o
A
oF

o

o

E

A Study on Improved Algorithm for

Fair Bandwidth Allocation

and Packet Processing

20059 84

ﬁo
g

A

2005 649 174

Ho

Contents

Contents of Figures -

Contents of Tables .

Abstract ——--ccemeemmeee

. Introduction --~e----—--

2. Related Works -~-----

2.1 Active Queue Management

2.1.1 Random Early Detection

2.1.2 Flow RED -

2.1.3 CHOKe --

2.1.4 Disadvantage Above Algorithm

2.2 Core-Stateless Fair Queueing

2.2.1 Fluid Model Algorithm

2.2.2 Packet Algorithm

2.2.3 Link Relabeling -

3. Algorithm Deiscription

3.1 The Scheme in Edge Nodes

3.2 The Scheme in Core Nodes

3.2.1 Sorting Per-Flow Information
3.2.2 Estimating the Number of Active Flow

3.2.3 Packet Dropping

4. Simulation

5. Conclusion ---

Reference

1l
v

L NN

10
12
14
16
17
19
19
20
22
22
23
27
28
37
39

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1-1
1-2
1-3
1-4
1-5
2-1

4-2

4-3

4-4

4-5

4-6

Contents of Figures

General algorithm for RED gateway

Detailed algorithm for RED gateway

Detailed algorithm for FRED

Flow chart for FRED algorithm

Flow chart for CHOKe algorithm

Network architecture for CSFQ

CSFQ's scheme in edge and core nodes

Pseudocode for CS-FNE in edge node

Collision resolution by chaining

The trigger scheme

The single congested link has the 10 Mbps capacity and the
propagation delay of 1 ms.

The average throughput over 10 sec when N=32 and all flows are
UDPs.

The normalized bandwidth of a TCP flow that competes with N-1
UDP flows

The multiple congested link have capacity of 10 Mbps and
propagation delay of 1ms.

The normalized throughput of UDP-0 as a function of the number
of congested links.

The same plot when UDP-0 is replaced by TCP flow.

Contents of Tables

Table 1. Result of first experiment in single congested link

Table 2. Result of second experiment in single congested link

Table 3. Comparison between CSFQ and CS-FNE for processing time of
first experiment in single congested link

Table 4. Comparison between CSFQ and CS-FNE for processing time of
second experiment in single congested link

Table 5. Result of first experiment in multiple congested link

Table 6. Result of second experiment in multiple congested link

Table 7. Comparison between CSFQ and CS-FNE for processing time of
first experiment in multiple congested link congested link

Table 8. Comparison between CSFQ and CS-FNE for processing time of

second experiment in multiple congested link

Ok
k]
ro
a
8
Jh

g WIXME AT HMH A2 Fof Ast AR

HEHI YoM MEE=8 2510 ZYF Y=sigg o) g2 o
2|EE0] Metzlofd fCh OF I Zteksi 0| JHs3 FIFO gtale =
Y& =239 £ dden 2Fo| LYSIYS o Sxs| mRo| 2SS 3
g == AVCH M 2308 28t SHFAR| 71Mo0| MOt o R},

LB EIPE M LMot SAME F0[7| 28l Core-Stateless 12| S0
HZEIORE ol YEXRE Edge 2RE S Core 2IREE TEBIC} Core
StREOIA 2t sEolctel MEZEIE SIX| Y6l EANE ZUS YLt

ol =2dME 2HTIE ATste SHF2] JIMS 51U FNESD2|S
= Core-Stateless A12|F0| XHRsIFY20f 0| £8 =2tsiict o=
CS-FNESt HY5I{=0 0| CSFQ, FRED, RED, DRRZ Z'& CI= U3e|ES52
ol HFoIM BlABMEIYUCL 2o ME S S cS-FNE Y2250 Mye

H

ol SHE A% dde LYEEXE 2o 2 s=o0ig #als Jjete
2 St= LFEC M THY AST WANIAIZIS HMAZ 5 Y
S8 =2

'V

1. Introduction

Recently, as the date communication techniques are improved, the Internet
traffic also occurs more frequently. FIFO queueing with Drop Tail is the
most commonly used mechanism of the existing routers. However, by FIFO,
the resource is allocated unfairly. Especially, responsive flows such as TCP
suffer from unresponsive flows such as UDP in a FIFO queue when a
congestion occurs. Moreover, FIFO just reacts to the congest without any
avoidances.

To solve theses defects, many improved algorithms have been proposed on
the packet isolation and congestion avoidance. The AQM (Active Queue
Management), for example, is proposed to solve the congestion and achieve
the packet isolation. There are RED (Random Early Detection)[11],
FRED(Flow RED)[2] and CHOKe(CHOose and Keep for responsive flows,
CHOose and Kill for unresponsive flows)[10] as AQM scheme. In AQM
scheme, a packet is dropped or admitted according to the arrival rate of the
flow which the packet belongs to, the queue length that the flow occupies
and the number of active flows in router. However, these AQM algorithms
can't cover both existing defects and implemental complexity.

Some congestion control algorithms have adopted per-flow dropping
schemes, as the result, the algorithms were implemented more complicated. In
particular, fair allocation mechanisms inherently require the routers to maintain
the state and perform the operations on a per-flow basis. Consequently, the
mechanism which has no per-flow state is proposed to reduce the complexity.
Representatively, there are CSFQ(Core-Stateless Fair Queueing)[4]. CSFQ
adopt Core-Stateless network which distributes Edge nodes and Core Nodes
and try to achieve more simplexity than a per-flow mechanism.

In this paper, to achieve the fairness and efficiency of packet processing,

we propose the scheme which employs FNE(Flow Number Estimation)[5]
algorithm in Core-Stateless network and show the improved Core-Stateless
mechanism. We call the mechanism CS-FNE and evaluate the performance
with alternate approaches through the simulation.

In Section 2, we mention related works of AQM and CSFQ. Then we
describe the proposal simulation in Section 3. We also evaluate the different
existing schemes and show the result in Section 4. Finally, the conclusion

remarks are given in Section 5.

2. Related Works

2.1. Active Queue Management

Typically, Drop Tail is the most widely used queueing algorithm in current
network. But it has the unfaimess in the resource allocation and congestion
avoidance. This is because TCP flows suffer from unresponsive flows in a FIFO
queue when a congestion occurs.

To deal with that, RED, the active queue management, has been proposed. But
RED requires the collaboration of end hosts congestion control mechanism to
provide good service and do not work well with the growing number of UDP-based
applications, which generally do not back off with the congestion indication. To
resolve this problem, improved algorithms have been proposed, such as FRED and
CHOKe etc.

They don't just react to the congestion, but actively try to avoid the congestion by
notifying sources about the incipient congestion. The sources are expected to reduce

their sending rate on receipt of such a notification.

2.1.1 Random Early Detection

The basic idea in early random drop is to start notifying connections early about
the incipient congestion. Only a few connection are told to back-off which avoids
underutilization and also the with connections backing off the load at the router
would be avoided and there would be less probability of queue reaching its
maximum limit and hence buffer overflow is avoided.

Random Early Detection (RED) builds on the concept of Early Random Drop by
introducing average queue size measure and dynamically changing the drop
probability. Use of dynamic drop probability ensures the gateway reacts differently
to different level of congestion anticipation i.e If queue-size is approaching
thresholds the drop probability has to be higher than, say when the queue size is
very less compared to the threshold.

The RED gateway calculates the average queue size, using a low-pass filter with
an exponential weighted moving average. The average queue size is compared to
two thresholds, a minimum threshold and a maximum threshold. When the average
queue size is less than the minimum threshold, no packets are marked. When the
average queue size is greater than the maximum threshold, every arriving packet is
marked. If marked packets are in fact dropped, or if all source nodes are cooperative,
this ensures that the average queue size does not significantly exceed the maximum
threshold. When the average queue size is between the minimum and the maximum
threshold, each arriving packet is marked with probability P,, where P, is a
function of the average queue size . Each time that a packet is marked, the
probability that a packet is marked from a particular connection is roughly
proportional to that connection's share of the bandwidth at the gateway.

The RED algorithm is given in Fig. 1-1.

Jor each packet arrival
calculate the average queue size avg
if minth < avg <maxth
calculate probability pa
with probability pa :
mark the arriving packet
else if maxth <avg

mark the arriving packet

Fig. 1-1. General algorithm for RED gateway

Thus the RED gateway has two separate algorithms.

1. The algorithm for computing the average queue size determines the degree of
burstiness that will be allowed in the gateway queue.

2. The algorithm for calculating the packet-marking probability determines how
frequently the gateway marks packets, given the current level of congestion.

As average queue size avg varies from min, to max, the packet-marking

probability P, varies linearly from 0 to max ,;

P j—max ,(avg— min ,)/(max ,— min ,) 1-(1)

The final packet-marking probability P, increases slowly as the count increases

since the last marked packet :

P P /(1—count+ P,) 1-(2)

The final packet-marking probability pa increases slowly as the count increases
since the last marked packet. This ensures that marking of packets is fairly uniform

One option for the RED gateway is to measure the queue in bytes rather than in
packets. With this option, the average queue size accurately reflects the average
delay at the gateway. When this option is used, the algorithm would be modified to
ensure that the probability that a packet is marked is proportional to the packet size

in bytes:

P y—P , » PacketSize/ MaximumPacketSize 1-(3)
P P,/(1—count- Py) 1-(4)

In this case a large FTP packet is more likely to be marked than is a small
TELNET packet.

If the queue remains empty for a large period of time, the old value of 4,0 should
have a lesser share in new value of queue average size, RED ensures that with the

equation 1-(5).

avg=(1—w,) "~ avg 1-(5)

Where ,,denotes the time for which queue has remained idle.

The detailed algorithm for RED gateway is given in Fig. 1-2.

Initialization:
avg <0
count < -1
Jfor each packet arrival
calculate the new average queue size avg:
if the queue size is nonempty
avg <—(1-wq)avg +wgq
else
m < f{time - q_time)
avg < (1-wq)m * avg
if minth < avg < maxth
increment count
calculate probability pa:
pb < maxp (avg - maxth)/(maxth - minth)
pa < pb(l - count - pb)
with probability pa:
mark the arrival packet
count <0
else if maxth < avg
mark the arrival packet
count <0
else count «— -1
when queue becomes empty

q time < time
Fig. 1-2. Detailed algorithm for RED gateway

Variables :
avg : average queue size
g_time : start of the queue idle time
count : packets since last marked packet
Fixed parameter:

w, : queue weight

miny, : minimum threshold for queue
maxy, : maximum threshold for queue
maxp : maximum value for pb

Others:
pa : current packet-marking probabillity
q : current queue size
time : current time

f(v) : a linear function of the time t

2.1.2 Flow RED

FRED is a modified version of RED and uses per-active-flow accounting to
impose on each flow a loss rate that depends on the flow's buffer use. The goal is to
reduce the unfairness found in RED.

FRED uses state variables to record the current buffer share of each connection
and compares it to its fair share, connections whose current share exceeds the fair
share are penalized. Thus misbehaving connections are identified. FRED stores
per-flow buffer count of each active connection. Here active connection refers to
connection that have packets buffered in the queue. Hence the amount of accounting
information stored is proportional to the buffer space.

Further FRED identifies non-responsive aggressive connections, and penalizes
such connections by allowing only the such connections to buffer just their fair share
of bandwidth, i.e. bursts from such connections are not be accommodated by the
router and such burst packets will be dropped. On other hand if a connections has
been responsive then, even if the connection has already used its fair share, the next
incoming packet from that connection is not deterministically dropped but is given a
random dropper where it is probabilistically dropped, depending upon the average

queue length. Hence a burst of packet from such responsive connection would be

accommodated in the queue. This behavior works as a sort of incentive for
connections to be responsive to packet drop, and helps avoid congestion. FERD
addresses the problems of very small connections like telnet that have very small
data to send and hence use very less than their share of the available bandwidth.
Also such connections do not have data always ready to send. FRED has provision
for such connections. FRED always allows packets from such connections unless
the queue as exceeded its max threshold.

FRED as it just builds on RED, continues to have its improvement over Drop-Tail
and is also able to achieve isolation, protection albeit at cost of added complexity of
per-active flow accounting. Like RED, FRED does not make any assumptions
about queuing architecture, it will work with a FIFO gateway.

FRED uses additional variable such as maxq, ming, avec, qlen; and strike;. FRED
uses ming and max, as maximum and minimum number of packets a connection
would be allowed to have in buffer and ave, represent the fair buffer share of a
connection at the router. FRED also uses glen as a per-flow variable which is the
number of packets a connection has currently enqueued in the buffer and uses strike
to identify unresponsive connection. An unresponsive connection has non-zero
value for this variable. An unresponsive connection is one that tries to exceed the
limit of "maxy" number of packet.

The detailed algorithm for FRED is given in Fig. 1-3.

for each arriving packet P
if P is from a flow i that does not have packets in the quene
gleni = 0
strikei = 0;
if (qleni >= maxq || // the connection has exceeded its maximum limit
(avg >= maxth && gleni > 2*avecq) ||(gleni >= avecq && strikei > 1))
strikei ++;
drop packet P;
return
if (minth <= avg < maxth)
(
if (qleni >= MAX{(ming, avgcq)
{
calculate drop probability pa ;
with probability pa;
drop packet P;
return;
/
else if (avg < minth)
{
coupt = -1;
accept the incoming packet

/

else

{
drop packet P;

return;

/

Fig. 1-3. Detailed algorithm for FRED

This flow chart shows FRED scheme in general.

— e Y

< New Flows? s -
~ 5 New State
—
N

Calcurate AVG & MAXq l

N
Non adaptnve//\—l

< M!Nth(AVG<MAX\h/ »—1

/

[Drop

Drop Tail

Fig. 1-4. Flow chart for FRED algorithm

2.1.3 CHOKe

The basic of idea behind CHOKe is that the contents of the FIFO buffer form a
"sufficient statistic" about the incoming traffic and can be used in a simple fashion
to penalize misbehaving flows.

When a packet arrives at a congested router, CHOKe draws a packet at random
from the FIFO buffer and compares it with the arriving packet. If both belonging to
the same flow, then they are both dropped, else the randomly chosen packet is left
intact and the arriving packet is admitted into the buffer with a probability that
depends on the level of congestion (this probability is computed exactly as in RED).

The reason for doing this is that the FIFO buffer us more likely to have packet
belonging to a misbehaving flow and hence these packets are more likely to be
chosen for comparison. Further, packets belonging to a misbehaving flow arrive
more numerously and are more likely to trigger comparison. The intersection of
these two high probability events is precisely the event that packets belonging to

misbehaving flows are dropped. Therefore, packets of misbehaving flows are

V1O,

dropped more often than packets of well-behaved flows.

CHOKe calculate the average occupancy of the FIFO buffer using an exponential
moving average, just as RED does. It also marks two thresholds on the buffer, a
minimum threshold min ,, and a maximum threshold max ,,.

If the average queue size is less than min 4, every arriving packet is queued into
the FIFO buffer. If the aggregated arriving rate is smaller than the output link
capacity, the average queue size should not build up to min ,, very often and packets
are not dropped frequently. If the average queue size is greater than max ,, every
arriving packet is dropped. This moves the queue occupancy back to below max ,.
When the average queue size is bigger than min ,, each arriving packet is compared
with a randomly selected packet, called drop candidate packet, from the FIFO
buffer. If they have the same flow ID, they are both dropped. Otherwise, the
randomly chosen packet is kept in the buffer (in the same position as before) and the
arriving packet is dropped with a probability that depends on the average queue size.
The drop probability is computed exactly as in RED. In particular. this means that
packets are dropped with probability 1 if they arrive when the average queue size
exceeds max 4. In order to bring the queue occupancy back to below max ,, as fast
as possible, CHOKe still compare and drop packets from the queue when the queue
size is above the max ,,

As algorithm is described, the flow chart shows algorithms in general.

11.

Arriving packet

AvgQsize <= Min,? 5

¥
Admit new packet
¥

end

Admit packet with
a probability p

end

Fig. 1-5. Flow chart for CHOKe algorithm

2.1.4 Disadvantage of Above Algorithms

RED's goal is to drop packets from each flow in proportion to the amount of
bandwidth when the flow uses the output link. It can be performed by dropping the
each arriving packet with equal probability (provided the average queue size does
not change significantly). Therefore, the connection with the largest input rate will
have the biggest drop percentage among total dropped packets.

Assume that the average queue size does not change for a short period § , so RED
drops incoming packets with a fixed probability p; also assume that connection;'s
current input rate is A (or A - 6 packets per §). The percentage of dropped packets

from connectioni is:

P
Z‘{i,p Zﬂi

For a FCFS service discipline, connection;'s output rate is proportional to its

buffer occupancy, which is determined by the percentage of accepted packets:

—AAl=p) _ A
2A0-p A,

]2

The above two equations imply that RED drops packets in proportion to each

connection's output usage under FIFO scheduling. From each connection's point of

. A
view, however, the instantaneous packet loss rate during a short period §is ~; ~—2

)

which is independent of the bandwidth usage. If the congestion is persistent, which
means the average queue length used by RED has a minimum value above min ,,
the drop probability has a nonzero minimum and therefore causes a minimum loss
rate for all connections, regardless of their bandwidth usage. This unbiased
proportional dropping contributes to unfair link sharing in the following ways:

1. Although RED performs better than Drop Tail and Random Drop, it still has a
bias against fragile connections. The fact that all connections see the same loss rate
means that even a connection using much less than its fair share will experience
packet loss. This can prevent a low-bandwidth TCP from ever reaching its fair share,
since each loss may cause TCP to reduce its window size by one half.

2. Accepting a packet from one connection causes higher drop probability for
future packets from other connections, even if the other connections consume less
bandwidth. This causes temporary undesirable non-proportional dropping even
among identical flows.

3. A non-adaptive connection can force RED to drop packets at a high rate from
all connections. This contributes to RED's inability to provide a fair share to
adaptive connections in the presence of aggressive users even if the congestion is
not severe.

Although FRED is a modified version of RED, it has extra implementation
overhead since it is need to collect certain types of state information. RED with
penalty box stores information about unfriendly flows while FRED needs
information about active connections. Although FRED achieves more reasonable
degree of fair bandwidth allocation and penaity to unfriendly flows than RED, it
doesn't overcome the implemental complexity.

CHOKZe is the improved algorithm on RED. CHOKe uses the match-then-drop

__18,

scheme to achieve fair queueing. It chooses a packet randomly from those queue to
compare with the arriving packet. If both packets belong to the same flow, they are
dropped. Otherwise, the arriving packet is admitted in the queue. However, it is a
fatal defect that the packet size is not distinguished. Assuming that three flows share
the queue and queue is full of packets belonging to the first and second flow, their
packet is more likely to be chosen for matching. Although three flows have the
same arrival intensity, the packet dropping probability of the first and second flow
are larger than the third flow. Then third flow is given more bandwidth than others.
Moreover, if there are increased numbers of unresponsive flows, CHOKe cause
the unfairness. When unresponsive flows increase, although increasing the drop
candidates enhance the ability to identify the unresponsive flows, the complexity
increases with a growing number of candidates. Therefore, CHOKe works well only

when there are few misbehaving flows.
2.2 Core-Stateless Fair Queueing

To achieve more reasonable degree of fair share, many algorithms are proposed.
However, they are complex to implement than FIFO and Drop Tail scheme and
make data processing slow. Moreover, maintaining per-flow state cause complexity
so that these mechanism with maintain per-flow state are not suitable for high-speed
network.

Consequently, the architecture and algorithm that allocate bandwidth fairly in an
approximate fair manner and maintain no per-flow state are proposed.

For this approach, Core-Stateless network recognize an island of routers and
distinguishes between the edge and core of the island. Island means the contiguous
network with well-defined interior and edges. Edge node estimates per-flow rate
when packet arrives the node and insert this information into packet's header. Core

node adopts simple FIFO queue and keeps no per-flow state. And core node uses the

14

information which is estimated in edge node to avoid congestion. Core-Stateless

network is shown in Fig. 2-1.

Fig. 2-1. Network architecture for CSFQ

First, to avoid maintaining per-flow state at each router, CSFQ use a distributed
algorithm in which only edge routers maintain per-flow state, while core (nonedge)
routers do not maintain per-flow state but instead utilize the per-flow information
carried via a label in each packet's header. This label contains an estimation of the
flow's rate; it is initialized by the edge router based on per-flow information, and
then updated at each router along the path based only on aggregate information at
that router.

Second, to avoid per-flow buffering and scheduling, as required by Fair
Queueing, CSFQ use FIFO queueing with probabilistic dropping on input. The
probability of dropping is a function of the rate carried in the label and of the fair

share rate at that router, which is estimated based on measurements of the aggregate

traffic.

._15_

{ Edge/ingress router }———-—

‘—l Core/egress router }—-

fl . Packet tabel
ow
e min%nance packet labeling buffer occupancy

rate estimator ¥

. .| backet
deD'ng -------
—x i &
Packet label : : departure
Flow n Maintenance a: { rates

e P packet labeling H :

rate estimator estimator

Fig. 2-2. CSFQ's scheme in edge and core node

2.2.1 Fluid Model Algorithm

The arrival rate is known exactly in fluid model algorithm because rate is bps.
However, in real networks, traffic consists of packets. Thus, the algorithm is
extended to situation in real router where transmission is packetized. First, we
describe the fluid model algorithm.

In fluid model algorithm, C means the output link speed and ri(t) is the each flow's
arrival rate. The flows are modeled as a continuous stream of bits and all flows that
are bottlenecked by the router have the same output rate which is called fair share
rate, a(t). In general, if max-min bandwidth allocations are achieved, each flow

receives service at a rate given by min(r (#), o(#) . Let A(j) denote the total

AP = Zn:l r (D

arrival rate: .1t , then the fair share is the unique solution to

C= gn; min(» (8, o(D) 2-(1)

If A(#) < C.then no bits are dropped and we will, by convention, set

a)=max » (). 1If » (f) <a(d), ie., flow sends no more than the link's fair share

16

r L) —old)
rate, all of its traffic will be forwarded. If » (8 > a(?), then a fraction r (D

of its bits will be dropped, so it will have an output rate of exactly () . This

suggests a very simple probabilistic forwarding algorithm that achieves fair

allocation of bandwidth: each incoming bit of flow is dropped with the probability:

max((0,1-) 2-2)

When these dropping probabilities are used, the arrival rate of flow at the next hop

is given by min[7 {9, «H].
2.2.2 Packet Algorithm

Packet algorithm still employ a drop-on-input scheme, except that now it drop
packets rather than bits. Because the rate estimation (described below) incorporates
the packet size, the dropping probability is independent of the packet size and
depends only, as above, on the rate » (# and fair share rate a(

1. Computation of Flow Arrival Rate

The rates 7 (J) are estimated at the edge routers and then inserted into the packet
labels. At each edge router, CSFQ use exponential averaging to estimate the rate of
a flow. Let #and Zbe the arrival time and length of the ;% packet of flow ; The
estimated rate of flow ; 7; is updated every time a new packet is received :

riv=(1-e Wk)“l% o Tk
’ T* ' 2-3)
where T*=¢tk—t*"land g is a contents.
2. Link Fair Rate Estimation
The rate with which the algorithm accepts packets is a function of the current

estimate of the fair share rate, which is denoted as () Letting {7))denote this

acceptance rate

17

U 1)) =3 min(7 £, & $) 2d)

Note that fy .) is a continuous nondecreasing concave and piecewise-linear
function of 7. If the link is congested (A(#) > (), CSFQ choose 7 f)to be the
unique solution to [\ x) = ¢ If the link is not congested (A(H <), CSFQ take

& Hto be the largest rate among the flows that traverse the link, i.e.,

a(f) =max ,.;.,(r;(9). Note that if we knew the arrival rates » (4), we could
then compute 7 pdirectly. To avoid having to keep such per-flow state, we seek
instead to implicitly compute 7 /)by using only aggregate measurements of £ and
A-

We use the following heuristic algorithm with three aggregate state variables: 7
the estimate for the fair share rate; 7 the estimated aggregate arrival rate; Fthe
estimated rate of the accepted traffic. The last two variables are updated upon the

arrival of each packet. For 4, we use exponential averaging with a parameter

¢~ T where is the inter arrival time between the current and the previous packet
~ —~T/K,
A e=l—e)Lt TR A, 2-(5)

where A is the value of Zbefore the updating. We use an analogous formula
to update g

The updating rule for depends on whether the link is congested or not. To filter
out the estimation inaccuracies due to exponential smoothing, we use a window of
size K. A link is assumed to be congested if A>(at all times during an interval of
length K . Conversely, a link is assumed to be uncongested if < at all times

during an interval of length K. The value is updated only at the end of an interval in

which the link is either
congested or uncongested according to these definitions. If the link is congested,
then is updated based on the equation [3) = ¢ We approximate R -)bya

linear function that intersects the origin and has slope 7 a,,. This yields

18

e

A= g

2-(6)
If the link is not congested, ., is set to the largest rate of any active flow (i.e.,

the largest label seen) during the last K time units. The value of o, is then used

to compute dropping probabilities.

3. Link Relabeling

Estimation algorithm allows router to label packets with their flow's rate as

they enter the island. Packet dropping algorithm described allows router to limit
flows to their fair share of the bandwidth. After a flow experiences significant losses
at a congested link inside the island, however, the packet labels are no longer an
accurate estimate of its rate. CSFQ cannot rerun our estimation algorithm, because it
involves per-flow state. Fortunately, the outgoing rate is merely the minimum
between the incoming rate and the fair rate ,. Therefore, router rewrite the packet
label f as

L .,=min(L ., a) 2-(7)

By doing so, the outgoing flow rates will be properly represented by the packet

labels.

3. Algorithm Description

In routing algorithms, packet isolation and reducing complexity have to be
achieved simultaneously as reasonable as possible. We described proposed
algorithms in above section but they can't achieve both isolation and
simplexity. Although CSFQ allocate fair bandwidth approximately, CSFQ uses
the exponential weight to compute flow arrival rate so that complexity isn't

improved. Therefore, we consider the improvement of these algorithms and

419.4

apply a novel AQM scheme which is called 'Flow Number Estimation' to
Core-Stateless network.

The goal of fairness should be defined first: Assume that , flows pass
through the router with link capacity ¢ . For flow ; # denotes its arrival
rate and 7/ denotes its admitted rate into the router. By using the threshold
rate, the router drops the packets of flow ; with the probability

max[0, (,—CL)/»] (the (7 is means cutting line or threshold). If the total

arrival rate is smaller than or equals to the link capacity, 2.7,<C, no

packets should be dropped even through the rate of one flow is much larger

than that of the others. The solution to maximize Sy is must founded.
Assuming that ,, flows pass through the router and the sum of their arrival
rates is larger than the output link capacity, packets of misbehaving flows
should be dropped. Without sacrifice of generality, the arrival rates of all
incoming flows are sorted to be »;<r,< <7,. The solution of (Fexists

in one of the 4,41 region, that is, 0<CL<yr,, 1 <CL< 7y, R
¥ po1<CL<7, or »,<(CL<oo. Therefore, the problem is to find (J to
achieve the maximum in the (,4]) regions of

" ne CL+ Zn:lr,-— Zn:llri—CLl
Z}lmin(r,-, CL)= = 5 = 3<(1)

CS-FNE is constructed from three function blocks: (1) measuring the flow
rate in edge nodes (2) estimating the active flows and (3) dropping the

packet in core nodes.

3.1 The scheme in Edge Nodes

To measure intensity of flows, CS-FNE adopts Time Sliding Window.
Although the rate of TCP flows fluctuates due to congestion avoidance, TSW

20

attenuates the influence of rate fluctuation by estimation the bandwidth
according to a short-term past history. The measuring algorithm is shown in

pseudocode.

Initially:

Win_length = constant;

Avg rate = flow’s minimum guaranteed rate;

For each arriving packet P:

Bytes in TSW = Avg rate * Win_length;

New_bytes = Bytes in TSW + pkt size

Avg_rate = New_bytes / (Now - T front + Win length);

T front = now;

If (Avg rate <= flow's mininmum guaranteed rate)
not insert Label;

Else

insert Label
Fig. 3-1. Pseudocode for CS-FNE in edge node
As the above description, CS-FNE measure the flow rate differently in
edge node comparing CSFQ. And measured flow rate is inserted as label in

packet's header and it is employed in packet dropping algorithm in core

nodes.

21

3.2 The scheme in Core Nodes

3.2.1 Storing per-flow information

In Core-Stateless Network, core nodes don't maintain per-flow state.
However, maintaining per-flow state occurs complexity so that CS-FNE
adopts scheme that just stores per-flow information without per-flow state.
Then, CS-FNE can reduce complexity and achieve core-stateless network.

To maintain per-flow information, CS-FNE employ a hashing function with
m slots to locate the record each flow. CS-FNE use the source-destination
address pair of a flow as the key and then calculate the location of the slot
in the hash table through a hashing function.

The general hashing function is implemented with the division method.
Using the division method, CS-FNE map a key S_D; into one of the 4,
slots by the remainder of S_D, divided by ,, where S_D. is the
source-destination pair of flow ;

However, maintaining per-flow information by the hash table sometimes
results in unfairness due to collision, which occurs when two or more flows
map to the same slot. Since the packet drop probability of these flows are
calculated according to the per-flow information in th same slot, all flows
mapped to the same slot share one per-flow bandwidth.

To avoid collision, there are three ways: (1) hashing flows with
direct-address table, (2) rehashing and (3) chaining. CS-FNE adopts chaining
to avoid collision, which hash flows to the same slot in a linked list. Each
slot in the hash table contains a pointer to the head of the list that stores
the per-flow information of all flows hashed to the slot. Fig. 3-2. in the

below show the resolution by chaining.

,\22_

Fig. 3-2. Collision resolution by chaining

As the source-destination pair, the estimated flow rate and the late
calculation time are stored in bucket of the linked list, CS-FNE can distribute
the output link bandwidth fairly than the scheme which just link the packets
as a list, when the packet of two or more flows are hashed to the same slot.
Moreover, since very bucket of the lists stores the per-flow information, it is
impossible for two flows to have the same per-flow information. Therefore,
the flows passing through the router can be regulated correctly according to

the accurate per-flow information.

3.2.2 Estimating the Number of Active flow

To estimate fair share and determine that packet dropping probability,
CS-FNE estimate the number of active flows, N,,, which is estimated by
comparing the incoming packet with the packet selected ar random in the
queue.

Assuming that 4 flows pass through the router, » and p denote the flow

._23_

rate estimated via the TSW and the buffer occupancy of flow ; respectively.
Additionally, there are two auxiliary rates involved in calculating N, : 7,
and 7. Intuitively, », is the rate that the flow ID of an incoming packet
matches that of one randomly selected packet in the queue, while » .
denotes the rate that two compared packet are not of the same flow. The

two auxiliary rate are shown as

Y i = grf'm 3-(2)
Y i = glr,‘(l—m) 3-3)
The number of active flow is defined as
N = T L 3-(4)
hit

For example, p, is proportional to 7 in FIFO queue. From 3-(2), 3-(3) and
3-(4) We can get

o n
Nea="rz 3-(5)

where C,, is the coefficient of variation in flow rate and equals o ,/H#].
If there exists a flow with a much larger rate, C, equals ,—1 and N,
equals 1. If all flows have the same rate, C, equals 0 and N,, equals ,

For more detail, formulas is derived as following.

Basically, p, is direct proportional to 7 in the FIFO queue and equals

24

p‘____ 7 — i
g ne Fl 7]

From the formula of #,,

n 2”7"21 2
P _ Varl+]+HA
AT e HA H7]

The sum of », and », is equals to the aggregation of the arrival rate

of all flows. Therefore, from formﬁlas above, the number of active flows is

estimated to be

N =Tt T ms _ pe FAL®
act 7 kit Va{Al+ HA)*

Let us define C,=coefficient of variation of arrival rate = ¢ /(F[+]) and
the (%= square of coefficient of variation = (Ve D/ (HA? or
(H»)/(HA?—1. Futhermore, from the definition above and formula of

N, the number of active flows can be expressed as

n

Noa= 241

If there exists a flow with much larger rate than that of the others, that is,

for v/ j#; 7 ;{Kr, we obtain

25

Hr=" g HA=":

Then, the square of the coefficient of variation can be expressed as

HrY | _7in

HA* ~ (r/w? “l=nl

Therefore, the estimated number of active flows equals 1. If all flows have

the same rate, that is, for v/, r;#wr,

HrY=»* and Hy=7

Then, the square of the coefficient of variation can be expressed as

Hr] ___ o
HA? e

Therefore, from formulas, the estimated number of active flows equals »-
Only the comparison result and the relevant of the arriving packet without g
is viable. When a packet belonging to flow ; arrives, the probability that the

drop candidate and this packet are of the same flow is equal to the queueing

occupancy of flow ;

26

3.2.3 Packet Dropping

As previously description, admitted rate is regulated to be min(arrival rate,
threshold rate). Therefore, threshold rate is estimated and then router can
determine that the packet is dropped or not. The method employes a

queue-length bound, the target which is shown in Fig. 3-3.

Phase 2 Phase 1

Fig. 3-3. The trigger scheme

When the queue length is below the target, no packet will be dropped. It
is reasonable that packets should not be dropped if the output link capacity
is sufficient. Once when the queue length exceeds the target, the resources
may be insufficient and packet should be dropped. The threshold rate is
determined as C/N,,. It is possible only for the flows whose rate exceeds

the threshold rate to have their packets dropped.

A27_

4. Simulation

All simulations are performed in NS-2(Network Simulation). To achieve the
propriety of simulation, we consider the single congested link and multiple
congested links in the same environment as CSFQ's simulation [4]. We
compare CS-FNE's performance to four additional algorithms ie., DRR
(Deficit Round Robin), CSFQ, RED and FRED. DRR is one of scheduling
algorithm and CS-FNE employs active queue management, however, we can
use DRR as benchmark for fair share.

We use the following parameter for the simulation. Each output link has a
capacity of 10Mbps, a latency of 1ms, and a buffer of 64KB. In RED and
FRED cases the first threshold is set to 16KB, while the second one is set
to 32KB. The averaging constants K (Used in estimation the flow rate), K,
(used in estimation the fair rate), and K, (used in making the decision of
whether a link is congested or not) are all set to 100ms unless specified
otherwise. Finally, in all topologies the first router on the path of each flow
1s always assumed to be an edge router; all other router are assumed without
exception to be core router.

First, we consider single congested link which is shared by N flows. The

topology is shown in Fig. 4-1.

- - ——— — - -

Fig. 4-1 The single congested link has the 10 Mbps capacity
and the propagation delay of 1 ms.

We also perform two related experiments.

In the first experiment, we have 32 UDP flows, indexed from 0, where

28

flow i sends i+1 times more than its fair share of 0.3125Mbps. Thus flow
0 sends 0.3125Mbps, flow 1 sends 0.625Mbps, and so on. Fig. 4-2 shows

average throughput of each flow over a 10 sec interval.

1 T T T T T R T
CS-FNE ———
DIRES oo
CSFQ —»—
AR
038 - i
‘®
2 06 B |
2
= o B
B
2
2
o
o
0 ! i | 1 I !
5 10 15 20 25 30
Flow Number

Fig. 4-2. The average throughput over 10 sec when N=32 and all flows are

As number of flow increase, we can see increasing of throughput in RED
and FRED. Therefore, RED and FRED's performance is construed that these
algorithms fail to ensure fairness from difference of arriving rate. On the
other hand, DRR, CSFQ and CS-FNE is achieve fairness approximately.
Although the line vibrate a little, flow's throughput is almost similar to fair
share rate. We evaluate that CS-FNE can achieve fairness against different
flow rate.

For more detail, following table shows the numerical result of

performance. In standard deviation, CS-FNE, DRR and CSFQ perform similar

-29_

degree of fairness. In Table 1, Although CSFQ is better performance than
others in Max-Min and Standard Deviation, CS-FNE perform similar degree
with DRR and better than RED and FRED.

Average Max - Min Standard Deviation
CS-FNE 0312 0.162 0.046
DRR 0312 0.176 0.056
CSFQ 0.310 0.050 0.015
RED 0312 0.438 0.132
FRED 0312 0.582 0.176

Table 1. Result of first experiment in single congested link.

In second experiment, we measure how well the algorithms can protect a
single TCP flow against multiple ill-behaving flows. We perform 31
simulation, each for a different value N, N = 2, 3, 32. In each
simulation we take one TCP flow and N-1 UDP flows; each UDP sends at
twice its fair share rate of (10/N)Mbps. Figure 4-3 plots the ratio between
the average throughput of TCP flow over 10 seconds and the fair share

bandwidth it should receive as a function of the total number of flow N.

80

T
CS-FNE ——+—
14| DRI e 7
CSFQ ——
FRED e

Aliocated Bwdth. / Ideal Bwath.

Total Number of Flows

Fig. 4-3. The normalized bandwidth of a TCP flow that competes
with N-1 UDP flows.

DRR perform very well when the number of flows is under 22. However,
it's performance decrease afterwards. This is because the TCP flow's buffer
share is less than three buffers, which significantly affects its throughput.
CSFQ and CS-FNE perform than DRR when the number of flows is large.
This is because CSFQ and CS-FNE cope better with TCP burstiness by
allowing the TCP flow to have several packets buffered for short time
intervals which is possible by employing core-stateless network. Across the
entire range, CSFQ and CS-FNE provide better performance than RED and
FRED.

Average Max - Min Standard Deviation
CS-FNE 0.643 0.690 0.171
DRR 0.850 0.704 0.248
CSFQ 0.703 0.432 0.093
RED 0.339 0.920 0.331
FRED 0.101 0.078 0.042

Table 2. Result of second experiment in single congested link.

As shown in table, DRR's average is better than CSFQ and CS-FNE,
however decreasing since the number of flows increase, make standard
deviation large. Thus, we can't evaluate that DRR's performance is better than
others. CSFQ and CS-FNE shows similar performance.

In above mention, we notice that CSFQ and CS-FNE perform similar
degree of faimess. Although DRR's performance is better, DRR have
complexity since it schedule packets so that it is impossible to implement
DRR in real networks.

Thus, we compare CS-FNE to CSFQ in different angle. For each
experiment, we compute the processing time. In Table 3, we assumed that
each UDP flow's sender transmits packet over one second in first experiment
and compute the average processing time in edge and core node. In Table 4,
we also compute the average processing time in edge and core node while
the TCP flow's sender transmits the packets over one second in second
experiment. As we adopt FNE to Core-Stateless network, we can reduce
complexity of estimating. Therefore, routers can process packets rapidly. The

tables are express in ms.

— 82_

Edge Node Core Node Summation
CSFQ 2877 2943 5820
CS-FNE 2621 2787 5408

Table 3. Comparison between CSFQ and CS-FNE for processing time

of first experiment in single congested link.

Edge Node Core Node Summation
CSFQ 2889 2936 5825
CS-FNE 2597 2714 5311

Table 4. Comparison between CSFQ and CS-FNE for processing time

of second experiment in single congested link.

In both first experiment and second experiment, CS-FNE process packets

faster than CSFQ about 8%.
Second, we consider multiple congested link and topology is shown in Fig

4-4. All UDPs, except UDP-0, send at 2 Mbps.

UDP GrowpXd) UDP GropXd) UDP GrowpXd)

UDP GroupM(d)
]
fc1} c2 c3 CAl= e E Q

UDETCP-0 Snk
=]

UDP Growpl(s) UDP GrowpXs) UDP GrowXs) UDP GrowpM(s)

Fig. 4-4 The multiple congested link have capacity of 10 Mbps and propagation
delay of Ims

,33,_

In first experiment, we have a UDP flow (denoted UDP-0) sending at its
fair share rate of 0.909 Mbps.

CSFNE ——
14 F DFYY o o
CSFQ ——
FRED —s
12 T
£
R}
Y e e e ~ ke
é :‘4~___—‘_—%—hﬁ__ ——
3 L I |
ST -
L
5 .
ag: . - B |
5 06+ .
k)
o
6]
o
z 04t :
02+ ' , 4
"
0 1 | 1 b 1 1 1
1 15 2 25 3 35 4 45 5

Number of Congesied Links

Fig. 4-5 The normalized throughput of UDP-0 as a function of

the number of congested links

This figure shows the fraction UDP-0's traffic that is forwarded versus the
number of congested link. CS-FNE and CSFQ preform reasonable well,
although not quite as well as DRR. However, DRR is hard to implement in
real network, as mentioned above. If we consider complexity, DRR's

performance is not better.

_34.‘

As shown in table, we also notify that CS-FNE and CSFQ perform similar

Average Max - Min Standard Deviation
CS-FNE 0.889 0.088 0.038
DRR 0.986 0.008 0.003
CSFQ 0.936 0.058 0.023
RED 0.732 0.192 0.078
FRED 0.233 0.476 0.195
Table 5. Result of first experiment in multiple congested link.

degree and better than RED and FRED.

In second experiment, we replace UDP-0 with a TCP flow.

CSFNE ——
el DRRB - 1
CSFQ ——
FRED —e—
2l gty B i
L
pe]
g r |
w
Q .
pe]
~ 08 I
-
g B ; b
2 N el - — %
- 06 AN B - |
5 -
o ~ T
o . e
g |
< 04 1
02 P R)
0 3 “ . L " ol M L
1 1.5 2 25 3 35 4 45 5

Number of Congested Links

Fig. 4-6. The same plot when UDP-0 is replaced by a TCP flow.

,35_

Similarly, DRR is most ideal and CS-FNE and CSFQ perform resonable
degree fairness. FRED and RED perform significantly worse. Flows with
different end-to-end congestion control algorithms will achieve different

throughput even if routers try to fairly allocate buffer.

Average Max - Min Standard Deviation
CS-FNE 0.621 0.241 0.104
DRR 0.859 0.165 0.062
CSFQ 0.651 0.099 0.038
RED 0.143 0.689 0.306
FRED 0.013 0.048 0.023

Table 6. Result of second experiment in multiple congested link.

We also evaluate the performance of CS-FNE and CSFQ samely in above
mention. CS-FNE's average is similar to CSFQ although CS-FNE's difference
of ratio is larger than CSFQ.

In multiple congested link, CS-FNE's performance is similar to CSFQ so
that we also consider processing time. Similarly, we compute the processing
time in each experiment while sender transmits packets over one second.
Table 7 shows when the flow is UDP which is denoted UDP-0 in the
topology. Also, when the UDP is replaced by TCP, the processing time is

shown in Table 8. The tables are express in ms.

36

Edge Node Core Node Summation

CSFQ 2562 2832 5394

CS-FNE 2467 2448 4915

Table 7. Comparison between CSFQ and CS-FNE for processing

time of first experiment in multiple congested link.

Edge Node Core Node Summation
CSFQ 2501 2743 5244
CS-FNE 2387 2394 4781

Table 8. Comparison between CSFQ and CS-FNE for processing

time of second experiment in multiple congested link.

The improved processing time is also shown in multiple congested link. In
first experiment and second experiment, the processing time is improved

about 8% similarly

5. Conclusion

In the aspect of guaranteeing throughput and reducing complexity, Drop
Tail algorithm has the limitation. Therefore Active Queue Management
Scheme, such as RED, have been proposed. However, this scheme still has
problems of isolation, complexity and mis-behaving flow effect.

To reduce the complexity of maintaining per-flow state, Core-Stateless
network is proposed. In this network, nodes are separated as the edge nodes

and core nodes; Edge nodes maintain per-flow state, estimate the arrival rate

;374

and insert the label into the packet header and core nodes maintain no
per-flow state and drop packets by probability. Although CSFQ is proposed
to reduce complexity, it adopts exponential average so that it is necessary to
reduce complexity more.

In this paper we apply FNE queueing mechanism on Core-Stateless
network. In edge node, it measures the packet intensity and inserts label into
packet's header. In core node, it estimates active flows as comparison
between incoming packet and randomly selected packet. By using this
information, it can compute threshold and decides that packet will be
dropped. The steps of measuring packet intensity, estimating active flows and
computing dropping probability have complexity O(l) since no packet
scheduling is required.

In simulation, we evaluate it comparing with CSFQ, FRED, RED and
DRR. In the single and multiple congested link, CS-FNE's performance is
more effective than RED and FRED and similar to CSFQ. From another
angle, we test CS-FNE's processing time and compare it to CSFQ. CS-FNE's
processing time is improved about 8%. Therefore, we evaluate that CS-FNE
can achieve the fairness approximately and reduce the complexity to
reasonable degree than other algorithms.

Even though ideal fairness result is not proposed, CS-FNE is meaningful in
the point of being implemented through the hardware more easily because
CS-FNE is implemented in the traditional Drop Tail routers by simply
employing a packetfiltering module in front of the single FIFO queue.
Moreover it is implemented cost-efficiently since it doesn't adopt the
exponential average to compute the fair rate.

From now., to get more effective solution, the improved fairness and

congestion control with TCP data are necessary.

,_38_

Reference

[1] A. Demers, S. Keshav, and S. Shenker, "Analysis and simulation of a fair
queueing algorithm," J. Internetw.Res. Experience, pp. 3-26, Oct.1990
[2] D.D. Clark and W. Fang, "Explicit allocation ofbest-effort packet delivery
service," IEEE Trans (1998),362-373.
[3] D. Lin and R. Morris, "Dynamics of random early detection," in Proc. ACM
SIGCOMM, Cannes, France, Oct. 1997, pp. 427-137
[4] Ton Stoica, Scott Shenker, and Hui Zhang,Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocation in High Speed Networks,"
in Proceeding of SIGCOMM'98, Oct, 1997
[5] Jung-Shian Li and Ming-Shiann Leu, "Fair bandwidth share using flow number
estimation," Communications, 2002. ICC 2002. IEEE International Conference
on, Vol. 2, pp. 1274-1278, May 2002
[6] L Zhang, "Virtual clock: a new traffic control algorithm for packet switching
networks," in Proc ACM, SIGCOMM 90, 1990, pp- 19-29.
[7] M. Shreedhar and G. Varghese, "Efficient fair queueing using deficit round
robin," IEEE/ACM Trans. Networking, pp. 375-385, June 1996.
[8] NS simulator, available from http://www_isi.edu/nsnam/ns.
[9] Parekh, A. A generalized processor sharing approach to flow control
[10] R. Pan, B. Prabhakar, and K. Psounis, CHOKe: A Stateless active queue
management scheme for approximating fair bandwidth allocation, Proc 19th
Annu Joint Conf of the IEEE Computer and Communication Societies,
INFOCOM 2000, 2000, pp. 942-951
[11] S. Floyd and V. Jacobson, "Random early detection for congestion avoidance,”
IEEE/ACM Trans. Networking, Vol. 1, pp. 397-413, July 1993.
[12] Z. Cao, Z Wang, E. Zegura, "Rainbow fair queueing: fair bandwidth sharing
without per-flow state", Proceedings INFOCOM. March 2000, pp. 922-931

,39_

[13] Mun-Kyung Kim, Kyoung-Hyun Seo, Seung-Seob Park, "Fair Bandwidth
Allocation in Core-Stateless Networks: Improved Algorithm and Its

Evaluation", The 9" CDMA International Conference. October 2004, pp.526

40

	표지
	목차
	국문요약
	1. Introduction
	2. Related Works
	2.1 Active Queue Management
	2.2 Core-Stateless Fair Queueing

	3. Algorithm Description
	3.1 The scheme in Edge Nodes
	3.2 The scheme in Core Nodes

	4. Simulation
	5. Conclusion
	참고문헌

