Argument Estimates of Meromorphic Functions Defined by Certain Differential Operators

(어떤 미분연산자들에 의하여 정의된

A thesis submitted in partial fulfillment of the requirement for the degree of

Master of Education

Graduate School of Education Pukyong National University

February 2006

Argument Estimates of Meromorphic Functions Defined by Certain Differential Operators

A dissertation

by Hye Young Lee

Approved by :

(Chairman) Jin Mun Jeong, Ph. D.

(Member) Jun Yong Shin, Ph. D.

(Member) Nak Eun Cho, Ph. D.

CONTENTS

Abstract(Korean)······1
1. Introduction······ 2
2. Main results······ 3
References

어떤 미분연산자들에 의하여 정의된 유리형 함수들의 편각추정

이 혜 영

부경대학교 교육대학원 수학교육전공

요 약

기하함수이론은 지금까지 많은 학자들에 의하여 다양하게 연구되어 왔다. 특히, Miller와 Mocanu[3]은 미분종속이론을 소개하여 해석함수들의 여러 기하학적 성질들을 조사하였다.

본 논문에서는 Uralegaddi와 Somanatha[7,8]에 의하여 소개된 유리형 함수들의 미분연산자들과 미분 종속이론을 이용하여 유리형 함수들의 새로운 부분족들을 소개하고 그들의 포함관계를 조사하였다.

또한, Nunokawa[4]의 결과를 응용하여 유리형 close-to-convex 함수들의 편각추정을 하였으며, sector상에서 적분보존성질들을 조사하였다.

1. Introduction

Let Σ denote the class of functions of the form

$$f(z) = \frac{a_{-1}}{z} + \sum_{n=0}^{\infty} a_n z^n \quad (a_{-1} \neq 0), \tag{1.1}$$

which are analytic in the punctured open unit disk $\mathcal{D} = \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\}$. We denote by $\Sigma^*(\beta)$ the subclass of Σ consisting of all functions which is meromorphic starlike of order β in $\mathcal{U} = \mathcal{D} \cup \{0\} (0 \leq \beta < 1)$. Analytically, a function f of the form (1.1) belongs to the class $\Sigma^*(\beta)$ if and only if

$$-\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \beta \quad (0 \le \beta < 1 ; z \in \mathcal{U}).$$

For analytic functions g and h with g(0) = h(0), g is said to be subordinate to h if there exists an analytic function w such that w(0) = 0, |w(z)| < 1 ($z \in \mathcal{U}$), and g(z) = h(w(z)). We denote this subordination by $g \prec h$ or $g(z) \prec h(z)$.

Following Uralegaddi and Somanatha [7,8], we define

$$D^{0} f(z) = f(z),$$

$$D^{1} f(z) = \frac{a_{-1}}{z} + 2a_{0} + 3a_{1}z + 4a_{2}z^{2} + \cdots,$$

$$D^{2} f(z) = D^{1}(D^{1} f(z)),$$

and

$$D^{n} f(z) = D^{1}(D^{n-1} f(z)),$$

$$= \frac{a_{-1}}{z} + \sum_{m=2}^{\infty} m^{n} a_{m-2} z^{m-2} \quad (n \in \mathbb{N}).$$
(1.2)

Let

$$\Sigma[n; A, B] = \left\{ f \in \Sigma : -\frac{z(D^n f(z))'}{D^n f(z)} \prec \frac{1 + Az}{1 + Bz}, \ z \in \mathcal{U} \right\},\tag{1.3}$$

where $-1 < B < A \le 1$. In particular, we note that $\Sigma[0; 1, -1]$ is the well known class of meromorphic starlike functions. From (1.3), we observe [5] that a function f is in $\Sigma[n; A, B]$ if and only if

$$\left| \frac{z(D^n f(z))'(z)}{D^n f(z)} + \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2} \ (-1 < B < A \le 1; \ z \in \mathcal{U}). \tag{1.4}$$

A function $f \in \Sigma$ is said to be in the class $\Sigma_c(\beta, \gamma)$ if there is a meromorphic starlike function g of order β such that

$$-\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\right\} > \gamma \quad (0 \le \gamma < 1 \ ; \ z \in \mathcal{U}).$$

Libera and Robertson [2] showed that $\Sigma_c(0,0)$, the class of meromorphic close-to-convex functions, is not univalent. Also, $\Sigma_c(\beta,\gamma)$ provides an interesting generalization of the class of meromorphic close-to-convex functions [6].

The object of the present paper is to give some argument estimates of meromorphic functions belonging to Σ and the integral preserving properties for meromorphic close-to convex functions in connection with the differential operators D^n defined by (1.2).

2. Main results

In proving our results below, we need the following lemmas.

Lemma 2.1 [1]. Let h be convex univalent in \mathcal{U} with h(0) = 1 and $Re(\beta h(z) + \gamma) > 0(\beta, \gamma \in \mathbb{C})$. If p is analytic in \mathcal{U} with p(0) = 1, then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z) \quad (z \in \mathcal{U})$$

implies

$$p(z) \prec h(z) \quad (z \in \mathcal{U}).$$

Lemma 2.2 [3]. Let h be convex univalent in \mathcal{U} and λ be analytic in \mathcal{U} with Re $\lambda(z) \geq 0$. If p is analytic in \mathcal{U} and p(0) = h(0), then

$$p(z) + \lambda(z)zp'(z) \prec h(z) \quad (z \in \mathcal{U})$$

implies

$$p(z) \prec h(z) \quad (z \in \mathcal{U}).$$

Lemma 2.3 [4]. Let p be analytic in \mathcal{U} with p(0) = 1 and $p(z) \neq 0$ in \mathcal{U} . Suppose that there exists a point $z_0 \in \mathcal{U}$ such that

$$\left| \arg p(z) \right| < \frac{\pi}{2} \alpha \text{ for } |z| < |z_0|$$
 (2.1)

and

$$\left| \arg p(z_0) \right| = \frac{\pi}{2} \alpha \quad (0 < \alpha \le 1). \tag{2.2}$$

Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik\alpha, \tag{2.3}$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right)$$
 when $\arg p(z_0) = \frac{\pi}{2} \alpha$ (2.4)

$$k \le -\frac{1}{2}\left(a + \frac{1}{a}\right)$$
 when $\arg p(z_0) = -\frac{\pi}{2}\alpha$ (2.5)

and

$$p(z_0)^{\frac{1}{\alpha}} = \pm ia \ (a > 0).$$
 (2.6)

At first, with the help of Lemma 2.1, we obtain the following

Proposition 2.1. Let h be convex univalent in \mathcal{U} with h(0) = 1 and Re h be bounded in \mathcal{U} . If $f \in \Sigma$ satisfies the condition

$$-\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)} \prec h(z) \quad (z \in \mathcal{U}),$$

then

$$-\frac{z(D^nf(z))'}{D^nf(z)} \prec h(z) \quad (z \in \mathcal{U})$$

for $\max_{z \in \mathcal{U}} \operatorname{Re} h(z) < 2$ (provided $D^n f(z) \neq 0$ in \mathcal{U}).

Proof. Let

$$p(z) = -\frac{z(D^n f(z))'}{D^n f(z)}.$$

By using the equation

$$z(D^n f(z))' = D^{n+1} f(z) - 2 D^n f(z),$$
(2.7)

we get

$$p(z) - 2 = -\frac{D^{n+1}f(z)}{D^n f(z)}. (2.8)$$

Taking logarithemic derivatives in both sides of (2.8) and multiplying by z, we have

$$\frac{zp'(z)}{-p(z)+2} + p(z) = -\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)} \prec h(z) \quad (z \in \mathcal{U}).$$

From Lemma 2.1, it follows that $p(z) \prec h(z)$ for Re (-h(z) + 2) > 0 $(z \in \mathcal{U})$, which means

$$-\frac{z(D^n f(z))'}{D^n f(z)} \prec h(z) \quad (z \in \mathcal{U})$$

for $\max_{z \in \mathcal{U}} \operatorname{Re} h(z) < 2$.

Taking

$$h(z) = \frac{1 + Az}{1 + Bz} \ (-1 < B < A \le 1; \ z \in \mathcal{U})$$

in Proposition 2.1, we have

Corollary 2.1. Let $f \in \Sigma$ and $1 + A \le 2(1 + B)$ $(-1 < B < A \le 1)$. Then for any non-negative integer n, we have

$$\Sigma[n+1;A,B] \subset \Sigma[n;A,B],$$

where $D^n f(z) \neq 0$ in \mathcal{U} .

Proposition 2.2. Let h be convex univalent in \mathcal{U} with h(0) = 1 and Re h be bounded in \mathcal{U} . Let F be the integral operator defined by

$$F(z) = \frac{c}{z^{c+1}} \int_0^z t^c f(t) dt \quad (c > 0).$$
 (2.9)

If $f \in \Sigma$ satisfies the condition

$$-\frac{z(D^n f(z))'}{D^n f(z)} \prec h(z) \quad (z \in \mathcal{U}),$$

then

$$-\frac{z(D^n F(z))'}{D^n F(z)} \prec h(z) \quad (z \in \mathcal{U})$$

for $\max_{z \in \mathcal{U}} \operatorname{Re} h(z) < c+1$ (provided $D^n F(z) \neq 0$ in \mathcal{U}).

Proof. From (2.9), we have

$$z(D^n F(z))' = c D^n f(z) - (c+1) D^n F(z).$$
(2.10)

Let

$$p(z) = -\frac{z(D^n F(z))'}{D^n F(z)}.$$

Then, by using (2.10), we get

$$p(z) - (c+1) = -c \frac{D^n f(z)}{D^n F(z)}.$$
 (2.11)

Taking logarithemic derivatives in both sides of (2.11) and multiplying by z, we have

$$\frac{zp'(z)}{-p(z) + (c+1)} + p(z) = -\frac{z(D^n f(z))'}{D^n f(z)} \prec h(z) \quad (z \in \mathcal{U}).$$

Therefore, by Lemma 2.1, we have

$$-\frac{z(D^nF(z))'}{D^nF(z)} \prec h(z) \quad (z \in \mathcal{U})$$

for $\max_{z \in \mathcal{U}} \text{Re } h(z) < c+1 \text{ (provided } D^n F(z) \neq 0 \text{ in } \mathcal{U}).$

Taking

$$h(z) = \frac{1 + Az}{1 + Bz} \ (-1 < B < A \le 1; \ z \in \mathcal{U})$$

in Proposition 2.2, we have

Corollary 2.2. Let $f \in \Sigma$ and choose a positive number c such that

$$c \ge \frac{1+A}{1+B} - 1 \ (-1 < B < A \le 1).$$

If $f \in \Sigma[n; A, B]$, then $F \in \Sigma[n; A, B]$, where the integral operator F is defined by (2.9) and $D^n F(z) \neq 0$ in \mathcal{U} .

Applying Proposition 2.1, we now derive

Theorem 2.1. Let $f \in \Sigma$ and $1 + A \le 2(1 + B)$ $(-1 < B < A \le 1)$. If

$$\left| \arg \left(-\frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)} - \gamma \right) \right| < \frac{\pi}{2}\delta \ (0 \le \gamma < 1; 0 < \delta \le 1)$$

for some $g \in \Sigma[n+1; A, B]$, then

$$\left| \arg \left(-\frac{z(D^n f(z))'}{D^n g(z)} - \gamma \right) \right| < \frac{\pi}{2} \alpha,$$

where α (0 < $\alpha \le 1$) is the solution of the equation

$$\delta = \alpha + \frac{2}{\pi} \tan^{-1} \left(\frac{\alpha \sin \frac{\pi}{2} (1 - t(A, B))}{\frac{2(1 - B) + A - 1}{1 - B} + \alpha \cos \frac{\pi}{2} (1 - t(A, B))} \right)$$
(2.12)

when

$$t(A,B) = \frac{2}{\pi} \sin^{-1} \left(\frac{A-B}{2(1-B^2) - (1-AB)} \right). \tag{2.13}$$

Proof. Let

$$p(z) = -\frac{1}{1 - \gamma} \left(\frac{z(D^n f(z))'}{D^n g(z)} + \gamma \right).$$

By (2.7), we have

$$(1 - \gamma)zp'(z)D^{n}g(z) + (1 - \gamma)p(z)z(D^{n}g(z))' - 2z(D^{n}f(z))'$$

$$= -z(D^{n+1}f(z))' - \gamma z(D^{n}g(z))'(z).$$
(2.14)

Dividing (2.14) by $D^n g(z)$ and simplifying, we get

$$p(z) + \frac{zp'(z)}{-q(z) + 2} = -\frac{1}{1 - \gamma} \left(\frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)} + \gamma \right), \tag{2.15}$$

where

$$q(z) = -\frac{z(D^n g(z))'}{D^n q(z)}.$$

Since $g \in \Sigma[n+1; A, B]$, from Corollary 2.1, we have

$$q(z) \prec \frac{1+Az}{1+Bz}.$$

From (1.4), we have

$$-q(z) + 2 = \rho e^{i\frac{\pi}{2}\phi},$$

where

$$\left\{ \begin{array}{l} \frac{2(1+B)-(1+A)}{1+B} \ < \ \rho \ < \ \frac{2(1-B)+A-1}{1-B} \\ -t(A,B) \ < \ \phi \ < \ t(A,B) \end{array} \right.$$

when t(A,B) is given by (2.13). Let h be a function which maps \mathcal{U} onto the angular domain $\{w : |\arg w| < \frac{\pi}{2}\delta\}$ with h(0) = 1. Applying Lemma 2.2 for this h with $\lambda(z) = \frac{1}{-g(z)+2}$, we see that $\operatorname{Re} p(z) > 0$ in \mathcal{U} and hence $p(z) \neq 0$ in \mathcal{U} .

If there exists a point $z_0 \in \mathcal{U}$ such that the conditions (2.1) and (2.2) are satisfied, then(by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5) and (2.6).

At first, suppose that $p(z_0)^{\frac{1}{\alpha}} = ia \ (a > 0)$. Then we obtain

$$\arg \left[-\frac{1}{1-\gamma} \left(\frac{z_0(D^{n+1}f(z_0)'}{D^{n+1}g(z_0)} + \gamma \right) \right] = \arg \left(p(z_0) + \frac{z_0p'(z_0)}{-q(z_0) + 2} \right)$$

$$= \frac{\pi}{2}\alpha + \arg \left(1 + i\alpha k(\rho e^{i\frac{\pi}{2}\phi})^{-1} \right)$$

$$= \frac{\pi}{2}\alpha + \tan^{-1} \left(\frac{\eta k \sin \frac{\pi}{2}(1-\phi)}{\rho + \alpha k \cos \frac{\pi}{2}(1-\phi)} \right)$$

$$\geq \frac{\pi}{2}\alpha + \tan^{-1} \left(\frac{\alpha \sin \frac{\pi}{2}(1-t(A,B))}{\frac{2(1-B)+A-1}{1-B} + \alpha \cos \frac{\pi}{2}(1-t(A,B))} \right)$$

$$= \frac{\pi}{2}\delta,$$

where δ and t(A, B) are given by (2.12) and (2.13), respectively. This is a contradiction to the assumption of our theorem.

Next, suppose that $p(z_0)^{\frac{1}{\alpha}} = -ia$ (a > 0). Applying the same method as the above, we have

$$\arg \left[-\frac{1}{1-\gamma} \left(\frac{z_0(D^{n+1}f(z_0))'}{D^{n+1}g(z_0)} + \gamma \right) \right]$$

$$\leq -\frac{\pi}{2}\alpha - \tan^{-1} \left(\frac{\alpha \sin \frac{\pi}{2}(1 - t(A, B))}{\frac{2(1-B)+A-1}{1-B} + \alpha \cos \frac{\pi}{2}(1 - t(A, B))} \right)$$

$$= -\frac{\pi}{2}\delta,$$

where δ and t(A, B) are given by (2.12) and (2.13), respectively, which contradicts the assumption. Therefore we complete the proof of our theorem.

Letting $A=1,\ B=0$ and $\delta=1$ in Theorem 2.1, we have

Corollary 2.3. Let $f \in \Sigma$. If

$$-{\rm Re} \ \left\{ \frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)} \right\} > \gamma \ (0 \le \gamma < 1)$$

for some $g \in \Sigma$ satisfying the condition

$$\left| \frac{z(D^{n+1}g(z))'}{D^{n+1}g(z)} + 1 \right| < 1,$$

then

$$-\mathrm{Re} \left\{ \frac{z(D^n f(z))'}{D^n g(z)} \right\} > \gamma.$$

Taking A=1, B=0 and $g(z)=\frac{1}{z}$ in Theorem 2.1, we have

Corollary 2.4. Let $f \in \Sigma$. If

$$\left| \arg \left[-z^2 (D^{n+1} f(z))' - \gamma \right] \right| < \frac{\pi}{2} \delta \ (0 \le \gamma < 1; \ 0 < \delta \le 1),$$

then

$$\left|\arg\left[-z^2(D^nf(z))'-\gamma\right]\right|<\frac{\pi}{2}\delta.$$

Making n = 0 and $\delta = 1$ in Corollary 2.4, we have

Corollary 2.5. Let $f \in \Sigma$. If

-Re
$$\{z^2(zf''(z) + 3f'(z))\} > \gamma \ (0 \le \gamma < 1),$$

then

$$-\mathrm{Re} \left\{ z^2 f'(z) \right\} > \gamma.$$

By the same techniques as in the proof of Theorem 2.1, we obtain

Theorem 2.2. Let $f \in \Sigma$ and $1 + A \le 2(1 + B)$ $(-1 < B < A \le 1)$. If

$$\left| \arg \left(\frac{z(D^{n+1}f(z))'}{D^{n+1}g(z)} + \gamma \right) \right| < \frac{\pi}{2}\delta \ (\gamma > 1; 0 < \delta \le 1)$$

for some $g \in \Sigma[n+1; A, B]$, then

$$\left| \arg \left(\frac{z(D^n f(z))'}{(D^n g)(z)} + \gamma \right) \right| < \frac{\pi}{2} \alpha,$$

where α (0 < $\alpha \le 1$) is the solution of the equation given by (2.12).

Next, we prove

Theorem 2.3. Let $f \in \Sigma$ and choose a positive number c such that

$$c \ge \frac{1+A}{1+B} - 1 \ (-1 < B < A \le 1).$$

If

$$\left|\arg\left(-\frac{z(D^nf(z))'}{D^ng(z)}-\gamma\right)\right|<\frac{\pi}{2}\delta\ (0\leq\gamma<1,\ 0<\delta\leq1)$$

for some $g \in \Sigma[n; A, B]$, then

$$\left| \arg \left(-\frac{z(D^n F(z))'}{D^n G(z)} - \gamma \right) \right| < \frac{\pi}{2} \alpha,$$

where F is the integral operator given by (2.9),

$$G(z) = \frac{c}{z^{c+1}} \int_0^z t^c g(t) dt \quad (c > 0)$$
 (2.16)

and $\alpha(0 < \alpha \le 1)$ is the solution of the equation

$$\delta = \alpha + \frac{2}{\pi} \tan^{-1} \left(\frac{\alpha \sin \frac{\pi}{2} (1 - t(A, B, c))}{\frac{(c+1)(1-B) + A - 1}{1-B} + \alpha \cos \frac{\pi}{2} (1 - t(A, B, c))} \right)$$
(2.17)

when

$$t(A, B, c) = \frac{2}{\pi} \sin^{-1} \left(\frac{A - B}{(c+1)(1 - B^2) - (1 - AB)} \right).$$

Proof. Let

$$p(z) = -\frac{1}{1-\gamma} \left(\frac{z(D^n F(z))'}{D^n G(z)} + \gamma \right).$$

Since $g \in \Sigma[n; A, B]$, from Corollary 2.2, $G \in \Sigma[n; A, B]$. Using (2.10), we have

$$(1 - \gamma)p(z)D^{n}G(z) - (c+1)D^{n}F(z) = -cD^{n}f(z) - \gamma D^{n}G(z).$$

Then, by a simple calculation, we get

$$(1 - \gamma)(zp'(z) + p(z)(-q(z) + c + 1)) + \gamma(-q(z) + c + 1) = -\frac{cz(D^n f(z))'}{D^n G(z)},$$

where

$$q(z) = -\frac{z(D^n G(z))'}{D^n G(z)}.$$

Hence we have

$$p(z) + \frac{zp'(z)}{-q(z) + c + 1} = -\frac{1}{1 - \gamma} \left(\frac{z(D^n f(z))'}{D^n g(z)} + \gamma \right).$$

The remaining part of the proof is similar to that of Theorem 2.1 and so we omit it.

Letting n = 0, A = 1, B = 0 and $\delta = 1$ in Theorem 2.3, we have

Corollary 2.6. Let $f \in \Sigma$. If

$$-\mathrm{Re} \left\{ \frac{zf'(z)}{g(z)} \right\} > \gamma \ (0 \le \gamma < 1)$$

for some $g \in \Sigma$ satisfying the condition

$$\left|\frac{zg'(z)}{g(z)} + 1\right| < 1,$$

then

$$-\operatorname{Re}\left\{\frac{zF'(z)}{G(z)}\right\} > \gamma,$$

where F and G are the integral operators given by (2.9) and (2.16), respectively.

Taking n = 0, $B \to A$ and $g(z) = \frac{1}{z}$ in Theorem 2.3, we have

Corollary 2.7. Let $f \in \Sigma$ and c > 0. If

$$|\arg (-z^2 f'(z) - \gamma)| < \frac{\pi}{2} \delta \ (0 \le \gamma < 1; 0 < \delta \le 1),$$

then

$$|\arg(-z^2F'(z)-\gamma)|<\frac{\pi}{2}\alpha,$$

where F is the integral operator given by (2.9) and α (0 < $\alpha \leq$ 1) is the solution of the equation

$$\delta = \alpha + \frac{2}{\pi} \tan^{-1} \frac{\alpha}{c}.$$

By using the same methods as in proving Theorem 2.3, we have

Theorem 2.4. Let $f \in \Sigma$ and choose a positive number c such that

$$c \ge \frac{1+A}{1+B} - 1 \ (-1 < B < A \le 1).$$

If

$$\left| \arg \left| \left(\frac{z(D^n f(z))'}{D^n g(z)} + \gamma \right) \right| < \frac{\pi}{2} \delta \ (\gamma > 1; \ 0 < \delta \le 1)$$

for some $g \in \Sigma[n; A, B]$, then

$$\left| \arg \left(\frac{z(D^n F(z))'}{D^n G(z)} + \gamma \right) \right| < \frac{\pi}{2} \alpha,$$

where F and G are the integral operators given by (2.9) and (2.16), respectively, and $\alpha(0 < \alpha \le 1)$ is the solution of the equation given by (2.17).

Finally, we derive

Theorem 2.5. Let $f \in \Sigma$ and $1 + A \le 2(1 + B)(-1 < B < A \le 1)$. If

$$\left| \arg \left(-\frac{z(D^n f(z))'}{D^n g(z)} - \gamma \right) \right| < \frac{\pi}{2} \delta \ (0 \le \gamma < 1; \ 0 < \delta \le 1)$$

for some $g \in \Sigma[n+1; A, B]$, then

$$\left| \arg \left(-\frac{z(D^{n+1}F(z))'}{D^{n+1}G(z)} - \gamma \right) \right| < \frac{\pi}{2}\delta,$$

where F and G are the integral operators given by (2.9) and (2.16) with c=1, respectively.

Proof. From (2.7) and (2.10) with c = 1, we have $D^n f(z) = D^{n+1} F(z)$ Therefore

$$\frac{z(D^n f(z))'}{D^n g(z)} \; = \; \frac{z(D^{n+1} F(z))'}{D^{n+1} G(z)}$$

and the result follows.

References

- 1. P. Enigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, *On a Briot-Bouquet Differential subordination*, General Inequalities, **3**(Birkhauser Verlag-Basel), 339-348.
- 2. R. J. Libera and M. S. Robertson, Meromorphic close-to-convex functions, Michigan Math. J. 8(1961), 167-176.
- 3. S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
- 4. M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci., **69**(1993), 234-237.
- 5. H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37(1985), 48-61.

- 6. R. Singh, Meromorphic close-to-convex functions, J. Indian. Math. Soc. **33**(1969), 13-20.
- 7. B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike functions, Bull. Auatral Math. Soc., 43(1991), 137-140.
- 8. B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math., 17(1991), 279-284.