293 0.291

0.290 0.293 0.291 0.293



V3 =


0.207 0.207 0.207 0.207

0.207 0.207 0.202 0.209

0.207 0.202 0.207 0.208

0.207 0.209 0.208 0.207

 , V4 =


0.207 0.207 0.205 0.205

0.207 0.207 0.202 0.204

0.205 0.202 0.207 0.208

0.205 0.204 0.208 0.207

 .

Step 3: Utilize the weighted UPH operator to aggregate all the individual

uncertain preference relations Ãk = (ã
(k)
ij )4×4 (k = 1, 2, 3, 4) into the collective
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uncertain preference relation

Ã =


[0.5000, 0.5000] [0.4430, 0.6154] [0.4806, 0.6253] [0.4253, 0.6208]

[0.2857, 0.4430] [0.5000, 0.5000] [0.4223, 0.5322] [0.5823, 0.7068]

[0.3407, 0.4992] [0.3435, 0.4613] [0.5000, 0.5000] [0.5831, 0.7463]

[0.3182, 0.4728] [0.1862, 0.3638] [0.1559, 0.3752] [0.5000, 0.5000]

 .

Step 4: Utilize the UNRAM (2.60) to derive the uncertain priority vector

ṽ = (ṽ1, ṽ2, ṽ3, ṽ4)
T of Ã

ṽ1 = [0.2185, 0.3596], ṽ2 = [0.2116, 0.3323],

ṽ3 = [0.2089, 0.3361], ṽ4 = [0.1371, 0.2607].

Step 5: In order to rank ṽi (i = 1, 2, 3, 4), by (2.36), we construct the possi-

bility degree matrix

P =


0.5000 0.5654 0.5618 0.8406

0.4346 0.5000 0.4979 0.7989

0.4382 0.5021 0.5000 0.7933

0.1594 0.2011 0.2067 0.5000


and by (2.61), we have

p1 = 2.4678, p2 = 2.2314, p3 = 2.2336, p4 = 1.0672.

Then, ṽ1 > ṽ3 > ṽ2 > ṽ4, and thus, we rank the options xi (i = 1, 2, 3, 4) in

accordance with the descending order of ṽi (i = 1, 2, 3, 4)

x1 � x3 � x2 � x4.

From the previous numerical results, it can be known that the ranking of the

options in the latter case are slightly different from the former case due to change

of the input arguments.
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2.6 Conclusions

In this chapter, based on the PA operator, we have developed several new nonlin-

ear weighted harmonic aggregation operators including the PH operator, weighted

PH operator, POWH operator, UPH operator, weighted UPH operator and UP-

OWH operator. We have studied some desired properties of the developed oper-

ators, such as commutativity, idempotency and boundedness. The fundamental

idea of these operators is that the weight of each input argument depends on the

other input arguments and allows argument values to support each other in the

harmonic aggregation process. Moreover, we have applied the developed opera-

tors to aggregate all individual preference (or uncertain preference) relations into

collective preference (or uncertain preference) under various group decision mak-

ing environment and then developed some group decision making approaches.

The merit of the developed approaches is that they can take all the decision

arguments and their relationships into account. In the future, we will develop

several applications of the developed aggregation operators in other fields, such

as pattern recognition, supply chain management and image processing.
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Chapter 3

2-tuple linguistic harmonic

operators and their applications

in group decision making

Harmonic mean is reciprocal of arithmetic mean of reciprocal, which is a con-

servative average to be used to provide for aggregation lying between max and

min operators. In this chapter, we develop some new linguistic aggregation op-

erators such as 2-tuple linguistic harmonic (2TLH) operator, 2-tuple linguistic

weighted harmonic (2TLWH) operator, 2-tuple linguistic ordered weighted har-

monic (2TLOWH) operator, and 2-tuple linguistic hybrid harmonic (2TLHH)

operator, which can be utilized to aggregate preference information taking the

form of linguistic variables, and then study some desirable properties of the op-

erators. Based on the 2TLWH and 2TLHH operators, we present an approach to

multiple attribute decision making with 2-tuple linguistic information. Finally,

illustrative example is given to verify the developed approach and to demonstrate

its practicality and effectiveness by comparing with the existing approaches.
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3.1 Preliminaries

The linguistic variables are used in processes of computing with words that imply

their fusion, aggregation and comparison, etc. The most often used models deal-

ing with linguistic information are: (1) the semantic model that uses the linguistic

terms just as labels for fuzzy numbers, while the computations over them are done

directly over those fuzzy numbers, (2) the second one is the symbolic model that

uses the order index of the linguistic terms to make direct computation on labels,

and (3) the third model is based on the linguistic 2-tuple.

The 2-tuple linguistic representation model, proposed by Herrera and Mart́ınez

[19, 20], is based on the symbolic model and in addition the concept called Sym-

bolic Translation. In this section, we first review some concept of the 2-tuple.

Let S = {si : i = 0, 1, 2, . . . , g} be a finite and totally ordered discrete linguis-

tic term set, where si represents a possible value for a linguistic variable, and it

must have the following characteristics [15, 17]:

1) The set is ordered: si ≥ sj if i ≥ j;

2) There is the negation operator: neg(si) = sj such that j = t− i;
3) Max operator: max(si, sj) = si if si ≥ sj;

4) Min operator: min(si, sj) = si if si ≤ sj.

For example, S can be defined so as its elements are uniformly distributed on

a scale on which a total order is defined [42]:

S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor,

s4 = fair, s5 = slightly good, s6 = good, s7 = very good,

s8 = extremely good}.

Definition 3.1.1 [19] Let β be the result of an aggregation of the indices of a set

of labels assessed in linguistic term set S, i.e., the result of a symbolic aggregation

operation. β ∈ [0, g], being g + 1 the cardinality of S. Let i = round(β) and

α = β − i be two values such that i ∈ [0, g] and α ∈ [0.5,−0.5) then α is called a

symbolic translation.
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From this concept, Herrera and Mart́ınez [19] developed the linguistic repre-

sentation model which represents the linguistic information by means of 2-tuple

(si, αi), si ∈ S and αi ∈ [−0.5, 0.5):

• si represents the linguistic label center of the information;

• αi is a numerical value expressing the value of the translation from the

original result β to the closest index label i in the linguistic term set S, i.e., the

symbolic translation.

This model defines a set of transformation functions between linguistic terms

and 2-tuples and between numeric values and 2-tuples.

Definition 3.1.2 [19] Let S = {s0, s1, . . . , sg} be a linguistic term set and β ∈
[0, g] be a value representing the result of a symbolic aggregation, then the 2-

tuple that expresses the equivalent information to β is obtained with the function

4 : [0, g]→ S × [−0.5, 0.5) defined by

4 : [0, g]→ S × [−0.5, 0.5) (3.1)

4(β) = (si, αi), with

 si, i = round(β),

αi = β − i, αi ∈ [−0.5, 0.5),

where round(·) is the usual round operation, si has the closest index label to β

and αi is the value of the symbolic translation.

Contrarily, let S = {s0, s1, . . . , sg} be a linguistic term set and (si, αi) be a

2-tuple. There is always a 4−1 function:

4−1 : S × [−0.5, 0.5)→ [0, g] (3.2)

4−1(si, αi) = i+ αi = β

such that from a 2-tuple it returns its equivalent numerical value β ∈ [0, g].

From Definitions 3.1.1 and 3.1.2, it is obvious that the conversion of a lin-

guistic term into a linguistic 2-tuple consists of adding a value zero as symbolic

translation:

si ∈ S =⇒ (si, 0). (3.3)
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By ordinary lexicographic order, Herrera and Mart́ınez [19] defined the com-

parison of linguistic information represented by 2-tuples.

Definition 3.1.3 [19] Let (sk, αk) and (sl, αl) be two 2-tuples, with each one

representing a counting of information, then:

• if k < l then (sk, αk) is smaller than (sl, αl), denoted by (sk, αk) < (sl, αl);

• if k = l then

1) if αk = αl then (sk, αk) and (sl, αl) represent the same information,

denoted by (sk, αk) ∼ (sl, αl);

2) if αk < αl then (sk, αk) is smaller than (sl, αl), denoted by (sk, αk) <

(sl, αl);

3) if αk > αl then (sk, αk) is bigger than (sl, αl), denoted by (sk, αk) >

(sl, αl).

3.2 2-tuple linguistic harmonic operators

Definition 3.2.1 [12] Let WAA : Rn → R, if

WAA(a1, a2, . . . , an) =
n∑
j=1

wjaj, (3.4)

where R is the set of real numbers, aj (j = 1, 2, . . . , n) is a collection of positive

real numbers, w = (w1, w2, . . . , wn)T is the weight vector of aj (j = 1, 2, . . . , n),

with wj ≥ 0 and
∑n
j=1wj = 1, then WAA is called the weighted arithmetic aver-

aging (WAA) operator. Especially, if wi = 1, wj = 0, j 6= i, then WAA(a1, a2, . . . ,

an) = ai; if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the WAA operator is reduced to the arith-

metic averaging (AA) operator, i.e.,

AA(a1, a2, . . . , an) =
1

n

n∑
j=1

aj. (3.5)

Definition 3.2.2 [4] Let WHM : (R+)n → R+, if

WHM(a1, a2, . . . , an) =
1∑n

j=1
wj
aj

, (3.6)
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where R+ is the set of all positive real numbers, aj (j = 1, 2, . . . , n) is a collection

of positive real numbers, w = (w1, w2, . . . , wn)T is the weight vector of aj (j =

1, 2, . . . , n), with wj ≥ 0 and
∑n
j=1wj = 1, then WHM is called the weighted

harmonic mean (WHM) operator. Especially, if wi = 1, wj = 0, j 6= i, then

WHM(a1, a2, . . . , an) = ai; if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then the WHM operator is

reduced to the harmonic mean (HM) operator, i.e.,

HM(a1, a2, . . . , an) =
n∑n
j=1

1
aj

. (3.7)

The WAA and WHM operators first weight all the given data, and then

aggregate all these weighted data into a collective one. Yager [56] introduced and

studied the OWA operator that weights the ordered positions of the data instead

of weighting the data themselves.

Definition 3.2.3 [56] An OWA operator of dimension n is a mapping OWA :

Rn → R that has an associated vector w = (w1, w2, . . . , wn)T such that wj ≥ 0

and
∑n
j=1wj = 1. Furthermore,

OWA(a1, a2, . . . , an) =
n∑
j=1

wjbj, (3.8)

where bj is the jth largest of ai (i = 1, 2, . . . , n). Especially, if wi = 1, wj = 0,

j 6= i, then bn ≤ OWA(a1, a2, . . . , an) = bi ≤ b1; if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then

OWA(a1, a2, . . . , an) =
1

n

n∑
j=1

bj =
1

n

n∑
j=1

aj = AA(a1, a2, . . . , an). (3.9)

The WAA, WHM and OWA operators have only been used in situation in

which the input arguments are the exact values. However, judgements of people

depend on personal psychological aspects such as experience, learning, situation,

state of mind, and so forth. It is more suitable to provide their preferences by

means of linguistic variables rather than numerical ones.

For convenience, let S̃ be the set of all linguistic 2-tuples. In the following,

we extend the WHM operator (3.6) to linguistic 2-tuple environment:
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Definition 3.2.4 Let (ri, αi) (i = 1, 2, . . . , n, ri ∈ S, αi ∈ [−0.5, 0.5)) be a

collection of linguistic 2-tuples, and let 2TLWH : S̃n → S̃, if

2TLWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

wi
4−1(ri,αi)

 (3.10)

where w = (w1, w2, . . . , wn)T is the weight vector of (ri, αi) (i = 1, 2, . . . , n),

with wi ≥ 0 and
∑n
i=1wi = 1, then 2TLWH is called the 2-tuple linguistic

weighted harmonic (2TLWH) operator. Especially, if wj = 1, wi = 0, i 6= j,

then 2TLWH((r1, α1), (r2, α2) . . . , (rn, αn)) = (rj, αj); if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then

2TLWH operator is reduced to the 2-tuple linguistic harmonic (2TLH) operator:

2TLH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 n∑n
i=1

1
4−1(ri,αi)

 . (3.11)

Example 3.2.5 Given a collection of linguistic 2-tuples: (r1, α1) = (s2, 0.2),

(r2, α2) = (s5,−0.3), (r3, α3) = (s6, 0.3) and (r4, α4) = (s3,−0.4), let w =

(0.3, 0.1, 0.2, 0.4)T be the weight vector of (ri, αi) (i = 1, 2, 3, 4), then by (3.11),

we have

2TLWH((r1, α1), (r2, α2), (r3, α3), (r4, α4)) = 4
(

1
0.3
2.2

+ 0.1
4.7

+ 0.2
6.3

+ 0.4
2.6

)
= (s3, 0.01).

Theorem 3.2.6 Let (ri, αi) (i = 1, 2, . . . , n, ri ∈ S, αi ∈ [−0.5, 0.5)) be a collec-

tion of linguistic 2-tuples, then we have:

min
i

(ri, αi) ≤ 2TLWH((r1, α1), (r2, α2), . . . , (rn, αn)) ≤ max
i

(ri, αi). (3.12)

Proof Let w = (w1, w2, . . . , wn)T be the weight vector of (ri, αi) (i = 1, 2, . . . , n),

4−1(ri, αi) = βi for any i, mini(ri, αi) = (rk, αk) and maxi(ri, αi) = (rl, αl), then

2TLWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

wi
4−1(ri,αi)

 = 4

 1∑n
i=1

wi
βi


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≥ 4

 1∑n
i=1

wi
βk

 = 4 (βk) = (rk, αk),

2TLWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

wi
4−1(ri,αi)

 = 4

 1∑n
i=1

wi
βi


≤ 4

 1∑n
i=1

wi
βl

 = 4 (βl) = (rl, αl).

Hence

min
i

(ri, αi) ≤ 2TLWH((r1, α1), (r2, α2), . . . , (rn, αn)) ≤ max
i

(ri, αi).

Based on the OWA and 2TLWH operators, we define a 2-tuple linguistic

ordered weighted harmonic (2TLOWH) operators as follows:

Definition 3.2.7 Let (ri, αi) (i = 1, 2, . . . , n, ri ∈ S, αi ∈ [−0.5, 0.5)) be

a collection of linguistic 2-tuples. A 2TLOWH operator of dimension n is a

mapping 2TLOWH : S̃n → S̃, that has an associated weighting vector ω =

(ω1, ω2, . . . , ωn)T such that ωi ≥ 0 and
∑n
i=1 ωi = 1. Furthermore,

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

ωi
4−1(rσ(i),ασ(i))

 , (3.13)

where (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) and (rσ(i), ασ(i)) ≥
(rσ(i+1), ασ(i+1)) for all i.

Especially, if there is a tie between (ri, αi) and (rj, αj), then we replace each

of (ri, αi) and (rj, αj) by their average ((ri, αi) + (rj, αj))/2 in the process of

aggregation. If k items are tied, then we replace these by k replicas of their

average. The weighting vector ω = (ω1, ω2, . . . , ωn)T can be determined by using

some weight determining methods like the normal distribution based method

[32-35].

In the following, we shall look at some desirable properties associated with

the 2TLOWH operator.
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Theorem 3.2.8 Let (ri, αi) (i = 1, 2, . . . , n, ri ∈ S, αi ∈ [−0.5, 0.5)) be a collec-

tion of linguistic 2-tuples, then we have the following properties:

1) (Commutativity): If ((r′1, α
′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)) is any permutation of

((r1, α1), (r2, α2), . . . , (rn, αn)), then

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn))

= 2TLOWH((r′1, α
′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)). (3.14)

2) (Idempotency): If (ri, αi) = (r, α) for all i, then

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn)) = (r, α). (3.15)

3) (Monotonicity): Let (r′i, α
′
i) (i = 1, 2, . . . , n, r′i ∈ S, α′i ∈ [−0.5, 0.5)) be a

collection of linguistic 2-tuples, if (ri, αi) ≤ (r′i, α
′
i), for all i, then

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn))

≤ 2TLOWH((r′1, α
′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)). (3.16)

4) (Boundedness):

min
i

(ri, αi) ≤ 2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn)) ≤ max
i

(ri, αi). (3.17)

Proof Let ω = (ω1, ω2, . . . , ωn)T be an associated vector of 2TLOWH operator

such that ωi ≥ 0 and
∑n
i=1 ωi = 1. Let (σ(1), σ(2), . . . , σ(n)) be a permuta-

tion of (1, 2, . . . , n) such that (rσ(i−1), ασ(i−1)) ≥ (rσ(i), ασ(i)) for all i, and let

4−1(rσ(i), ασ(i)) = βσ(i) for any i.

(1) Since ((r′1, α
′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)) is a permutation of ((r1, α1), (r2, α2),

. . . , (rn, αn)), 4−1(r′σ(i), α′σ(i)) = βσ(i) for any i. Hence

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

ωi
4−1(rσ(i),ασ(i))


= 4

 1∑n
i=1

ωi
βσ(i)

 = 4

 1∑n
i=1

ωi
4−1(r′

σ(i)
,α′
σ(i)

)


= 2TLOWH((r′1, α

′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)).
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(2) Let 4−1(r, α) = β. Since (ri, αi) = (r, α) for all i, 4−1(rσ(i), ασ(i)) =

βσ(i) = β for any i. Hence

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

ωi
4−1(rσ(i),ασ(i))


= 4

 1∑n
i=1

ωi
βσ(i)

 = 4

 1∑n
i=1

ωi
β


= 4 (β) = (r, α).

(3) Let 4−1(r′σ(i), α′σ(i)) = β′σ(i) for any i. Since (ri, αi) ≤ (r′i, α
′
i) for all i,

4−1(rσ(i), ασ(i)) = βσ(i) ≤ β′σ(i) = 4−1(r′σ(i), α′σ(i)) for all i. Hence

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

ωi
4−1(rσ(i),ασ(i))


= 4

 1∑n
i=1

ωi
βσ(i)

 ≤ 4
 1∑n

i=1
ωi
β′
σ(i)

 = 4

 1∑n
i=1

ωi
4−1(r′

σ(i)
,α′
σ(i)

)


= 2TLOWH((r′1, α

′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)).

(4) Similar to the proof of Theorem 3.2.6.

Especially, if ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then the 2TLOWH operator is reduced to

the 2TLH operator. In fact,

2TLOWH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 n∑n
i=1

1
4−1(rσ(i),ασ(i))


= 4

 n∑n
i=1

1
4−1(ri,αi)

 = 2TLH((r1, α1), (r2, α2) . . . , (rn, αn)).

Clearly, the fundamental characteristic of the 2TWH operator is that it con-

sider the importance of each given linguistic argument, whereas the fundamental

characteristic of the 2TLOWH operator is the reordering step, and it weights all

the ordered positions of the linguistic arguments instead of weighting the given
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linguistic arguments themselves. By combining the advantages of the 2TLWH

and 2TLOWH operators, in following, we develop a 2-tuple linguistic hybrid har-

monic (2TLHH) operator that weights both the given linguistic arguments and

their ordered positions.

Definition 3.2.9 Let (ri, αi) (i = 1, 2, . . . , n, ri ∈ S, αi ∈ [−0.5, 0.5)) be a

collection of linguistic 2-tuples. A 2TLHH operator of dimension n is a mapping

2TLHH : S̃n → S̃, which has an associated weighting vector ω = (ω1, ω2, . . . , ωn)T

with ωi ≥ 0 and
∑n
i=1 ωi = 1, such that

2TLHH((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 1∑n
i=1

ωi
4−1(ṙσ(i),α̇σ(i))

 (3.18)

where (ṙσ(i), α̇σ(i)) is the ith largest of the weighted linguistic 2-tuples (ṙi, α̇i)

((ṙi, α̇i) = 4(nwi4−1(ri, αi)), i = 1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the

weight vector of (ri, αi) (i = 1, 2, . . . , n) with wi ≥ 0 and
∑n
i=1wi = 1, and n

is the balancing coefficient.

Especially, if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then (ṙi, α̇i) = (ri, αi), i = 1, 2, . . . , n, in this

case, the 2TLHH operator is reduced to the 2TLOWH operator. Moreover, if

ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then the 2TLHH operator is reduced to the 2TLWH operator.

Example 3.2.10 Given a collection of linguistic 2-tuples: (r1, α1) = (s2, 0.2),

(r2, α2) = (s5,−0.3), (r3, α3) = (s6, 0.3) and (r4, α4) = (s3,−0.4), and let w =

(0.3, 0.1, 0.2, 0.4)T be the weight vector of (ri, αi) (i = 1, 2, 3, 4). Then we get the

weighted linguistic 2-tuples:

(ṙ1, α̇1) = 4(4× 0.3×4−1(s2, 0.2)) = 4(2.64) = (s3,−0.36),

(ṙ2, α̇2) = 4(4× 0.1×4−1(s5,−0.3)) = 4(1.88) = (s2,−0.12),

(ṙ3, α̇3) = 4(4× 0.2×4−1(s6, 0.3)) = 4(5.04) = (s5, 0.04),

(ṙ4, α̇4) = 4(4× 0.4×4−1(s3,−0.4)) = 4(4.16) = (s4, 0.16).
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By using Definition 3.1.3, we rank the linguistic 2-tuples (ri, αi) (i = 1, 2, 3, 4):

(ṙσ(1), α̇σ(1)) = (s5, 0.04), (ṙσ(2), α̇σ(2)) = (s4, 0.16),

(ṙσ(3), α̇σ(3)) = (s3,−0.36), (ṙσ(4), α̇σ(4)) = (s2,−0.12).

Suppose that the weighting vector ω = (ω1, ω2, ω3, ω4)
T of the 2TLHH operator

is ω = (0.2, 0.3, 0.4, 0.1)T , then by (3.18), we get

2TLHH((r1, α1), (r2, α2), (r3, α3), (r4, α4)) = 4
(

1
0.2
5.04

+ 0.3
4.16

+ 0.4
2.64

+ 0.1
1.88

)
= (s3, 0.16).

3.2.1 Generalizations of 2TLOWH operators

In the following, generalizations of the 2TLOWH operator are presented by using

generalized and quasi-arithmetic means.

Definition 3.2.11 Let (ri, αi) (i = 1, 2, . . . , n, ri ∈ S, αi ∈ [−0.5, 0.5)) be a

collection of linguistic 2-tuples. A 2-tuple linguistic generalized ordered weighted

averaging (2TLGOWA) operator of dimension n is a mapping 2TLGOWA : S̃n →
S̃ that has an associated weighting vector ω = (ω1, ω2, . . . , ωn)T such that ωi ≥ 0

and
∑n
i=1 ωi = 1. Furthermore,

2TLGOWA((r1, α1), (r2, α2), . . . , (rn, αn))

= 4

( n∑
i=1

ωi
(
4−1(rσ(i), ασ(i))

)λ) 1
λ

 , (3.19)

where λ is a parameter such that λ ∈ (−∞,∞)− {0}, and (σ(1), σ(2), . . . , σ(n))

is a permutation of (1, 2, . . . , n) such that (rσ(i), ασ(i)) ≥ (rσ(i+1), ασ(i+1)) for all i.

The 2TLGOWA operators have many desirable properties: commutativity,

monotonicity, boundedness and idempotency. Especially, if there are ties between

linguistic 2-tuples, as in the case of 2TLOWH operator, we replace each of the tied
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arguments by their 2-tuple linguistic generalized mean in the process of aggrega-

tion. The 2TLGOWA operator provides a parameterized family of aggregation

operators. In order to study this family, we can analyze the weighting vector w or

the parameter ω. Especially, if ωi = 1
n

for all i, then the 2TLGOWA operator is

reduced to the 2-tuple linguistic generalized mean (2TLGM) operator; if ωj = 1,

ωi = 0 for all i 6= j, and (rj, αj) = mini(ri, αi) (resp. (rj, αj) = maxi(ri, αi)),

then the 2TLGOWA operator is reduced to the 2-tuple linguistic minimum (resp.

maximum) operator; if (ri, αi) ≥ (ri+1, αi+1) for all i, then the 2TLGOWA oper-

ator is reduced to the 2-tuple linguistic weighted generalized mean (2TLWGM)

operator. Some special cases can be obtained as the change of the parameters:

1) If λ = 1, then the 2TLGOWA operator is reduced to the 2TLOWA operator.

2) If λ→ 0, then the 2TLGOWA operator is reduced to the 2TLOWG oper-

ator.

3) If λ = −1, then the 2TLGOWA operator is reduced to the 2TLOWH

operator.

4) If λ = 2, then the 2TLGOWA operator is reduced to the 2-tuple linguistic

ordered weighted quadric averaging (2TLOWQA) operator.

5) If λ = −∞, then the 2TLGOWA operator is reduced to the 2-tuple lin-

guistic minimum operator.

6) If λ =∞, then the 2TLGOWA operator is reduced to the 2-tuple linguistic

maximum operator.

Definition 3.2.12 Let (ri, αi) (i = 1, 2, . . . , n, ri ∈ S, αi ∈ [−0.5, 0.5)) be a

collection of linguistic 2-tuples. A 2-tuple linguistic ordered weighted quasi-

arithmetic averaging (Quasi-2TLOWA) operator of dimension n is a mapping

Quasi-2TLOWA : S̃n → S̃ that has an associated weighting vector ω = (ω1, ω2, . . .

, ωn)T with ωi ≥ 0 and
∑n
i=1 ωi = 1, such that

Quasi-2TLOWA((r1, α1), (r2, α2), . . . , (rn, αn))

= 4
(
g−1

(
n∑
i=1

ωig
(
4−1(rσ(i), ασ(i))

)))
(3.20)

40



where g is a continuous strictly monotone function, and (σ(1), σ(2), . . . , σ(n)) is

a permutation of (1, 2, . . . , n) such that (rσ(i), ασ(i)) ≥ (rσ(i+1), ασ(i+1)) for all i.

As we can see, the 2TLGOWA operator is a particular case of the Quasi-

2THOWA operator when g(x) = xλ. Note that all properties and particular cases

commented in 2TLGOWA operator are also discussed in this generalization.

3.3 An approach to group decision making

Now we consider a multiple attribute group decision making (MAGDM) prob-

lem, let X = {x1, x2, . . . , xn} be a discrete set of n feasible alternatives and

G = {G1, G2, . . . , Gm} be a set of m attributes, whose weight vector is w =

(w1, w2, . . . , wm)T , where wi ≥ 0, i = 1, 2, . . . ,m,
∑m
i=1wi = 1. Let D =

{d1, d2, . . . , dl} be the set of l decision makers, and v = (v1, v2, . . . , vl)
T be the

weight vector of decision makers, where vk ≥ 0, k = 1, 2, . . . , l,
∑l
k=1 vk = 1.

Suppose that A(k) = (a
(k)
ij )m×n is the linguistic decision matrix, where a

(k)
ij ∈ S is

preference value, which takes the form of linguistic variables, given by the decision

maker dk ∈ D, for alternative xj ∈ X with respect to attribute Gi ∈ G. Group

decision making problems follow a common resolution scheme [19, 29] composed

by the following two phases:

• Aggregation phase: It combines the individual preferences to obtain a col-

lective preference value for each alternative.

• Exploitation phase: It orders the collective preference values to obtain the

best alternative(s).

In the following we shall utilize the 2TLWH and 2TLHH operators to propose

an approach to MAGDM with linguistic information.

Step 1: Transform the linguistic decision matrix A(k) = (a
(k)
ij )m×n into 2-tuple

linguistic decision matrix Ã(k) = ((a
(k)
ij , 0))m×n, k = 1, 2, . . . , l.

Step 2: Utilize the decision information given in matrix Ã(k) = ((a
(k)
ij , 0))m×n,

and the 2TLWH operator:

(a
(k)
j , α

(k)
j ) = 2TLWH((a

(k)
1j , 0), (a

(k)
2j , 0), . . . , (a

(k)
mj, 0))
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= 4

 1∑m
i=1

wi
4−1(a

(k)
ij ,0)

 , j = 1, 2, . . . , n (3.21)

to aggregate all the elements in the jth column of Ã(k) and get the overall attribute

value (a
(k)
j , α

(k)
j ) of the alternative xj corresponding to the decision maker dk.

Step 3: Utilize the 2TLHH operator:

(aj, αj) = 2TLHH((a
(1)
j , α

(1)
j ), (a

(2)
j , α

(2)
j ), . . . , (a

(l)
j , α

(l)
j ))

= 4

 1∑l
k=1

ωk
4−1(ȧ

σ(k)
j ,α̇

σ(k)
j )

 , j = 1, 2, . . . , n (3.22)

to aggregate the overall attribute values (a
(k)
j , α

(k)
j ) (k = 1, 2, . . . , l) correspond-

ing to the decision maker dk (k = 1, 2, . . . , l) and get the collective overall at-

tribute value (aj, αj), where (ȧ
(σ(k))
j , α̇

(σ(k))
j ) is the kth largest of the weighted

data (ȧ
(k)
j , α̇

(k)
j ) ((ȧ

(k)
j , α̇

(k)
j ) = 4(lvk 4−1 (a

(k)
j , α

(k)
j )), k = 1, 2, . . . , l), and ω =

(ω1, ω2, . . . , ωl)
T is the weighting vector of the 2TLHH operator, with ωk ≥ 0 and∑l

k=1 ωk = 1.

Step 4: Utilize the collective overall attribute value (aj, αj) (j = 1, 2, . . . , n)

to rank the alternatives xj(j = 1, 2, . . . , n), and then select the most desirable

one.

Step 5: End.

3.4 Illustrative examples

Example 3.4.1 Let us suppose an investment company, which wants to invest

a sum of money in the best option (adapted from [14]). There is a panel with five

possible alternatives in which to invest the money: 1) x1 is a car industry; 2) x2

is a food company; 3) x3 is a computer company; 4) x4 is an arms company; 5)

x5 is a TV company.

The investment company must take a decision according to the following

four attributes (suppose that the weighting vector of four attributes is w =
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(0.35, 0.15, 0.20, 0.30)T ): 1) G1 is the risk analysis; 2) G2 is the growth analy-

sis; G3 is the social-political impact analysis; 4) G4 is the environmental impact

analysis.

The five possible alternatives xj (j = 1, 2, 3, 4, 5) are evaluated using the

linguistic term set S:

S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor,

s4 = fair, s5 = slightly good, s6 = good, s7 = very good,

s8 = extremely good}

by three decision makers dk (k = 1, 2, 3) (whose weighting vector is v = (0.35, 0.25,

0.40)T ) under the above three attributes Gi (i = 1, 2, 3, 4), and construct, respec-

tively, the linguistic decision matrix A(k) = (a
(k)
ij )4×5 (k = 1, 2, 3) as listed in

Tables 3.1-3.3.

To get the best alternative(s), the following steps are involved:

Step 1: Transform the linguistic decision matrix A(k) = (a
(k)
ij )4×5 (k = 1, 2, 3)

into 2-tuple linguistic decision matrix Ã(k) = ((a
(k)
ij , 0))4×5 (k = 1, 2, 3) (see Tables

3.4-3.6):

Step 2: Utilize the 2TLWH operator (3.21) to aggregate all the elements in the

jth column of Ã(k) = ((a
(k)
ij , 0))4×5 and get the overall attribute value (a

(k)
j , α

(k)
j )

of the alternative xj:

(a
(1)
1 , α

(1)
1 ) = (s3,−0.01), (a

(1)
2 , α

(1)
2 ) = (s6,−0.07), (a

(1)
3 , α

(1)
3 ) = (s5,−0.18),

(a
(1)
4 , α

(1)
4 ) = (s4,−0.50), (a

(1)
5 , α

(1)
5 ) = (s5, 0.42), (a

(2)
1 , α

(2)
1 ) = (s3,−0.28),

(a
(2)
2 , α

(2)
2 ) = (s5,−0.38), (a

(2)
3 , α

(2)
3 ) = (s5,−0.40), (a

(2)
4 , α

(2)
4 ) = (s6, 0.32),

(a
(2)
5 , α

(2)
5 ) = (s4, 0.38), (a

(3)
1 , α

(3)
1 ) = (s3,−0.24), (a

(3)
2 , α

(3)
2 ) = (s5, 0.38),

(a
(3)
3 , α

(3)
3 ) = (s6,−0.40), (a

(3)
4 , α

(3)
4 ) = (s5,−0.31), (a

(3)
5 , α

(3)
5 ) = (s6,−0.28).

Step 3: Utilize the 2TLHH operator (3.22) (whose weight vector is ω =

(0.243, 0.514, 0.243)T determined by using normal distribution based method)

to aggregate the overall attribute values (a
(k)
j , α

(k)
j ) (k = 1, 2, 3) to the decision
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Table 3.1: Linguistic decision matrix A(1)

x1 x2 x3 x4 x5

G1 s4 s8 s4 s8 s6

G2 s5 s7 s5 s6 s4

G3 s3 s7 s5 s3 s7

G4 s2 s4 s6 s2 s5

Table 3.2: Linguistic decision matrix A(2)

x1 x2 x3 x4 x5

G1 s4 s6 s5 s7 s5

G2 s5 s6 s4 s6 s3

G3 s2 s6 s4 s2 s6

G4 s2 s3 s5 s4 s4

Table 3.3: Linguistic decision matrix A(3)

x1 x2 x3 x4 x5

G1 s4 s6 s5 s7 s5

G2 s6 s4 s5 s5 s7

G3 s2 s5 s7 s6 s6

G4 s2 s6 s6 s3 s6
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Table 3.4: 2-tuple linguistic decision matrix Ã(1)

x1 x2 x3 x4 x5

G1 (s4, 0) (s8, 0) (s4, 0) (s8, 0) (s6, 0)

G2 (s5, 0) (s7, 0) (s5, 0) (s6, 0) (s4, 0)

G3 (s3, 0) (s7, 0) (s5, 0) (s3, 0) (s7, 0)

G4 (s2, 0) (s4, 0) (s6, 0) (s2, 0) (s5, 0)

Table 3.5: 2-tuple linguistic decision matrix Ã(2)

x1 x2 x3 x4 x5

G1 (s4, 0) (s6, 0) (s5, 0) (s7, 0) (s5, 0)

G2 (s5, 0) (s6, 0) (s4, 0) (s6, 0) (s3, 0)

G3 (s2, 0) (s6, 0) (s4, 0) (s2, 0) (s6, 0)

G4 (s2, 0) (s3, 0) (s5, 0) (s4, 0) (s4, 0)

Table 3.6: 2-tuple linguistic decision matrix Ã(3)

x1 x2 x3 x4 x5

G1 (s4, 0) (s6, 0) (s5, 0) (s7, 0) (s5, 0)

G2 (s6, 0) (s4, 0) (s5, 0) (s5, 0) (s7, 0)

G3 (s2, 0) (s5, 0) (s7, 0) (s6, 0) (s6, 0)

G4 (s2, 0) (s6, 0) (s6, 0) (s3, 0) (s6, 0)

45



maker dk (k = 1, 2, , 3) and get the collective overall attribute value (aj, αj):

(a1, α1) = (s3,−0.193), (a2, α2) = (s5, 0.255), (a3, α3) = (s5,−0.196),

(a4, α4) = (s5,−0.407), (a5, α5) = (s5, 0.008).

Step 4: Utilize the collective overall attribute value (aj, αj) (j = 1, 2, 3, 4, 5)

to rank the alternatives xj (j = 1, 2, 3, 4, 5):

x2 � x5 � x3 � x4 � x1

and thus the most desirable alternative is x2.

In order to compare performance with the existing method [50], in following,

the semantic model, the fuzzy weighted harmonic mean (FWHM) and fuzzy hy-

brid harmonic mean (FHHM) operators [50] are used to computing the overall

attribute values. The semantics of the linguistic terms are given by triangular

fuzzy numbers defined in the interval [0, 1], which are usually described by the

membership functions. For example, we may assign the following semantics to

the set of nine linguistic terms:

s0 = (0, 0, 0.12), s1 = (0, 0.12, 0.25), s2 = (0.12, 0.25, 0.37),

s3 = (0.25, 0.37, 0.5), s4 = (0.37, 0.5, 0.62), s5 = (0.5, 0.62, 0.75),

s6 = (0.62, 0.75, 0.87), s7 = (0.75, 0.87, 1), s8 = (0.87, 1, 1).

In order to get the most desirable alternative(s), the following steps are in-

volved:

Step 1; Transform the linguistic decision matrix A(k) = (a
(k)
ij )4×5 (k = 1, 2, 3)

into triangular fuzzy number decision matrix Ā(k) = (â
(k)
ij )4×5 (k = 1, 2, 3), where

â
(k)
ij = (â

L(k)
ij , â

M(k)
ij , â

U(k)
ij ) (see Tables 3.7-3.9):

Step 2: Utilize the FWHM operator (see Definition C):

â
(k)
j = (â

L(k)
j , â

M(k)
j , â

U(k)
j ) = FWHM(â

(k)
1j , â

(k)
2j , â

(k)
3j , â

(k)
4j )

=
1∑4

i=1
wi
â
(k)
ij

=

 1∑4
i=1

wi
â
L(k)
ij

,
1∑4

i=1
wi

â
M(k)
ij

,
1∑4

i=1
wi

â
U(k)
ij

 , k = 1, 2, 3
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Table 3.7: Triangular fuzzy number decision matrix Ā(1)

x1 x2 x3 x4 x5

G1 (0.37, 0.5, 0.62) (0.87, 1, 1) (0.37, 0.5, 0.62) (0.87, 1, 1) (0.62, 0.75, 0.87)

G2 (0.5, 0.62, 0.75) (0.75, 0.87, 1) (0.5, 0.62, 0.75) (0.62, 0.75, 0.87) (0.37, 0.5, 0.62)

G3 (0.25, 0.37, 0.5) (0.75, 0.87, 1) (0.5, 0.62, 0.75) (0.25, 0.37, 0.5) (0.75, 0.87, 1)

G4 (0.12, 0.25, 0.37) (0.37, 0.5, 0.62) (0.62, 0.75, 0.87) (0.12, 0.25, 0.37) (0.5, 0.62, 0.75)

Table 3.8: Triangular fuzzy number decision matrix Ā(2)

x1 x2 x3 x4 x5

G1 (0.37, 0.5, 0.62) (0.62, 0.75, 0.87) (0.5, 0.62, 0.75) (0.75, 0.87, 1) (0.5, 0.62, 0.75)

G2 (0.5, 0.62, 0.75) (0.62, 0.75, 0.87) (0.37, 0.5, 0.62) (0.62, 0.75, 0.87) (0.25, 0.37, 0.5)

G3 (0.12, 0.25, 0.37) (0.62, 0.75, 0.87) (0.37, 0.5, 0.62) (0.12, 0.25, 0.37) (0.62, 0.75, 0.87)

G4 (0.12, 0.25, 0.37) (0.25, 0.37, 0.5) (0.5, 0.62, 0.75) (0.37, 0.5, 0.62) (0.37, 0.5, 0.62)

Table 3.9: Triangular fuzzy number decision matrix Ā(3)

x1 x2 x3 x4 x5

G1 (0.37, 0.5, 0.62) (0.62, 0.75, 0.87) (0.5, 0.62, 0.75) (0.75, 0.87, 1) (0.5, 0.62, 0.75)

G2 (0.62, 0.75, 0.87) (0.37, 0.5, 0.62) (0.5, 0.62, 0.75) (0.5, 0.62, 0.75) (0.75, 0.87, 1)

G3 (0.12, 0.25, 0.37) (0.5, 0.62, 0.75) (0.75, 0.87, 1) (0.62, 0.75, 0.87) (0.62, 0.75, 0.87)

G4 (0.12, 0.25, 0.37) (0.62, 0.75, 0.87) (0.62, 0.75, 0.87) (0.25, 0.37, 0.5) (0.62, 0.75, 0.87)
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to aggregate all the elements in the jth column of Ā(k) = (â
(k)
ij )4×5 and get the

overall attribute value â
(k)
j of the alternative xj:

â
(1)
1 = (0.220, 0.373, 0.506), â

(1)
2 = (0.595, 0.739, 0.845),

â
(1)
3 = (0.470, 0.601, 0.727), â

(1)
4 = (0.254, 0.437, 0.577),

â
(1)
5 = (0.544, 0.675, 0.804), â

(2)
1 = (0.185, 0.340, 0.473),

â
(2)
2 = (0.429, 0.573, 0.712), â

(2)
3 = (0.445, 0.572, 0.699),

â
(2)
4 = (0.314, 0.499, 0.646), â

(2)
5 = (0.411, 0.544, 0.675),

â
(3)
1 = (0.187, 0.345, 0.479), â

(3)
2 = (0.539, 0.671, 0.796),

â
(3)
3 = (0.571, 0.696, 0.825), â

(3)
4 = (0.437, 0.581, 0.725),

â
(3)
5 = (0.586, 0.712, 0.839).

Step 3: Utilize the FHHM operator (see Definition E) (suppose that its weight

vector is also ω = (0.243, 0.514, 0.243)T ) and Definition B (without loss of gener-

ality, δ = 0.5):

âj = (âLj , â
M
j , â

U
j ) = FHHM(â

(1)
j , â

(2)
j , â

(3)
j )

=
1∑3

k=1
ωk

˙̂a
(σ(k))
j

=

 1∑3
k=1

ωk
ȧ
L(σ(k))
j

,
1∑3

k=1
ωk

ȧ
M(σ(k))
j

,
1∑3

k=1
ωk

ȧ
U(σ(k))
j

 , j = 1, 2, 3, 4, 5

to aggregate the overall attribute values â
(k)
j (k = 1, 2, 3) corresponding to the

decision maker dk (= 1, 2, 3) and get the collective overall attribute value âj,

where ˙̂a
(σ(k))

j = (ȧ
L(σ(k))
j , ȧ

M(σ(k))
j , ȧ

U(σ(k))
j ) is the kth largest of the weighted data

˙̂a
(k)

j ( ˙̂a
(k)

j = 3vkâ
(k)
j , k = 1, 2, 3):

â1 = (0.1975, 0.3504, 0.4818), â2 = (0.5122, 0.6542, 0.7759),

â3 = (0.4706, 0.5980, 0.7233), â4 = (0.2918, 0.4720, 0.6139),

â5 = (0.4919, 0.6234, 0.7519).

Step 4: Compare each âj with all âi (i = 1, 2, 3, 4, 5) by using Definition B

(without loss of generality, set δ = 0.5), and let pij = p(âi ≥ âj), and then
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construct a possibility matrix:

P =



0.5000 0.0000 0.0000 0.1060 0.0000

1.0000 0.5000 0.7008 1.0000 0.6013

1.0000 0.2992 0.5000 0.9682 0.4017

0.8940 0.0000 0.0318 0.5000 0.0000

1.0000 0.3987 0.5983 1.0000 0.5000


.

Summing all elements in each line of matrix P, we have

p1 = 0.6060, p2 = 3.8021, p3 = 3.1691, p4 = 1.4258, p5 = 3.4970

and then reorder âj (j = 1, 2, 3, 4, 5) in descending order in accordance with the

values pj (j = 1, 2, 3, 4, 5):

â2 > â5 > â3 > â4 > â1.

Step 5: Rank all alternatives xj (j = 1, 2, 3, 4, 5) by the ranking of âj (j =

1, 2, 3, 4, 5):

x2 � x5 � x3 � x4 � x1

and thus the most desirable alternative is x2.

From the previous results, it can be known that the ranking of the options

in the Xu’s approach [50] is the same with the our approach. But there are

some differences between them. Firstly, the FWHM operator transforms the

linguistic assessment values into triangular fuzzy numbers and then the FHHM

operator aggregates the overall attribute values, and thus the results do not ex-

actly match any initial linguistic terms. They also cannot be translated into

linguistic variables, the transformations only an approximate form of the initial

expression, which would lost and distort the original information and hence may

bring about lack of precision. On the contrary, our approach generates the overall

attribute values which expressed by the linguistic values. Secondly, our results

are meaningful and definite, for example, the result of x2 is (s5, 0.255), which
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means that x2 is more than “slightly good”. But the result of FHHM operator is

(0.5122, 0.6542, 0.7759), we can not definitely know that the result is better than

“slightly good” or “good”, or inferior than “very good”. Finally, in order to rank

all the alternatives from the collective overall attribute values, the Xu’s approach

needs the formula of comparing triangular fuzzy numbers and the possibility ma-

trix to rank the results, while our approach only uses the linguistic comparison

rule to the results.

The following practical case was adapted from [6].

Example 4. Due to increasing customization, a leading Taiwan firm in the

bicycle industry needs a flexible manufacturing system (FMS) to produce a cus-

tomized bike, which is designing for customer’s requirements. After performing

task analysis, it has been identified that this system should be produce mountain

bikes and road racing bikes for a customized order. After preliminary screening,

three competing alternatives, x1, x2 and x3 are identified that are capable of per-

forming this production task. A committee of three decision makers, d1, d2 and

d3 has been formed to conduct further evaluation and to select the most suitable

FMS. The attributes which are considered here in assessment of xj (j = 1, 2, 3)

are: 1) G1 is process flexibility; 2) G2 is product quality; 3) G3 is learning; 4)

G4 is exposure to labor unrest. The decision maker dk (k = 1, 2, 3) evaluates the

performance of FMS xj (j = 1, 2, 3) according to the attributes Gi (j = 1, 2, 3, 4)

by using the linguistic terms in the set

S = {s1 = extremely low, s2 = very low, s3 = low, s4 = slightly low,

s5 = middle, s6 = slightly high, s7 = high, s8 = very high,

s9 = extremely high}.

and constructs, respectively, the linguistic decision matrix A(k) (k = 1, 2, 3) as

listed in Tables 3.10-3.12. Let v = (0.3, 0.4, 0.3)T be the weight vector of the

decision makers dk (k = 1, 2, 3), and w = (0.35, 0.15, 0.20, 0.30)T be the weight

vector of the attributes Gi (i = 1, 2, 3, 4).

Now we utilize the our approach to find the decision result. We first transform

the linguistic decision matrix A(k) = (a
(k)
ij )4×3 (k = 1, 2, 3) into 2-tuple linguistic
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Table 3.10: Linguistic decision matrix A(1)

x1 x2 x3

G1 s6 s3 s7

G2 s5 s6 s4

G3 s7 s6 s5

G4 s4 s6 s5

Table 3.11: Linguistic decision matrix A(2)

x1 x2 x3

G1 s5 s5 s7

G2 s6 s3 s8

G3 s2 s7 s7

G4 s5 s6 s5

Table 3.12: Linguistic decision matrix A(3)

x1 x2 x3

G1 s7 s5 s6

G2 s4 s7 s7

G3 s3 s8 s7

G4 s3 s6 s6
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decision matrix Ã(k) = ((a
(k)
ij , 0))4×3 (k = 1, 2, 3) and utilize the 2TLWH operator

(3.21) to aggregate all the elements in the jth column of Ã(k) = ((a
(k)
ij , 0))4×3 and

get the overall attribute value (a
(k)
j , α

(k)
j ) of the alternative xj:

(a
(1)
1 , α

(1)
1 ) = (s5, 0.21), (a

(1)
2 , α

(1)
2 ) = (s4, 0.44), (a

(1)
3 , α

(1)
3 ) = (s5, 0.33),

(a
(2)
1 , α

(2)
1 ) = (s4,−0.08), (a

(2)
2 , α

(2)
2 ) = (s5, 0.04), (a

(2)
3 , α

(2)
3 ) = (s6, 0.36),

(a
(3)
1 , α

(3)
1 ) = (s4,−0.07), (a

(3)
2 , α

(3)
2 ) = (s6, 0.01), (a

(3)
3 , α

(3)
3 ) = (s6, 0.32).

Next, we utilize the 2TLHH operator (3.22) (whose weight vector is ω =

(0.243, 0.514, 0.243)T determined by using normal distribution based method) to

aggregate the overall attribute values (a
(k)
j , α

(k)
j ) (k = 1, 2, 3) to the decision maker

dk (k = 1, 2, , 3) and get the collective overall attribute value (aj, αj):

(a1, α1) = (s4, 0.174), (a2, α2) = (s5, 0.072), (a3, α3) = (s6, 0.066).

Then,we utilize the collective overall attribute value (aj, αj) (j = 1, 2, 3) to

rank the alternatives xj (j = 1, 2, 3):

x3 � x2 � x1

and thus the most desirable alternative is x3.

3.5 Conclusions

In this chapter, based on the harmonic mean operator, we have developed several

new harmonic aggregation operators including the 2-tuple linguistic weighted har-

monic (2TLWH), 2-tuple linguistic ordered weighted harmonic (2TLOWH) and

2-tuple linguistic hybrid harmonic (2TLHH) operators, which can be utilized to

aggregate preference information taking the form of linguistic variables. We have

studied some desired properties of the developed operators, such as commutativ-

ity, idempotency and boundedness. The 2TLHH operator generalizes both the

2TLWH operator and the 2TLOWH operator, and reflects the importance de-

grees of both the given linguistic arguments and their ordered positions. Based

52



on the 2TLWH and the 2LHH operators, we have proposed an approach to mul-

tiple attribute group decision making with linguistic information. We have also

applied the proposed approach to the problem of investing a sum of money in

best option. The proposed approach are compared with Xu’s approach [50] to

show their advantages and effectiveness.

Appendix

Let â = (aL, aM , aU), where aU ≥ aM ≥ aL ≥ 0, then â is called a triangular fuzzy

number, where aL and aU stand for the lower and upper values of â, respectively,

and aM stands for the modal value [32]. For convenience, we let Ω be the set of

all triangular fuzzy numbers. Some operational laws of triangular fuzzy numbers

as follows [32]:

Definition A. Let â = (aL, aM , aU) and b̂ = (bL, bM , bU) be two triangular

fuzzy numbers, then

1) â+ b̂ = (aL, aM , aU) + (bL, bM , bU) = (aL + bL, aM + bM , aU + bU);

2) λâ = λ(aL, aM , aU) = (λaL, λaM , λaU);

3) 1
â

= 1
(aL,aM ,aU )

= ( 1
aU
, 1
aM
, 1
aL

).

In order to compare two triangular fuzzy numbers, Xu [50] provided the fol-

lowing definition:

Definition B. Let â = (aL, aM , aU) and b̂ = (bL, bM , bU) be two triangular

fuzzy numbers, then the degree of possibility of â ≥ b̂ is defined as follows:

p(â ≥ b̂) = δmax

{
1−max

(
bM − aL

aM − aL + bM − bL
, 0

)
, 0

}

+(1− δ) max

{
1−max

(
bU − aM

aU − aM + bU − bM
, 0

)
, 0

}
, δ ∈ [0, 1]

which satisfies the following properties:

0 ≤ p(â ≥ b̂) ≤ 1, p(â ≥ â) = 0.5, p(â ≥ b̂) + p(b̂ ≥ â) = 1.
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Definition C. Let âi = (aLi , a
M
i , a

U
i ) (i = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers. A fuzzy weighted harmonic mean (FWHM) operator of

dimension n is a mapping FWHM : Ωn → Ω, such that

FWHM(â1, â2, . . . , ân) =
1∑n

i=1
wi
âi

=

 1∑n
i=1

wi
aLi

,
1∑n

i=1
wi
aMi

,
1∑n

i=1
wi
aUi

 ,
where w = (w1, w2, . . . , wn)T is the weight vector of âi (i = 1, 2, . . . , n) with

wi ≥ 0 and
∑n
i=1wi = 1. Especially, if w = ( 1

n
, 1
n
, . . . , 1

n
)T , then the FWHM

operator is reduced to the FHM operator:

FHM(â1, â2, . . . , ân) =
n∑n
i=1

1
âi

.

Definition D. Let âi = (aLi , a
M
i , a

U
i ) (i = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers. A fuzzy ordered weighted harmonic mean (FOWHM)

operator of dimension n is a mapping FOWHM : Ωn → Ω, which has an associ-

ated vector ω = (ω1, ω2, . . . , ωn)T with ωi ≥ 0 and
∑n
i=1 ωi = 1, such that

FOWHM(â1, â2, . . . , ân) =
1∑n

i=1
ωi
âσ(i)

=

 1∑n
i=1

ωi
aL
σ(i)

,
1∑n

i=1
ωi
aM
σ(i)

,
1∑n

i=1
ωi
aU
σ(i)

 ,
where âσ(i) = [aLσ(i), a

M
σ(i), a

U
σ(i)] (i = 1, 2, . . . , n), and (σ(1), σ(2), . . . , σ(n)) is a

permutation of (1, 2, . . . , n) such that âσ(i−1) ≥ âσ(i) for all i.

Definition E. Let âj = (aLj , a
M
j , a

U
j ) (j = 1, 2, . . . , n) be a collection of tri-

angular fuzzy numbers. A fuzzy hybrid harmonic mean (FHHM) operator of

dimension n is a mapping FHHM : Ωn → Ω, which has an associated vector

ω = (ω1, ω2, . . . , ωn)T with ωi ≥ 0 and
∑n
i=1 ωi = 1, such that

FHHM(â1, â2, . . . , ân) =
1∑n

i=1
ωi
˙̂aσ(i)
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=

 1∑n
i=1

ωi
ȧL
σ(i)

,
1∑n

i=1
ωi
ȧM
σ(i)

,
1∑n

i=1
ωi
ȧU
σ(i)

 ,
where ˙̂aσ(i) = [ȧLσ(i), ȧ

M
σ(i), ȧ

U
σ(i)] is the ith largest of the weighted triangular fuzzy

numbers ˙̂ai ( ˙̂ai = nwiâi, i = 1, 2, . . . , n), w = (w1, w2, . . . , wn)T is the weight

vector of ˙̂ai (i = 1, 2, . . . , n) with wi ≥ 0 and
∑n
i=1wi = 1, and n is the balancing

coefficient. Especially, if w = ( 1
n
, 1
n
, . . . , 1

n
)T , then ˙̂ai = âi, i = 1, 2, . . . , n, in

this case, the FHHM operator is reduced to the FOWHM operator. Moreover, if

ω = ( 1
n
, 1
n
, . . . , 1

n
)T , then the FHHH operator is reduced to the FWHM operator.
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Chapter 4

2-tuple linguistic prioritized

aggregation operators and their

applications in group decision

making

The prioritized average (PA) operator is a nonlinear weighted average aggrega-

tion tool whose weighting vectors depend on their input arguments. In this chap-

ter, we develop some 2-tuple linguistic prioritized aggregation operators such

as 2-tuple linguistic prioritized weighted average (2TLPWA) operator, 2-tuple

linguistic prioritized weighted geometric (2TLPWG) operator, 2-tuple linguistic

prioritized ordered weighted average (2TLPOWA) operator and 2-tuple linguistic

prioritized ordered weighted geometric (2TLPOWG) operator. Then, we apply

them to develop approaches to multiple attribute group decision making, with lin-

guistic information, in which the attributes are in different priority levels. Finally,

an example is used to illustrate the applicability of the developed approaches.
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4.1 2-tuple linguistic prioritized aggregation op-

erators

The prioritized average (PA) operator was originally introduced by Yager [61],

which was defined as follows:

Definition 4.1.1 [61] Let G = {G1, G2, . . . , Gn} be a collection of attribute and

that there is a prioritization between the attribute expressed by the linear ordering

G1 � G2 � G3 � · · · � Gn, indicate attribute Gj has higher priority than Gk if

j < k. The value Gj(x) is the performance of any alternative x under attribute

Gj, and satisfies Gj(x) ∈ [0, 1]. If

PA(G(x)) =
n∑
j=1

wjGj(x), (4.1)

where wj = Tj∑n

j=1
Tj

, Tj =
∏j−1
k=1Gk(x) (j = 2, 3, . . . , n), T1 = 1, then PA is called

the prioritized average (PA) operator.

The prioritized average (PA) operators have usually been used in the situation

where the input arguments are the exact values. In some situations, however, the

input arguments take the form of 2-tuple linguistic variables rather than numerical

ones because of time pressure, lack of knowledge, and the decision maker’s limited

attention and information processing capabilities.

Definition 4.1.2 Let S = {si : i = 0, 1, 2, . . . , g} be a finite and totally ordered

discrete linguistic term set, and (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i = 1, 2, . . . , n)

be a collection of 2-tuple linguistic variables, then we define a 2-tuple linguistic

prioritized weighted average (2TLPWA) operators as follows:

2TLPWA((r1, α1), (r2, α2), . . . , (rn, αn)) = 4
(

n∑
i=1

Ti∑n
j=1 Tj

4−1 (ri, αi)

)
, (4.2)

where Ti =
∏i−1
k=1

1
g
|4−1 (rk, αk)|, i = 2, 3, . . . , n, T1 = 1 and 1

g
|4−1 (ri, αi)| is the

score values of (ri, αi) (i = 2, . . . , n).
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Clearly, the 2TLPWA operator is a nonlinear weighted aggregation operator,

and the weight Ti∑n

j=1
Tj

of the argument (ri, αi) depends on all the input arguments

(rj, αj) (j = 1, 2, . . . , n) and allows the argument values to support each other in

the prioritized aggregation process.

Example 4.1.3 Let S = {si : i = 0, 1, 2, . . . , 8} be a finite and totally or-

dered discrete linguistic term set. Assume that we have four 2-tuple linguis-

tic variables: (r1, α1) = (s2, 0.2), (r2, α2) = (s5,−0.3), (r3, α3) = (s6, 0.3) and

(r4, α4) = (s3,−0.4), then

T1 = 1

T2 =
1

8
| 4−1 (s2, 0.2)| = 2.2

8
= 0.275

T3 = (0.275)
1

8
| 4−1 (s5,−0.3)| = (0.275)(0.588) = 0.162

T4 = (0.162)
1

8
| 4−1 (s6, 0.3)| = (0.162)(0.788) = 0.128.

We see
∑4
i=1 Ti = 1.565. From this we get the aggregated value

2TLPWA((r1, α1), (r2, α2), (r3, α3), (r4, α4))

= 4
(

1

1.565
(2.2) +

0.275

1.565
(4.7) +

0.162

1.565
(6.3) +

0.128

1.565
(2.6)

)
= 4(3.096) = (s3, 0.096).

In the following we shall make an investigation on some desirable properties

of the 2TLPWA operator.

Theorem 4.1.4 Let S = {si : i = 0, 1, 2, . . . , g} be a finite and totally ordered

discrete linguistic term set, and (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i = 1, 2, . . . , n)

be a collection of 2-tuple linguistic variables, then we have the following properties:

1) (Idempotency): If (ri, αi) = (r, α) for all i, then

2TLPWA((r1, α1), (r2, α2), . . . , (rn, αn)) = (r, α). (4.3)
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2) (Monotonicity): Let (r′i, α
′
i) (r′i ∈ S, α′i ∈ [−0.5, 0.5), i = 1, 2, . . . , n) be a

collection of 2-tuple linguistic variables, if (ri, αi) ≤ (r′i, α
′
i), for all i, then

2TLPWA((r1, α1), (r2, α2), . . . , (rn, αn))

≤ 2TLPWA((r′1, α
′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)). (4.4)

3) (Boundedness):

min
i

(ri, αi) ≤ 2TLPWA((r1, α1), (r2, α2), . . . , (rn, αn)) ≤ max
i

(ri, αi). (4.5)

Based on the 2TLPWA operator and the geometric mean, in the following,

we define a 2-tuple linguistic prioritized geometric (2TLPG) operator.

Definition 4.1.5 Let S = {si : i = 0, 1, 2, . . . , g} be a finite and totally ordered

discrete linguistic term set, and (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i = 1, 2, . . . , n)

be a collection of 2-tuple linguistic variables, then we define a 2-tuple linguistic

prioritized weighted geometric (2TLPWG) operators as follows:

2TLPWG((r1, α1), (r2, α2), . . . , (rn, αn)) = 4

 n∏
i=1

(
4−1(ri, αi)

) Ti∑n

j=1
Tj

 (4.6)

where Ti =
∏i−1
k=1

1
g
| 4−1 (ri, αi)|, i = 2, 3, . . . , n, T1 = 1 and 1

g
| 4−1 (ri, αi)| is the

score values of (ri, αi) (i = 2, . . . , n).

Example 4.1.6 Consider the 2-tuple linguistic variables (ri, αi) (i = 1, 2, 3, 4)

given in Example 4.1.3. Then by using 2TLPG operator, the aggregated value is

2TLPWG((r1, α1), (r2, α2), (r3, α3), (r4, α4))

= 4
(
(2.2)

1
1.565 × (4.7)

0.275
1.565 × (6.3)

0.162
1.565 × (2.6)

0.128
1.565

)
= 4(2.842) = (s3,−0.158).

By Lemma 2.1.1, we have the following theorem.
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Theorem 4.1.7 Let S = {si : i = 0, 1, 2, . . . , g} be a finite and totally ordered

discrete linguistic term set. Assume that (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i =

1, 2, . . . , n) are a collection of 2-tuple linguistic variables, we then have

2TLPWA((r1, α1), (r2, α2), . . . , (rn, αn))

≤ 2TLPWG((r1, α1), (r2, α2), . . . , (rn, αn)). (4.7)

Similar to Theorem 4.1.4, we have the following properties.

Theorem 4.1.8 Let S = {si : i = 0, 1, 2, . . . , g} be a finite and totally ordered

discrete linguistic term set, and (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i = 1, 2, . . . , n)

be a collection of 2-tuple linguistic variables, then we have the following properties:

1) (Idempotency): If (ri, αi) = (r, α) for all i, then

2TLPWG((r1, α1), (r2, α2), . . . , (rn, αn)) = (r, α). (4.8)

2) (Monotonicity): Let (r′i, α
′
i) (r′i ∈ S, α′i ∈ [−0.5, 0.5), i = 1, 2, . . . , n) be a

collection of 2-tuple linguistic variables, if (ri, αi) ≤ (r′i, α
′
i), for all i, then

2TLPWG((r1, α1), (r2, α2), . . . , (rn, αn))

≤ 2TLPWG((r′1, α
′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)). (4.9)

3) (Boundedness):

min
i

(ri, αi) ≤ 2TLPWG((r1, α1), (r2, α2), . . . , (rn, αn)) ≤ max
i

(ri, αi). (4.10)

The fundamental characteristic of both the 2TLPWA and 2TLPWG oper-

ators is that they weight all the given 2-tuple linguistic variables themselves,

and the weighting vectors depend upon the input arguments. However, in many

group decision making problems, we need to rearrange all the given arguments

in descending (or ascending) order, and then weight the ordered positions of the

input arguments so as relieve the influence of unfair arguments on decision result

by assigning low weights. As a result, motivated by the idea of Yager’s OWA

operator [56, 45], in the following, we define 2-tuple linguistic prioritized ordered

weighted aggregation operators.
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Definition 4.1.9 Let S = {si : i = 0, 1, 2, . . . , g} be a finite and totally ordered

discrete linguistic term set, and (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i = 1, 2, . . . , n)

be a collection of 2-tuple linguistic variables, then we define a 2-tuple linguistic

prioritized ordered weighted average (2TLPOWA) operator as follows:

2TLPOWA((r1, α1), (r2, α2), . . . , (rn, αn))

= 4
(

n∑
i=1

ui4−1 (rindex(i), αindex(i))

)
(4.11)

where index is an indexing function such that index(i) is the index of the ith

largest of the arguments (rj, αj) (j = 1, 2, . . . , n), and thus (rindex(i), αindex(i)) is

the ith largest argument of (rj, αj) (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) are

a collection of weights such that

ui = f(Ri)− f(Ri−1), Ri =
i∑

k=1

Vindex(k), i = 1, 2, . . . , n (4.12)

where f : [0, 1]→ [0, 1] is a basic unit-interval monotone (BUM) function having

the following properties: 1) f(0) = 0; 2) f(1) = 1; 3) f(x) ≥ f(y) if x > y,

and Vindex(k) is the associated priority based importance weight of the kth largest

argument (rindex(k), αindex(k)) of arguments (rj, αj) (j = 1, 2, . . . , n) having the

priority based importance weights Vj (j = 1, 2, . . . , n) given by

Vj =
Tj∑n
k=1 Tk

, Tj =
j−1∏
k=1

1

g
| 4−1 (rk, αk)|, j = 2, 3, . . . , n, T1 = 1, (4.13)

where 1
g
| 4−1 (rj, αj)| is the score value of (rj, αj) (j = 2, . . . , n).

Example 4.1.10 Consider the 2-tuple linguistic variables (ri, αi) (i = 1, 2, 3, 4)

given in Example 4.1.3. We first order the arguments (ri, αi) as follows:

(rindex(1), αindex(1)) = (s6, 0.3), (rindex(2), αindex(2)) = (s5,−0.3),

(rindex(3), αindex(3)) = (s3,−0.4), (rindex(4), αindex(4)) = (s2, 0.2)
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and get the associated priority based importance weight Vindex(i) of (rindex(i), αindex(i))

(i = 1, 2, 3, 4) as follows:

Vindex(1) =
0.162

1.565
= 0.1035, Vindex(2) =

0.275

1.565
= 0.1757,

Vindex(3) =
0.128

1.565
= 0.0818, Vindex(4) =

1

1.565
= 0.6390.

Assume that the BUM function f is given by f(x) = x2. Using this and the

normalized priority based weights, we obtain the weights ui (i = 1, 2, 3, 4):

u1 = (0.1035)2 = 0.0107, u2 = (0.2792)2 − (0.1035)2 = 0.0672,

u3 = (0.361)2 − (0.2792)2 = 0.0524, u4 = (1)2 − (0.361)2 = 0.8697.

Using these values and 2TLOWA operator, the aggregated value is

2TLPOWA((r1, α1), (r2, α2), (r3, α3), (r4, α4))

= 4 ((0.0107)(6.3) + (0.0672)(4.7) + (0.0524)(2.6) + (0.8697)(2.2))

= 4(2.474) = (s2, 0.474).

Especially, if f(x) = x, then the 2TLPOWA operator reduces to the 2TLPWA

operator. In fact, by (4.13) and (4.14), we have

2TLPOWA((r1, α1), (r2, α2), . . . , (rn, αn))

= 4
(

n∑
i=1

ui4−1 (rindex(i), αindex(i))

)

= 4
(

n∑
i=1

(f(Ri)− f(Ri−1))4−1 (rindex(i), αindex(i))

)

= 4
(

n∑
i=1

(Ri −Ri−1)4−1 (rindex(i), αindex(i))

)

= 4
(

n∑
i=1

Vindex(i)4−1 (rindex(i), αindex(i))

)

= 4
(

n∑
i=1

Ti∑n
j=1 Tj

4−1 (ri, αi)

)
= 2TLPWA((r1, α1), (r2, α2), . . . , (rn, αn)). (4.14)

Similar to Theorem 4.1.4, we have the following properties.
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Theorem 4.1.11 Let (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i = 1, 2, . . . , n) be a

collection of 2-tuple linguistic variables, then we have the following properties:

1) (Idempotency): If (ri, αi) = (r, α) for all i, then

2TLPOWA((r1, α1), (r2, α2), . . . , (rn, αn)) = (r, α). (4.15)

2) (Monotonicity): Let (r′i, α
′
i) (r′i ∈ S, α′i ∈ [−0.5, 0.5), i = 1, 2, . . . , n) be a

collection of 2-tuple linguistic variables, if (ri, αi) ≤ (r′i, α
′
i), for all i, then

2TLPOWA((r1, α1), (r2, α2), . . . , (rn, αn))

≤ 2TLPOWA((r′1, α
′
1), (r

′
2, α

′
2), . . . , (r

′
n, α

′
n)). (4.16)

3) (Boundedness):

min
i

(ri, αi) ≤ 2TLPOWA((r1, α1), (r2, α2), . . . , (rn, αn)) ≤ max
i

(ri, αi). (4.17)

Furthermore, based on the 2TLPOWA operator (4.12) and the geometric

mean, now we define a 2-tuple linguistic prioritized ordered weighted geomet-

ric (2TLPOWG) operator.

Definition 4.1.12 Let (ri, αi) (ri ∈ S, αi ∈ [−0.5, 0.5), i = 1, 2, . . . , n) be a col-

lection of 2-tuple linguistic variables, then we define a 2-tuple linguistic prioritized

ordered weighted geometric (2TLPOWG) operator as follows:

2TLPOWG((r1, α1), (r2, α2), . . . , (rn, αn))

= 4
(

n∏
i=1

(
4−1(rindex(i), αindex(i))

)ui)
, (4.18)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the conditions (4.13)

and (4.14).

Especially, if f(x) = x, then the 2TLPOWG operator reduces to the 2TLPWG

operator. Clearly, the weighting vectors of both the 2TLPOWA and 2TLPOWG

operators not only depend upon the input arguments, but also emphasize the

ordered positions of the given arguments. Furthermore, the 2TLPOWG operators

have also the properties: commutativity, idempotency and boundedness.
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4.2 Approaches to multiple attribute group de-

cision making with linguistic information

In this section, we shall utilize the 2-tuple linguistic prioritized aggregation op-

erators to multiple attribute decision making with linguistic information.

For a MAGDM problems with linguistic information, let X = {x1, x2, . . . , xn}
be a discrete set of n alternatives, G = {G1, G2, . . . , Gm} be a set of m attributes

and that there is a prioritization between the attributes expressed by he linear

ordering G1 � G2 � · · · � Gm, indicate attribute Gj has a higher priority than

Gs, if j < s. Let E = {e1, e2, . . . , es} be a set of s decision makers, whose weight

vector is λ = (λ1, λ2, . . . , λs)
T , with λk ≥ 0, k = 1, 2, . . . , s, and

∑s
k=1 λk = 1.

Suppose that A(k) = (a
(k)
ij )m×n is the linguistic decision matrix, where a

(k)
ij ∈ S is

preference value, which takes the form of linguistic variables, given by the decision

maker ek ∈ E, for alternative xj ∈ X with respect to attribute Gi ∈ G.

Then, we utilize the 2TLPWA and 2TLPOWA (or 2TLPWG and 2TLPOWG)

operators to propose an approach to multiple attribute group decision making

with linguistic information, which involves the following steps:

Step 1: Transform the linguistic decision matrix A(k) = (a
(k)
ij )m×n into 2-tuple

linguistic decision matrix Ã(k) = ((a
(k)
ij , 0))m×n, k = 1, 2, . . . , s.

Step 2: Calculate the values of T
(k)
ij (k = 1, 2, . . . , s) as follows:

T
(k)
ij =

k−1∏
l=1

1

g
| 4−1 (a

(l)
ij , 0)|, k = 2, 3, . . . , s

T
(1)
ij = 1 (4.19)

and utilize (4.13) and (4.14) to calculate the weights u
(k)
ij associated with the kth

largest argument (a
index(k)
ij , 0), where

u
(k)
ij = f(R

(k)
ij )− f(R

(k−1)
ij ), R

(k)
ij =

k∑
l=1

V
index(k)
ij , (4.20)

where Vindex(k) is the associated priority based importance weight of the kth
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largest argument (a
index(k)
ij , 0) of arguments (a

(l)
ij , 0) (l = 1, 2, . . . , s) having V

(l)
ij =

T
(l)
ij∑s

k=1
T

(k)
ij

(l = 1, 2, . . . , s), and u
(k)
ij ≥ 0, k = 1, 2, . . . , s, and

∑s
k=1 u

(k)
ij = 1.

Step 3: Utilize the 2TLPOWA operator (4.12):

(aij, αij) = 2TLPOWA((a
(1)
ij , 0), (a

(2)
ij , 0), . . . , (a

(s)
ij , 0))

= 4
(

s∑
k=1

u
(k)
ij 4−1 (a

index(k)
ij , 0)

)
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

(4.21)

or the 2TLPOWG operator (4.19):

(aij, αij) = 2TLPOWG((a
(1)
ij , 0), (a

(2)
ij , 0), . . . , (a

(s)
ij , 0))

= 4
(

s∏
k=1

(
4−1(aindex(k)ij , 0)

)u(k)ij

)
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

(4.22)

to aggregate all the 2-tuple linguistic decision matrices Ã(k) = ((a
(k)
ij , 0))m×n (k =

1, 2, . . . , s) into the collective 2-tuple linguistic decision matrix Ã = ((aij, αij))m×n,

where i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Step 4: Calculate the values of Tij (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) as follows:

Tij =
i−1∏
k=1

1

g
| 4−1 (akj, αkj)|, i = 2, 3, . . . ,m, j = 1, 2, . . . , n

T1j = 1, j = 1, 2, . . . , n (4.23)

Step 5: To get the overall preference value (aj, αj) corresponding to the alter-

native xj, we aggregate all the preference values (aij, αij) (i = 1, 2, . . . ,m) in the

jth column of Ã by using the 2TLPWA operator (4.2):

(aj, αj) = 2TLPWA((a1j, α1j), (a2j, α2j), . . . , (amj, αmj))

= 4
(

m∑
i=1

Tij∑m
i=1 Tij

4−1 (aij, αij)

)
, j = 1, 2, . . . , n, (4.24)
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or the 2TLPWG operator (4.6):

(aj, αj) = 2TLPWG((a1j, α1j), (a2j, α2j), . . . , (amj, αmj))

= 4

 m∏
i=1

(
4−1(aij, αij)

) Tij∑m

i=1
Tij

 , j = 1, 2, . . . , n (4.25)

Step 6: Utilize the collective overall attribute values (aj, αj) (j = 1, 2, . . . , n)

and Definition 3.1.3 to rank the alternatives xj (j = 1, 2, . . . , n), and then select

the most desirable one.

Step 7: End.

4.3 Illustrative example

Let us suppose an investment company, which wants to invest a sum of money

in the best option (adapted from [14]). There is a panel with five possible al-

ternatives in which to invest the money: 1) x1 is a car industry; 2) x2 is a food

company; 3) x3 is a computer company; 4) x4 is an arms company; 5) x5 is a TV

company.

The investment company must take a decision according to the following four

attributes: 1) G1 is the risk analysis; 2) G2 is the growth analysis; G3 is the

social-political impact analysis; 4) G4 is the environmental impact analysis.

The five possible alternatives xj (j = 1, 2, 3, 4, 5) are evaluated using the

linguistic term set S

S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor,

s4 = fair, s5 = slightly good, s6 = good, s7 = very good,

s8 = extremely good}

by three decision makers ek (k = 1, 2, 3) under the above four attributes Gi

(i = 1, 2, 3, 4), and construct, respectively, the linguistic decision matrix A(k) =

(a
(k)
ij )4×5 (k = 1, 2, 3) as listed in Tables 4.1-4.3.
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Table 4.1: Linguistic decision matrix A(1)

x1 x2 x3 x4 x5

G1 s4 s8 s4 s8 s6

G2 s5 s7 s5 s6 s4

G3 s3 s7 s5 s3 s7

G4 s2 s4 s6 s2 s5

Table 4.2: Linguistic decision matrix A(2)

x1 x2 x3 x4 x5

G1 s4 s6 s5 s7 s5

G2 s5 s6 s4 s6 s3

G3 s2 s6 s4 s2 s6

G4 s2 s3 s5 s4 s4

Table 4.3: Linguistic decision matrix A(3)

x1 x2 x3 x4 x5

G1 s4 s6 s5 s7 s5

G2 s6 s4 s5 s5 s7

G3 s2 s5 s7 s6 s6

G4 s2 s6 s6 s3 s6
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To get the best alternative(s), we first utilize the 2TLPWA and 2TLPOWA

operators to develop an approach to multiple attribute group decision making

problem with linguistic information, which can be described as following:

Step 1: Transform the linguistic decision matrix A(k) = (a
(k)
ij )4×5 (k = 1, 2, 3)

into 2-tuple linguistic decision matrix Ã(k) = ((a
(k)
ij , 0))4×5 (k = 1, 2, 3) (see Tables

4.4-4.6):

Step 2: Utilize (4.20) to calculate the values of T
(k)
ij (k = 1, 2, 3) which are

contained in the matrices T (k) = (T
(k)
ij )4×5, respectively

T (1) =


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 , T (2) =


0.500 0.750 0.625 0.875 0.625

0.625 0.750 0.500 0.750 0.375

0.250 0.750 0.500 0.250 0.750

0.250 0.375 0.625 0.500 0.500

 ,

T (3) =


0.250 0.563 0.391 0.766 0.391

0.469 0.375 0.313 0.469 0.328

0.063 0.469 0.438 0.188 0.563

0.063 0.281 0.469 0.188 0.375

 ,

and utilize (4.21) (suppose that the BUM function f is defined by f(x) = x2)

to calculate the weights u
(k)
ij (k = 1, 2, 3) which are contained in the matrices

U (k) = (u
(k)
ij )4×5, respectively

U (1) =


0.326 0.187 0.096 0.144 0.246

0.050 0.222 0.304 0.203 0.037

0.581 0.203 0.051 0.017 0.187

0.581 0.029 0.229 0.088 0.040

 ,

U (2) =


0.408 0.385 0.158 0.360 0.404

0.441 0.457 0.221 0.419 0.571

0.326 0.419 0.500 0.665 0.386

0.326 0.570 0.264 0.078 0.497

 ,
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Table 4.4: 2-tuple linguistic decision matrix Ã(1)

x1 x2 x3 x4 x5

G1 (s4, 0) (s8, 0) (s4, 0) (s8, 0) (s6, 0)

G2 (s5, 0) (s7, 0) (s5, 0) (s6, 0) (s4, 0)

G3 (s3, 0) (s7, 0) (s5, 0) (s3, 0) (s7, 0)

G4 (s2, 0) (s4, 0) (s6, 0) (s2, 0) (s5, 0)

Table 4.5: 2-tuple linguistic decision matrix Ã(2)

x1 x2 x3 x4 x5

G1 (s4, 0) (s6, 0) (s5, 0) (s7, 0) (s5, 0)

G2 (s5, 0) (s6, 0) (s4, 0) (s6, 0) (s3, 0)

G3 (s2, 0) (s6, 0) (s4, 0) (s2, 0) (s6, 0)

G4 (s2, 0) (s3, 0) (s5, 0) (s4, 0) (s4, 0)

Table 4.6: 2-tuple linguistic decision matrix Ã(3)

x1 x2 x3 x4 x5

G1 (s4, 0) (s6, 0) (s5, 0) (s7, 0) (s5, 0)

G2 (s6, 0) (s4, 0) (s5, 0) (s5, 0) (s7, 0)

G3 (s2, 0) (s5, 0) (s7, 0) (s6, 0) (s6, 0)

G4 (s2, 0) (s6, 0) (s6, 0) (s3, 0) (s6, 0)
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U (3) =


0.266 0.428 0.746 0.496 0.350

0.509 0.321 0.475 0.378 0.392

0.093 0.378 0.449 0.318 0.427

0.093 0.401 0.507 0.834 0.463

 .

Step 3: Utilize the 2TLPOWA operator (4.22) to aggregate all the individual

2-tuple linguistic decision matrices Ã(k) = ((a
(k)
ij , 0))4×5 (k = 1, 2, 3) into the

collective 2-tuple linguistic decision matrix Ã = ((aij, αij))4×5 (see Table 4.7):

Table 4.7: Collective 2-tuple linguistic decision matrix Ã

x1 x2 x3 x4 x5

G1 (s4, 0) (s6, 0.374) (s4, 0.254) (s7, 0.144) (s5, 0.246)

G2 (s5, 0.050) (s6,−0.420) (s5,−0.475) (s6,−0.378) (s4,−0.281)
G3 (s3,−0.419) (s6,−0.185) (s5,−0.347) (s3,−0.267) (s6, 0.187)

G4 (s2, 0) (s4,−0.343) (s5, 0.493) (s2, 0.254) (s5,−0.423)

Step 4: Utilize (4.24) to calculate the values of Tij which are contained in the

matrix T = (Tij)4×5:

T =


1 1 1 1 1

0.500 0.797 0.532 0.893 0.656

0.316 0.556 0.301 0.628 0.305

0.102 0.404 0.175 0.214 0.236

 .

Step 5: Utilize the decision information given in matrix Ã and the 2TLPWA

operator (4.25) to derive the collective overall preference value (aj, αj) of the

alternative xj (j = 1, 2, 3, 4, 5):

(a1, α1) = 4(3.934) = (s4,−0.066), (a2, α2) = 4(5.634) = (s6,−0.366),

(a3, α3) = 4(4.481) = (s4, 0.481), (a4, α4) = 4(5.252) = (s5, 0.252),

(a5, α5) = 4(4.849) = (s5,−0.151).
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Step 6: Rank all the alternatives xj (j = 1, 2, 3, 4, 5) in accordance with the

collective overall attribute values (aj, αj) (j = 1, 2, 3, 4, 5) and Definition 3.1.3:

x2 � x4 � x5 � x3 � x1

and thus the best alternative is x2.

Based on the 2TLPWG and 2TLPOWG operators (here we also adopt the

BUM function f as f(x) = x2), then, in order to select the most desirable alterna-

tive(s), we can develop an approach to multiple attribute group decision making

problem with linguistic information, which can be described as following:

Step 1′: See Step 1.

Step 2′: See Step 2.

Step 3′: Utilize the 2TLPOWG operator (4.23) to aggregate all the individual

2-tuple linguistic decision matrices Ã(k) = ((a
(k)
ij , 0))4×5 (k = 1, 2, 3) into the

collective 2-tuple linguistic decision matrix Ã = ((aij, αij))4×5 (see Table 4.8):

Table 4.8: Collective 2-tuple linguistic decision matrix Ã

x1 x2 x3 x4 x5

G1 (s4, 0) (s6, 0.332) (s4, 0.233) (s7, 0.136) (s5, 0.229)

G2 (s5, 0.046) (s5, 0.451) (s4, 0.497) (s6,−0.400) (s4,−0.352)
G3 (s3,−0.469) (s6,−0.222) (s5,−0.398) (s3,−0.332) (s6, 0.175)

G4 (s2, 0) (s4,−0.394) (s5, 0.470) (s2, 0.194) (s5,−0.458)

Step 4′: Utilize (4.24) to calculate the values of Tij which are contained in the

matrix T = (Tij)4×5:

T =


1 1 1 1 1

0.500 0.792 0.529 0.892 0.654

0.315 0.539 0.297 0.624 0.298

0.100 0.390 0.171 0.208 0.230

 .
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Step 5′: Utilize the decision information given in matrix Ã and the 2TLPWG

operator (4.26) to derive the collective overall preference value (aj, αj) of the

alternative xj (j = 1, 2, 3, 4, 5):

(a1, α1) = 4(3.802) = (s4,−0.198), (a2, α2) = 4(5.491) = (s5, 0.491),

(a3, α3) = 4(4.452) = (s4, 0.452), (a4, α4) = 4(4.808) = (s5,−0.192),

(a5, α5) = 4(4.731) = (s5,−0.269).

Step 6′: Rank all the alternatives xj (j = 1, 2, 3, 4, 5) in accordance with the

collective overall attribute values (aj, αj) (j = 1, 2, 3, 4, 5) and Definition 3.1.3:

x2 � x4 � x5 � x3 � x1

and thus the best alternative is x2.

In this section, we have proposed two approaches to solve the multiple at-

tribute group decision making, with linguistic information, in which the attributes

are in different priority level. From the above analysis, we can see that main ad-

vantages of the proposed operators and approaches are not only the fact that our

operators accommodate the linguistic environment but also due to the considera-

tion of the prioritization among the attributes, which makes it more feasible and

practical.

4.4 Conclusions

In this chapter, we investigate MAGDM problems, with linguistic information,

in which the attributes are in different priority level. Motivated by the idea of

prioritized aggregation operators [61], we have developed some 2-tuple linguistic

prioritized aggregation operators for aggregating linguistic information: 2-tuple

linguistic prioritized weighted average (2TLPWA) operator, 2-tuple linguistic pri-

oritized weighted geometric (2TLPWG) operator, 2-tuple linguistic prioritized

ordered weighted average (2TLPOWA) operator, 2-tuple linguistic prioritized or-

dered weighted geometric (2TLPOWG) operator. The prominent characteristic
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of these proposed operators is that they take into account prioritization among

the attributes. Then, we have utilized them to develop some approaches to solve

the multiple attribute group decision making problem, with linguistic informa-

tion, in which the attributes are in different priority level. A practical example

about investment selection is given to verify the developed approaches and to

demonstrate their practicality and effectiveness. In the future, we will develop

several applications of the developed aggregation operators in other fields, such

as pattern recognition, supply chain management and image processing.
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