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1 Introduection

Continuity of functions have been played a significant role in the theory of clas-
sical point set topology and several brauches of mathematics. This concept has
been generalized by weaker forms of open sets such as a-open sets [24], semi-
open sets [15], preopen sets [19], b-open sets [3] and F-open sets [1]. In 1984,
Mashhour et al. [19] introduced and investigated the notion of precontinuous
functions. Precontinuity was called near continuity by Ptdk [35] and also almost
continuity by Frolik [12} and Husain [13]. Jankovié¢ [14] introduced almost weak
continuity as a weak form of precontinuity. Popa and Noiri [33] introduced weak
precontinuity and showed that almost weak continuity is equivalent to weak pre-
continuity. Recently, Noiri [29] introduced and investigated the notion of strongly
f-precontinuous functions which is implied by that of strongly #-continuous func-
tions {17] and implies that of precontinuous functions.

In this paper, we introduce a new class of functions called almost strongly
f-precontinuous functions which is contained in the class of weakly precontinu-
ous functions and contains both the class of almost strongly #-continuous func-
tions [27] and the class of strongly #-precontinuous functions. We investigate
almost strongly f-precontinuous functions and obtain several improvements of
results established by Noiri [29]. It is also shown that every almost strongly
f-precontinuous surjective image of p-closed (resp. countably p-closed) space is

nearly compact (resp. nearly countably compact).



2 DPreliminaries

Throughout this paper. spaces (X, 7) and (Y, o) (simply X and V) always mean
topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a space X. For a subset A of (X, 7}, cl(4) and int(A4)
represent the closure of A and the interior of A with respect to 7, respectively. A
subset. A is said to be regular open (resp. regular closed) if A = int(cl{A)) (resp.
A = cl{int{A)}). A point x of X is called a @-cluster [41] (resp. é-cluster [41])
point of A if (V)M A # 0 (resp. int{cl{U)) N A £ @) for every open set U of X
containing x. The set of all #-cluster (resp. d-cluster) points of A is called the
8-closure [41] (resp. é-closure [41]) of A and is denoted by #-cl{ A) (resp. d-cl{A)).
A subset A is said to be f-closed [41] (resp. d-closed [41]) if 8-cl(A) = A (resp.
d-cl(A) = A). The complement of a f-closed (resp. d-closed) set is said to be
f-open (resp. §-open).

A subset A is said to be preopen [19] (resp. a-open [24], semi-open [15], 3-
open [1]) it A C int(cl(A4)) (resp. A C int(cl(int(A))), A C cl(int(A)), A C
cl(int(cl(A)))}. The complement of a preopen (resp. a-open, semi-open, J-open)
set 1s said to be preclosed (resp. a-closed, semi-closed, J-closed). The family of all
preopen sets of X is denoted by PO(X) and the family {U e PO(X) : r € U} 1s
denoted by PO(X, x), where x is a point of X. The intersection of all preclosed
sets of X containing A is called the preclosure [10] of A and is denoted by pel(A).
The a-closure, semi-closure and J-closure are similarly defined and are denoted
by a-ell ). sel(4) and F-cl(4). The union of all preopen sets of X contained
in s called premterior and is denoted by pint(4). A point « of X is called a

pre-A-cluster point of A if pc(U7)MA # @ for every preopen set U of X containing



r. The set of all pre-f-cluster points of A is called the pre-f-closure of A and is
denoted by #-pel(A). A subset A is said to be pre-8-closed [32] if A = #-pcl(A).

The complement of a pre-f-closed set is said to be pre-8-open.

Definition 2.1 A function f: X — Y is said to be

(a) almost continuous [40] (brieflv, ¢.c¢.8.) if for each r € X and each open
set V' of Y containing f(x), there exists an open set [/ containing z such that
FUU) € ntfel(V));

(b) d-continuous [26] if for each x € X and each open set V' of ¥ containing
f(x), there exists an open set I/ containing x such that f(int(cl(U)) < int{cl(V));

(¢) precontinuous [19] or almost continuous [13] if for each x € X and each
open set V of Y containing f(x), there exists U € PO(X, z) such that f(U) C V;

(d) weakly precontinuous [33] or almost weakly continuous [14] if for each z € X
and each open set V' of ¥ containing f(z), there exists U € PO(X, z) such that
FU) € el(v);

(e) strongly 8-precontinuous [29] (briefly, st.f.p.c.) if for each z € X and
each open set V of Y containing f(z), there exists U € PO(X,z) such that
Flpel(U)) C V.

Definition 2.2 A function f : X — V is said to be almost strongly 8-precontinuous
(brieflv. a.st.6.p.c.) if for each x € X and each open set V' of ¥ containing f(x).
there exists {7 € PO(X, ) such that f(pcl({7)) C int{cl(V)).

Definition 2.3 A function f : X' — Y is said to be strongly 8-continuous [26]
(resp. abnost strongly 0-contimuous [27] (briefly, a.st.f.c.)) if for each r € X and
cach open set Voof ¥ ocontaining f(x), there exists an open neighborhood U of &«

suct that f{el{(7)) C V (resp. f(cl{U)) C int(cl(V)) ).

~ 4



Remark 2.4 Almost strongly 8-precontinuity is implied by both almost strongly
A-continuity and strongly #-precontinuity and imiplies weak precontinuity. None
of these implications is reversible as the following examples show. Moreover, the
following Examples 2.5 and 2.7 show that alimost stronglv #-precontinuity and

continuity arc independent of each other.

Example 2.5 Let X = {a,b,c,d}. 7 = {X,0.{c}.{a. b}, {a,b,c}} and 0 =
{X.0,{a} {c}, {a.b},{a,c},{a,b,c} {a.c.d}}. Define a function f : (X,7) —
(X.o) as follows: f(a) = f(b) = b and f(c) = f(d) = a. Then f is a.st.f.p.c.

(even a.st.f.c.} but it is neither continuous nor st.f.p.c.

Example 2.6 Let (X,7) and (X, o) be the spaces in Example 2.5. Define a
function f: (X, 7) — (X,0) as follows: f(a) = band f(b) = flc) = f(d) = c

Then f is a.st.f.p.c. but it is not a.st.f.c.

Example 2.7 Let (X, 7) be the space in Example 2.5. Then the identity function

f(X.7) — (X, 1) is continuous (hence weakly precontinuous) but not a.st..p.c.

3 Characterizations

Theorem 3.1 For a function [ : X — Y, the following are equivalent:

(a} fisasthp.e:

(b} 7YV 15 pre-f-open in X for cach regular open set V. of ¥ ;

() [ YY) is pre-f-closed in X for each reqular closed set F of Y

(d) for each v € X and each regular open set V' of Y containang f(x), there
ensts U € PO(X.r) such that f(pcl{U)) C V:

() f7HVY us pre-B-open in X for cach d-open set Voof Yo

~5~



(f) fHF) is pre-B-closed wm X for each o-closed set F of Y-
(g) f(O-pcl(A)) C d-cl(f(A)) for each subset A of X;
(h) G-pel(f~H(BY) C f71{6-cl{B)) for each subset B of Y.

Proof (a)=(b): Let V be any regular open sct of ¥ and v € f~'(V). There
exists U € PO(X. ) such that f(pc{U)) € V. Therefore. we have z € U C
pel(U) € F-Y(V). This shows that f~(V) is pre-@-open in X.

(b}=>(c): Let F be any regular closed set of Y. By (b), f7/{(F) = X - f"1 (Y~
F) is pre-d-closed in X

(¢)=(d): Let x € X and V' be any regular open set of ¥ containing f(x).
By (¢), f7' (Y — V)= X — f~H{V) is pre-f-closed in X. Since f7'(V) is a pre-
f-open set containing . there exists U € PO(X, z) such that pcl(I/) C f~(V).
Therefore, we have f(pcl(U)) C V.

(d)=-(e): Let V be any d-open set of Y and x € f~!(V). There exists a regular
open set G of ¥ such that f(z) € G C V. By (d), there exists U € PO(X, z)
such that f(pcl(U)) C G. Therefore, we obtain x € U C pcl(U) C f~(V). This
shows that f~!(V) is pre-0-open in X.

(e)=(f): Let F be any é-closed set of ¥. By (e), f~(F) = X — f~Y(Y — F)
is pre-f-closed in X.

(f)=(g): Let A be any subset of Y. Since d-cl(f(A)) is d-closed in Y,
FHE-cl(f(A)) is pre-f-closed in X. Let x ¢ f 1d-cl(f(A}))). There exists
[ € PO(X.x) such that pcl(U) N f7H{6-cl(f(A))) = B and thus pc{U) N A = ¢,
Hence & ¢ f-pel{A). Therefore, we have f(6-pel{A)) € é-cl(f(A)).

(m)=>(h): Let B2 be any subset of Y. By (g), we have f(8-pcl(f~1(B))) ©
d-c1{B) and hence d-pel(f1(B)) C f~'(o-cl(B)).



(h)=(a): Let v € X and V' be any open set of Y containing f(z). Then G =
Y —int(cl{V)) is regular closed and hence d-closed in V. By (h). 8-pel(f~'(G)) C
fHG) and hence f~HG) is pre-f-closed in X Therefore, f~'(int{cl(V))) is
pre-6-open set containing . There exists U € PO(X, «) such that pc(U) C
F~Hint(c1(V))). Therefore, we obtain f(pcl(U/)) C int(cl(V)). This shows that f

1s a.st.f.p.c. a

It is known that the family of all d-open sets in a space (X, 7) form a topology
for X which is denoted by 75. However, 75 is identical with the semiregularization
7, of 7 and hence we use 7, in the place of 75. For simplicity, we shall denote

(X.75) by X,

Lemma 3.2 (Andrijevié [4]) scl(V) =int(cl(V)) for each preopen set V of a space
X.

Theorem 3.3 For a function f: X — Y the follounng are equivalent:

(a) f s a.st.f.p.c.;

(b) for each x € X and each open set V of Y containing f(x), there exrists
U c PO(X.x) such that f(pcl(U)) C scl(V):

{¢) f71 (V) < B-pel( f~ 1 (int(cl(V)))} for each open set V of V' ;

(d) /. X =Y, wissthpec

Proof (a)&(h): It follows from Lemma 3.2.

(a)={(c): Let V' be any open set of ¥ and v € f1(V). By (a), there exists
7' PO(X. v} such that f(pcl{l/)) < int{cl(V}). Therefore, we have © € U C
pc{UY C f N (int(cl(V))) and hence r € f-pel(f ' (int{cl(V)))). Tt follows that
PO (V)



(c)=(d}: Let v € X and V' be any open set of Y, containing f(r}. There
exists a regular open set (Cof Y osuch that f(r) € G € V. By (¢}, we have
v e fHG) C O-pel(f (@) and hence there exists U € PO(X) such that
r e U CplU) C f1(G). Therefore, we obtain f(pcl{I/)) € V. This shows
that f: X — Y, is st.f.p.c.

(d)=>(a): Let V be regular open set of Y. For anv z € f~(V), f(z) C V and
V' is open in Y,. There exists U € PO(X, x) such that f(pcl(I/)) C V and hence
pel(U) C f7H(V). Therefore, we have f~1(V) C #-pel(f~1(V)) and f~1(V) is
pre-g-open in X. By Theorem 3.1, f is a.st.8.p.c. O

Lemma 3.4 [27] For a subset V' of a space X, then following hold:
(a) a-cl{(V) = cl(V) for each 3-open set V of X.
(b) pcl{V) = cl(V') for each semi-open set V of X.

Theorem 3.5 For a function f: X — Y, the following are equivalent:

(a) f is a.st.8.a.c;

(b) #-pel(f~1(V)) C fH{cl(V)) for each S-open set V of Y ;

(¢) B-pel(f~H(V)) C fHcl(V)) for each semi-open set V of ¥ ;
(d) O-pel(f1(V)) © F~ (a-cl(V)) for each 3-open sct V of V'
(e) 8-pel(f~1(V)) C f (pel(V) for each semi-open set V of Y.

Proof (a)=(b): Let V be any J-open set of Y. Then by Theorem 2.4 in [4],
cl(V7) is regular open in Y. Since f is ast.f.a.c.. f~Hcl(V)) is pre-f-closed in X
and hence B-pel(f (V) < FHel(V)).

(b)=-(c}: This Is obvious since every semi-open set is J-open.



(c)=-(a): Let F be any regular closed set of ¥ Then F is semi-open in Y
and hence G-pel(f1(F)) € f '(cl(F)) = f'(F). This shows that f~'(F) is
pre-g-closed in X. Therefore, f is ast.d.a.c.

(b)e(d): Tt follows from Lemma 3.4 (a).

(¢} (e): It follows from Lemma 3.4 (b).

O

Recall that a space X is said to be almost reqular [38] (resp. semi-regular) if
for any regular open (resp. open) set U7 of X and each point z € U, there exits

a regular open set V' of X such that x € V € cl(V) C U (resp. z € V C U).

Theorem 3.6 Let f : X — Y be a function. Then, the following properties hold:
(a) If f is precontinuous and Y is almost regular, then f is a.st.8.p.c.

(b) fis a.st.0.p.c. and Y is semi-reqular, then f is st.0.p.c.

Proof (a): Let x € X and V be any regular open set of Y containing f(z). Since
Y is almost regular, there exists an open set W such that f(x) € W C cl(W) C V.
Since f is precontinuous, there exists U € PO(X, z) such that f(I/) C W. We
shall show that f{pcl(U)) C cl(W). Suppose that y & cl{W). There exists an
open neighborhood of y such that GN1Y = @. Since f is precontinuous, f(G) €
PO(X) and f~4G)NU = 0 and hence f~YG) N pel(U) = . Therefore, we
obtain GN f(pel(UV)) = B and y & f(pel(L)). Consequently, we have f(pel(I)) €
AV) €V

(b): Let v € X and V' be any open set of Y conntaining f(x). Since Y is
sem-regular, there exists a regular open set 1 such that f(x) € W ¢ V. Since
fisast.fp.e., there exists U € PO(X. r) such that f(pel(U)) € W. Therefore.
we have f(pel(U)) C V. .



Corollary 3.7 LetY bea r‘egulm‘ space. Then, the f()[l()u:'m.g p?‘f;‘p(-}'rtiﬁs are equiy-
alent for a function f: X — Y
a) [ is weakly precontinuous:

(
(b} f s precontinuous;
(¢) fisasthpe.;

(

)
d) fisstl.p.e
Proof It follows from Theorem 3.2 of [29] amd Theorem 3.6. 0

Definition 3.8 A space X is said to be pregular [10] (resp. almost p-regular
118]) if for each closed (resp. regular closed) set F and each point x € X — F,

there exist disjoint preopen sets I/ and V such that t € U and F C V.

Theorem 3.9 (a) If continuous function f : X — Y s a.st.6.p.c., then X is
almost p-regular.

(b) If f + X — Y us a.c.S. (resp. d-continuous) and X s p-reqular (resp.
almost p-regular), then f is a.st.f p.c.

Proof (a): Let f: X — X be the identity. Then f is continuous and hence
a.st.@.p.c. For any regular open set U of X and any point z of I/, we have f(z) =
r € U and there exists G € PO(X. 1) such that f(pcl(G)) € U. Therefore. we
have x € G C pcl(G) C U and hence X is almost p-regular.

(b): Suppose that f: X — V is almost continuous (resp. 8-continuons) and
X s prregular (resp. almost prregular). For each © € X and any regular open set.
Vocontaining f(o), f7 (V) is an open (resp. regular open) set of X containing
. Sinee X is pregular (resp. almost prregutar). there exists U € PO(X, ) such
that v € U C pel({7) € f7H{V). Therefore. we have f(pcl{I/)) € V. This shows

that fis ast.f.p.c. O

~10~



A space X s said to be submaximal [37] if each dense subset of X is open in
X. It 1s shown in [37] that a space X is submaximal if and only if every preopen

set of X is open.

Theorem 3.10 Let X be a submaximal space. Then [ X — Y s a.stb.p.c. f

and only of f s a.st.f.c.

Proof Suppose that f is ast.f.p.c. Let + € X and V be any regular open
set of ¥ containing f(z). Since f is a.st.0.p.c., there exists U € PO(X, ) such
that f(pel(U)) € V. Since X is submaximal, U is open and pcl{U) = <l(U).
Therefore, we obtain f(cl{{/)) C V. This shows that f is a.st.f.c. 0

Corollary 3.11 Let X s a submazimal space and Y be a semi-regular space.
Then the following properties are equivalent for f: X — Y
{a) f s astb.pc;
(b
{c)

) f is sth.pc.;
(d) f 1s strongly O-continuous.

f
f s asth.c;

Proof It follows from Theorems 3.6 and 3.10 and Theorem 4.1 of [27].

4 Some propertics

A space X is said to be pre-reqular [32] if for cach preclosed set F and each point

e X — [ there exist disjoint preopen sets U and Vosuch that v € U and F C V.

Theorem 4.1 Let f: X — Y be a function and g - X — X x Y be the graph

function of f. Then, the following properties hold:

~11~



(a) If g 1s a.st.O.p.c. then [ is a.st.B.p.c. and X is almost p-reqular.

(b)Y If f s a.st.l.p.c. and X is pre-reqular. then g s a.st.8.p.c.

Proof (a): Suppose that g is a.st.f.p.c. First, we show that f is a.st.6.p.c. Let
r € X and V be a regular open set of Y containing f(x). Then X x V is a regular
open set of X xY containing g(x). Since g isa.st.f.p.c., there exists U € PO(X, z)
such that g(pcl(U)) C X x V. Therefore. we obtain f(pcl{U)) C V. Next, we
show that X is almost p-regular. Let U be anv regular open set of X and z € U.
Since g(x) € UxY and U xY is regular open in X x Y, there exists G € PO(X, x)
such that g(pcl(G)) C U x Y. Therefore. we obtain z € G C pel(G) € U and
hence X 1s almost p-regular,

(b): Let z € X and W be any regular open set of X x Y containing g(z).
There exist regular open sets Uy C X and V' C Y such that g(z) = (z, f(z)) €
Uy« V € W. Since f is ast.f.p.c., there exists U/ € PO(X,z) such that
flpel(Us)) C V. Since X is pre-regular and Uy N U; € PO(X, z), there exists
U € PO(X,x) such that x € U C pel(U) € U; N U3 [23, Lemma 4.2]. Therefore,
we obtain g(pcl(U)) C Uy x f(pcl(Uz)) € U x V. ¢ W. This shows that g is
a.st.f.p.c. i

Corollary 4.2 Let X be a pre-reqular space. Then, a functionf : X — Y is

a.st.0.p.c. if and only if the graph functiton g : X — X x Y is a.st.0.p.c.

Lemma 4.3 (Mashhour et al. [22]) Let A and X, be subsets of a space X .
{a) If A € PO(X) and Xy is sem-open in X, then AN X, € PO(X).
(b) If A ¢ PO(Xy) and Xy € PO(X). then A € PO(X).

Lemma 4.4 (Doutchey ot al. [8]) Let A and Xy be subseis of a space X such

that A C Xy C X Let pelg (A) denote the preclosure of A in the subspace X.

~12~



{(a) If Xy s seme-oper in X, then pely (A) C pel(A).
(b) If A € PO(X,y) and Xy € PO(X), then pcl{A) C pely, (A).

Theorem 4.5 If f : X — Y s astf.p.c. and Xy 15 a semi-open subset of X,

then the restriction flXy: Xy — Y 1s a.st.f.p.c.

Proof For any x € Xp and any regular open set 1" of Y containing f(z), there
exists U € PO(X, z) such that f(pcl(U)) C V since f is ast.f.p.c. Put Uy =
U N Xy, then by Lemmas 4.3 and 4.4, Uy € PO(X,. r) and pely, (Uy) C pel(Us).

Therefore, we obtain

(f1Xo)(pely, (Vo)) = fpelx, (Uo) < flpel(Up)) C flpel(U)) C V.

This shows that f|Xo is a.st.f8.p.c. O

Theorem 4.6 A function f: X — Y isastf. p.c if for eachx € X there exists
Xo € PO(X, x) such that the restriction f1Xy: Xy — Y 15 a.st.6.p.c.

Proof Let x € X and V be any regular open set of Y containing f(z). There
exists X € PO(X, x) such that fiXy : Xy — Y is a.st.f.p.c. Therefore, there
exists U € PO{Xp, x) such that (f|Xo)(pcly, (UV)) € V. By Lemmas 4.3 and

14. U € PO(X.2) and pel(U) C pely (U). Hence, we have, f(pcl(U)) =
{f1Xo) (pel(U)) C (f]Xo)(pcly, (U)) € V. This shows that f is a.st.f.p.c. G

In order to obtain some propertics of the compositions of a.st.f.p.c. functions,

we shall recall some definitions.

Definition 4.7 A function f: X — Y is said to be

~13~



(1) pre-irresolute [36] if for each © € XN and each V' € PO(Y. f(x)), there
exists U € PO(X ) such that f(IU) C V.
(b) M-preopen [20] if f(U) € PO(Y) for cach [ € PO{X).

Lemma 4.8 (Noiri {29)) If f : X — Y s pre-irresolute and V' is a pre-f-open
set of Y then f (V) 1s pre-B-open in X.

Theorem 4.9 Let f: X — Y and g: Y — Z be functions. Then, the following
properties hold:

(a) If f s a.stl.p.c. and g is 0-continuous. then the compositiongof : X — Z
s a.st.0.p.c.

(bY If f is pre-irresolute and g is a.st.0.p.c., then go f is a.st.0.p.c.

(¢) If f: X =Y 1s an M-preopen bijection and go f : X — Z 15 a.st.0.p.c.,
then g 15 a.st.8.p.c.

Proof (a): It is obvious from Theorem 3.1.

(b): It follows immmediately from Theorem 3.1 and Lemma 4.8.

(c): Let W be any regular open set of Z. Since go f is a.st.f.p.c., (go f) (W)
is pre-f-open in X. Since f is M -preopen and bijective, f! is pre-irresolute and
by Lemma 4.8, we have ¢7'(W) = f((go f) ' (W)) is pre-6-open in Y. Hence.

bv Theorem 3.1 g is ast.f.p.c. O

Let {X, ©a € A} be a family of spaces. A, be a nonempty subset of X, for

cach o € A and the product space [T{ X, : ¢ € A} will be denoted by [T X,.

Lemma 4.10 (Bl-Deeb et al. [10]) Let n be o positree nteger and A = [[7_) Aq, x
11(':(‘1 -\—(l“
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() A€ POX) of and only of A, € PO(X,,)) for each j =1 n.
(b) pel{TTaen Aa) CHlaea pel{AL).

Theorem 4.11 If a function f, : Xo — Y, 1s a.st.8.p.c. for each a € A, the

product function f : [[X. — [1Y,, defined by f({xa}) = {falz.)} for each
o= {xa . s a.std.p.e

Proof Let o = {z,} € [I X, and W be any regular open set of [] Y, containing
f(). Then, there exists a regular open set Vi, of Y, such that

) = {falza)} € f[ Vo, x [] YaC W

j=t aFo;
Since fo is ast.f.p.c. for each o, there exists U,, € PO(X,,,xq,) such that
fa,(pcl(Uy,)) C Vo, for j =1,--- n. Now, put U = 1521 Uay % Iasza, Xa- Then,
by Lemma 4.10 we have U € PO(J] X,.x) and

f(I)Cl(U)) - f(H?:I pC](Uaj) X Ha#aj /th) - H?:l faj (I)C](Uaj)) X Ha;’:aj YCt

- H;L:l VO]‘ x Ha?’-‘aj YQ Cc W.

This shows that f is a.st.f.p.c. O

D  Separation axioms and a.st.f.p.c. functions

Definition 5.1 A space X is said to be

(a) pre-T, (resp. pre-Urysohn) [30]if for each pair of distinet points x and y
m X, there exist U7 € PO(X &) and V" € PO{X.y) such that U NV = 0 (resp.
pelidl )y Npel(Vy o 0):

thy vy [4] if for any two distinet points of X, there exists a regular open set

containing one ol the points but not the other.

~15~



Theorem 5.2 (a) If f: X - Y is an a.st.f.p.c mjection and Y is rTy. then X
15 pre-Ty.

(by If f : X = Y s an ast.f.p.c. injection and Y s Hausdorff, then X s
pre-Urysohn.

Proof (a): Let x and y be any distinct points of X. Since f is injective.
flx) # f(y) and there exists either a regular open set V' containing f(z) not
containing f(y) or a regular open set W containing f(y) not containing f(z). If
the first case holds, then there exists U/ € PO(X, x) such that f(pcl(U)) C V.
Therefore, we obtain f(y) ¢ f(pcl{U)) and hence X — pcl(l/) € PO(X, y). If the
second case holds, then we obtain a similar result. Therefore, X is pre-T5.

(b): Let z and y be any distinct points of X. Then f{z} # f(y). Since Y is
Hausdorff, there exist open sets V and W containing f(z) and f(y), respectively,
such that int(cl(V)) N int(cl{W)) = @. Since [ is ast.f.p.c., there exist G ¢
PO(X,z) and H € PO(X,y) such that f(pcl(G)) C int(cl(V)) and f{pcl(H)) C
int(cl(W)). It follows that pcl(G) N pcl(H) = @. This shows that X is pre-

Urysohn. O

Corollary 5.3 (Noiri [29]) If f : X — Y is a st.O.p.c. injection and Y is

Hausdorff, then X 1s pre-Urysohn.

Theorem 5.4 If f: X — Y w5 an a.st.6.p.c. function and Y ws Hausdorff, then
the subset E = {(r.y) : fF{r) = f(y)} is pre-O-closed m X < X.

Proof Suppose that (r,y) ¢ £. Then f(r) £ f(y). Since ¥ is Hausdorff, there
exist open sets Voand T of Y containing, (o) and f(y), respectively, such that

int(cl(V)) Nint(chl(117)) ~ 0. Since f is ast.@.p.c., there exist 7 € PO(X, 2) and
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G € PO(X.y) such that f(pc(T7)) € int{cl(V)) and f(pcl(G)) < int{cl(W)).
Set D =U x G. It follows that (r,y) € D € PO(X x X) and pc{U x G)NE C
pcl{U) x pel{G) N E = 0. Therefore, E is pre-f-closed in X x X. O

Corollary 5.5 (Noiri [29)) If f : X — Y is a st.0.p.c. function and Y s Haus-
dor{f, then the subset E = {(z.y) : f{x)} = f(y)} s pre-f-closed in X x X.

Recall that for a function f: X — Y, the subset {(z, f(z})):z € X} of X xY
15 called the graph of f is denoted by G(f).

Definition 5.6 The graph G(f) of a function f : X — Y is said to be strongly
pre-closed [29] (resp. pre-8-closed) if for each (z,y) € (X xY) — G(f), there exist
U € PO(X,z) and an open set V in Y containing y such that (pcl{U) x V)N
G(f) = (resp. (pel(U) x cA(V)) NG(f) = ).

Lemma 5.7 The graph G(f) of a function f : X — Y is pre-0-closed if and only

if for each (x,y) € (X xY) — G(f), there exist U € PO(X.z) and an open set
V in'Y containing y such that f(pcl(U)) Necl(V) = 0.

Theorem 5.8 If f : X — Y is a.st.8.p.c. and Y is Hausdorff, then G(f) is
pre-@-closed in X x Y.

Proof Let (z,y) € (X xY) - G(f). Then f(r) # y. Since Y is hausdorff,
there exist open sets V and W in ¥ coutaining f(x) and y. respectively, such
that int(cl(V)) Ncl(W) = 0. Since f is ast.@.p.c.. there exists U € PO(X, x)
such that f(pel{T)} C int{cl(V)). Therefore, f(pcl(£7)) NMce{W) = § and then by
Lemma 5.7 G{f} is pre-6-closed in X x Y. a
Corollary 5.9 (Noiri [29]) If [ : X — Y s st.0.p.c. and Y is Hausdorff. then

G(fY s strongly pre-closed in X x Y.
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6  Covering properties

Definition 6.1 A space X is said to be

(a) quasi H-closed [34] if every cover of X by open sets has finite subcover
whose closures cover of X:

(b) nearly compact [39] if every cover of X by regular open sets has a finite
subcover;

(¢) nearly countably compact [11] if every countable cover of X by regular open
sets has a finite subcover:

{d) p-closed [8] if every cover of X by preopen sets has a finite subcover whose
preclosures cover X;

(e) countably p-closed [29] if every countable cover of X by preopen sets has

a finite subcover whose preclosures cover X.

A subset K of a space X is said to be quasi H-closed relative to X [34] (resp.
N-closed relative to X [39]. p-closed relative to X [8]) if for every cover {V,, : a €
A} of K by open (resp. regular open, preopen) sets of X, there exists a finite

subset Ay of A such that K C W{cl{V,) : o € Ag} (resp. K C U{V, : o € Ap}.
K cu{pcl{V,) : o € Ag}).

Theorem 6.2 If f : X — Y s an a.st.8.p.c. function and K is p-closed relative
to X. then f{K) 15 N-closed relative to Y.

Proof Let {V, : o € A} be a cover of f(A) by regular open sets of Y. For
cach point v € A there exists a{x) € A such that f(r) € V.. Since f is
ast.f.p.c. there exists {7, € PO(X, &) such that f(pel(U,)) C Vo The family

{U, : r € K} is a cover of K by preopen sets of X and hence there exists
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a finite subset Ky of K such that K C U,cp,pel(U,). Therefore. we obtain

SN} C UrenoVa(r). This shows that f(K) is N-closed relative to Y. O

Corollary 6.3 Let f: X — Y be an a.stf.p.c surjection. Then. the following
properties hold:
(a) If X is p-closed, then Y s nearly compact.

(b} If X is countably p-closed. then Y s nearly countably compact.

Theorem 6.4 If a function f: X — Y has a pre-8-closed graph. then f(K) is

B-closed in'Y for each subset K which is p-closed relative to X .

Proof Let K be a p-closed relative to X and y € ¥ — f(K). Then for each
r € K we have (z,y) € G({f) and by Lemma 5.7 there exist U, € PO(X, z) and
an open set V. of ¥ containing y such that f(pcl(U,)) Ncl(V;) = 0. The family
{U,:x € K} is a cover of K by preopen sets of X. Since K is p-closed relative
to X, there exists a finite subset Ky of K such that K ¢ U{pcl(U,) : x € Ky}

Put V =nN{V,:z € Ky}. Then V is an open set containing y and
FIE) N el(V) C [Uee o f (Pl UDI N el(V) C User, [F(pel(Ur)) Mel(Vi)] = 8.
Therefore. we have y € 6-cl( f(/')) and hence f(K) is f-closed in Y. O

Theorem 6.5 Let X 15 a submaximal space. If a function [ X — Y has a pre-
O-closcd graph, then f 1K) s 8-closed in X for each subset K which is quasi

H-closed relative to Y

Proof Let K be a quasi H-closed set of Y oand o ¢ f'(R). Then for each

y € K we have (voy) € G(f) and by Lemma 5.7 there exists U, € PO(X, ) and

~19~



an open set V,oof ¥ ocontaining y such that f(pcl(U,)) Nel(V,) = 0. The family
{V, - 4y € K} is an open cover of K and there exists a finite subset Ky of A
such that N C Uyen,cl(V,). Since X is submaximal, each U, is open in X and

pcl(U,) = cl(U,). Set U = Myer,Uy. then U is an open set containing z and
S{U)) Nel(K) C Uyere [F(el{U)) N el(V)] C Usen, [f(pcl(Uy)) Nel(Vy)] = 0.

Therefore, we have cl(U) N f~1{K) = @ and hence = ¢ g-cl(f~'(K)). This shows
that f'(K) is #-closed in X. O

Corollary 6.6 Let X be a submazrimal space and Y be a quast H-closed Haus-
dorff space. The follounng properties are equivalent for a function f: X — Y
(a) f is a.st8.p.c.;
(b} G(f) is pre-§-closed in X x Y,
(c) f s asth.c

Proof (a)=-(b): This follows from Theorem 5.8.
(b)=>(c): Let F be any regular closed set Y. By (2.2) of [34] F' is quasi H-
closed and hence quasi H-closed relative to Y. It follows from Theorem 6.5 that

fUHF) is B-closed in X. Therefore, f is a.st.6.c.

(c)=(a): Obhvious. D
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