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1 Introduction

Two types ol alinost continous functions were introduced by Singal and Singal
21} and Husain [8], respectively. Long and Carnahan [10] pointed ont that these
notions of almost continuity are independent of each other. Mashhour et al. (11]
introduced and investigated preopen sets and precontinuity in topological spaces.
Noiri [16] showed that precontinuity is equivalent to almost continuity in the sense
of Husain and obtained some characterizations of almost continuity in the sense
of Singal and Singal and almost continnity in the sense of Husain, respectively.

In 1983, Abd El-Monsef ct al [1} introduced and investigated S-open sets and
f-continuity in topological spaces. Nasef and Noiri {12} defined almost precontin-
uous functions and almost G-continuous functions as a generalization of precon-
tinuity and J-continuity, respectively, and used almost precontinuity to obtain a
decomposition of almost continuity in the sense of Singal and Singal. Noiri [17]
obtained further properties and some characterizations of almost F-continuous
functions.

In 1993, Raychaudhuri and Mukherjee {19] defined é-almost continuous func-
tlons as a generalization of almost continuity in the sense of Husain and intro-

duced the notion of §-preopen sets and used it to characterize d-almost continuity.

The purpose of this paper is to define almost d-almost continuous functions
and to obtain several characterizations and properties of such functions. The no-
tion of almost d-almost continnity is a generalization of each almost precontinuity
and d-almost continuity. Moreover, the relationships between almost §-almost

continuous functions and some known concepts are also discussed.



2 Preliminaries

Throughout this paper, spaces (X, 7) and (¥, 7) (or simply X and Y) al-
ways mean topological spaces on which no separation axioms are assumed unless
explicitly stated.

Let A be a subset of a space X. For a subsct A of (X,7), cl(A4) and int(A)
represent the closure of Aand the interior of A with respect to 7, respectively.
A subset A is said to be regular open (resp. regular closed) if A = int(cl(A))
(resp. A = cl(iut(A))). The d-interior [22] of a subset 4 of X is the union
of all regular open sets of X contained in A and is denoted by d-int(4). A
subset A is called d-open [22] if A = 4-int(A), ie., a set is d-open if it is the
union of regular open sets. The complement of d-open set is called d-closed.
Alternatively, a set A of (X, 7) is called é-closed [22] if A = d§-l(A4), where
dl(A) ={rc X Anint{cl(U)) £ ¢, U7 and 2 € U},

A subset. A is said to be a-open [13] (resp. semi-open (9], preopen [11], 3-
open [1] or semi-preopen [2], &-preopen [19]) if A C int(cl(int(A))) (resp. A C
cl{int(A4)), A C int(cl(A4)), A C cl(int(cl(A4))), A C int(d-cl(A4))). The comple-
ment of a a-open (resp. semi-open, preopen, F-open, d-preopen) set is said to
be a-closed (resp. semi-closed, preciosed, 3-closed, 8-preclosed). The family of all
d-preopen (resp. d-preclosed) sets of X is denoted by 6-PO(X) (resp. §-PC(X))
and the family {U € §-PO(X) : z € U} is denoted by 6-PO(X, z), where « is a
point of X. The intersection of all §-preclosed sets of X containing A is called the
a-preclosure [19] of A and is denoted by d-pcl(A). The a-closure, semi-closure,
preclosure and J-closure are similarly defined and denoted by a-cl(A), scl(A),

pcl{A) and 3-cI(A). The union of all §-preopen sets of X contained in A is called



d-premnterior [19] and is denoted by d-pint{.4).

The following lenumas are useful in sequnel:

Lemma 2.1 [19] Let A be a subset of a space X Then the following properties
hold:
{a) 6-pcl(X — A) = X — S-pint(A),
(b) x € d-pel(A) of and only ifF ANU # ¢ for cach U < 6-PO(X, 2),
(¢} A s d-preclosed in X if and only if A = §-pel(A),
(d} d-pcl(A) s 4- preclosed in X,
(e) 6

e) o-pcl(A) = AUcl(d-int(A)) end d-pint(A) = A Mint(s-cl(A)).

Lemma 2.2 [19] Let A be « subset of a space (X, 7). Then 4 € 60-PO(X) if and
only of ANU € 6-PO(X) for each regular open (8-open) set of X.

Definition 2.3 A function f: X — Y is said to be:

(a) R-map [5] if f~1{V) is regular open in X for each regular open set V of
V:

(b) é-continuous [15] if for each z € X and each open set V of ¥ containing
f(x), there exists an open set U containing x such that f(int(cl(U)) C int(cl(V});

(¢) almost continuous [21] (briefly, a.c.S.) if for each z € X and each open
set 1V oof Y containing f(x), there exists an open set U containing o such that
FU) Cint(cl{(V));

(d) almost continuous [8] (briefly, a.c. H.) if for each 2 € X and each open set

V oof Y containing f(z), cl(f*(V)) is a neighborhood of z.

Definition 2.4 A function f: X — Y is said to be:



(a} precontinuous [11] (resp. 3-continuous (1], §-almost continuous [19]) if for
cach € X and eacli open set V of Y containing f(r), there exists a preopen
{resp. B-open, d-preopen) set [V containing x such that f (v,

(b) almost precontinuous [12] (resp. almost F-continuous [12]) if for each

r € X and each regular open set V' of Y containing f(z), there cxists a preopen

(resp. -open) sct U containing x such that f(I7) C V.



3  Characterizations

Definition 3.1 A function f: X — Y is said to be alimost §-almost continuous
(briefly, a.d.a.c.) if for each x € X and each regular open set V of ¥ contalning

flz), there exists U € §-PO(X, x) such that f{I/) C (V).

Theorem 3.2 For a function [ X — Y, the following are equivalent:

(a) fisad.ac;

(b) for each x € X and eoch open set V of Y containing f (). there emsts
U ed-PO(X, z) such that f{U) C int{cl(V));

(¢) fHV) € 6-PO(X) for each reqular open set V of Y :

(d) fHF) € 6-PC(X) for cach regular closed set F of Y.

Proof The proof is obvious and is thus omitted. O

Theorem 3.3 For o function f: X =Y, the following are equivalent:
(a) fis ad.a.c;
(b) f(d-pcl(A)) C é-cl(f(A)) for every subset A of X ;

(¢) s-pcd(f~Y(B)) C f1{5-cl(B)) for every subset B of ¥ :

(d) fUF) € 6 PC(X) for every 8-closed set F of Y

(e) fHV) € 8-PO(X) for every d-open set V of Y.

C

Proof (a)=(b): Lel 4 be any subset of X. Since 6-cl{f(A)) is o-closed in
Y, it is denoted by N{F, : F, is regular closed,« € V}, where V is an in-
dex set. By Theorem 3.2, we have A C f1(6-cl(f(A)) = N{fHF, : o &
V} € 0-PC{X) and hence d-pel(A) C F1(0-cl(f(A))). Therefore, we obtain
FUApel(A)) © d-cl( f(A)).



(b)=(c): Let B be any subset of X. Then we have f(d-pel(f YB)))
a-cl(f(f H(B))) Ca-cl(f () and hence d-pel(f7HB)) © FH{8-ciB)).

(c)=(d): Let I be any d-closed set of Y. Then we have d-pelf~'(F)) ©
F7HO-I(F)) = f1(F) and hence f~Y{F) € 6-PC(X).

(d)=(e): Let V be any d-open set of Y. Then we have f 1Y — V) == X —
fHV) € 6-PC(X) and hence V € 6-PO(X).

e)=(a): Let V be any regular open set of Y. Since V is 8- open in Y,

(
F V) € 6-PO(X) and hence by Theorem 3.2, f is a.d.a.c. =
Lemma 3.4 [2] scl(V') =int(cl(V)) for every preopen set V of a space X

Theorem 3.5 For a function f: X — Y, the following are equivalent:
(a) fisad.ac;
(b) for cach x € X and each open set V of Y containing [ {z), there exists

U € 8-PO(X, z) such that f(U) C sci{V);

() o-pc(f~Hel(int(cl(BY)))) © f=Y(cl(B)) for each subset B of Y
(d) o-pel(fH(cI(int(F)))) C fL(F) for each closed set F of V;
(e) S-pel(f~H{cl(V))) € fH(cl(V)) for each open set V of ¥ :

() F71(V) C5-pint(f Yscl(V))) for each open set V of Y;

(g) J (V) € int(8-c1(f~  (scl(V)))) for each open set V of Y.

Proof (a)«<(b): It follows from Lemma 3.4.

(a)=(c): Let B be any subset of X. Assume that z € X — f~'(cl(B)).
Then f(z) € Y — cl(B) and there cxists an open set V containing f(z) such
that V.1 B = @; hence int(cl(V)) M icl(int(cl(B))) = 0. Since f is a.d.a.c.,
there exists U € 6-IPO(X, ) such that f(I7) C int(cl{V)). Therefore, we have



U0 f Hel(int(cl(B)))) = B and hence v € X — d-pel(f Hel(int(cl(53))))). Thns
we obtain d-pel(f Mel(int(cl{ B))NY) < f~HA(B)).

(c)={d): Let F be any closed set of . Then we have
5 pel(F - (el(iut (F)))) = 8-pel(f el () € FHClnt(F)) © § ()
(d)=>(e): For any open set V of YV, ¢l(V) is regular closed in ¥ and we have
S-pel(f (V) = Spel( £ it (V) € F (el (V).

(e)=(f): Let V be any open set of Y. Then Y — ¢l(V) is open in ¥ and by
Lemmas 2.1 (a) and 3.4 we have
X = dpint(F sel(V)) = 8pel( 1Y — nt(cl(V))))
C LMY —c{(V)))C X — f1(V).
Therefore, we obtain f~1(V) C d-pint(f ~(scl(V))).

(f)=(g): Let VV be any open set of Y. By using Theorem 2.1 in [19], we obtain
S7HV) € d-pint( f 7 (sel(V))) € int(8-cl(f (scl(V)))).

(g)=>(b): Let » be any point of X and V be auy open set. of ¥ containing

f(x). By Lemma 2.1, we have
z € f (V) Cint(G-cl(f7 (sel(V)))) = d-pint (£ (scl{V))).

Then there exists U € §-PO(X, x) such that U < §-pint{f~{scl(V)}) and hence
f(U) Cint(cl(V)). 0

Lemma 3.6 [16] For a subset of a space X, then following hold:
(a) a-cl(V)) = cl(V) for cach B-open set V of X.
(b) pcl{VY) = cl(V) for each semi-open set 'V oof X

7



Theorem 3.7 For a funcition f: X Y, the following are equivalent:
(a) fisad.ac:

(b) d-pel{ f~HV))  f~1cl(V)) for cach B-open set V of Y

(¢) d-ped(fH(V ) C f7Hel(V)) for cach semi-open set V of Y

(d) f7HV) C dpint(f~ (Gt {cl{ V) for each preopen set V of Y

(

(

(

e} o-pel(f~HV)) € f~ Y a-cl{(V) for each B-open set V of ¥ :
) d-pel(f HV)) C l(pc (V') for each semi-open set V. oof Y :
g) fHV) C o-pint(f H(scl(V))) for cach preopen set V of ¥V

Proof (a)=>(b): Let V be any F-open set of Y. Then by Theorem 2.4 in [2]
cl(V') is regular open in Y. Since f is a.d.a.c., f7H{cl(V) is d-preclosed in X and
hence d-pel( £ (V) © fHel(V))

(b)=>(c): This is obvious since every semi-open set is F-open.

(c)=-(a): Let F be any regular closed set of Y. Then F is scmi-open in Y
and hence d-pcl(f~'(F)) € f~Hcl(F)) = f Y{F). This shows that [ 1(£) is
d-preclosed in X. Therefore, f is a.d.a.c.

(a)=(d): Let V" be any preopen set of ¥. Then V C int(cl(V)) and int{cl(V))
is regular open in Y. Since f is a.d.a.c., f~1{int(cl(V))) is 6-preopen in X and
hence we obtain f'(V) < f~1(int(cl(V))) C §-pint(f(int(cl(V))).

(d)=(a); Let V be any regular open set of Y. Then V is preopen and
FHV) € Spint(f H(int(el(V)))) = S-pint(f~H(V)). Therefore, f~1(V) is o-
preopen m X and hence f is a.d.a.c.

(b)e(e): It follows from Lemma 3.6 (a).

(c)e(f): It follows from Lemma 3.6 (b).

(d)={d): Tt follows from Lemma 3.4. O



Theorem 3.8 Let [+ X — Y be a function and g+ X — X x Y be the graph
function defined by g(x) = (2, f(x)) for every » € X. Then g is ad.arc. if and

only if fis ad.a.c.

Proof (Neccessity). Let # € X and V be aany regular open set of ¥ containing
J(z). Then X x V' is regular open in X x Y and g(x) = (x, f(2)) € X x Y. Since
g is a.d.a.c., there exists U € 6-PO(X, ) such that ¢(U) < X x V. Therefore,
we obtain f(U7) C V' and hence f 15 a.4.a.c.

(Sufficiency). Let z € X and W be any regular open set of X x Y containing
g(x). There exist regular open sets U, and V of X and Y, respectively, such thar
(o, f(x)) € Uy x V < W, Since f is a.d a.c., there exists Uy € d-PO(X, x) such
that f{U,) C V. Put U = U,;NU,, then by Lemma 2.2 we obtain 7 -POX, 1)
and g(I7) C Uy x V. ¢ W. This shows that ¢ is a.d.a.c. ]

Lemma 3.9 (19] Let A and X, be subsets of a spuce X .
(a) If A€ 6-PO(X) and Xy is 5-open in X, then AN Xy € §-PO(X,).
(b) If A€ 5-PO(Xy) and Xy is 6-open in X, then A € d-PO(X).

Theorem 3.10 If f: X — Y ws ad.ac. and A is S-open in X, then the restric-
tion f/A:A—-Y is ad ac

Proof Let V be any regular open set of Y. By Theorem 3.2, we have f4(V) €
¢-PO(X) and hence by Lemma 3.9 (a) (f/A)7'(V) = (V)N A € 6-PO(A).
Thus, it follows from Theorem 3.2 that f/A4 is a.8.a.c. 0

Theorem 3.11 Let f : X — Y be a function and {U, : o € V} be a cover of
X by d-open sets of X If f/U, - U, =Y is ab.a.c. for each o € V, then [ is

a.0.a.c.

9



Proof Let V' be any regular open set of Y. Then, we have
JHVy X f V) = WU (V) rae V) = U{(f/UO (V) ia € A}

Since f/U, is adac, (f/U.) V) e 6-PO(U,) for cach « € V. By Lemma 3.9
(b), (f/UTHV) € 6-PO(X) for each o € ¥V and hence fY(V) € 4-PO(X).

Therefore, fis a.d.a.c. O

Theorem 3.12 Let f: X =Y and g: Y — Z be functions. Then the composi-
tiongo f: X — Zis ad.ac if f and g satisfy one of the following conditions:
(a) fis e.8.a.c. and g is R-map,

(b) f is é-almost continuous and g is a.c.S.

Let {X, : a € V} and {Y, : @ € V} be any two families of spaces with
the same index set V. For cach o € V, let f, : X, — Y, be a function.
The product space [T{X, : o € V} will be denoted by [ X, and the product
function [T fo : [T X — [1 Y., defined by [ f(z) = [T{fa(za) : @ € V} tor each
=1z} € [ X,, is simply denoted by f: [[ X, — [[Ya.

Lemma 3.13 Let A, be a nonempty subset of X,, for each o € V and
A= T{Aau i = 1,2,...,n} x 1[{Xe : a # a(i), a € V}

be a nonempty subset of [1 X.,, where n 1s a positive integer. Then A € & -PO(TT X..)
of and only if Auy € 6-PO(X ) for each i = 1,2,. .. n.

Proof (Necessity). The natural projection is open and continuous. Thus, the
necessity follows from the fact that the open continuous image of a d-preopen set,

18 d-preopen.

10



(Sufficiency). Since Ay € 8- PO(X,;) for each 4, we have

II Ava [ Xo Hmt(cﬁ (Ao )< [ Xa = int ((5 cl (H el X(,>) .

aFali) Ao (i) =1 aFali)

This shows that A € 6-PO(] X,,). 0

Theorem 3.14 If o function [ X — [[Y, is a.d.a.c., then P, o f: X =Y, s
a.d.a.c. for cach o € V. where P, is the projection of [ Y., onto Y,,.

Proof Let V, be any regular open set of ¥,. Since P, 1s continuous open,
it 1s an R-map and hence PY(V,) is regular open in [[Y,. By Theorem 3.2,

FHRPHV)) = (Pao Y (V) & 3-PO(X). This shows that P, o f is a.d.a.c. O

x

Theorem 3.15 The product function f:[1 X, — [1Y, is a.8.a.c. if and only ¢f
Jo 1 Xo =Y, is ad.a.c for cach o € V.

Proof (Necessity). Let v be an arbitrary fixed index and V. be any regular open
set of Y,. Then [[Y; x V, is regular open in []Y,, where 3 € ¥V and & %y, and
hence fTHITYs x Vi) =1 X5 x f,7H(V,) € -PO([] X,.). Since every cotinuons
open function preserves d-open sets, f, (V) € 0-PO(X,) and hence £, isa.d.a.c.

(Sufficiency). Let {x,} be any point in [ X, and W be any regular open set
of [1Y, containing f({x.}). There exists a finite subset ¥V, of ¥ such that Vi s
regular open in Y, for each v € Vg and {fu{zo)} € [I{V; : v € Vo} x [[{Y; -
B eV =V} CW. For each v € Vy, there exists U, € 6-PO(X,, z,) such that
S U,) € V). By Lemma 313, U = [[{U, : v € Vy} x [HXs: 8 €V —Vy}
is d-preopen set of [T X, containing {x,} and f(U) ¢ W. This shows that fis

a.0.a.c. O

11



4  Some properties

Definition 4.1 [18] The ¢-pre-frontier of a subset A of a space X, denoted by
&,-Fr(A), is defined by d,-Fr(A) = d-pel(A) Né-pel(X \ A) = d-pel(A)\ 6-pint(A).

Theorem 4.2 The set of all points © of X at which a function f: X — Y is not
a.d.a.c. is identical with the union of the d-pre-frontiers of the inverse images of

reqular open sets contuining f ().

Proof Let x be a point of X at which f is not a.d.a.c. Then, there exists a
regular open set Voot Y containing f(x) such that UN(X — f~1(V)) # 0 for every
U € 6-PO(X,z). Therefore, we haver € d-pcl(X — f1(V)) = X — d-pint(V)
and x € f71(V). Thus, we obtain = € 3,-Fr(f~Y(V)). Conversely, suppose that
fisadac atx € X and let V be a regular open set containing flr). Then
there exists U € 8-PO(X, z) such that I7 < f~1(V); hence x € S-pint(f (V).
Therefore, we obtain = € X — 6,-Fr(f'(V)). This complete the proof. 0

Theorem 4.3 If f : X = Y isad.ac., g: X — Y is 8-continuous and Y is
Hausdorff. then the set {z € X : f(x) = g(x)} is d-preclosed in X.

Proof Let A= {z € X : f(x) — g(z)} and x € X —A. Then f(z) # g(z). Sinco
Y is Hausdorfl, there exist open sets V and W of ¥ such that f(z) € V, g(z) e W
and V' W= {; hence int(clV)) Nint{cl(W)) = §. Since f is a.¢.a.c., there exists
G € 0-PO(X, ) such that f(G) C int(cl(V)). Since g is 5-continuous, there exists
an open set H of X containing & such that f(int(cl(H)) C int{cl(W)). Now, put
U = G mint(cl(H)), then U € 6-PO(X,z) and f(U) N g(U) C int{cl(V)) N
mt{cl{W)) = 0. Therefore, we obtain U N A = @ and hence 2 € X;-cl(A). This

shows that A is d-preclosed in X Cl

12



Theorem 4.4 If fi - Xy > Y and f, - Xo = Y are ad.a.c. andY is Hausdorff,
then the set {(xy,ay) € Xy x Xyt [1(y) = fola)} s d-preclosed in X, x X,.

Proof TLet A = {(z),22) € X1 x Xy : fi(z)) = fo(xo)} and (r1,19) € X, x
Xy — A Then fi(z) # fo(r2) and there exist open sets Vi and Vi such that
Jiley) € Vi, foly) € Vi and Vi NV, =+ @; hence int{cl(V})) M int(cl(15)) = 0.
Since fyand f are a.d.a.c., there exist Uy € 6-PO(X ), x,) and U, € 6-PO(X,, z,)
such that fi(U)) C int{cl(V})) and fo(ly) < int(cl(V},)). Therefore, we obtain

(wroa) e Uy x Uy C X, xXy—Aand U, x U, € 6-PO(X; x Xy). This shows

that A is d-preclosed in X| x X,. O

Theorem 4.5 If f - X = Y ds ad.a.c. and S is a §-closed set of X x Y, then
Px(SNG(f)) s S-closed in X, where Py represents the projection of X x Y onto
X and G(f) denotes the graph of f.

Proof Let S bea d-closed set of X x Y and = € d-pel(Px (SN G(f))). Let W
be any regular open set of X x Y containing (x, f(x)). Then there exist regular
open scts U7 and V of X and Y, respectively, such that (z, f(z)) €e U x V C W.
Since f is a.d.a.c., by Theorem 3.5 and Lemma 2.2 we have

ze fHV) Co-pint(fH(V)) and U N é-pint(f (V) € 6-PO(X, z).

Since z € d-pcl(Px{(S NG(f))), by Lemma 2.1(b) w € [U N d-pint{f~ (V)] N
Px(5 M G(f)) for some point u of X. This implies that (u, f(u)) € S and

f{u)y € V. Thus, we have
DA (UXV)INSCWNS and (z, f(z)) € 6-cl(S).

Since S is d-closed, we have (z, f(z)) € SNG(f) and v € Px(SNG(f)). It
follows from Lemma 2.1(d) that Px(S 01 G(f)) is 6-preclosed in X 0

13



Corollary 4.6 If [+ X — Y has o S-closed graph and ¢ - X — Y is n.0.a.c.,
then the set {o e X o f(r) = gla)} is 8-preclosed in X .

Proof Since G(f) is d-closed and Px(G(fyNG(g)) = {o € X . f(x) — glo)} it

follows from above Theorem that {r € X : f(2) = g{x)} is Spreclosed in X. 0O

Corollary 4.7 If f : X — Y has a d-closed graph and g : X — Y is 8-almost

continuous, then the set {xr € X : f(z) = g(x)} 1s é-preclosed in X

Theorem 4.8 If f : X — Y is an ad.a.c. injective function having 8-closed

graph, then X is Housdorff

Proof Let z, y be a pair of distinct points of X. Then f(x) # f(y) and
(x, f(y)) ¢ G(f). Simce G(f) is d-closed, by Theorem 5.2 in [15] there exist
regular open sets U C X and V' € Y containing » and f(y), respectively, such
that fF(U)NV = 0. Since fisad.ac,ye f~H(V) C int(d-cl(f1(V))}). Therefore,
we obtain U Nint(d-cl(f~1(V))) = @. This shows that X is Hausdorff. 0

Corollary 4.9 [19] If f - X — VY s a d-almost continuous injective function
having é6-closed graph, then X is Hausdorff.

Theorem 4.10 If for each pair of distinct points x1 and z, in a space X, there
exists a function f of X into o Hausdorff space Y such that (a) f(x)) # flxs)
and (b) f is a.d.a.c. at x; and x4, then there exist U, € 0-PO(X,xq) and Uy €
60-PO(X, x,) such that Uy MU, =

Proof Since Y is Hausdorff, there exist open sets V| and V, of ¥ such thai

fle) € Vi, f) € Vp and Vi NV, = 0; hence int{cl(V,)) N int(cl(V3)) = 0. Since
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Jis ad.ac at oy and oy, there exist I7) € 8-PO(X ) and U, ¢ 6-PO(X, 14)
such that f(0h) < int(elV1)) and f(Uy) < mt{c(V,)). Thercfore, we obtain

[(;’l m l’rz — w O

Definition 4.11 A function f : X — Y has a d-preclosed graph if for each
(r.y) € X 2 Y = G(f), there exist U € 6-PO(X,x) and an open set V of Y

containing y such that [7 x (V)] 0 G(f) = 0.

Lemma 4.12 A function f : X — Y has a §-preclosed graph if and only if for
cach (r,y) € X <Y such that y # f{x), there exist U € 5-PO(X, z) and an open
set Voof Yo containing y such that f(U) Mel(V) = 0.

Theorem 4.13 If f : X = Y is an a.d.a.c. function and Y is Hausdorff, then

t has a d-preclosed graph.

Proof Let (x,5) € X x Y such that v # f(x). Then there exist open sets V'
and W such that flz) € V, y € Wand VW = @; hence V N cl(W) = 0.
Then f(z) € ¥ — (W) and ¥ — c(W) is regular open in Y. There exists
U € 6-PO(X,x) such that f(U) € Y — cl(W) and hence f(U) N cl(W) = 0.

Therefore, by Lemma 4.12 f has a §-preclosed graph. O



9  Comparisons and examples

We obtain the following diagram by Definitions 2.3 and 3.1:

J-continuity  —  almost F-continuity
pre-continuity —  almost precontinuity

d-almost continuity —  almost d-almost continuity

However, the converses are not true in general as shown by Example 1 in [19],

Fxamples 4.4 and 4.5 in [12] and the following examples:

Example 5.1 Let X = {a,b,c}, Y = {p,q,r s,t}, 7 = {0, X, {b},{c}, {b,c}}
and o = {0,Y, {p,q,7,t}}. Let f: (X,7) — (Y,0) be a function defined by
fla)y =p, f(b) = g aud f(c¢) = 5. Then f is a.d.a.c. and J-continuous but not §-
almost continuons, since {p, ¢, v, t} is open in (Y, ) while f~1({p, q,7,t}) = {a, b}

is not é-preopen in (X, 7).

Example 5.2 Let X, Y and 7 be as in Example 5.1. Define a topology ¢ =
{0.Y,{s}, {p,q,m.1}} on Y and a function f : (X,7) — (Y,0) defined as in
Example 5.1. One can easily shows that f is 3-continuous and hence almost
f-continnous but not a.d.a.c. becanse there exists a regular open set {p,q,r, ¢}

in (Y, o) such that /~'({p, ¢, r,¢}) is not é-preopen in (X, 7).

Example 5.3 Let X = {a,b,¢,d}, 7 = {0, X,{a}, {e ¢}, {a cd}} and 0 =
0. X.{b}, {a,c}}. Then the identity function f : (X,7) — (X,0) is a.d.ac.
However, f is not almost @-continuous since {b} is regular open in (X, o) while

fH({b}) is not F-open in (X, 7). Therefore, f is not almost precontinuous.
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Definition 5.4 A space X is said to be:

(a) semi-regular if for any open set U of X and each point r € U7 there exits
a vegular open set Voof X such that v ¢ V U7

(b) almost regular [20] if for any regular closed set F' of X and any point

r = X — I there exist disjoint open sets {7 and V such that 2z € 7 and F C V.

Recall that a space X is submazimal if every dense subset of X is open in X,

Nasef and Noiri [12] that in submaximal space every preopen set is open.

Theorem 5.5 For a function f: X — Y, the following are true:

(a) If fas ed.a.c. and Y is semi-reqular, then f is 6-almost continuous.

(b) If f a5 ad.a.c. (resp. d-almost continuous) and X is semi-reqular, then f
is precontinuous (resp. alinost preconfinuous).

() If fis ad.a.c. and X is semi-regulor and submazimal, then f is a.c.S.

Proof (a): Let x € X and V be an open set of Y containing f(z)}. By the semi-
regularity of V', there exists a regular open set G of Y such that f(z) e G c V.
Since f s a.d.a.c., there exists U7 € 6-PO(X, z) such that f(U) < int(cl(G)) =
G C V and hence f is d-almost continuous.

(b): The proof is similar to {a).

(¢): Tt follows from {b) and Theorem 4.4 in [12]. o

Theorem 5.6 /ff: X = Y is a.d.a.c. andY is almost regular locally connected

space such that 6-cl( f~1(C)) C fY(cl(C)) for each connected subset C of Y, then
fisach

Proof Letz € X and V be any open set of ¥ containing Y. Since Y is almost
regular and locally connected, by Theorem 2.2 in [20] there exists a connected reg-

ular open set C'of ¥ such that f(z) € C C ¢l(C) Cint(cl(V)). Since f is a.d.a.c.,
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e fTHCY C (S fHT))) and hence int(6-cl{ fHC))) C int(fHel(O))) ©
S H(int(el(V))). This shows that [ is a.c.S. O

Corollary 5.7 If f - X =Y is ad.a.c. and Y is regulor locally connected space
such that §-c1{f(C)) C fHel(C)) for each connected subset C of Y, then f is

CONENUOUS,
Proof It follows from Theorem 5.6 and Theorem 9 in [14]. O

Corollary 5.8 [19] If f : X = Y is é-almost continuous and Y is reqular locally
connected space such that 5-cl( f~HCY) C f~Hel(CY) for each connected subset ¢

of Y. then [ is continuous.
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