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1. Introduction

Let ¥ denote the class of functions of the form
flz) = = + D anz" (a1 #0), (1.1)

which are analytic in the punctured open unit disk D = {z: 2 € C and 0 <
|z| < 1}. We denote by £*(3) the subclass of ¥ consisting of all functions which
is meromorphic starlike of order 8 in 4 = DU {0}(0 < § < 1). Analytically, a
function f of the form (1.1) belongs to the class £*(3) if and only if

—Re{z]{;S)}>/3 0<B<1;z€el).

For analytic functions g and h with g(0) = k(0), g is said to be subordinate to
h if there exists an analytic function w such that w(0) =0, |w(z)| <1 (z € U),
and g¢(z) = h(w(z)). We denote this subordination by g < hor g(z) < h(z).
Following Uralegaddi and Somanatha [7,8], we define

D°f(z) = f(2),
D'f(z) = a—;1~+2a0+3a12—+-4a2z2 e

D?f(z) = D*(D*f(2)).

and
D" f(z) = DY (D" f(2)), (1.2)
= E;—l— + mZZQ771."am_2zm_2 (n € N).
Let

2(D™f(z)) 1+ Az
D f(2) < T B2 z Z/l}, (1.3)

where —1 < B < A < 1. In particular. we note that £[0; 1, —1] is the well known
class of meromorphic starlike functions. From (1.3), we observe [5] that a function
fis in ¥[n; A, B] if and only if

E{n;A,B]::{fGE:—



A-B
1-B?

D" f(2))'(z)  1-AB

D f(z) = B2 (-F1<B<A<L zeU).  (14)

A function f € ¥ is said to be in the class £.(3,) if there is a meromorphic
starlike function g of order 3 such that

,Re{zg(lg)}>w, 0<~y<1l; z€l).

Libera and Robertson [2] showed that £.(0,0), the class of meromorphic close-
to-convex functions, is not univalent. Also, £.(8,7) provides an interesting gen-
eralization of the class of meromorphic close-to-convex functions [6].

The object of the present paper is to give some argument estimates of mero-

morphic functions belonging to ¥ and the integral preserving properties for mero-
morphic close-to convex functions in connection with the differential operators D™

defined by (1.2).
2. Main results

In proving our results below, we need the following lemmas.

Lemma 2.1 [1]. Let h be conver univalent in U with h(0) = 1 and Re(8h(z)+
~) > 0(8.v € C). If p is analytic in U with p(0) = 1, then

ma+3£§%;<m@ (2 e U)

implies

p(z) < h(z) (2 €U).

Lemma 2.2 [3]. Let h be convez univalent in U and X be analytic in U with
Re A(z) > 0. If p is analytic in U and p(0) = h(0), then

p(z) + A(2)2p'(2) < h(z) (2 €U)

mmplies
p(z) < h(z) (z €U).



Lemma 2.3 [4]. Let p be analytic in U with p(0) = 1 and p(z) # 0 in U.
Suppose that there exists a point zg € U such that

7r
larg p(z)‘ < o for |z] < |zo] (2.1)
and .
’arg p(zo)i = 3o (0<a<l). (2.2)
Then we have (20)
20P (%0 ‘
— = tka, 2.3
p(e0) 23
where
k> % (a+ %) when arg p(zp) = —« (2.4)
1 1 .
k< ) (a—l— ;) when arg p(zp) = —-a (2.5)
and
p(z0)% = %ia (a > 0). (2.6)

At first, with the help of Lemma 2.1, we obtain the following

Proposition 2.1. Let h be convex univalent in Y with h(0) =1 and Re h be
bounded in U. If f € ¥ satisfies the condition ’

D))

Brriray < ME) (e

then . ,
D) ey eu)

D f(z)
for max,cy Re h(z) < 2 (provided D™ f(z) # 0 inU).
Proof. Let
L2 (O
PTG



By using the equation

DM f(2)) = D" f(2) = 2 D" f(2), (2.7)
we get |
. DM
p(z)—2= D) (2.8)

Taking logarithemic derivatives in both sides of (2.8) and multiplying by 2, we
have

_p(e) _ D)
p() +p(z)_ D1f(z) < h(z) (2 €U).

From Lemma 2.1, it follows that p(z) < h(z) for Re (—h(z) +2) > 0 (z € U),
which means

_M {h(z) (ZEU)

D™ f(z)
for max.cyRe h(z) < 2.
Taking
1+ Az
h{z) = - AL
(2) 1+Bz(1<B<4_1,z€Z/{)

in Proposition 2.1, we have

Corollary 2.1. Let feX and 1+ A<2(1+B) (-1 < B<A<L1). Then
for any non-negative integer n, we have

Y[n+1;A.B] C £[n; A, B],
where D" f(2) #0 mm U.

Proposition 2.2. Let h be convex univalent in U with h(0) = 1 and Re h be
bounded in U. Let F' be the integral operator defined by

F(z) = ZC;/O S F(t)dt (¢ > 0). (2.9)
If f € ¥ satisfies the condition
(D" f(2) B
—W < h(Z) (2 = Z/()



then
N 2(D™"F(z))

DnF(z)
for max,ecy Re h(z) < ¢+ 1 (provided D"F(z) # 0 in U ).
Proof. From (2.9), we have

< h(z) (z€lU)

2(D"F(2)) = ¢ D"f(2) — (¢ + 1) D"F(z). (2.10)
et (D"F(2))
z 2
p(z) = - DnF(z)

Then, by using (2.10), we get

__ Drir)
p(z) = (c+1)=—c DiF()" (2.11)
Taking logarithemic derivatives in both sides of (2.11) and multiplying by z, we
have
zp'(z) z2(D"f(2))
+p(z) = ———= < h(z) (z€U).
S+ ern T TG =l

Therefore, by Lemma 2.1, we have

ADFR)Y L
TTDEG) h(z) (zel)

for max,cyyRe h(z) < ¢+ 1 (provided D" F(z) # 0 in ).

Taking

1+ Az
hiz) = —1<B< A< zeld
(z) 1+BZ( <B<ALIL z€U)

in Proposition 2.2, we have

Corollary 2.2. Let f € £ and choose a positive number ¢ such that

1+ A
> _—— —1(-1<B<A<1).
cziyp 1(1<B<As]
If f € ©[n; A, B], then F € £(n; A, B], where the integral operator F' is defined by
(2.9) and D"F(2) #0 inU.



Applying Proposition 2.1, we now derive

Theorem 2.1. Let fe X and1+A<2(1+B)(-1<B<A<L1). If

D)
e < D™ g(z)

for some g € £[n+ 1; A, B], then
(D" f(z))
e (” Drgz) 7)

where a (0 < o < 1) is the solution of the equation

qv>l<§5 0<y<1;0<5<1)

s
< Ea,

inZ(l1—-t(A B
d=a+ 2 tan~! (2(1_8):;81? 2 (1~ & ) ) (2.12)
T 1B +QCOS—(1 t(A,B))
when
2 A-B
t(A.B)—;;sm (2(1—B2)—(1—AB)) (2.13)
Proof.  Let

I B 2102, 6))
p(””“l—v( Drg(z) “)'

By (2.7), we have

(1 =729 (:)D" () + (1 = 1)p()=(D"g() = 2:(D" () (2.14)
= —=(D" ()Y = v=(D"g(2)) ().

Dividing (2.14) by D"g(z) and simplifying, we get

o e P 1 <Z(D”*1f(z))’+7)’ .15)

—q(z)+2 1 -~ Dn+lg(z)
where
_z(D"g(z))
a(z) Dng(z)



Since g € £[n + 1; A, B, from Corollary 2.1, we have

1+ Az

9(z) < 14+ Bz

From (1.4), we have

—q(2) +2 = pe'E?,

where

1+B 1-B

2(1+B)—(1+A) < p < 2(1-B)+A-1
{—t(A,B) < ¢ < t(A,B)

when t(A, B) is given by (2.13). Let h be a function which maps i/ onto the
angular domain {w : |argw| < Z%d} with A(0) = 1. Applying Lemma 2.2 for
this h with A\(2) = :;(—i—)—@—, we see that Re p(z) > 0in ¢/ and hence p(z) # 0in .

If there exists a point 2y € U such that the conditions (2.1) and (2.2) are
satisfied, then(by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5)
and (2.6).

At first, suppose that p(zo)’cli =ia (a > 0). Then we obtain

e [ (S )] - (e 2

= %a + arg <1 + iak(pei%d’)'l)

T 1 nksin Z(1 — @)
= —q -+ tan
2 p+akcosZ(1— o)

~

> Za+tan™! ( asin 3(1 — t(4, B)) )
= 9 2(1—_1‘8_%4—.—1+Q’C05%(1“t(‘4a3))
T
=I5
2 9

where § and t(A, B) are given by (2.12) and (2.13), respectively. This is a contra-
diction to the assumption of our theorem.

Next, suppose that p(zo)s = —ia (a > 0). Applying the same method as the
above, we have



g [ (2T )]

1 -y Dn+1g(20)

o7 can-1 asin 3 (1 — t(A, B))
< ——a—tan
2 BHAZL 4 o cos Z(1 — t(A, B))

s

=—24
2 b

where § and t(A, B) are given by (2.12) and (2.13), respectively, which contradicts
the assumption. Therefore we complete the proof of our theorem.

Letting A =1, B=0and § =1 in Theorem 2.1, we have
Corollary 2.3. Let fe Z. If

e (DTG
Re {{pg ) >0 07 <)

for some g € ¥ satisfying the condition

Z(D"g(z))
Dn+lg(z)

+1{<1,

then

e ()

Taking A=1, B=0and ¢g(z) = % in Theorem 2.1, we have
Corollary 2.4. Let fe Z. If

arg [—22(D™f(2)) =] < 56 (0<y <1 0<6<1),

then

larg [—z2(D"f(2)) —4]| < ga‘

Making n = 0 and 6 = 1 in Corollary 2.4, we have



Corollary 2.5. Let feX. If

~Re {Z(zf"(2) + 3f'(2))} > v (0 <~y < 1),
then

-Re {Z*f'(2)} > .

By the same techniques as in the proof of Theorem 2.1, we obtain

Theorem 2.2. LetfeX and1+A<2(1+B)(-1<B<A<1). If

s (2D0IE )

s
- . <
D g () <25(’y>1,0<5_1)

for some g € [n + 1: A, B, then

(Y

where a (0 < o < 1) is the solution of the equation given by (2.12).

T
_a’
2

Next, we prove

Theorem 2.3. Let f € ¥ and choose a positive number ¢ such that

1+ A4
e | 1< B<A<1
C“1+B (1< B< ).

If

arg <—%—7)'<g5 0<~<1,0<6<1)

for some g € E[n; A, B, then

where F is the integral operator given by (2.9),

C

G(z) = povs, /Oz tg(t)dt (c > 0) (2.16)

_']O_



and o(0 < a < 1) 1s the solution of the equation

sin 2 (1 —t(A, B, c
S=a+ 2iant [ iU lABG) (2.17)
T —5 —— tacosF(1—t(A B, c))
when
2 A-B
t(A,B.c) = Zsin”! .
(4.B,¢) = T sin ((c+ D(1-B%)-(1 —AB)>
Proof.  Let
_ L [(zD"F(z))
P =T ( DG 1)
Since g € ¥[n; A, B], from Corollary 2.2, G € [n; A, B].
Using (2.10), we have
(1 =p(z)D"G(z) = (c+ 1)D"F(z) = —cD" f(z) — yD"G(2).

Then. by a simple calculation, we get

, o Drf(2))

(1= ) () + P()(=a(2) + ¢+ 1)) + v(=g(z) + e+ 1) = — IO
DrG(z)
where
(D" G(r)Y
1) = -5
Hence we have
3 () 1 (D)
plz) + —q(z)+c+1 1-~ < Dmg(z) )

The remaining part of the proof is similar to that of Theorem 2.1 and so we omit
1t.

Lettingn =0, A=1, B=0and § = 1 in Theorem 2.3, we have
Corollary 2.6. Let fc . If

_‘i‘]_



“Re {ZJ(S)} >y (0<y<1)

for some g € ¥ satisfying the condition

zg'(z)
9(z)

e (59}

where F' and G are the integral operators given by (2.9) and (2.16), respectively.

+1‘<1,

then

Takingn =0, B— A4 and g(z) = 1 in Theorem 2.3, we have
Corollary 2.7. Let fe ¥ andc > 0. If

larg (=2°f'(2) = 7)| < 56 (0<y<10<5<1),
then
2 ™
larg (—2°F'(2) — v)| < 5%
where F' is the integral operator given by (2.9) and o (0 < a < 1) is the solution

of the equation

2 a
§=a+ Ztan"! —.
s C
By using the same methods as in proving Theorem 2.3, we have

Theorem 2.4. Let f € T and choose a positive number ¢ such that

1+ A4 .
CZm—1<—1<B<A§1).
If
(D f(2)) . 3
_ / - / X 1
‘arg( Drg(s) +19 <25(7>1/0<5_ )

for some g € Xn; A, B], then



z2(D"F(z)) s
arg (ch‘ﬁ ”) <%

where F' and G are the integral operators given by (2.9) and (2.16), respectively,
and a(0 < o < 1) 4s the solution of the equation given by (2.17).

Finally, we derive

Theorem 2.5. Letfe T and 1+ A<2(1+B)(-1<B< A <1). If

arg <_.i%:lgg)l)__7))<g5 (0<y<1,0<6<1)

for some g € L[n + 1; A, B], then

o (AR )

where F' and G are the integral operators given by (2.9) and (2.16) with ¢ = 1,
respectively.

Proof.  From (2.7) and (2.10) with ¢ = 1, we have D" f(z) = D"*"1F(z)
Therefore

AD"f(2)) _ A(DrIF()Y
Dmg(2) DG (2)
and the result follows.
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