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1. Introduction

Let H = H(U) denote the class of analytic functions in the open unit disk
U={2€C:|z|]<1}. Forae Cand ne N={1,2,---}, let

Hla,n| ={f € H: f(2) = a+ apz" + app1 2" +--- }.

Let f and F' be members of H. The function f is said to be subordinate to
F', or F is said to be superordinate to f, if there exists a function w analytic
in U, with w(0) =0 and |w(z)| < 1, and such that f(z) = F(w(z)). In such a
case, we write f < F' or f(z) <-F(z). If the function F is univalent in U, then
f < F if and only if f(0) = F(0) and f(U) C F(U) (cf-[11,20]).

Definition 1 [12] TLet ¢ : C*> — C and let i be univalent in U. If p is

analytic in U and satisfies the differential subordination

¢(@(2), 2p'(2)) <h(2) (2€ U), (1.1)

then p is called a solution of the differential subordination. The univalent function
q is called a dominant of the solutions of the differential subordination, or more
simply a dominant if p < ¢ for all p satisfying (1.1). A'dominant ¢ that satisfies
G < q for all dominants-q of (1.1)'is said to bethe best dominant.

Definition 2 [13] Let ¢ : C* = C and let h be analytic in U. If p and

©(p(z),zp'(z)) are univalent in U and satisfy the differential superordination

h(z) < ¢(p(2),2p'(2)) (2 € U), (1.2)

then p is called a solution of the differential superordination. An analytic func-
tion ¢ is called a subordinant of the solutions of the differential superordination,
or more simply a subordinant if ¢ < p for all p satisfying (1.2). A univalent
subordinant ¢ that satisfies ¢ < ¢ for all subordinants ¢ of (1.2) is said to be the

best subordinant.



Definition 3 [13] We denote by Q the class of functions f that are analytic
and injective on U\ E(f), where

ﬂﬂ={umwg3ﬂa=m}

and are such that f'({) # 0 for ¢ € OU\E(f).

Let A denote the class of functions of the form

z)=z+ Z a2’
k=2
which are analytic and.in the open unit disk U with f“(z) # 0. Now we define
¢(a,c; z) by

o0

acz Z((— C7é0 ')7

where (), is the Pochhammer symbol(or the shifted factorial) defined by

s - 1 ifk=0
T b et kD) it ke NENL2 ),

Let f € A. Denote by L(a,¢): A — A the operator defined by

L(a,0)f(2) = ¢(a,c;2) * f(2) (2 € V), (1.3)
where the symbol (%) stands for the Hadamard product (or convolution). We

observe that

L(2,1)f(z) = 2f'(z) and L(n + 1,1)f(z) = D" f(2),
where n is any real number greater than —1, and the symbol D" is the

Ruscheweyh derivative [19](also, see [7]) for n € Ny = NU{0}. Furthermore,it is
easily verified from the definition of the operator L(a,c) that

2



2(L(a,0)f(2))" = aL(a+1,0)f(2) = (a — 1)L(a, ) f(2) (1.4)

The operator L(a,c) was introduced and studied by Saitoh [20]. This operator is
an extension of the familiar Carlson-Shaffer operator L(a, c¢) which has been used
widely on the space of analytic and univalent functions in U ( see, for details [4];
see also [21,22]).

Making use of the principle of subordination, Miller et al. [14] obtained some
subordination theorems involving certain integral operators for analytic functions
in U. Also Owa and Srivastava [17] investigated the subordination properties of
certain integral operators (see also [2]). Moreover, Miller and Mocanu [13] consid-
ered differential superordinations, as the dual problem of differential subordina-
tions (see also [3]):We also remark in passing that some more interesting results
related to subordination and superordination may be founded in'[5]and[6]. In the
present paper, we investigate the subordination and superordination preserving
properties of the linear operator L(a, c) defined by (1.3) with the sandwich-type

theorems.

2. A set of Lemmas

The following lemmas will be required in our present investigation.

Lemma 1 [10]. Suppose that the function H : C* — C satisfies the condi-

tion:

Re{H(is,t)} <0,

for all real s and t < —n(1+s%)/2, where n is a positive integer. If the function

p(z) =1+ pu2™ + -+ is analytic in U and

Re{H (p(z),2p'(2))} >0 (2 € U),



then Re{p(2)} >0 in U.

Lemma 2 [11]. Let 5,7 € C with §# 0 and let h € H(U) with h(0) = c.
If Re{fh(z) +~} > 0 (2 € U), then the solution of the differential equation:

2q(2) oy
q(Z)Jr—ﬁq(Z>+7 = h(z) (2 €U)

with q(0) = ¢ is analytic in U and satisfies Re{Bq(z) +~v} >0 for z € U.
Lemma 3 [12]. Let p € Q with p(0) = a and let q(z) = a+ ap,z" +--- be

analytic in U with q(z) # a-and n > 1. If q is not.subordinate to p, then there
exist points 2y = roe € U and ¢, € U\ E(f), for which.q(U,,) C p(U),

q(20) = p(Co) _amd 204 (20) =anCop'(Co) (m 2 n).

A function L(z,t) defined on Ux [0, 00) is the subordination chain (or Lowner
chain) if L(-,t) 'is analytic and univalent in U for all ¢ € [0,00), L(z,-) is con-
tinuously differentiable on [0, 00) for all z € U and L(z,s) < L(z,t) for z € U
and 0 < s < t.

Lemma 4 [13]. Let q € Ha, 1]; let o+ C?* — C and set p(q(z), 2¢'(2)) = h(z).

If L(z,t) = ¢(q(2),tzq'(2)) is a subordination chain and p € Hla,1] N Q, then

h(z) < ¢o(p(2),2p'(2)) (z €U)

implies that

q(2) < p(2) (2 €0).

Furthermore, if ¢(q(2),zp'(2)) = h(z) has a univalent solution q € Q, then q is

the best subordinant.



Lemma 5 [18]. The function L(z,t) = ai(t)z + -+ with ai(t) # 0 and
limy o |aq(t)| = 0o. Suppose that L(-;t) is analytic in U for all t > 0, L(z;-)
is continuously differentiable on [0,00) for all z € U. If L(z;t) satisfies

|L(z;t)] < Kolai(t)] (Jz] <m0 <1; 0<t < 0))

for some positive constants Ko and ry and

Re{%}>0 (z€eU; 0<t <o),

then L(z;t) is a subordination chain:

3. Main Results

Firstly, we begin by proving the following subordination theorem involving

the multiplier transformation L(a,c) defined by (1.3).

Theorem 1. Let f,g € A. Suppose that

re{i+ 251> s

<¢(z) =(1- a)L(a i i’ )9tz - aL(a,z)g(z); a>0;0<a<l; z¢€ U) ,
(3.1)
where
=)+ —|(1—a)—d?
0= Ta(l—a) : (3.2)
If f and g satisfy the following subordination condition :
(1 -yt Lbaf) | Haof@) oy (e, (3.3)

z z
then



L(,0f() _ Lla,c)g(2)

V4 V4

(z € ).
Moreover, the function L(a,c)g(z)/z is the best dominant.

Proof.  Let us define the functions F' and G by

L
and G(z) := M, (3.4)
z
respectively. Without loss of generality, we can assume that G is analytic and
univalent on U and G’(¢) # 0 for |[¢| = 1. We first show that, if the function ¢

is defined by

2G"(2)
G'(2)

(z e U), (3.5)

then

Re{q(2)} >0 (2 € D).

Taking the logarithmic differentiation on both sides of the second equation in
(3.4) and using (1.4) for g € A, we obtain

ad(z) =aG(2)+ (1 =a)2G'(2) (3.6)

Now, by differentiating both sides of (3.6), we obtain

a2d'(2) = (1 — )2G'(2) (q(z) + L) ,

l—«

which, in conjunction with (3.6), yields the relationship:

2¢"(z) . 2G"(2) 2q'(2)
b ¢(z) b G'(2) " q(z) +a/(1 - ) (3.7)
— olz 2q'(2) = h(z |
=q(2) + q(z) +a/(1 — ) = Al



From (3.1), we have

—

Re{h<z)+1“ }>o (2 € U),

and by using Lemma 2, we conclude that the differential equation (3.7) has a
solution ¢ € H(U) with ¢(0) = h(0) = 1. Let us put

v
u+a/(l —a)
where § is given by (3.2). From (3.1), (3.7) and (3.8), we obtain

H(u,v) =u+ +9, (3.8)

RelH (g(2); 2¢'(2))} >0/ (z € U),

Now we proceed toshow that Re{H (is,t)} < 0 for allreal s and t < —(1+s%)/2.

From (3.8), we have

Re{H (is,t)} = Re {is + "y a/t(l ¥ o + 6}

b to/ (L
Y (39)
E(;(S)

—Eo|af(h= )+ is?’

where

Es(s) = (1134_25) 52—1fa<251fa—1). (3.10)

For § given by (3.2), we can prove easily that the expression Es(s) given by (3.10)
is positive or equal to zero. Hence from (3.9), we see that Re{H (is,t)} < 0 for
all real s and ¢t < —(1 + s?)/2. Thus, by using Lemma 1.1, we conclude that
Re{q(2)} > 0 for all z € U. That is, ¢ is convex in U.

Next, we prove that the subordination condition (3.3) implies that



F(z) <G(z) (2€l) (3.11)

for the functions F' and G defined by (3.4). For this purpose, we consider the
function L(z,t) given by

(1—a)(1+1)

L(z,t) :=G(z) + .

2G'(2) (2 €U; 0<t<o00).
We note that
OL(z,t)

0z |,

This shows that the function

_ G'(0) <a+(1—a

a

)(1”)) 20 (0<t<oo).

Lz, t) = a,(®)z+ -+

satisfies the condition a(t) # 0 for all ¢ € [0,00). By using the well-known
growth and distortion theorems for convex functions, it is easy to check that the

first part of Lemma 5'is satisfied. Furthermore, we have

1fa+(1+t) <1+Zgé(5))} >0,

since G is convex and a > 0. Therefore, by virtue of Lemma 4, L(z,t) is a

(e

subordination chain. We observe from the definition of a subordination chain
that

and

L(z,0) < L(z,t) (2€U; 0<t<00).

This implies that



L(¢,t) ¢ L(U,0) = ¢(U)
for ( € OU and t € [0, 00).
Now suppose that F' is not subordinate to GG, then by Lemma 3, there exists
points zp € U and ¢, € JU such that

F(z) = G(¢) and zF(z) = (1+ )G (¢) (0 <t < 00).

Hence we have

(1~ a)(19)

L(Cort) = G(Co) + CoG"(Co)
= F(z) + . azoF’(zo)
y L(a+1,¢)f(20) & /(1)

by virtue of the subordination condition (3.3). This contrdicts the above obser-
vation that L((p,t) & ¢(U). Therefore, the subordination condition (3.3) must
imply the subordination given by (3.11). Considering F(z) = G(z), we see that
the function G is the best dominant. | This evidently. completes the proof of

Theorem 1.

We next prove a dual problem of Theorem 1, in the sense that the subordi-

nations are replaced by superordinations.

Theorem 2. Let f,g € A. Suppose that

Re {1 + zj(g)} > 5

L(a+1,c)g(z) N aL(a, c)g(z)

(¢<z> =(1-a)

where § is given by (3.2). If L(a + 1,¢)f(2)/z is univalent in U and L(a,c)f(z)/z
€ H[1,1] N Q, then

ra>0 0<a<; zeU),



o(z) < (1 — )Rt L@ | (L@ofG) oy (3.12)

implies that

Lia.)g(=) _ L(a,9)f(2)

z z

(z € U).
Moreover, the function L(a,c)g(z)/z is the best subordinant.

Proof.  Now let us define the functions F' and G, respectively, by (3.4). We
first note that, if the function ¢ is defined by (3.5), by using (3.6), then we obtain

1—«

2G'(2)

=+ p(G(2)peG'(2)).

(3.13)

After a simple calculation, the equation (3:12) yields the relationship:

) B )
a@)+ of(1-a)

IE),
Then by using the same method as in the proof of Theorem 1, we can prove that
Re{q(z)} > 0 for all z € U. That is, G defined by (3.4) is convex(univalent) in
U.

Next, we prove that the subordination condition (3.12) implies that

F(z) <G(z) (2€l) (3.14)

for the functions F' and G defined by (3.4). Now consider the function L(z,t)
defined by

(1—a)t

L(z,t) := G(2) + 2G'(2) (€ U; 0<t < ).

Since G is convex and (1 — «)/a > 0, we can prove easily that L(z,t) is a sub-

ordination chain as in the proof of Theorem 1. Therefore according to Lemma

10



4, we conclude that the superordination condition (3.12) must imply the super-
ordination given by (3.14). Furthermore, since the differential equation (3.13)
has the univalent solution G, it is the best subordinant of the given differential

superordination. Therefore we complete the proof of Theorem 2.

If we combine this Theorem 1 and Theorem 2, then we obtain the following

sandwich-type theorem.

Theorem 3. Let f,gr € A(k =1,2). Suppose that

20(2) |
Re{1+ > b } s 9 (3.15)
(qﬁk(z) = (1ot 1;)9’“(Z) + aL(a’CZ)g’“(Z); a0 0<a<l; z€ IU) ,

where 0 is given by (3.2). If L(a+ 1, ¢) f(2)/z is univalent in U and L(a,c)f(2)/z
€ H[1,1] N Q, then

hi(2) A2 o) DB GEEPIE) |y . cv)

z Z

implies that

L(o, )0 (=)~ B e ] D dg(2)

U).
z 2 z (zel)

Moreover, the functions L(a,c)g1(z)/z and L(a,c)ga(z)/z are the best subordi-

nant and the best dominant, respectively.

The assumption of Theorem 3, that the functions L(a+ 1,¢)f(z)/z and
L(a,c)f(2)/z need to be univalent in U, may be replaced by another conditions

in the following result.

Corollary 1. Let f, g, € A(k = 1,2). Suppose also that the condition (3.15)

is satisfied and

11



Re {1 + Zw,”(z)} - (3.16)

L(a+1,c)f(z)+aM. a>0; 0<a<l; zEU)
z z a ’ |

@wwzu—a>

where 0 is given by (3.2). Then

L(a+1,¢)f(2)

P(z) < < ¢(z) (z€U)

implies that

L(e,00(2) UGG L o)

(z € U).

Moreover, the functions L(a,c)g1(z)/z and L(a,c)gs(z)/z are the best subordi-

nant and the best dominant, respectively.

Proof. In order to prove Corollary 1, we have to show that the condi-
tion (3.16) implies the univalence of #(z) and F(z) := L(a,c)f(z)/z. Since
0 <d<1/2 from (3.2) in Theorem 1 , the condition (3.16) means that 1 is a
close-to-convex function in U (see [6]) and hence 1 is univalent in U. Further-
more, by using the same techniques as in the proof of Theorem 1, we can prove
the convexity(univalence) of Fand so the details may be omitted. Therefore,

from Theorem 3, we obtain-Corollary 1.

Taking a = c=1 and a = 0 in Theorem 3, we have the following result.

Corollary 2. Let f,gr € A. Suppose that

Zﬁb/k/(z) _1 D)= d(2): k= .
Re{1+¢;€(2>}> 5 (r(2) = gr(2); k=1,2; 2€ ).

If f'(2) is univalent in U and f(z)/z € H[1,1]N Q, then

91(2) < f'(2) = g5(2) (2 €U

implies that

12



gl(z) < f(Z) = gQ(Z) (ZGU).

Moreover, the functions g1(z)/z and go(z)/z are the best subordinant and the

best dominant, respectively.

Next, we consider the generalized Libera integral operator Fj, (1 > —1) de-
fined by (cf. [1,7,9,15])

Cp+l
-

AGIOE [ etsar (7 € s s ) (3.17)

Now, we obtain the following sandwich-type result involving the integral op-
erator defined by (3:17).

Theorem 4 Let f,g € A Suppose also that

Re{1+ﬁjxg)}:>—5 (3.18)
(o e IR )

where

L+ (e D2 — L= (u +1)%
A(p+1)
If L(a,c)f(2)/z is univalent in U and L(a,c)F,(f)(2)/z € H[1,1]N Q, then the

following subordination condition :

5:

(n> —1). (3.19)

61(2) < M < a(2) (2 €D,

implies that

L(a,0Fu(9)(2) _ Lo, OFu)(E)  La,0)Fule)()

z z z

(z € U).

13



Moreover, the function L(a,c)F,(g1)(2)/z and L(a,c)F,(g2)(2)/z are the best

subordinant and the best dominant, respectively.

Proof.  Let us define the functions F' and Gi(k = 1,2) by

F(z):= L(G’C)Z“(f)<z) and Gy(z) == L(a, C)iu(gk)(z)7

respectively. Without loss of generality, as in the proof of Theorem 1, we can
assume that G is analytic and univalent on U and G’(¢) # 0 for |¢| =1,
From the definition of the integral operator F), defined by (3.17), we obtain

2(L(a, o) Fu(f)(2))" = (1 + 1) E(a, o) f(z) = pl(a, ) Fu(f)(2) (3.20)

Then from (3.18) and (3.20), we-have

(1 + De(2) = (1 + 1)Gr(2) + 2G.(2). (3.21)
Setting
i 2(G2)
S ®
and differentiating bothsides of (3.21); we ohtain

(z € U),

W), )
9(2) a(2) + p+1
The remaining part of the proof is similar to that of Theorem 1 and so we may

omit for the proof involved.

By using the same methods as in the proof of Corollary 1, we have the following

result.

Corollary 3. Let f,gr € A(k = 1,2). Suppose that the condition (3.18) is
satisfied and

14



). e -
where § is given by (3.19). Then

{1 Lo 9E)).

z

L(a, o) f(2)

(Z)l(Z) < < ¢2(Z) (Z € U)

implies that

L(a, ) Fu(g)(z) _ Lla,0)Fu(f)(2) _ L(a,c)Fu(g2)(%)

(z € U).

Moreover, the functions L(a, ¢)F,(9:1)(2)/z and L(a,c)F,(92)(2)/z are the best

subordinant and the best dominant, respectively.

4. An Application to the Gauss Hypergeometric Function

We begin by recalling that the Gauss hypergeometric function 5F(a,b;c; 2)
is defined by (see, for details, [16] and [23, Chapter 14])

sFila, bic; 2) = Z (a)n (D)5 2"

n=0

BE 7
(z€U; beC; ce C\Zy; Zy :=1{0,-1,-2,---}),

where (), denotes the Pochhammer symbol (or the shifted factorial) defined (for

A, v € C and in terms of the Gamma function) by

F'(A+v) 1 (v =0; XA e C\{0})
Aa)

()\)I/:: = A\ . ]
A+1)--(A+v—1) (v=neN; A\eC).

For this useful special function, the following Eulerian integral representation is
fairly well-known [21, p. 293]:

15



JFi(a, b s 2) — % /0 N et (1 — eyt (40)

(Re{c} > Re{a} > 0; |arg(l—2)|<m—¢ 0<e<m).

In view of (4.1), we set

so that the definition (3.17) yields

R ="5 [ e < ta
="(u+ 1)z/0 ul(1 — zu) 'du
= B ri(u+ 1, ;) (1> 1)

Moreover, we note that

1

Thus, by applying to Theorem 4 with g(z) = z/(1 —2); we. obtain the following

result involving the Gauss hypergeometric function.

Theorem 5. Let f € A and 0 <k <1425, where § is defined by (3.19).

If f satisfies the subordination condition :

L(r, 1) f(2)

then

L(x, D Fu(f)(2)

z

< oFi(p+1,kp+22) (2€l).

16



By taking x = 1 in Theorem 5, we are led to the following Corollary 4.

Corollary 4. Let f € A. Then the subordination condition :

/) < ! (z € 1),

z 11—z

implies that

Fu()(2)

2
where F,, is given by (3.17). Moreover, the function oFy(pn+1,1; u+2; 2) is the

< oFi(p+1,Lp+2;2) (z€0),

best dominant.

Finally, we state the following Theorem 6 below as the dual result of Theorem
5, which can be obtained by applying Theorem 4.

Theorem 6.  Under the assumption of Theorem 5, suppose also that L(k,1)f(2)
/7 is univalent in U and L(k, 1)F,(f)(z)/z € Q, where F, is given by (3.17). If

f satisfies the superordination condition :

1 % L(x,1)f(2)

152y z (2 € 1),

then

L(k, )F.(f)(2) (z € U).

oFi(p+ 1,k +2;2) < .

Moreover, the function oFy(pu+ 1, k; 1+ 2; ) is the best subordinant.
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