Approximation of common fixed points for non-Lipschitzian mappings

비-Lipschitzian사상에 대한 공통 부동점의 근사

Advisor: Tae Hwa Kim

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Education

Graduate School of Education Pukyong National University

February 2003

Approximation of common fixed points for non-Lipschitzian mappings

A Dissertation

by Eun Hwa Choi

Approved as to style and content by:

Nak Eun Cho. Ph. D.

Jin Mun Jeong. Ph. D.

Tea Hwa Kim, Ph. D

CONTENTS

ABSTRACT (KOREAN)
I. Introduction
II. Preliminaries
III. Main Theorems
REFERENCES 23

비-Lipschitzian사상에 대한 공통 부동점의 근사

최 은 화

부경대학교 교육대학원 수학교육

요 약

C는 Banach 공간 X의 공집합이 아닌 유계이고 닫힌 불록 부분집합이라 하자. 만약 $T,S:C\to C$ 가 강한 의미에서의 점근적비확대 사상이라 하면, X와 매개변수 $(n_i),(\alpha_i),(\beta_i)$ 의 어떤 제약하에서 $x_1\in C$ 에서 출발하여 $x_{i+1}:=\alpha_i \ T^{n_i}[\beta_i \ T^{n_i}+(1-\beta)x_i](1-\alpha_i)S^{n_i}x_i$, $x_1\in C$ 로 반복적으로 생성된 수열 (x_n) 가 T와 S의 공통인 부동점으로 약 수렴함을 밝힌다.

I. Introduction

Let X be a real Banach space, C a subset of X (not necessarily convex), and $T: C \to C$ a self-mapping of C. nonexpansive mapping. First, as the weaker definition (cf. Kirk [13]), T is said to be of asymptotically nonexpansive type (in brief, ANT) if for each $x \in C$, $\lim_{n\to\infty} c_n(x) = 0$, where

$$c_n(x) = 0 \lor \sup_{y \in C} (\|T^n x - T^n y\| - \|x - y\|)$$

and next, as the stronger sense, it is said to be of strongly asymptotically nonexpansive type (in brief, strongly ANT) if $\lim_{n\to\infty} c_n = 0$, where $c_n = \sup_{x\in C} c_n(x)$. Kirk [13] established a fixed point theorem for mappings of ANT which T^N be continuous for some $N \geq 1$. The stronger definition (in brief, called asymptotically nonexpansive as in [5]) requires that each iterates T^n be Lipschitzian with Lipschitz constants $L_n \to 1$ as $n \to \infty$. In this case, note that T is uniformly continuous on C. For more generalization of an averaging iteration of Schu [21], Bruck et al. [2] introduced a definition somewhere between these two: T is asymptotically nonexpansive in the intermediate sense provided T is uniformly continuous and of strongly ANT.

On the other hand, let C be a nonempty closed convex subset of X and $T: C \to C$ a (single-valued) nonexpansive mapping (i.e., $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$). Given a $u \in C$ and a $t \in (0,1)$, we can define a contraction $T_t: C \to C$ by

$$(1) T_t x = tTx + (1-t)u, \quad x \in C.$$

Typeset by A_MS - T_EX

Then, by Banach's contraction principle, T_t has a unique fixed point x_t in C, that is, we have

$$(2) x_t = tTx_t + (1-t)u.$$

The convergence of $\{x_t\}$ as $t \to 1$ to a fixed point of T has been investigated by several authors. In fact, the strong convergence of $\{x_t\}$ as $t \to 1$ for a T of a bounded C was proved in a Hilbert space independently by Browder [1] and Halpern [10] and in a uniformly smooth Banach space by Reich [20] (cf. [9]). This result was also extended to Ishikawa iteration scheme (cf. Ishikawa [11]) by Tan and Xu [25] and very recently by Takahashi and Kim [27]. For recent progress for nonexpansive nonself-mappings, the reader is referred to [15], [24] and [29].

In this paper, we shall show how to construct (in a uniformly convex Banach space which either satisfies the Opial property or has a Fréchet differentiable norm) a common fixed point of mappings T, S which are asymptotically nonexpansive in the intermediate sense as the weak limt of a sequence $\{x_i\}$ defined by an iteration of the form

$$x_{i+1} = \alpha_i T^{n_i} [\beta_i T^{n_i} x_i + (1 - \beta_i) x_i] + (1 - \alpha_i) S^{n_i} x_i,$$

where $\{\alpha_i\}$ and $\{\beta_i\}$ are sequences in (0,1) which are bounded away from 0 and 1, i.e., $\alpha_i, \beta_i \in [a,b]$ for some a, b with $0 < a \le b < 1$, and $\{n_i\}$ is a sequence of nonnegative integers.

II. PRELIMINARIES

Let X be a real Banach space with norm $\|\cdot\|$ and let X^* be its dual. The value of $x^* \in X^*$ at $x \in X$ will be denoted by $\langle x, x^* \rangle$. When $\{x_n\}$ is a sequence in X, then $x_n \to x$ (resp. $x_n \to x$, $x_n \stackrel{*}{\to} x$) will denote strong (resp. weak, weak*) convergence of the sequence $\{x_n\}$ to x.

A Banach space X is said to be uniformly convex if $\delta(\epsilon) > 0$ for every $\epsilon > 0$, where the modulus $\delta(\epsilon)$ of convexity of X is defined by

$$\delta(\epsilon) = \inf \Big\{ 1 - \Big\| \frac{x+y}{2} \Big\| : \|x\| \le 1, \ \|y\| \le 1, \ \|x-y\| \ge \epsilon \Big\}.$$

Let $S(X) = \{x \in X : ||x|| = 1\}$. Then the norm of X is said to be Gâteaux differentiable (and E is said to be smooth) if

(3)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x, y in S(X). It is said to be Fréchet differentiable if for each $x \in S(X)$, the limit in (3) is attained uniformly for $y \in S(X)$. The norm is said to be uniformly Gâteaux differentiable if for each $y \in S(X)$, the limit in (3) is approached uniformly for x varies over S(X). Finally, it is said to be uniformly Fréchet differentiable (or X is said to be uniformly smooth) if the limit is attained uniformly for $(x,y) \in S(X) \times S(X)$.

We associate with each $x \in X$ the set

$$J_{\phi}(x) = \{x^* \in X^* : \langle x, x^* \rangle = ||x|| ||x^*|| \text{ and } ||x^*|| = \phi(||x||)\},$$

where $\phi:[0,\infty)\to[0,\infty)$ is a continuous and strictly increasing function with $\phi(0)=0$ and $\lim_{t\to\infty}\phi(t)=\infty$. Then $J_\phi:X\to 2^{X^*}$ is said to be the duality mapping. Suppose that J_ϕ is single-valued. Then J_ϕ is said to be weakly sequentially continuous if for each $\{x_n\}\in X$ with $x_n\to x$, $J_\phi(x_n)\stackrel{*}{\to} J_\phi(x)$. For abbreviation, we set $J:=J_\phi$. In our proof, we assume without loss of generality that J is normalized. For the relations between the duality mapping J and the above geometric properties of X, we summarize the following $Remark\ 2.1$.

- (a) If X is smooth, then the duality mapping J is single-valued and norm(strong)-to-weak* continuous.
- (b) If X is uniformly smooth, it is norm-to-norm uniformly continuous on every bounded subset of X; if the norm of X has uniformly Gâteaux differentiable, then J is norm-to-weak* uniformly continuous on every bounded subset of X.
- (c) The norm of X is uniformly Fréchet differentiable if and only if X^* is uniformly convex.

For more detailed properties, see [3].

A Banach space X is said to satisfy the *Opial property* [17] if for any sequence $\{x_n\}$ in X, $x_n \rightharpoonup x$ implies that

$$\limsup_{n\to\infty} \|x_n - x\| < \limsup_{n\to\infty} \|x_n - y\|$$

for all $y \in E$ with $y \neq x$. Spaces satisfying this property include all Hilbert spaces and l^p for 1 . Also it is known [7] that if <math>X admits a weakly sequentially continuous duality mapping, then X

satisfies the Opial property. For more details of the Opial property, see also [6].

Later, Prus [19] gave the stronger Opial property, that is, we say that X satisfies the uniform Opial property [19] (or [18]) if for any sequence $\{y_m : m \in \mathbb{N}\}$, and any uniformly bounded sequences $\{x_{n,m} : n \in \mathbb{N}\}$ which are weakly convergent to 0

$$\limsup_{m \to \infty} \limsup_{n \to \infty} \|x_{n,m} - y_m\| = \limsup_{m \to \infty} \limsup_{n \to \infty} \|x_{n,m}\|$$

implies $\{y_m\}$ converges to 0. It is well-known that if X is uniformly convex with the Opial property, then X satisfies the uniform Opial property.

Let X be a real Banach space, C a subset of X (not necessarily convex), and $T: C \to C$ a self-mapping of C. nonexpansive mapping. First, as the weaker definition (cf. Kirk [13]), T is said to be of asymptotically nonexpansive type (in brief, ANT) if for each $x \in C$, $\lim_{n\to\infty} c_n(x) = 0$, where

$$c_n(x) = 0 \vee \sup_{y \in C} (\|T^n x - T^n y\| - \|x - y\|)$$

and next, as the stronger sense, it is said to be of strongly asymptotically nonexpansive type (in brief, strongly ANT) if $\lim_{n\to\infty} c_n = 0$, where $c_n = \sup_{x\in C} c_n(x)$.

Recall that T is said to be Lipschitzian if $\exists L > 0$ such that $||Tx - Ty|| \le L||x - y||$ for all $x, y \in C$. In particular, if L = 1, T is said to be nonexpansive and it is said to be asymptotically

nonexpansive (in brief, AN) [5] if each iterate T^n is Lipschitzian with Lipschitz constants $L_n \to 1$ as $n \to \infty$. As an easy observation, we have the following

Remark 2.2. (a) all nonexpansive mappings are AN.

- (b) Every AN mapping is uniformly continuous and of strongly ANT (hence, a mapping of ANT).
 - (c) Any mapping of strongly ANT may be non-Lipschitzian.
- (d) All mappings $T:C\to C$ with the property $T^nx\to 0$ uniformly on C are of strongly ANT.
- (e) For all $x \in C$, if $T^n x \in F(T) = \{z\}$ for some $n \geq 1$, T is a mapping of ANT.

For investigating the relations between the above concepts, we here give the following example.

Example 2.1.

- (a) Let $C = [-1/\pi, 1/\pi] \subseteq \mathbb{R}$ and |k| < 1. For each $x \in C$ we define $Tx = kx \sin \frac{1}{x}$ if $x \neq 0$, and T0 = 0. Note that $T^n x \to 0$ uniformly on C. Hence, $T: C \to C$ is a continuous mapping of ANT which is not Lipschitzian.
- (b) Let $C = [0,1] \subseteq \mathbb{R}$ and define $Tx = \frac{1}{4}$ if $x = \frac{1}{4}, 1, Tx = 1$ for $x \in [0,\frac{1}{2}] \setminus \frac{1}{4}$, and $Tx = \frac{1}{2}$ for $x \in (\frac{1}{2},1]$. Note that for all $x \in C$, $T^nx = \frac{1}{4} \in F(T) = \{\frac{1}{4}\}$ for $n \geq 3$. Then $T: K \to K$ is a discontinuous mapping of ANT which is not nonexpansive.
 - (c) [16] Let $C = [0,1] \subseteq \mathbb{R}$ and let φ be the Cantor ternary

function. Define $T: K \to C$ by

$$T(x) = \begin{cases} x/2 & \text{if } 0 \le x \le 1/2, \\ \varphi((1-x)/2) & \text{if } 1/2 < x \le 1. \end{cases}$$

Note that $T^n x \to 0$ uniformly on K. Therefore, T is a discontinuous mapping of strongly ANT but not AN because φ is not Lipschizian continuous on $[0, \frac{1}{2}]$.

III. MAIN THEOREMS

Schu [21] considered the averaging iteration

$$x_{i+1} = \alpha_i T^i x_i + (1 - \alpha_i) x_i$$

when $T:C\to C$ is asymptotically nonexpansive and $\{\alpha_i\}$ is a sequence in (0,1) which is bounded away from 0 and 1. Throughout this section we shall consider, instead, the more general iteration

(4)
$$x_{i+1} = \alpha_i T^{n_i} y_i + (1 - \alpha_i) S^{n_i} x_i,$$

(5)
$$y_i = \beta_i T^{n_i} x_i + (1 - \beta_i) x_i,$$

where $\{\alpha_i\}$ and $\{\beta_i\}$ are sequences in (0,1) which are bounded away from 0 and 1, i.e., $\alpha_i, \beta_i \in [a,b]$ for some a,b with $0 < a \le b < 1$, and $\{n_i\}$ is a sequence of nonnegative integers (which need not be increasing). A strictly increasing sequence $\{m_i\}$ of positive integers will be called *quasi-periodic* [2] if the sequence $\{m_{i+1} - m_i\}$ is bounded (equivalently, if there exists b > 0 so that any block of b consecutive positive integers must contain a term of the sequence).

We begin with the following easy observation.

Lemma 3.1 [2]. Suppose $\{r_k\}$ is a bounded sequence of real numbers and $\{a_{k,m}\}$ is a doubly-indexed sequence of real numbers which satisfy

$$\limsup_{k\to\infty}\limsup_{m\to\infty}a_{k,m}\leq 0,\quad r_{k+m}\leq r_k+a_{k,m}\quad \text{for each }k,m\geq 1.$$

Then $\{r_k\}$ converges to an $r \in \mathbb{R}$; if $a_{k,m}$ can be taken to be independent of k, $a_{k,m} \equiv a_m$, then $r \leq r_k$ for each k.

With a slight modification of the proof of Lemma 3.2 in [12], we also have the following:

Lemma 3.2. Suppose X is a uniformly convex Banach space, C is a convex subset of X, and $T,S:C\to C$ are asymptotically nonexpansive in the intermediate sense with $F(T)\cap F(S)\neq\emptyset$. Put

$$c_n = \max(0, \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|), \sup_{x,y \in C} (\|S^n x - S^n y\| - \|x - y\|)),$$

so that $\lim_{n\to\infty} c_n = 0$. Suppose that for any $x_1 \in C$, $\{x_i\}$ is generated by (4)-(5) for $i \geq 1$ and $\sum_{i=1}^{\infty} c_{n_i} < +\infty$. Then for every $w_1, w_2 \in F(T) \cap F(S)$ and 0 < t < 1, $\lim_{i\to\infty} \|tx_i + (1-t)w_1 - w_2\|$ exists.

Proof. The proof still follows the lines of the proof in [2] and [12]. We have not assumed C is closed, but since T and S are uniformly continuous they (and their iterates) can be extended to the (norm) closure C with the same modulus of uniform continuity and the same constants c_n , so it does no harm to assume C itself is closed.

We begin with showing that for $w \in F(T) \cap F(S)$, the limit $\lim_{i\to\infty} \|x_i - w\|$ exists. From (5), since $\|y_k - w\| \le \beta_k c_{n_k} + \|x_k - w\|$, this together with (4) implies

(6)

$$||x_{k+1} - w|| \le \alpha_k ||T^{n_k} y_k - w|| + (1 - \alpha_k) ||S^{n_k} x_k - w||$$

$$= \alpha_k ||T^{n_k} y_k - T^{n_k} w|| + (1 - \alpha_k) ||S^{n_k} x_k - S^{n_k} w||$$

$$\le \alpha_k (||y_k - w|| + c_{n_k}) + (1 - \alpha_k) (c_{n_k} + ||x_k - w||)$$

$$\le \alpha_k (||x_k - w|| + c_{n_k} + c_{n_k} \beta_k) + (1 - \alpha_k) (c_{n_k} + ||x_k - w||)$$

$$\le ||x_k - w|| + c_{n_k} (1 + \alpha_k \beta_k).$$

Continuing this process inductively, we have for each $k \in \mathbb{N}$,

$$||x_{k+1} - w|| \le ||x_1 - w|| + 2\sum_{i=1}^k c_{n_i} < +\infty$$

and also

(7)
$$||x_{k+m} - w|| \le ||x_k - w|| + 2 \sum_{i=k}^{k+m-1} c_{n_i}.$$

Applying Lemma 1 with $r_k = \|x_k - w\|$ and $a_{k,m} = 2\sum_{i=k}^{k+m-1} c_{n_i}$, we see that $\lim_{i \to \infty} \|x_i - w\|$ ($\equiv r$) exists for every $w \in F(T) \cap F(S)$.

Now putting $T_i := \alpha_i T^{n_i} [\beta_i T^{n_i} + (1 - \beta_i)I] + (1 - \alpha_i)S^{n_i}$ (I denotes the identity mapping of X) for each $i \in \mathbb{N}$ and, for $k \geq j$, $S(k,j) := T_{k-1}T_{k-2}\cdots T_j$, it is easily seen that $x_k = S(k,j)x_j$ and $F(T_i) \supseteq F(T) \cap F(S)$. Since

$$||T_i x - T_i y|| \le c_{n_i} (1 + \alpha_i \beta_i) + ||x - y|| \le 2c_{n_i} + ||x - y||$$

for all $x, y \in C$, we have for $k \geq j$,

(8)
$$||S(k,j)x - S(k,j)y|| \le 2\sum_{i=j}^{k-1} c_{n_i} + ||x - y||$$
 for all $x, y \in C$.

For $w \in F(T) \cap F(S)$ and 0 < t < 1, as in the proof of Lemma 3.2 in [12], we can obtain

(9)
$$\lim_{j \to \infty} \sup_{k > j} ||S(k,j)[tx_j + (1-t)w] - tx_k - (1-t)w|| = 0$$

and hence the conclusion follows similarly. For more detail proof, see [12]. \Box

Remark 3.1. By a theorem of Kirk [13], it is easy to see that if C is bounded, and if T and S commute, then $F(T) \cap F(S) \neq \emptyset$.

Lemma 3.3 [4],[22]. Let X be a uniformly convex Banach space, $0 < b \le t_n \le c < 1$ for all $n \ge 1$, $r \ge 0$. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are sequences of X such that $\limsup_{n\to\infty} \|x_n\| \le r$, $\limsup_{n\to\infty} \|y_n\| \le r$, and $\lim_{n\to\infty} \|t_nx_n + (1-t_n)y_n\| = r$. Then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

Using Lemma 3.2 and 3.3, we have the following:

Theorem 3.1. Suppose X is a uniformly convex Banach space, C is a convex subset of X, and $T,S:C\to C$ are asymptotically nonexpansive in the intermediate sense with $F(T)\cap F(S)\neq\emptyset$. Put

$$c_n = \max(0, \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|), \sup_{x,y \in C} (\|S^n x - S^n y\| - \|x - y\|))$$

so that $\lim_{n\to\infty} c_n = 0$. Suppose $\{n_i\}$ is a sequence of nonnegative integers such that

$$\sum_{i=1}^{\infty} c_{n_i} < +\infty$$

and such that

$$\mathcal{O} = \{i : n_{i+1} = 1 + n_i\}$$

is quasi-periodic. Then for any $x_1 \in C$ and $\{x_i\}$ generated by (4)-(5) for $i \geq 1$, we have $\lim_{i \to \infty} \|x_i - Tx_i\| = 0$ and $\lim_{i \to \infty} \|x_i - Sx_i\| = 0$.

Proof. As in the proof of Lemma 3.2, we have for $w \in F(T) \cap F(S)$, the limit $\lim_{i\to\infty} \|x_i - w\|$ ($\equiv r$) exists. If r = 0, we immediately obtain

$$||Tx_i - x_i|| \le ||Tx_i - w|| + ||w - x_i|| = ||Tx_i - Tw|| + ||w - x_i||,$$

and hence by the uniform continuity of T, that $\lim_{i\to\infty} ||x_i - Tx_i|| = 0$. Similarly, we have $\lim_{i\to\infty} ||x_i - Sx_i|| = 0$. Suppose r > 0. Since

$$||T^{n_i}y_i - w|| \le ||y_i - w|| + c_{n_i}$$

 $\le (1 + \beta_i)c_{n_i} + ||x_i - w||,$
 $\le (1 + b)c_{n_i} + ||x_i - w||,$

we have $\limsup_{i\to\infty} \|T^{n_i}y_i - w\| \le r$. Further, since $\|S^{n_i}x_i - w\| \le c_{n_i} + \|x_i - w\|$, we have $\limsup_{i\to\infty} \|S^{n_i}x_i - w\| \le r$. Noting that

$$\lim_{i \to \infty} \|\alpha_i (T^{n_i} y_i - w) + (1 - \alpha_i) (S^{n_i} x_i - w)\| = \lim_{i \to \infty} \|x_{i+1} - w\| = r,$$

by Lemma 3.3, we have

(10)
$$\lim_{i \to \infty} ||T^{n_i} y_i - S^{n_i} x_i|| = 0.$$

This is equivalent to

(11)
$$\lim_{i \to \infty} ||S^{n_i} x_i - x_{i+1}|| = 0.$$

On the other hand, we have, for all $i \geq 1$,

$$||x_{i+1} - w|| \le \alpha_i ||T^{n_i} y_i - w|| + (1 - \alpha_i) ||S^{n_i} x_i - w||$$

$$\le \alpha_i (||y_i - w|| + c_{n_i}) + (1 - \alpha_i) (c_{n_i} + ||x_i - w||)$$

$$= \alpha_i ||y_i - w|| + c_{n_i} + (1 - \alpha_i) ||x_i - w||$$

and hence

$$rac{\|x_{i+1} - w\| - \|x_i - w\|}{lpha_i} \le \|y_i - w\| + rac{c_{n_i}}{a} - \|x_i - w\|.$$

This implies immediately that

$$r \leq \liminf_{i \to \infty} \|y_i - w\| \leq \limsup_{i \to \infty} \|y_i - w\|$$

$$\leq \limsup_{i \to \infty} (\beta_i c_{n_i} + \|x_i - w\|)$$

$$\leq \limsup_{i \to \infty} (bc_{n_i} + \|x_i - w\|)$$

$$= \limsup_{i \to \infty} \|x_i - w\| = r$$

and hence

$$r = \lim_{i \to \infty} \|y_i - w\|$$

= $\lim_{i \to \infty} \|\beta_i (T^{n_i} x_i - w) + (1 - \beta_i)(x_i - w)\|.$

Using Lemma 3.3 again, we have

(12)
$$\lim_{i \to \infty} ||T^{n_i} x_i - x_i|| = 0,$$

Since $\lim_{i\to\infty} c_{n_i} = 0$, (10) and (12) yield

$$||x_{i} - S^{n_{i}}x_{i}|| \leq ||x_{i} - T^{n_{i}}x_{i}|| + ||T^{n_{i}}x_{i} - T^{n_{i}}y_{i}|| + ||T^{n_{i}}y_{i} - S^{n_{i}}x_{i}||$$

$$\leq (1 + \beta_{i})||x_{i} - T^{n_{i}}x_{i}|| + c_{n_{i}} + ||T^{n_{i}}y_{i} - S^{n_{i}}x_{i}||$$

$$\leq (1 + b)||x_{i} - T^{n_{i}}x_{i}|| + c_{n_{i}} + ||T^{n_{i}}y_{i} - S^{n_{i}}x_{i}|| \to 0,$$

as $j \to \infty$. This with (11) implies that

(13)
$$||x_{i+1}-x_i|| \le ||x_{i+1}-S^{n_i}x_i|| + ||S^{n_i}x_i-x_i|| \to 0$$
 as $j \to \infty$.

For the remaining proof it is now possible to mimic the steps of the original argument in [2]. However, for the sake of completeness, we claim that $x_j - Tx_j \to 0$ as $j \to \infty$ through \mathcal{O} . Indeed, since $n_{j+1} = 1 + n_j$ for such j, we have

$$(14) \|x_{j} - Tx_{j}\| \leq \|x_{j} - x_{j+1}\| + \|x_{j+1} - T^{n_{j+1}}x_{j+1}\|$$

$$+ \|T^{n_{j+1}}x_{j+1} - T^{n_{j+1}}x_{j}\| + \|TT^{n_{j}}x_{j} - Tx_{j}\|$$

$$\leq \|x_{j} - x_{j+1}\| + \|x_{j+1} - T^{n_{j+1}}x_{j+1}\|$$

$$+ c_{n_{j+1}} + \|x_{j+1} - x_{j}\| + \|TT^{n_{j}}x_{j} - Tx_{j}\|.$$

By (12)-(14) and the uniform continuity of T, we conclude that $\|x_j - Tx_j\| \to 0$ as $j \to \infty$ through \mathcal{O} . Similarly, replacing T in (14) by S and (12) by $\lim_{i \to \infty} \|S^{n_i}x_i - x_i\| = 0$, we have $\|x_j - Sx_j\| \to 0$ as $j \to \infty$ through \mathcal{O} .

But since \mathcal{O} is quasi-periodic, there exists a constant b>0 such that for each positive integer i we can find $j_i \in \mathcal{O}$ with $|j_i-i| \leq b$. Thus (13) and the uniform continuity of I-T and I-S imply that x_i-Tx_i and x_i-Sx_i converge to 0 as $i\to\infty$ through all of \mathbb{N} . \square Remark 3.2. We don't know whether Theorem 3.1 still holds in case $\{\alpha_i\}$ is a sequence in (0,1) which is bounded away from 0 and 1 and $\{\beta_i\}$ is chosen so that either $\beta_i=0$ for all $i\geq 1$ or $\limsup_{i\to\infty}\beta_i=1$.

As a direct observation of Theorem 3.1 in [2], we have the following:

Theorem 3.2. Suppose a Banach space X has the uniform Opial property, C is a nonempty weakly compact subset of X, and T, S: $C \to C$ are asymptotically nonexpansive in the weak sense. If $\{x_n\}$ is a sequence in C such that $\lim_{n\to\infty} \|x_n - w\|$ exists for each common fixed point w of T and S, and if $\{x_n - T^k x_n\}$ and $\{x_n - S^k x_n\}$ are weakly convergent to 0 for each $k \geq 1$, then $\{x_n\}$ is is weakly convergent to a common fixed point of T and S.

Proof. Our proof still follows the lines of the proof in [2]. By Opial's classical argument, it suffices to show $\omega_w(x_n) \subseteq F(T) \cap F(S)$, where $\omega_w(x_n)$ denotes the weak ω -lim set of sequence $\{x_n\}$, i.e., the set $\{w \in X : w = \text{w-lim}_{j\to\infty} x_{n_j} \text{ for some } n_j \uparrow \infty\}$. To this end, let $\{x_{n_j}\}$ be a subsequence of $\{x_n\}$ such that $x_{n_j} \to z$. Define

$$r_k = \limsup_{j} \|T^k x_{n_j} - z\|, \qquad a_m = \sup_{y \in C} (\|T^m y - T^m z\| - \|y - z\|).$$

Since $x_n - T^k x_n \to 0$ for each $k \geq 1$, we have for each $m, k \in \mathbb{N}$, $T^{k+m} x_{n_j} \to z$ and hence, by the Opial property,

(15)
$$r_{k+m} = \limsup_{j \to \infty} \|T^{k+m} x_{n_j} - z\|$$
$$\leq \limsup_{j \to \infty} \|T^{k+m} x_{n_j} - T^m z\|$$
$$\leq r_k + a_m,$$

where $\limsup_{n\to\infty} a_m \leq 0$. By Lemma 1 again, therefore, $\lim_{k\to\infty} r_k := r$ exists and $r \leq r_k$ for each $k \geq 1$. Setting $x_{n_j,m} := T^m x_{n_j} - z$ and $y_m := T^m z - z$ and first taking the $\limsup_{n\to\infty} a_n \to \infty$ in (15), we have

$$r \leq \limsup_{m \to \infty} \limsup_{j \to \infty} \|x_{n_{j},m} - y_{m}\|$$

$$= \limsup_{m \to \infty} \limsup_{j \to \infty} \|T^{m}x_{n_{j}} - T^{m}z\|$$

$$= \limsup_{m \to \infty} \limsup_{j \to \infty} \|T^{k+m}x_{n_{j}} - T^{m}z\|$$

$$\leq r_{k}$$

for each $k \geq 1$ and next taking the \lim as $k \to \infty$ this yields

$$\limsup_{m\to\infty} \limsup_{j\to\infty} \|x_{n_j,m} - y_m\| = r = \limsup_{m\to\infty} \limsup_{j\to\infty} \|x_{n_j,m}\|.$$

By the uniform Opial property, we have $\lim_{m\to\infty} T^m z = z$. Since T^N is continuous, $z\in F(T^N)$, and since

$$z = \lim_{j \to \infty} T^{jN+1} z = \lim_{j \to \infty} T T^{jN} z = T z,$$

z is also a fixed point of T. Similarly, replacing T by S, we can prove that z is a fixed point of S. Hence $z \in F(T) \cap F(S)$. \square

It is known [30] that if X is uniformly convex and has the Opial property, then X has the uniform Opial property. Here, combining Theorem 3.1 and Theorem 3.2, we have the following:

Theorem 3.3. Let X be a uniformly convex Banach space which satisfies the Opial property, C a nonempty bounded closed convex subset of X, and $T,S:C\to C$ asymptotically nonexpansive in the intermediate sense with $F(T)\cap F(S)\neq\emptyset$. Put

$$c_n = \max(0, \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|), \sup_{x,y \in C} (\|S^n x - S^n y\| - \|x - y\|)),$$

so that $\lim_{n\to\infty} c_n = 0$. Suppose $\{n_i\}$ is a sequence of nonnegative integers such that

$$\sum_{i=1}^{\infty} c_{n_i} < +\infty$$

and such that

$$\mathcal{O} = \{i : n_{i+1} = 1 + n_i\}$$

is quasi-periodic. Then the sequence $\{x_i\}$ generated by (4)-(5) with starting $x_1 \in C$ is weakly convergent to a common fixed point of T and S.

Proof. By Theorem 3.1, $\lim_{i\to\infty} ||x_i - Tx_i|| = 0$ and $\lim_{i\to\infty} ||x_i - Sx_i|| = 0$. Since T and S are uniformly continuous, we have for each $k \in \mathbb{N}$,

$$\lim_{i \to \infty} \|x_i - T^k x_i\| = 0 \quad \text{and} \quad \lim_{i \to \infty} \|x_i - S^k x_i\| = 0,$$

which in turn imply $x_i - T^k x_i \rightharpoonup 0$ and $x_i - S^k x_i \rightharpoonup 0$ respectively. The conclusion now follows from Theorem 3.2.

Theorem 3.4. Let X be a uniformly convex Banach space which has a Fréchet differentiable norm, C a nonempty bounded closed convex subset of X, and $T, S : C \to C$ asymptotically nonexpansive in the intermediate sense with $F(T) \cap F(S) \neq \emptyset$. If $\omega_w(x_i) \subseteq F(T) \cap F(S)$, then the sequence $\{x_i\}$ generated by (4)-(5) with starting $x_1 \in C$ is weakly convergent to a common fixed point of T and S.

Proof. Using Lemma 3.2, it is easy to see that the limit $\lim_{i\to\infty}\langle x_i, J(w_1-w_2)\rangle$ exists for all $w_1, w_2\in F(T)\cap F(S)$ (for details, see [25] or [2]). In particular, this implies that

(14)
$$\langle p-q, J(w_1-w_2)\rangle = 0$$
 for all p, q in $\omega_w(x_i)$.

Replacing w_1 and w_2 in (14) by q and p, respectively, we have

$$0 = \langle p - q, J(q - p) \rangle = -\|p - q\|^2,$$

for all $p,q \in \omega_w(x_i)$. This proves the uniqueness of weak subsequential limits of $\{x_i\}$ and completes the proof that $\{x_i\}$ converges weakly. \square

Remark 3.3. If I-T (resp. I-S) is demiclosed at 0, i.e., for any sequence $\{x_i\}$ in C, the conditions $x_i \rightharpoonup w$ and $x_i - Tx_i \to 0$ (resp. $x_i - Sx_i \to 0$) imply w - Tw = 0 (resp. w - Sw = 0), it easily follows from Theorem 1 that $\omega_w(x_i) \subseteq F(T) \cap F(S)$.

It is well known [28] that if $T, S : C \to C$ are asymptotically nonexpansive, I - T and I - S are demiclosed at 0. As a direct consequence of Theorem 3 and 4, we have the following:

Corollary 3.1. Let X be a uniformly convex Banach space which satisfies the Opial property or has a Fréchet differentiable norm, C a nonempty bounded closed convex subset of X, and $T, S: C \to C$ asymptotically nonexpansive mappings with $F(T) \cap F(S) \neq \emptyset$. Suppose $\{n_i\}$ is a sequence of nonnegative integers such that

$$\sum_{i=1}^{\infty} (L_{n_i} - 1) < +\infty$$

and such that

$$\mathcal{O} = \{i : n_{i+1} = 1 + n_i\}$$

is quasi-periodic. Then the sequence $\{x_i\}$ generated by (4)-(5) with starting $x_1 \in C$ is weakly convergent to a common fixed point of T and S.

Remark 3.4. It is easy to see that, under the assumptions of Corollary 1, if $T, S: C \to C$ are nonexpansive, then the sequence $\{x_i\}$ generated by an iteration of the form

(15)
$$x_{i+1} = \alpha_i T[\beta_i T x_i + (1 - \beta_i) x_i] + (1 - \alpha_i) S x_i$$

starting $x_1 \in C$ is weakly convergent to a common fixed point of T and S, where $\{\alpha_i\}$ and $\{\beta_i\}$ are chosen so that $\alpha_i, \beta_i \in [a, b]$ for some a, b with $0 < a \le b < 1$.

Theorem 3.5. Under the assumptions of Theorem 3.1, if T and S have pre-compact ranges, then the sequence $\{x_i\}$ generated by (4)-(5) with starting $x_1 \in C$ is strongly convergent to a common fixed point of T and S.

Proof. We follows the lines of the proof of Theorem 1.5 in [21]. From our assumptions it follows that $\Omega := \overline{co}\Big(\{x_1\} \cup T(C) \cup S(C)\Big)$ is a compact subset of C containing $\{x_i\}$. Hence there exists an $w \in C$ and a subsequence $\{x_{i_j}\}$ of $\{x_i\}$ which converges strongly to w. But T and S are continuous and $\lim_{i \to \infty} \|x_i - Tx_i\| = 0$ and $\lim_{i \to \infty} \|x_i - Sx_i\| = 0$ by Theorem 3.1. Thus w is a common fixed point of T and S. As in the proof of Lemma 3.2 again, we have the limt $\lim_{i \to \infty} \|x_i - w\|$ exists. Hence we have $\lim_{i \to \infty} \|x_i - w\| = 0$. \square

Remark 3.4. In Theorem 1.5 of [21], Schu assumed that X is Hilbert space and that iterates T^n have Lipschitz constants $L_n \geq 1$ such that $\sum_n (L_n^2 - 1)$ converges. Even for Schu's original iteration $(n_i \equiv i)$, Theorem 3.4 is more general, since the convergence of $\sum_n (L_n^2 - 1)$ implies that of $\sum_n (L_n - 1)$, which in turn assures the convergence of our $\sum_n c_n$. We don't know whether Theorem 3.5 still remains true under the weak condition of X (that is, strict convexity) as in [27] for a nonexpansive mapping $T: C \to C$ and the sequence $\{x_i\}$ defined by (15).

Recall that a pair (T,S) of mappings $T,S:C\to C$ is said to satisfy Condition A if there exists a nondecreasing function $f:[0,\infty)\to[0,\infty)$ with f(0)=0 and f(r)>0 for all r>0

such that

$$\frac{1}{2}(\|x - Tx\| + \|x - Sx\|) \ge f(d(x, F))$$

for all $x \in C$, where $d(x, F) = \inf_{z \in F} ||x - z||$ and $F := F(T) \cap F(S)$. In particular, if T = S, the above definition reduces to one due to [23].

Theorem 3.6. Under the assumptions of Theorem 3.1, if a pair (T, S) of mappings $T, S : C \to C$ satisfies Condition A, then the sequence $\{x_i\}$ generated by (4)-(5) with starting $x_1 \in C$ is strongly convergent to a common fixed point of T and S.

Proof. By Condition A, we have

$$\frac{1}{2}(\|x_i - Tx_i\| + \|x_i - Sx_i\|) \ge f(d(x_i, F))$$

for all $i \geq 1$.

In the proof of Lemma 3.2, since $||T_ix - T_iy|| \le 2c_{n_i} + ||x - y||$ for all $x, y \in C$ and $i \ge 1$, we have

$$||x_{i+1} - z|| = ||T_i x_i - T_i z|| \le 2c_{n_i} + ||x_i - z||$$

for all $z \in F$ and so $d(x_{i+1}, F) \leq 2c_{n_i} + d(x_i, F)$ for all $i \geq 1$. By Lemma 1 (or see [25; Lemma 3.1]), the limit $\lim_{i \to \infty} d(x_i, F)$ exists. We shall claim that

$$\lim_{i \to \infty} d(x_i, F) = 0.$$

To this end, if not, i.e., $d := \lim_{i \to \infty} d(x_i, F) > 0$, then we can choose a $k \in \mathbb{N}$ such that for all $i \geq k$,

$$0 < \frac{d}{2} < d(x_i, F).$$

Then it follows from Condition (A) and Theorem 1 that

$$0 < f(\frac{d}{2}) \le f(d(x_i, F)) \le \frac{1}{2}(\|x_i - Tx_i\| + \|x_i - Sx_i\|) o 0$$

as $i \to \infty$. This is a contradiction, which shows that d = 0. We can thus choose a subsequence $\{x_{i_j}\}$ of $\{x_i\}$ such that

$$\|x_{i_j}-z_j\|\leq 2^{-j}$$

for all $j \geq 1$ and some sequence $\{z_j\}$ in F. Replacing i and z in (16) by i_j and z_j , respectively, we have

$$||x_{i_j+1} - z_j|| \le 2c_{n_{i_j}} + ||x_{i_j} - z_j||$$

 $\le 2c_{n_{i_j}} + 2^{-j},$

and hence

$$||z_{j+1} - z_j|| \le ||z_{j+1} - x_{i_j+1}|| + ||x_{i_j+1} - z_j||$$

$$\le 2^{-(j+1)} + 2c_{n_{i_j}} + 2^{-j} < 2(2^{-j} + c_{n_{i_j}}),$$

which shows that $\{z_j\}$ is Cauchy and therefore converges strongly to a point z in F since F is closed. Now it is readly seen that $\{x_{i_j}\}$ converges strongly to z. Since the limit $\lim_{i\to\infty} \|x_i - z\|$ exists as in the proof of Lemma 3.2, $\{x_i\}$ itself converges strongly to $z \in F$. \square

Remark 3.5. If S=T, Theorem 3.6 reduces to Theorem 3.6 due to Kim-Jung [12].

REFERENCES

- 1. F. E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archs Ration. Mech. Anal. 24 (1967), 82-90.
- 2. R.E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65(2) (1993), 169-179.
- 3. J. Diestel, Geometry of Banach Spaces-selected topics, Lectures Notes in Math. 485, Springer-Verlag, Berlin, Heidelberg, 1975.
- 4. W. G. Dotson, Jr., On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970), 65-73.
- 5. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- 6. K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge Univ. Press, Cambridge, 1990.
- 7. J. P. Gossez and E. L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40(3) (1972), 565-573.
- 8. C. W. Groetsh, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972), 369-372.
- 9. K. S. Ha and J. S. Jung, Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990), 330-339.
- 10. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
- 11. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- 12. T. H. Kim and J. S. Jung, Approximating fixed points of nonlinear mappings in Banach Spaces, preprint.
- 13. W. A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346.
- P.K. Lin, K.K. Tan and H.K. Xu, Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Analysis 24(6) (1995), 929-946.
- 15. G. Marino and G. Trombetta, On approximating fixed points for nonexpansive maps, Indian J. Math. 34 (1992), 91–98.
- 16. I. Miyadera, Nonlinear ergodic theorems for semigroups of non-Lipschitzian mappings in Hilbert spaces, Taiwanese J. Math. 4(2) (2000), 261–274.
- 17. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- 18. P. K. Lin, Asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Analysis 26 (1996), 1137-1141.

- 19. S. Prus, Banach spaces with the uniform Opial property, Nonlinear Analysis 18 (1992), 697–704.
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
- J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407-413.
- 22. J. Schu, Weak and strong convergence to fixed points of asymptotically non-expansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
- 23. H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpanive mappings, Procl. Amer. Math. Soc. 44 (1974), 375-380.
- 24. S. P. Singh and B. Watson, On approximating fixed points, Proc. Symp. Pure Math 45(2) (1986), 393-395.
- 25. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
- 26. K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733-739.
- 27. W. Takahashi and G. E. Kim, Approximating fixed points of nonexpansive mappings in Banach spaces, Math. Japonica6, to appear.
- 28. H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Analysis 16 (1991), 1139-1146.
- 29. H. K. Xu and X. M. Yin, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Analysis 24 (1995), 223-228.
- 30. H. K. Xu, Geometrical coefficients of Banach spaces and nonlinear mappings, to appear the Proceedings of the Workshop on Fixed Point Theory held in Sevilla, Spain, September, 1995.