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I. INTRODUCTION

Let X be a real Banach space, C' a subset of X (not necessar-
ily convex), and T : C' — C a self-mapping of C. nonexpansive
mapping. First, as the weaker definition (cf. Kirk [13}), T is said
to be of asymptotically nonexpansive type (in brief, ANT) if for each

z € O, limy 00 cn(x) = 0, where

cnfz) =0V Sgg(llT"fB =Ty = llz -yl
¥

and next, as the stronger sense, it is said to be of strongly
asymptotically nonezpansive type (in brief, strongly ANT) if
limy—y00 ¢n = 0, where ¢, = sup,cc cn(z). Kirk [13] established a
fixed point theorem for mappings of ANT which TV be continuous
for some N > 1. The stronger definition (in brief, called asymptot-
ically nonerpansive as in [5]) requires that each iterates 7™ be Lip-
schitzian with Lipschitz constants L, — 1 as n — oo. In this case,
note that T is uniformly continuous on C. For more generalization
of an averaging iteration of Schu [21], Bruck et al. [2] introduced a
definition somewhere between these two: T is asymptotically nonez-
pansive in the intermediate sense provided T is uniformly continuous
and of strongly ANT.

On the other hand, let C be a nonempty closed convex subset
of X and T : C — C a (single-valued) nonexpansive mapping (i.e.,
ITz — Ty|| < ||z —y| forall z, y € C). Givena u € C and a
t € (0,1), we can define a contraction Ty : ¢ — C' by

(1) Tz =tTz+ (1 —t)u, z€C.

Typeset by ApS-TEX



Then, by Banach’s contraction principle, 7; has a unique fixed point

x¢ in C, that is, we have

The convergence of {z;} as t = 1 to a fixed point of T has been
investigated by several authors. In fact, the strong convergence of
{r;} ast — 1 for a T of a bounded C was proved in a Hilbert space
independently by Browder [1] and Halpern [10] and in a uniformly
smooth Banach space by Reich [20] (cf. [9]). This result was also
extended to Ishikawa iteration scheme (cf. Ishikawa [11]) by Tan and
Xu [25] and very recently by Takahashi and Kim [27]. For recent
progress for nonexpansive nonself-mappings, the reader is refered to
[15], [24] and [29].

In this paper, we shall show how to construct (in a uniformly con-
vex Banach space which either satisfies the Opial property or has a
Fréchet differentiable norm) a common fixed point of mappings T, S
which are asymptotically nonexpansive in the intermediate sense as

the weak limt of a sequence {z;} defined by an iteration of the form
ziy1 = T BTz + (1 — Bi)zs] + (1 — o) S™ s,

where {o;} and {3;} are sequences in (0,1) which are bounded away
from 0 and 1, ie., o, f; € [a,b] for some a,b with 0 <a < b <1,

and {n;} is a sequence of nonnegative integers.



I1. PRELIMINARIES

Let X be a real Banach space with norm || - || and let X™ be its
dual. The value of z* € X* at x € X will be denoted by (z,z*).
When {z,} is a sequence in X, then z,, — = (resp. zn = T, T X x)
will denote strong (resp. weak, weak™) convergence of the sequence
{z,} to .

A Banach space X is said to be uniformly convex if é(¢) > 0 for
every € > 0, where the modulus §(e) of convexity of X is defined by

o) = inf {1~ | “=Y|| =l <1, hull < 1, o - wl 2 <.

Let S(X) = {x € X : |z|| = 1}. Then the norm of X is said to
be Géteaur differentiable (and E is said to be smooth) if

- e+ tyl — el
- t—0 t

exists for each z, y in S(X). It is said to be Fréchet differen-
tiable if for each z € S(X), the limit in (3) is attained uniformly
for y € S(X). The norm is said to be uniformly Gdteaur differen-
tiable if for each y € §(X), the limit in (3) is approached uniformly

for = varies over S{X). Finally, it is said to be uniformly Fréchet
differentiable (or X is said to be uniformiy smooth) if the limit is
attained uniformly for (z,y) € S(X) x S(X).

We associate with each x € X the set

Jo(x) = {z* € X* : (z,2*) = |z|[|="|| and ||z"[| = ¢(l|z]])},



where ¢ : [0,00) = [0,00) is a continuous and strictly increasing
function with ¢(0) = 0 and lim;_,o ¢(t) = 0c0. Then Jy : X — 2 X"
is said to be the duality mapping. Suppose that J, is single-valued.
Then Jy is said to be weakly sequentially continuous if for each
{,} € X with z, — z, Jy(Zn) 5 Js(x). For abbreviation, we
set J := Jy. In our proof, we assume without loss of generality that
J is normalized. For the relations between the duality mapping J

and the above geometric properties of X, we summarize the following

Remark 2.1.

(a) If X is smooth, then the duality mapping J is single-valued
and norm(strong)-to-weak* continuous.

(b) If X is uniformly smooth, it is norm-to-norm uniformly con-
tinuous on every bounded subset of X; if the norm of X has uni-
formly Gateaux differentiable, then J is norm-to-weak™ uniformly
continuous on every bounded subset of X.

(c) The norm of X is uniformly Fréchet differentiable if and only
if X* is uniformly convex.

For more detailed properties, see [3].

A Banach space X is said to satisfy the Opial property [17] if for
any sequence {z,} in X, z, — z implies that

limsup ||z, — z| < limsup [|zn — ¥||
n—o0 n—+00
for all y € E with y # z. Spaces satisfying this property include all
Hilbert spaces and [P for 1 < p < oo. Also it is known [7] that if X

admits a weakly sequentially continuous duality mapping, then X



satisfies the Opial property. For more details of the Opial property,
see also [6].

Later, Prus [19] gave the stronger Opial property, that is, we
say that X satisfies the uniform Opial property [19] (or (18]) if for
any sequence {ym : m € N}, and any uniformly bounded sequences

{2n m : n € N} which are weakly convergent to 0

lim sup im sup || Zn,m — Ym || = limsup limsup ||z, om ||
m—o0 ?N—>00 m—o0  N—300

implies {ym } converges to 0. It is well-known that if X is uniformly
convex with the Opial property, then X satisfies the uniform Opial
property.

Let X be a real Banach space, C' a subset of X (not necessarily
convex), and T : C — C a self-mapping of C. nonexpansive map-
ping. First, as the weaker definition (cf. Kirk [13]), T is said to be of
asymptotically nonezpansive type (in brief, ANT) if for each z € C,

limy 00 cn(x) = 0, where
col(z) = 0V sup(|T"z — T"y|| — llz — y|))
yeC

and next, as the stronger sense, it is said to be of strongly asymptot-
ically nonezpansive type (in brief, strongly ANT) if limps0 Cn = 0,

where ¢, = sup_¢¢ cn(T).

Recall that T is said to be Lipschitzian if 3 L > 0 such that
Tz — Ty|| < Lljz — y| for all 2,y € C. In particular, if L = 1,

T is said to be nonezpansive and it is said to be asymptotically



nonexpansive (in brief, AN) [5] if each iterate 7™ is Lipschitzian with
Lipschitz constants L, — 1 as n — oo. As an easy observation, we

have the following

Remark 2.2. (a) all nonexpansive mappings are AN.

(b) Every AN mapping is uniformly continuous and of strongly
ANT (hence, a mapping of ANT).

(c) Any mapping of strongly ANT may be non-Lipschitzian.

(d) All mappings T : C — C with the property T"z — 0 uni-
formly on C are of strongly ANT.

(e) For all z € C, if T"z € F(T) = {2} for some n > 1, T is a
mapping of ANT.

For investigating the relations between the above concepts, we

here give the following example.

Example 2.1.

(a) Let C = [~1/=,1/7] C R and |k| < 1. For each z € C we
define Tx = ka:sin% if z # 0, and T0 = 0. Note that T"z — 0
uniformly on C. Hence, T': C — C is a continuous mapping of ANT

which is not Lipschitzian.

(b) Let C = [0,1] € R and define Tz = 3 if ¢ = 1, Tz =1
for z € [0,1]\ %, and Tz = lforz e (1,1]. Note that for all
.’L‘EC,TW’QE:%EF(T)={%}fOI‘nZ3. ThenT: K - Kisa

discontinuous mapping of ANT which is not nonexpansive.

(c) [16] Let C = [0,1] C R and let ¢ be the Cantor ternary



function. Define T': K — C by

x/2 if0<z<1/2,
T(x)= .
e((l1-2)/2) f1/2<z <1
Note that 7"z — 0 uniformly on K. Therefore, T is a discontinuous

mapping of strongly ANT but not AN because ¢ is not Lipschizian

continuous on [0, 1.
ITT. MAIN THEOREMS

Schu [21] considered the averaging iteration
Tip1 = az‘Ti:B,; + (l - ai)a:i

when T : C — C is asymptotically nonexpansive and {o;} is a
sequence in (0, 1) which is bounded away from 0 and 1. Throughout

this section we shall consider, instead, the more general iteration
(4) Tiyp1 = Q{iTniyi + (1 — ai)sni&b‘i,
(5) yi = BT i + (1 — B,

where {o;} and {3;} are sequences in (0, 1) which are bounded away
from 0 and 1, i.e., a;, 5 € [a,b] for some a,b with 0 < a < b <1,
and {n,} is a sequence of nonnegative integers (which need not be
increasing). A strictly increasing sequence {m;} of positive inte-
gers will be called guasi-periodic [2] if the sequence {miz1 —mi} is
bounded (equivalently, if there exists b > 0 so that any block of b

consecutive positive integers must contain a term of the sequence).

We begin with the following easy observation.



Lemma 3.1 [2]. Suppose {ri} is a bounded sequence of real num-
bers and {ax,m} is a doubly-indexed sequence of real numbers which

satisfy

limsuplimsupakm <0, Titm <7k +akm for each k,m > 1.
k—osoo mM—0o0

Then {ry} converges to an r € R; if agm can be taken to be inde-

pendent of k, ax,m = am, then r < ry, for each k.

With a slight modification of the proof of Lemma 3.2 in [12], we

also have the following:

Lemma 3.2. Suppose X is a uniformly convex Banach space, C
is a convex subset of X, and T,S : C — C are asymptotically

nonexpansive in the intermediate sense with F(T) N F (S) # 0. Put

¢ = max(0, sup (|T"z—Tyl|~z—yl), sup ([[S"z—S"yl—llz—yl)),
z,yeC z,yeC

so that limp_oocn, = 0. Suppose that for any T, € C, {z;:} is
generated by (4)-(5) for i > 1 and Y2 ¢, < +oo. Then for every
u, Wy € F(T) N F(S) and 0 <t <1, lim; ;00 Htm,— + (1 — t)?.Ul - ’LU2“

exists.

Proof. The proof still follows the lines of the proof in [2] and [12].

We have not assumed C is closed, but since T and S are uniformly
continuous they (and their iterates) can be extended to the (norm)
closure C with the same modulus of uniform continuity and the same

constants ¢, so it does no harm to assume C itself is closed.



We begin with showing that for w € F(T) N F(S), the limit
lim; o0 || 2i —w/| exists. From (5), since |yx —w| < Brcn,, + |z —wl|,

this together with (4) implies

(6)

lzks1 — wil < ol T™ys — wl + (1 — ax)||S™ zx — wl|
= ag|| Ty — T™w|| + (1 = ) [|S™ zk — 5™ w]]
< ar(llys — wll + cn, ) + (1 = a)(en, + [lzn — wi)
< ap(|zr — W] + Cnp + CnBr) + (1 — ar){en, + |ze — wll)

< |lzk — wl + cny (1 + axBi)-

Continuing this process inductively, we have for each k € N,

k

k1 — wll < llzs —wl +2) en, < +00
i=1
and also
k—l—m—‘l
(7) lokim — wll < loe —wl +2 3 cn
i=k

Applying Lemma 1 with 7, = ||zx — w|l and ax,m = 25 e,
we see that lim;_; e ||z; — w|| (= 7) exists for every w € F(T') NF(S).

Now putting T} := o T™[BT™ + (1 — G)I] + (1 — ) 5™ (I
denotes the identity mapping of X) for each i € N and, for k = j,
S(k,j) = Tk—1Th—2 - - - Tj, it is easily seen that z = S(k,j)r; and
F(T:;) 2 F(T)n F(S). Since

|ITiz — Toyl| < e, (1 + i) + Iz — yll < 2¢n, + [lz — 9l

-10 -



for all z,y € C, we have for k > 7,

k-1
(8) 1Sk, )z — Sk, Nyl €2 cny +llz =yl forallz,yeC.
. T==j

For w € F(T)N F(S) and 0 < t < 1, as in the proof of Lemma 3.2

in [12], we can obtain

(9)  lim sup||S(k, )[tz; + (1 — H)w] — tox — (1 - w|| =0

and hence the conclusion follows similarly. For more detail proof,

see [12]. O

Remark 3.1. By a theorem of Kirk [13], it is easy to see that if C' is
bounded, and if T and § commute, then F(T) N F(S) # 0.

Lemma 3.3 [4],[22]. Let X be a uniformly convex Banach space,
0<b<t,<c<lforalln>1 r>0. Suppose that {n}S,
and {yn )2, are sequences of X such that limsup,_,. lznll < 7,
limsup,, . [¥nll < 7, and imp oo [tn®n + (1 — tn)ynll = 7.

Then limn— o0 ||ZTrn — Ynll = 0.
Using Lemma 3.2 and 3.3, we have the following:

Theorem 3.1. Suppose X is a uniformly convex Banach space,
C is a convex subset of X, and T,S : C — C are asymptotically
nonexpansive in the intermediate sense with F(T) N F(S) # @. Put

en = max(0, sup (|T"z—T"yl|l—z—yl), sup (I[S"z—S"yl—llz—yl))
z,yeC zyeC

_11_



so that lim,, ,eo cn = 0. Suppose {n;} is a sequence of nonnegative

integers such that
o0
Z Cpn, < +00
i=1

and such that
Oﬁ{’iiﬂi+1 =1—|—nz}

is quasi-periodic. Then for any z, € C and {z;} generated by (4)-(5)

fori > 1, we have lim;_;0 ||2: —Tz;|| = 0 and lim; o ||zs—Szi|| = 0.

Proof. As in the proof of Lemma 3.2, we have for w € F(T)NF(S),

the Yimit lim;co ||2; — w|| (= 7) exists. If 7 = 0, we immediately

obtain
| Ta; — 2| < |T2i — wl + [lw ~ 23]l = |Tzi — Twl + [lw — i,
and hence by the uniform continuity of T, that lim; oo |2 —T'zs|| = 0.

Similarly, we have lim; o ||zi — S2il| = 0. Suppose 7 > 0. Since

| T y; — wl <y — wl + ¢n,
< (14 Bi)en, + ||z — wll,
< (14 b)en, + |lzs — wl,

we have limsup;_,, |7 y; — w| < r.Further, since
8™ z; — wl|| < cp, + |lzi — wl|, we have limsup;_, |S™x; —w|| <.

Noting that

lm |joi(T™y; — w) + (1—a;)(S™x; — w)|| = lim ||z —w| =7,
11— 00 11— 00

- 12 -



by Lemma 3.3, we have
11— 00
This is equivalent to

(11) lim {[$™z; — 2opfl = 0.

2

On the other hand, we have, for all i > 1,
|zip1 — wll < @il T™ys — wll + (1 — ) [|5™ 2 — w
< oyf|lyi — wil + en,) + (1 — ) (en, + |2 — w]))
= aillys — w + ca, + (1 — ai)lwi - w]]

and hence

[i41 — wl = |lz — wl]

c 1
, < llys — wl + == = flzi — ]
o a

This implies immediately that

r < liminf [|y; — w|| < limsup [ly; — w||
00 i—oo

< limsup(Bicn, + [lz: — wl})

i—00

< limsup(bcn,; + ||z: — wl})
i— 00

= limsup ||z; —w|| =7
i—00

and hence

r= lim |ly; — w]
t— 00

- zliglo I18:(T™ z; — w) + (1 — Bi)(zi — w)|-

- 13 -



Using Lemma 3.3 again, we have

(12) lim HTmiL'i - :IJ,“ = 0,

1—00

Since lim;— o0 €n; = 0, (10) and (12) yield

2 — S™al| < |z — T )| + | T @ — Tyl + 1Ty — S™ |
< (14 Bl — T zi|| + cn; + | T™y; — S™ x|
< (1 +b)|lzi — T @l + en, + 1Ty — S™ai]| = 0,

as j — oo. This with (11) implies that
(13) HJLH_l—.’EiH < ||:B1-+1-—S"":ci]|+l|5”*:1:i—a:i|| -0 as _7 — OO,

For the remaining proof it is now possible to mimic the steps of
the original argument in [2]. However, for the sake of completeness,
we claim that z; — Tz; -+ 0 as j — o0 through O. Indeed, since

nj+1 = 1+ n; for such j, we have

(14)||lz; — Tzl <llz; — zjeall + lzjen = T4 2544
| TPy — T4z ||+ | TT™ x5 — Ty
Uzj — zjall + @i — T 250l
T emyn 4 oz — o5l + T2, — Tagl)
By (12)-(14) and the uniform continuity of 7', we conclude that
|z; —Tz;l| — 0 as j — oo through O. Similarly, replacing T in (14)

by S and (12) by lim; e ||S™z; — z:]| = 0, we have |lz; — Sz;|| — 0
as j — oo through O.

- 14 -



But since @ is quasi-periodic, there exists a constant b > 0 such
that for each positive integer i we can find j; € O with |j; — i <b.
Thus (13) and the uniform continuity of I —7" and I — S imply that

z; — Tz; and z; — Sx; converge to 0 as ¢ — oc through all of N. [

Remark 3.2. We don’t know whether Theorem 3.1 still holds in case
{a;} is a sequence in (0, 1) which is bounded away from 0 and 1 and

{$;} is chosen so that either §; = 0 for all i > 1 or limsup 3; = 1.

1= 00
As a direct observation of Theorem 3.1 in (2], we have the follow-

ing:

Theorem 3.2. Suppose a Banach space X has the uniform Opial
property, C is a nonempty weakly compact subset of X, and T, S :
C — C are asymptotically nonexpansive in the weak sense. If {zn}is
a sequence in C such that lim,_,« ||n — w|| exists for each common
fixed point w of T and S, and if {z, — T*z,} and {zn — S*zn}
are weakly convergent to 0 for each k > 1, then {z,} is is weakly

convergent to a common fixed point of T and S.

Proof. Our proof still follows the lines of the proof in [2]. By Opial’s
classical argument, it suffices to show wy,(zn) € F(T) N F(S), where

wi(Zy) denotes the weak w-lim set of sequence {z,}, i.e., the set
{fwe X : w= wlimj oo Tn, for some n; 1 co}. To this end, let

{zn,} be a subsequence of {zn} such that z,, — 2. Define

r. = limsup ||T’“a:nj — 2|, am = sup(||[T™y — T"z|| — lly — 2[|)-
j yeC

- 15 =



Since z, — T*z, — 0 for each k > 1, we have for each m,k € N,

T*+mg, . — z and hence, by the Opial property,

(15) ripm = limsup |75 ™z,

: ; — 2l
j—o0

< limsup “T’“er:vnj - Tz
j—oo

< Tk + Qms

where limsup,, ,.,am < 0. By Lemma 1 again, therefore,
limg oo i = 7 exists and r < 7 for each k¥ > 1. Setting
T, m = T, —2 and ym, :== T™z — z and first taking the limsup

as m — oo in (15}, we have

r < limsup imsup ||Zn, m = Yml|
m—oo j—ro0

= lim sup limsup | T™zy, — T™ 2|
m—oc  j—0o0

= limsup limsup || T**™z,,, — T"z||
m—oo  jroo

<'T'k

for each k > 1 and next taking the lim as k — oo this yields

lim sup limsup ||Zn, m — Ym|l = 7 = limsup limsup | Zn, ml-
m—roo J—oo 00 j—roo

By the uniform Opial property, we have lim,, oo Tz = z.

Since TV is continuous, z € F(TY), and since

z= lim T9VTz = lim TTVz =Tz,
j—o0 F—o0

_16_



2 is also a fixed point of 7. Similarly, replacing T' by S, we can prove

that z is a fixed point of S. Hence z € F(T)N F(S). O

It is known [30] that if X is uniformly convex and has the Opial
property, then X has the uniform Opial property. Here, combining

Theorem 3.1 and Theorem 3.2, we have the following:

Theorem 3.3. Let X be a uniformly convex Banach space which
satisfies the Opial property, C a nonempty bounded closed convex
subset of X, and T, S : C — C asymptotically nonexpansive in the
intermediate sense with F(T) N F(S) # 0. Put

cn = max(0, sup (|T"z-T"y|-llz—yll), (18 z—S™yli—llz—yl)),

sup
z,ye€C z,yeC
so that lim,,_ . ¢n = 0. Suppose {n;} is a sequence of nonnegative

integers such that

o0
chi < 400
i=1

and such that
O={i:ni+1 :1-}-774}

is quasi-periodic. Then the sequence {z;} generated by (4)-(5) with

starting x; € C is weakly convergent to a common fixed point of T

and S.

Proof. By Theorem 3.1, limjseeflzi — Tzl = 0 and
1im; o0 ||; — Sz;i|| = 0. Since T and S are uniformly continuous, we

have for each k € N,

lim ||z; — T*z;]| =0 and lim |z; - Stz =0,
100 1= 00

_17-.



which in turn imply z; — T*z; — 0 and @; — Skz; — 0 respectively.

The conclusion now follows from Theorem 3.2. Ul

Theorem 3.4. Let X be a uniformly convex Banach space which
has a Fréchet differentiable norm , C' a nonempty bounded closed
convex subset of X, and T, S : C — C asymptotically nonexpan-
sive in the intermediate sense with F(T) N F(S) # 0. If wy(z:) C
F(T) N F(8), then the sequence {z;} generated by (4)-(5) with
starting =, € C is weakly convergent to a common fixed point of T
and S.

Proof. Using Lemma 3.2, it is easy to see that the limit
Hm; o0 (Zi, J(w1 — we)) exists for all wi,wy € F(T) N F(S)
(for details, see [25] or [2]). In particular, this implies that

(14) (p—q,J(wy —wy)) =0 for all p,q in wy,(z;).
Replacing w; and ws in (14) by g and p, respectively, we have

0={p—gq,Jg—p))=—lp—ql?

for all p,q € wy(z;). This proves the uniqueness of weak subse-
quential limits of {z;} and completes the proof that {z;} converges

weakly. [

Remark 3.3. If I — T (resp. I — S) is demiclosed at 0, i.e., for any
sequence {z;} in C, the conditions z; — w and z; — Tz; — 0 (resp.
z; — Sz; — 0) imply w - Tw = 0 (resp. w—Sw = 0), it easily follows
from Theorem 1 that wy,(z;) € F(T) N F(S).

- 18 -



It is well known [28] that if 7,5 : C — C are asymptotically
nonexpansive, I — T and I — § are demiclosed at 0. As a direct

consequence of Theorem 3 and 4, we have the following:

Corollary 3.1. Let X be a uniformly convex Banach space which
satisfies the Opial property or has a Fréchet differentiable norm, C
a nonempty bounded closed convex subset of X, and T, S:C — C
asymptotically nonexpansive mappings with F(T) N F(S) # B

Suppose {n;} is a sequence of nonnegative integers such that

o0
> (L, — 1) < +00
i=1

and such that
Oz{fi:m—H =1+?’Lz}

is quasi-periodic. Then the sequence {z;} generated by (4)-(5) with
starting =1 € C is weakly convergent to a common fixed point of T

and S.

Remark 3.4. Tt is easy to see that, under the assumptions of Corol-
lary 1, if T, S : C — C are nonexpansive, then the sequence {z;}

generated by an iteration of the form
(15) Liyl1 = azT[,@zTiﬂz + (1 — ,61)331] -+ (1 — Od-g)SCl’:,;

starting z; € C is weakly convergent to a common fixed point of
T and S, where {o;} and {G;} are chosen so that a;,5; € [a,b] for
some a,b with 0 <a <b < 1.
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Theorem 3.5. Under the assumptions of Theorem 3.1, if T' and S
have pre-compact ranges, then the sequence {z;} generated by (4)-

(5) with starting x1 € C' is strongly convergent to a common fixed

point of T and S.

Proof. We follows the lines of the proof of Theorem 1.5 in [21].
From our assumptions it follows that {2 := 66({:1;1} uT{C)u S(C))
is a compact subset of C containing {z;}. Hence there exists an
w € C and a subsequence {z;, } of {z;} which converges strongly to
w. But T and S are continuous and lim;_, ||z; — Tz;}} = 0 and
lim; o0 |Z; — Sz;|| = 0 by Theorem 3.1. Thus w is a common fixed
point of 7" and S. As in the proof of Lemma 3.2 again, we have the

limt lim; o0 ||; —w|| exists. Hence we have lim;_, o [|2;—w|| = 0. U

Remark 3.4. In Theorem 1.5 of [21], Schu assumed that X is Hilbert
space and that iterates 7" have Lipschitz constants L,, > 1such that
S (L% — 1) converges. Even for Schu’s original iteration (n; = 1),
Theorem 3.4 is more general, since the convergence of >, (L2 — 1)
implies that of }_ (L, — 1), which in turn assures the convergence
of our 3, ¢,. We don’t know whether Theorem 3.5 still remains
true under the weak condition of X (that is, strict convexity) as in
[27] for a nonexpansive mapping T : C — C and the sequence {z:}
defined by (15).

Recall that a pair (T, S) of mappings 7,8 : C — C' is said to
satisfy Condition A if there exists a nondecreasing function

f 1 [0,00) = [0,00) with f(0) = 0 and f(r) > 0 for all r > 0
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such that
%(“w ~ Tz + |jo — Sz|)) > f(d(x, F))

for all z € C, where d(z, F) = inf ,¢p |z — 2| and F := F(T)NF(S).
In particular, if T = S, the above definition reduces to one due to
[23].

Theorem 3.6. Under the assumptions of Theorem 3.1, if a pair
(T, S) of mappings T,S : C — C satisfies Condition A, then the
sequence {x;} generated by (4)-(5) with starting x; € C' is strongly

convergent to a common fixed point of T' and S.

Proof. By Condition A, we have

‘;'(H:z:i — Tzi|| + |jz; — Sz])) > f(d(=zi, F))

for all 7 > 1.
In the proof of Lemma 3.2, since ||Tiz — Tiy| < 2cn, + |z — y|| for
all z,y € C and ¢ > 1, we have

(16) lzir1 — 2l = | Tizi — Tizll < 2en, + [l2: — 2]

for all z € F and so d(ziy1, F) < 2¢pn, +d(z;, F') for alli > 1. By
Lemma 1 (or see [25; Lemma 3.1]), the limit lim; ., d(z;, F') exists.

We shall claim that
lim d{z;, F) = 0.

1—00
To this end, if not, i.e., d := lim;_,o, d(z;, F') > 0, then we can choose

a k € N such that for all i > k,

0< g <d(.’17z,F)
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Then it follows from Condition (A) and Theorem 1 that

0< F(3) < f(dlai, 7)) < (2~ Tasl + i = Sai])) >0

as 1 — oo. This is a contradiction, which shows that d = 0. We can
thus choose a subsequence {z;, } of {x;} such that

s, — 25 <277

for all j > 1 and some sequence {z;} in F. Replacing ¢ and 2 in (16)

by i; and z;, respectively, we have

lzi,+1 = 25| < 2en, + 235 — %]

< 2¢p, +27,
and hence

lzie1 — 2zl < llzje1 — 2ol + 201 — 2l

<270t 1 2¢, 4277 <2027 +en,)),

which shows that {z;} is Cauchy and therefore converges strongly
to a point z in F since F is closed. Now it is readly seen that {z;, }
converges strongly to z. Since the limit lim; o ||; — z|| exists as in

the proof of Lemma 3.2, {z;} itself converges strongly to z € F. U

Remark 3.5. If S = T, Theorem 3.6 reduces to Theorem 3.6 due to
Kim-Jung [12].
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