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Preface

"The theory of univalent functions is an old subject, which was born around
the turn of the century and remains as an active field of current research.
The progress is especially rapid in the recent years. The important study of
univalent functions began in 1907 when Koebe [13] proved for the class S of
univalent functions the existence of a positive constant ¢ such that

{w:lw <c} c N fu),
fes
where U = {z € C : |z| < 1} and C is the complex plane. In 1916, Bieberbach
[3] proved that ¢ = 1/4, which was an interesting result. This says that the
open disk |w| < 1/4 is always covered by the map of & of any function fes.
Furthermore, he observed that the equality holds for “Koebe function ”

k(z):Z(l_z)_2:z+222+3z3+... (z € U)

or its rotations.

The Bieberbach conjecture has been considered so difficult to prove or dis-
prove that some mathematicians believed it to be false. Many researchers have
devoted their life to resolve it. This conjecture has inspired several develop-
ment in geometric function theory by generating a lot of number of related

problems.



In 1984, Branges [4] surprised the mathematics world by making a claim
that he had resolved the Biberbach conjecture. Thus he ended the efforts of
many mathematicians of almost seventy years. But there is no doubt that the
study of this conjecture led to the development in geometric function theory

by generating a lot of number of related problems.

In this thesis, we investigate various conditions for Carathéodory functions
in the open unit disk. Also we give some applications of univalent functions
as special cases. Furthermore, we derive some argument properties of analytic

functions in the open unit disk.

The present thesis consists of five chapters and we give the outlines.

In chapter 1, we first introduce the class of univalent functions and its
subclasses under geometric conditions. We also introduced the concept of

Carathéodory functions and give some properties of it.

In chapter 2, we show some sufficient conditions for Carathéodory functions
of order a by using well-known Jack’s lemma [10] and extended some results
obtained by many authors(Chichra [6], Marx [18], Miller [19], Miller, Mocanu
and Reade [21], Nunokawa [25], Nunokawa, Ikeda, Koike, Ota and Saitoh (28],
Ponnusamy and Karunakaran [29] and Strohhdcker [36]). Furthermore, we

obtained another various conditions for Carathéodory functions.

In chapter 3, we give some conditions for Carathéodory functions by using
Miller and Mocanu’s lemma [20] and extend some results obtained by many
authors(Miller [19], Miller, Mocanu and Reade [21], Nunokawa, Kwon and Cho
[27] and R. Singh and S. Singh [35]). Further, we obtain sufficient conditions

for univalent functions with some special cases.

i



In chapter 4, we obtain some properties of certain analytic functions by
using the result of Miller and Mocanu [20] and extend some result obtained
by Libera [15]. Furthermore, we obtain some integral preserving properties for

certain analytic functions and extend the known results as special cases.

Finally, in chapter 5, we investigate some criteria for strongly starlike func-
tions and the relationship between uniformly convex and strongly starlike func-

tions.

il



Chapter 1

Univalent Functions

1.1 Basic results

In this chapter, we are mainly connected with functions of the form

f(z) = z + ianz" (1.1.1)

thaf are analytic in the open unit disk / = {z € C : |z] < 1}. The class of
all functions of the form (1.1.1) that are analytic in &, we’ll be denoted by A.
Denote S by the subclass of A consisting of functions univalent (or schlicht)
in Y ; that is, f € S if and only if f € A and f(z1) # f(z2) for all points 2z,
and zo in U with z; # 2. An analytic univalent function is called a conformal

mapping, because of its angle-preserving property.

A typical example of a function of the class S is the Koebe function

(1-2)72

The Koebe function is extremal for many problems relating §. The function

k(z) = = 2+22432+ ... (zel). (1.1.2)

k maps U onto the entire plane minus the part of the negative real axis from

1



—1/4 to infinity.

Theorem 1.1.1 [3]. Iff €S, then lao| < 2, with equality if and only if
[ is a rotation of the Koebe function k, that 1s,

z

ko(z) = 1oy

(6€elo, 2q]). (1.1.3)

This theorem was given in 1916 and was the main basis for the famous Bieber-
bach conjecture [3] that the Taylor coefficients of each function of class S
satisfy the inequality |a,| < n. The Bieberbach conjecture was proved by
Louis de Branges [4] after many partial results. The study of this conjecture
led to the development of a greate number of different and deep methods that

have solved many other problems.

As a first application of Biberbach’s theorem, we will now introduce a
covering theorem due to Koebe. Each function f € S is an open mapping
with f(0) = 0, so its range contains some disk centered at the origin. As early
as 1907, Koebe [13] discovered that the ranges of all functions in S contain a
common disk |w| < p where p is an absolute constant. The Koebe function
shows that p < 1/4 and Bieberbach [3] later established Koebe’s conjecture
that p may be taken to be 1/4.

Theorem 1.1.2 [3]. The range of every function of class S contains the

disk {w : [w| < 1}

Furthermore Biberbach’s inequality |a,| < 2 has implications in the geometric
theory of conformal mapping. In particular, this inequality gives a basis esti-
mate which leads to the distortion theorem, which provides sharp upper and

lower bounds for |f'(z)| as f ranges over the class S, and related results.



Theorem 1.1.3 [7]. For each f € S,

I1—r , 147
T s Vel sqTm (1.1.4)

For each z € U, z # 0, equality occurs if and only if f is a rotation of the
Koebe function of (1.1.3).

1.2 Some special classes

We introduce some subclasses of S which are defined under natural geo-

metric conditions.

A set £ in the plane is said to be starlike with respect to wy an interior
point of £ if each ray with initial point wq intersects the interior of £ in a set
that is either a line segment or a ray. If a function f maps £ onto a domain
that is starlike with respect to wg, then we say that f is starlike with respect

to wo. In the special case that wy = 0, we say that f is a starlike function.

A set &€ in the plane is called conver if for every pair of points w; and Wo
in the interior of £, the line segment joining w; and ws is also in the interior

of £. If a function f maps € onto a convex domain, then f is called a convez

Sfunction.

The subclasses of S consisting of starlike and convex functions are denoted
by 8* and K, respectively. Note that the Koebe function is starlike but not

convex.

The following theorems give an analytic description of starlike and convex

function [7].



Theorem 1.2.1. Let f € A, then f € 8* if and only if Re zf'/f > 0.

Theorem 1.2.2. Let f € A, then f € K if and only if Re {1 +
2f"/f'} > 0.
The two preceding theorems reveal analytic connection between starlike and

convex functions [1].

Theorem 1.2.3. Let f € A, then f € K if and only if zf' € S*.
A function f(z) analytic in U is said to be close-to-convez if there exists a

starlike function g(z) such that

Rei%j) >0 (zel).

We denote by C the class of close-to-convex functions f with the usual nor-
malization f(0) = f'(0) —1 = 0. Close-to-convex functions were introduced by
Kaplan [12]. Every close-to-convex function is univalent. This can be inferred
from the following simple but important criterion for univalence. The criterion

is due to Noshiro [24] and Warschawski [37].

Theorem 1.2.4. If f is analytic in a complez domain D and Re fi(z) >

0 there, then f is univalent in D.

We remark that the following chain of proper inclusions :

KcS cCcS8S c A

1.3 Carathéodory functions

An analytic function p in U with p(0) = 1 is said to be a Carathéodory

function of order « if it satisfies
Rep(z) > a (0<a<l, z€lU).

4



We denote by P(a) the class of all Carathéodory functions of order o in I/ and
P =P(0) [19].

Miller [19] and Miller, Mocanu and Reade [21] proved the following results,
respectively. If p is analytic in &, then
Re {p(z) + Bzp'(z) } > 0 (8>0) implies pc P (1.3.1)

and

Re {p(z) + ﬁ%)ég—)} >0 (BeR, p(z)+#0) implies p € P. (1.3.2)

Recently, Nunokawa [26] gave many sufficient conditions for Carathéodory
functions with an improvement of the result given by (1.3.1) above. Further-
more, the other interesting conditions for Carathédory functions may be found

in various articles(for example, see [20, 22, 25]).



Chapter 2

Carathéodory Functions I

2.1 Imntroduction

In 1936, Robertson [30] introduced the concept of functions starlike and

convex of order « as follows.

A function f € A is said to be starlike of order « if

Re {ij(i‘;)} >a (0<a<l, zel).

The set of all such functions is denoted by S*(a) and especially, S* (0) = s~

A function f € A is said to be conver of order « if

Re {1 + %(2_3)} >a (0<a<l1, z€el).

The set of all such functions is denoted by K(a) and especially, K)=K.

It is well-known [32] that the class S* is a subclass of S, whereas the functions
in §* need not be univalent if o < 0. Furthermore, we note that any functions
in K(a) is univalent in I/ if —1/2 < o < 1, and for o < —1/2, there exists a

function f in the class K(«) which is not univalent.

6



A function f € A is said to be a member of the class R(a) if it satisfies

Re f'(z) > a (a<1, z€U).

In particular, R(0) = R was introduced by MacGregor [17]. It is well known
that R is a subclass of C and R(a) C R for 0 < a < 1. In 1952, Zomorovic
[38] put the question whether R was a subclass of S*. Later on, Krzyz [14]

showed by a counterexample that R is not a subclass of S*.

Let 7T (a) be the subclass of A consisting of function f which satisfy
Re {@} > a(0<a<l, zel).

Furthermore, a function f € A is said to be in the class S,(a) if it satisfies

2f(2)
e {f(Z) — ()

We note that S;(0) = S, is the class of starlike functions with respect to

} > o (O§a<%, z€U).

symmetrical points introduced by Sakaguchi [33].

The integral operator F for a function f € A is defined by

c

Fs) =11 [ rpear o> ). (2.1.1)

z

In particular, the operator F; (c € {1, 2, 3, ---}) was introduced by Bernardi
(2]. In [1], Alexander showed that if f € S* then F, € X where

Fo(z) = /0 i iii)dt. (2.1.2)

In [34], R. Singh and S. Singh showed that if f € R then F, as given by
(2.1.2) satisfies Fy € S*. Mocanu [22] proved that the same result holds if F,
is replaced by

R(z) = % [ ot (2.1.3)

7



In this chapter, we prove some sufficient conditions for Carathéodory func-
tions of order a which cover the form of assumptions given by (1.3.1) and
(1.3.2) by using well-known Jack’s Lemma [10] and extend some results ob-
tained by many authors [6, 18, 19, 21, 25, 28, 29, 36]. Furthermore, we obtain

another conditions for Carathéodory functions(of order a).

In order to prove our results, we need the following lemma given by Jack

[10].

Lemma 2.1.1.  Suppose that the function w is analytic for |z| < r, w(0) =
0 and

[w(zo)l = max |w(z)|

Then zow'(20) = kw(2p), where k is a real number with k > 1.

2.2 Conditions for Carathéodory functions of
order «

In this section, we shall investigate some conditions for P(a) by using
Lemma 2.1.1 and extend some results by Miller [19], Nunokawa [25], Nunokawa.,
Ikeda, Koike, Ota and Saitoh [28], Ponnusamy and Karunakaran [29] and
Miller, Mocanu and Reade [21].

Theorem 2.2.1. Let p be analytic in U withp(0) =1, 0 < o < 1 and
g =>0.1If

p

a2l (22)

Re {p(z) + B0 (2)} > a —

then p € P(a).



Proof. Define the function w by

1+ (1 - 20)w(z)
1 —w(z) '

p(z) =

Then we see that w is analytic in ¢ with w(0) = 0. Suppose that there exists

a point 2¢ in U such that

Rep(z) > a for |z| < |z (2.2.2)
and
Re p(z) = a. (2.2.3)
Then we have
lw(z)] < 1 for |z| < |z)| (2.2.4)
and
lw(zo)| = 1. (2.2.5)

By using Lemma 2.1.1, we get
2w'(z9) = kw(zp), (2.2.6)
where k is a real number with k£ > 1. Putting
p(z) = a + @y (y€R),
we obtain
2(1 — a)? - 2(1-a)y

I—oP+y ©~ A-a)+¢
Then, from (2.2.6) and (2.2.7), we have

Re { p() + faup'(z0) } = @ + B Re {2(21__%:)),>(5°)}



:<1+2M1—®kRe{H£%%%V}

(1-a)+4?
2(1 — )
5

<a- m(1—za+|p(zo)12).

= a — Pk

This contradicts the assumption (2.2.1). Therefore we complete the proof of

Theorem 2.2.1.

Taking o = 0 and § = 1 in Theorem 2.2.1, we have the following result by
Nunokawa et al. [28].

Corollary 2.2.1. Let p be analytic in U with p(0) = 1. If

Re {p(z) + /() } > - L

thenp € P.

Remark 2.2.1. Corollary 2.2.1 is an improvement of the result by Miller
[19].

The right hand side of the assumption (2.2.1) in Theorem 2.2.1 depend on
|p(2)|. But applying the same method as the proof of Theorem 2.2.1, we can
derive a similar result (Theorem 2.2.1’ below) without depending on Ip(z)] in

the assumption (2.2.1) of Theorem 2.2.1.

Theorem 2.2.1'.  Let p be analytic in U with p(0) = 1. If
Re { p(z) + Bzp'(2) } > a—w 0<a<l,0<p),

then p € P(a).

Letting o = 0 and 8 = 1 in Theorem 2.2.1, we have

10



Corollary 2.2.1. Let p be analytic in U with p(0) = 1. If

a—1

Re {p(z) + 2p/(2) } > ° O<a<1),
then p € P(a).

Remark 2.2.2. Corollary 2.2.1' is an improvement of the result by
Nunokawa [25].

Example 2.2.1. Taking p in above results by various types of analytic

functions we have the following results : If f € A, then

(i) Re{f'(2) +Bzf"(2)} > g(l +f(2)[*) (8> 0) implies f € R [6],
(i) Re {f'(2) +2f"(2)} > —% implies f € R,

f(z)

2
(iii) Re f'(z) > —% (1+’f—(2:z—) ) implies Re - > 0,

(iv) Re {w} > a — l—a implies

po 2(c+1)
Re {ZF/(z)Z}:'Y‘l(Z)} > a, where F(Z) = (C:_c’y/:tc_lf‘y(t)dt);’

0<a<l, ¢>—-y and >0 [29]

Theorem 2.2.2. Let p be analytic in U with p(0) = 1. If

zp'(2)
Re {p(z) + W} > (o, 8,7, |p(2)]), (2.2.8)

where

B (@B +¥)(1 =20+ [p(2)[?)
e (s v oy S R

O<a<l, 8#0, af+v>0),

then p € P(a).

11



Proof. At first, we note that p(z) # —v/0 for z € U. In fact, if Bp(z) + has

a zero of order m at z = 2; € U, then we can write

Bp(z) + v = (z—2)"p(2) (meN),

where p; is analytic in &/ and p;(z;) # 0. Then we have

mz . zpi(z)
Z—2 pl(z)

2p/'(z)
Bp(z) +

Thus choosing z — 2; suitably, the real part of the right hand side of (2.2.10)

p(z) + = % {(z —21)"p(z) — v+ } . (2.2.10)

can take any negative infinite values, which contradicts the hypothesis (2.2.8).

Defining w by o
p(z) = + (1 _—w?z))w(z)’

we see that the function w is analytic in & with w(0) = 0. If there exists a

point zp € U such that the conditions (2.2.2) and (2.2.3) are satisfied, then
(by Lemma 2.1.1) we obtain (2.2.6) under the restrictions (2.2.4) and (2.2.5).
Setting

P(z) = a + 1y (yeR),

we have

—(1—a)? +y? . 2(1—-a)y
7

(1-a)*+y? (1 - )+ y?

Then, by a simple calculation, we obtain

e ot s 22050 )

Bp(z0) +
=« e 2(1 — a)zow'(20)
=a+R {(1 _w(zO))(IB+7+(IH—2015-7)“1(20))}
- —a -
= a + 201 JkRe {(1 —w(zo))(ﬂ+7+(ﬁ“zo‘ﬁ—ﬂw(%))}

o 1-2a+ a? +y?
- 2(1 = a)(7v* + 2207 + B*a? + y?))

12



(@B + 7)1 = 2a + |p(20)[?)
2(1 — a)(v2 + 2a8v + B%|p(z0)|?)
- 6(a)ﬁ17: |p(Z()l),

-= & —

where 6(a, 3,7, |p(20)|) is given by (2.2.9), which contradicts the assumption
(2.2.8). Therefore we complete the proof of Theorem 2.2.2.

Remark 2.2.3. For v = 0, Theorem 2.2.2 is the improvement of result
by Miller et al. [21].

Taking 3 =1 and v = 0 in Theorem 2.2.2, we have

Corollary 2.2.2. Let p be analytic in i with p(0) =1 and 0 < a < 1. If

() | . el — 2a)(p(2) — 1)
e {p(z) T ) } TR TS P

then p € P(a).

By using the same method as the proof of Theorem 2.2.2, we have

Theorem 2.2.2". Let p be analytic in U with p(0) =1 and B> 0, 0 <

a < 1. If one of the following conditions

(i) Re {p(z) + Lp’(_z)_} > a ﬂiﬁ— (—af <y < B(1-2a)),

Bp(2) + 7 - 20%(1-a)
. 2/ (2) L 81— 94
@) e oo+ Y > an b (=g - 20)),
2p'(2) _1-a 9
(iii) Re {p(z) + (D) + 7} > a B 1) " (v > B(1 - 2a))

is satisfied, then p € P(a).

Letting 3 =1 and v = 0 in Theorem 2.2.2', we have

13



Corollary 2.2.2'. Let p be analytic in U with p(0) = 1. If one of the

following conditions

(i) Re {p(z) + zp'(z)} > @2 (O <a< l) ,

p(z) 21 - a) 2
(i1) Re {p(z) + Z;)é;)} > 0 (a = %) ,
(i)  Re {p(z) + -z;’%)} s a)z(jo‘ iy G <a< 1)

is satisfied, then p € P(a).

Remark 2.2.4. Taking p(z) = 2f'(2)/f(2) in Corollary 2.2.2', we have
the classical result by Marx [18] and Strohhdcker [36] : that is, K C S*(1/ 2).

Applying the same method of the proof in Theorem 2.2.1 and Theorem
2.2.2, we obtain the following result. We only will introduce the statements

without the proof.
Theorem 2.2.3. Let p be analytic in U with p(0) = 1. If
| p(2) + 2p'(z) = B < 8(a,B,Ip(2)]),

where 0 <a <1, {1-3a}/2 < B and

p()? — 1)’ 2 2|’
st = §(1-as s BOLD . pye el
then p € P(a).
Taking a = 0 and § = 1 in Theorem 2.2.3, we have

Corollary 2.2.3. Let p be analytic in U with p(0) = 1. If

P + ) - 1] < J (M) )P

2
then p € P.

14



Next, we derive another condition for Carathéodory functions of order «

in Theorem 2.2.4 below.
Theorem 2.2.4. Let p be analytic in U with p(0) =1 and 0 < a < 1. If

zp'(2) :
o —a # 1A (|4] >1), (2.2.11)

then p € P(a).
Proof. Let
1
q(z) = 1-a (p(2) - a).
Then ¢ is analytic in & with (0) = 1. Here, we note that p(z) # « for z € U.
In fact, if there exists a point zg € U such that p(z) = « and hence g(z0) =0

then ¢ can written by
9(2) = (z=z1)"n(z) (meN),

where ¢; is analytic in ¢ and ¢;(z;) # 0. Hence we have

p(z)  _ 2q(z) | mz | zgi(2)
p(z) —«a q(2) Z— 2z q(z)

(2.2.12)

But, the imaginary part of the right-hand side of (2.2.12) can take any value

when z approaches z;. This contradicts our assumption (2.2.11).

Suppose that there exists a point 2y € U such that

Re ¢q(z) > 0 for 2| < |z

and
Re q(z20) = 0 (g(20) #0).
Setting
_ 1—gq(2)
80) = 25

15



we have

[#(2)] < 1 for [z < |z
and
[#(z0)l = 1 (4(0) =0).
Let g(z0) = ia (a € R). Then, by Lemma 2.1.1, we obtain

209’ (20) _ —224(20) _ —220¢'(20)
¢(z0) 1 —¢%(20) 1+ a?

where k is a real number with £ > 1 and so

= k,

1+a?
7

—20q'(z0) >

Therefore, zoq'(z) is a negative real number.
At first, suppose that @ > 0. Then we have

2wp'(z0) _ z20q(20) _ —iz0q'(20)

o) —a (o) " = {A.

Hence we obtain
_ / 2

4 - 209'(z0) S l1+a > 1

a - 2a -

which contradicts the assumption (2.2.11).

Next, for a < 0, we have

zop'(20)  _ 209'(20)  iz0q'(20)  i20q'(20)

p)-a ) le@) o] - 4

and A is a real number with A > 1. This also contradicts the assumption

(2.2.11). Hence we complete the proof of Theorem 2.2.4.

Remark 2.2.5. Taking p by appropriate analytic functions in Theorem
2.2.4, we can find the conditions for univalence, starlikeness, convexity and so

on.

16



2.3 Another properties

In this section, we consider the second-order differential inequality for

Carathéodory functions and investigate some conditions for the class P.

Theorem 2.3.1. Let B and C be analytic in U with Re B(z) > A (A €
R). If p is analytic in U with p(0) = 1 and

Re { AZ’p"(z) + B(z)2p'(2) + C(z)p(z)} > 0§ (A, B(z),C(2)),
where

_ (Im C(2))* - (Re B(z) — A)*
2(Re B(z) — A) ’

(4, B(z),C(2))
thenp e P.

Proof. Define the function w by

14 w(z)

p(z) = 1w

Then we see that w is analytic in U with w(0) = 0. Suppose that there exists
a point zp in U such that
Rep(z) > 0 for |2] < |z (2.3.1)
and
Re p(z) = 0. (2.3.2)

Then (by Lemma 2.1.1) we obtain (2.2.6) under the restrictions (2.2.4) and
(2.2.5). Putting
p(n) = iy (y€R),

we obtain

1+y2 Zl+y2'



Then we have

Re {Azgp"(zo) + B(z0) 209" (20) + C(zo)p(%)}
= Re {207 (20) (kAp(z0) — A+ B(z0)) + C(20)p(20)}

— M zn) — 2 Z 2
= Re {(1 )] (kAp(z0) — A + B(2p)) + C(20)p( 0)}

= Re {——gizyi)—k(iykA——A—i—B(zo))+in(Zo)}

= = {50 Re Bl = ) 4t )|

k2 (Re B(z) — A)? — (Im C(z))*
- { 2k (Re B(z) — A) }
(Im C(20))” — (Re B(z) — A)*
= 2 (Re B(z) — A) '

But this contradicts our assumption. Hence the proof is completed.

Taking A =0 and B(z) = C(z) = 1 in Theorem 2.3.1, then we have
Corollary 2.3.1. Let p be analytic in U with p(0) = 1. Then
1
Re { p(z) + 2P/ (2) } > — 3 implies Re p(z) > 0.

Remark 2.3.1. Corollary 2.3.1 is the result obtained by Miller [19]. And
this is also shown by Corollary 2.2.1".

Letting p(z) = {F(2)/2}", A=0, B(z) = 1 and C(z) = v+ 3 in Theorem
2.3.1, we have

Corollary 2.3.2. Let f € A and let § and v be complez numbers with
Re (6+7) > 0 (8+#0).
If
Re {(7 +5) (@)B} > % {(tm (v+p))" -1},

z
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then

where .

F(z) = (t;ﬂ ’ f(t)ﬂﬂ—ldt)ﬁ.

0

Theorem 2.3.2. Let 0 < o < 1. If p is analytic in U with p(0) =1 and

Re {p"‘(z) (1+ z;’g) } > h(d(a), ),

where

1

h(z,a) = -3 (xa“sin a77r — 2z%cos ? + 2% sin (_122)

and

1 o %8 am

= —— - 1 — 2a2)sin? —— 2>
d(a) 1+ oo = (acos 5 + \/( a?)sin 5 +a?),

then p € P.

Proof.  Firstly, we note that p(z) # 0 for 0 < a < 1. Define the function w

by
1+ w(z)
1—w(z)

Then we see that w is analytic in &/ with w(0) = 0. If there exists a point 2o € U
such that the conditions (2.3.1) and (2.3.2) are satisfied, then (by lemma 2.1.1)
we obtain (2.2.6) under the restrictions (2.2.4) and (2.2.5). Putting

p(2) =

) y € R — {0} for 0<ax<l,
p(20) = iy
y € R for a=1.

We obtain

—1 2 2
R
1+ y? 1492

w(zg) =

19



Then we have

Re {1(z0 (14 2FEN — Re {(oten) + o) 7 )

p(20)

= Re {(zy - (—1%@) (z’y)"“l}
= e (o ) e o (250 g (25 0m)) |

At first, we consider the case 0 < a < 1.

(i) For the case y > 0, we have

Re {p"(ZO) (1+"Z%,Z(:;—)>}
e )

k
= -3 (yakl + ya“) sin 921 + y*cos %7{
1
< 3 (—y"‘“sin %ﬁ + 2y*cos % — y* lsin %)
Y, Q)

2
fry h( s
Then, by a simple calculation, we obtain
1 aT
< - - — 202 2
h(y,a) < h((l—l—a)sm o (acos +\/(1 a?)sin? -5 +a),a>
= h(é(a),a).

(ii) For the case y < 0, we have

Re{ (2 )(Hzozzz(f;))}
e ) o )

k aTm
= “—(Iyi" 1+Iyl°’“)sm + [y[*cos —-

2
= h(yl,a)
< h(é(a),a).

20



These contradict our assumption.

Next, we consider the case a = 1.
/ k 2 1
Re {p(z) + 20p'(20) } = —5(1+¢°) < -5 = 6(h(1),1).

This contradicts our assumption. So, the proof is completed.

Remark 2.3.2. Taking a = 1 in Theorem 2.3.2, we obtain the same

result of Corollary 2.3.1.
Taking p(z) = f(z)/z in Theorem 2.3.2, we have

Example 2.3.1. Let fe Aand0<a <1 If
Re {f’(z) (f—(f))a_ } > h(d(a),a) (z€lU),

where h and 6(a) are given in Theorem 2.3.2, respectively, then

Ref—(;—) > 0.

Taking o = 1/2 in Example 2.3.1, we have h(6(a),a) = 0. So we obtain
the following example. A

Example 2.3.2. Let f € A. Then

1

Re {f’(z) (f_(zzj)z} > 0 mmplies Re f? > 0.
Theorem 2.3.3. Let p be analytic in U with p(0) = 1. If

2/ (2) p?(z) — 1
p(2) p*(2) +1

#i4 (Al =21), (2.3.3)

thenp e P.
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Proof. From the assumption (2.3.3), we note that p(z) # 0 and p*(2) # —1

for z € U. Let
1+ w(z)
1—w(z)

Then we see that w is analytic in U with w(0) = 0. We claim that |w(z)| < 1

p(z) =

in U. Suppose that there exists a point 2y € U such that

ax lw(z)] = |w(z)| = 1 (w(z)# —1).

m
EARSEL]
Then, by Lemma 2.1.1, we have

20w’ (z0) = kw(z) (k>1).

Writing w(2) = €* (0 < |§] < 7), we note that

plz) = T = ? cot —
Hence we have
207 (20) _ 2kw(zg) _ k
p(z0) 1 — w?(z) sin 6

For the case 0 < f < 7, we have

/ 2 _ . t 6\2 1
2 (z)p(20) =1 _ {z £ (o0 3)2 } -,
p(z0) p*(20) +1 sin 6 (i cot )2 + 1 sin 6
where
1+ 6
Since g(t) is an increasing function for ¢ > 0, we obtain
20p'(20) P*(20) — 1 k +
<
p(z0) P*(20) + 1 sin 99(0 )
L k
N sin @
S —17
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which contradicts the assumption (2.3.3). Similarly, for the case —7 < 6 < 0,

we have

200 (20) p*(20) =1 k
") Pl me??

Z._

sin ¢

> 1

where g is given by (2.3.4). This contradicts the assumption (2.3.3). Therefore
we complete the proof of Theorem 2.3.3.

Remark 2.3.3. Taking p by appropriate analytic functions in Theorem
2.3.3, we can find the conditions for univalence, starlikeness, convexity and so

on.

Theorem 2.3.4. Let f € A and h(z) = /f(2?). If h € S,(0B), then
h € T(a), where

~ (2-30a) 1
ﬁ_m and ogagi.

Proof. Let
p(z) = h(z) _ 1+ (1- 2a)w(z)‘

z 1 — w(z)
Then we see that w is analytic in & with w(0) = 0. We claim that |w(z)| < 1

in U. Suppose that there exists a point 29 € U such that maxi, <, |w(z)| =

|w(z0)| = 1. Then, by Lemma 2.1.1, we get (2.2.6). Here, we note that
h(z) = +/f(2%)
o0
= |22+ Z An 22

n=2

N
M=

= 2{1 + ap2® + az2® + -

= 2z + c32® + 2% + -+
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So, h is an odd function with A(0) = 0. Therefore we have

W (z) _ zZl(2)
h(z) — h(—2) 2h(z)

Putting p(20) = a + iy (y € R), we have

“(l-aPty? . 20-ay

w(z) = 1= a)7 12 Aol ig
Then
20h'(20) _ 1 2P’ (20)
e { h(z0) — h(-zo)} - gt { ey }
1 — 2a)kw(z) . kw(z)
N 2{1 e 1+<1—2a>w<zo> TR 1—w'(70>}
_ 1{ Lo ((1-a)’+y?) }
2 "3 - a)(a? +y?)
< 4(1_a)g(t),
where

_a(l-a)Ba—1)+ (2~ 3a)t
9(t) = a? 4+t

(t=9*>>0).
Since g is an increasing function on [0, c0), and so
9(t) < limg(t) = 2~ 3a.

Hence we have

20h (2 2-3a
Re { ol(z) } < = A,
h(z0) = h(~20) 41-a)
which contradicts the our assumption. Therefore we have Theorem 2.3.4.

Taking o = 1/2 in Theorem 2.3.4, then we have the following result.

Corollary 2.3.3. If h € 5,(1/4), then h € T(1/2).
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Chapter 3

Carathéodory Functions I1

3.1 Introduction

A function f € A is said to be in the class P(m, M) if
L f(z) = m| < M (zeld, m—-1 < M < m).
The class P(m, M) was introduced by Jakubowski [11]. It is clear that m >

1/2 and P(m, M) C S*(m - M) C S*.

A function f € A is said to be in the class SP(a, 3) if
2f(2) {Zf’(z)}
— < Re —a + 3,
f(2) f(z)
where 0 < a < 1 and f is a positive real number. This means that for

f€S8P(a,B) and z € U, zf'/ f lies in

(@ + B)

Q={{w:|lw - (o« + 3)| < Rew —a + g1},

that is, the portion of the plane which contains w = 1 and is bounded by the
parabola y? = 43(z — a) whose vertex is the point w = «. Under the choice

ofaand 5, @ C {w:Rew > «a} and hence SP(e, ) C S*(a).
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A function f € A is said to be in the class R(A, B) if
fz) -1

A-BrG | < b

where —1 < B < A < 1. In particular, the class R(1,—1) = R coincides with

the class of functions studied by MacGregor [17].

In this chapter, we investigate some conditions for Carathéodory functions.
Also, we obtain sufficient conditions for univalent functions with some special

cases.

In proving our results, we need the following lemma due to Miller and

Mocanu [20].

Lemma 3.1.1. Let q(z) = a + qz + @22 + --- be regular in U with

q2)Za. Ifzg=ree?, 0 < 1y < 1 and

| g(z0) | = max | q(2) |.
Then
Zoql(zo) — &
q(2o) ’
where
| g(z0) | — | a|
¥ 2 Tt 1 7 Tal (3.11)

3.2 Conditions for the class P(m, M)

In this section, we obtain some conditions for the class P(m, M) with
another interesting geometric properties. Further, we extend some results by
Nunokawa, Kwon and Cho [27], Miller {19], Miller, Mocanu and Reade [21]
and R. Singh and S. Singh [35].
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Theorem 3.2.1. Let p be analytic in U with p(0) = 1 and p(z) # 1. If
[p(2) + 2p/(2) = m| < ~v(m, M),

where
2M?
M + |1-m]|

y(m, M) = and lm—1] < M < m,
then p € P(m, M).

Proof. Letting q(2) = p(z) — m. Then we can see that q is analytic in I/
with ¢(0) = 1 — m and ¢(2) #1 — m. Suppose that there exists a point
Zp in U such that

1p(z) —m| < M for |2 < |af

and

| p(z0) — m| = M.

From Lemma 3.1.1, we have

wr(z) _ 20¢(z) (3.2.1)
p(z0) —m q(20) ’
where
M — |1 —m)|
> . 2.

k—M+|1—m| (3.2.2)

For the simplicity, we now put
z =Rep(z) and y =Imp(z) (z, y €R). (3.2.3)

By using Lemma 3.1.1, (3.2.1), (3.2.2) and (3.2.3), we obtain,

20q'(20)
q(Zo) (

| p(20) + 20P'(20) — m| = |z + iy + T —m+ iy) - m
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= |z -m+ iy + k(z — m + i) |
= (1+k)y (z—m)?+ 2
= (1+kM

v

y(m, M).

This is the contradiction to the hypothesis. Therefore we complete the proof

of Theorem 3.2.1.

Taking m = M =1 in Theorem 3.2.1, we have the following.
Corollary 3.2.1. Let p be analytic in U with p(0) = 1 and p(z) Z1. If
| p(z) + 2p'(2) — 1| < 2,
then p € P(1,1).

Remark 3.2.1. Corollary 3.2.1 is an improvement of the result by Nunokawa
et al. [27].

Example 3.2.1. Let f € A with f'(z) # 1. Then
| f'(z) + 2f"(2) — 1| < 2 implies f e P(1,1).
Example 3.2.2. Let f € A with f(2)/2z # 1. Then
| f(z) — 1] < 2 implies f/zeP(1,1).

In Theorem 3.2.1, if M approaches to co, then we obtain the following
result by Miller [19].

Corollary 3.2.2. Let p be analytic in U with p(0) = 1 and p(z) £ 1. If

Re {p(z) + 2p'(2) } > 0,

thenp € P.
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Theorem 3.2.2. Let p be analytic in U with p(0) =1 and p(z) # 1. If

W) m
o) + 2 < 5fm, M),
where
y(m, M) = mTM{m+M+% 4__ H:Z:} (3.2.4)

and |m —1| < M < m, then p € P(m,M).

Proof. Applying Lemma 3.1.1 with z = Re p(zg) and y = Im p(z) at the

point z and using the similar method as in the proof of Theorem 3.2.1, we

have,
2 M - m — 2 Zoq'(zo)p(zo)~m o
p(z0) + p(z0) I lp( 0) + o) p(z) {
_ (c+k)? + y?)?
— M{ 12 | y? }
= My/h(z),
where

2(m+k)z + M? — m? + k?

W) = 2mx + M?2 — m?

and k is given by (3.1.1).
Here, by a simple calculation, we see that h is a decreasing function for z € R.

Hence we have

Mw+%ﬂw—mf2MWW+WZVWM%

P(Zo)

where y(m, M) is defined by (3.2.4). This is the contradiction to the hypoth-

esis. Therefore we completes the proof of Theorem 3.2.2.

Taking m = M =1 in Theorem 3.2.2, we obtain the following.
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Corollary 3.2.3. Let p be analytic in U with p(0) = 1 and p(z) # 1. If

3
— 1 hd
< 2

then p e P(1,1).

Example 3.2.3. Let f € A with f(2)/z # 1. Then

2f"(2)

3 .. zf!
< = implies —— € P(1,1).
1) P .

2 f

Example 3.2.4. Let f € A with zf'(2)/f(z) # 1. Then

flz) | 2f'(z)
+ —
S

2 <§ implies iE'P(l,l).
2

2

In Theorem 3.2.2, if M approaches to oo, then we obtain the result by
Miller, Mocanu and Reade [21].

Corollary 3.2.4. Let p be analytic in U with p(0) =1 and p(2) £ 1. If

Re {p(z) + zp/(z)} > 0,

p(2)

then p e P.

Theorem 3.2.3. Let p be analytic in U with p(0) = 1 and p(z) £ 1. If

z2p/(2) [*

p(z) — m + 2(2)

| p(z) — m["7"

< ~(m, M),

where

(3.2.5)

7(m’M)=M<1+ 1 M—-[l-um|>a’

m+M M+ |1—-m)|
0 <a <1 and |m—1 < M < m, then pe P(m,M).
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Proof. Applying Lemma 3.1.1 at the point zy and using the similar method
as in the proof of Theorem 3.2.1 with 2 = Re p(2zo) and y = Im p(z — 0), we

obtain
/ a
> — m 1-a . + Zop (ZO)
l p( 0) I p(zo) m P(Zo)
20q(z) 1 |°
= z 1 +
otz | ’ az0) p(z0)
21\ %
_ vy 2kx + k
x2 4 y?
= M {h(z)}?
where
hz) = 1 + 2kz + k?

2mx + M? — m?

and k is given by (3.1.1). Here, by a simple calculation, we see that h is a

decreasing function for z € R. Hence we have

ZoP'(ZO) ¢

(z0) = m + p(20)

| p(z0) — m || p

> M {h(m+ M)} = +(m, M),
where y(m, M) is given by (3.2.5). This is the contradiction to the hypothesis.
Therefore we complete the proof of Theorem 3.2.3.

Taking m = 1 in Theorem 3.2.3, we have the following.
Corollary 3.2.5. Let p be analytic in U with p(0) = 1 and p(z) # 1. If

l-a Zpl(z) * M+2 “
) = 1177 o) = 1+ ZE < (LY

then pe P(1, M), where 0 < a < 1 and 0 < M <1.
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Example 3.2.5. Let f € A with zf'(z)/f(z) # 1. Then

fz) ’ 2f"(2)
f(2) f'(2)

where 0 < o <1 and 0 < M <1.

“ M4+2\*, . zf
M lies —- L, M
<M+1> implies 7 € P(1,M),

Remark 3.2.2. This example 3.2.5 is the improvement of result obtained

by Singh and Singh [35].

Taking o = 1 and @ = m =1 in Example 3.2.5 respectively, we obtain the

following.

Example 3.2.6. Let f € A with zf'(z)/f(z) 2 1. Then

(7) Z]{’/;S;) < M](MM:;Q) implies zf'/f € P(1, M),
(i4) z;';g) < 2 implies zf'/f € P(1,1).

3.3 Conditions for the classes SP(a, §) and R(A, B)

To derive the results for the classes SP(a, ) and R(A, B), we recall
Lemma 2.1.1 and Lemma 3.1.1. In this section, we give some interesting condi-
tions for the classes SP(«, ) and R(A, B) with applications in the univalent

function theory.

Theorem 3.3.1. Let p is analytic in U with p(0) = 1 and p(z) # 1, where
0<a<l, max{a/2, 1-a}<g. If

« o [, «
220 +a—1) g’

|p(2) — (@ + B)| < Rep(z) — a + 6.

zp'(2)

p(2)

then

32



Proof. Let q(z) = p(z) — (a + ). Then q is analytic in & with ¢(0) =
1 — (@ + B)and q(z) # 1 — (o + B). Suppose that there exists a point
zg in U such that

|p(z) — (@ + B)| < Rep(z) — a + B for |z] < |z (3.3.1)

and

| p(20) — (@ + B)| = Rep(z) — a + 6. (3.3.2)
From (3.3.1) and (3.3.2), we have

| g(20) | = max | q(2)| (20 = ree® and ry < 1). (3.3.3)

2]<ro
For the simplicity, we put,
z = Re p(zo) and y = Im p(z) (z, y€R). |
Then, from (3.3.2), we have

L o
T = =y + a.

45
Also, from lemma 3.1.1, (3.3.2) and (3.3.3), we obtain,

204 (20) 1—a
=k d k> ————
q(zo) o T 28+a-1

Then, by a simple calculation, we have

‘ 20p' (%) l _ ' zop'(#0) ‘ ' p(20) — (@ +B)
() p(20) — (a + B) p(20)
o 2Co) =@ +6)
Ip(20)
= ky/h(t),
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where ,
(Ht-8) +t
(Ht+ a>2 +t

h(t) =

and

t =y® = {Im p(20)}* € R.
Here, we see easily that h has the minimum value at the point
t =45(28 — a).
Hence we have the following inequality
zp/(2)

11—« Qa
pz) | Z 20Bra-D\ > 5"

which is the contradiction to the hypothesis. Therefore we complete the proof

of Theorem 3.3.1.

Taking o = 3 = 1/2 in Theorem 3.3.1, we obtain the following.

Corollary 3.3.1. Let p is analytic in U with p(0) = 1 and p(z) # 1. If

1

< —,
V2

zp'(z)
p(2)

then p € SP (%, %)

Example 3.3.1. Let f € A with 2f'(2)/f(z) # 1. Then

') AE| 1 a1
ll + 7102) ) < 7 implies 7 ES’P<2,2>.
Example 3.3.2. Let f € Aand f(2)/2# 1. Then
zf'(2)

!
— 1] < —— implies IES’PC 1).
z

V2 2’2

f(2)
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Theorem 3.3.2. Let p be an analytic function in U with p(0) = 1. If

Re {p2(z) + 2p/(2) } < %,
then p € SP (1,3).
Proof. Let )
p(z) =1+ %(logw)
™ 1 —/w(z)

Then we have w is analytic in ¢ with w(0) = 0. Now, suppose that there

exists a point zy € U such that

max w(z)| = [w(z)] =1

By using Lemma 2.1.1, we get that zow'(20) = kw(29), k > 1. Taking w(z) =

e® (0 < 0 < 27), we have

P’(z0) + Zop’(zo)}

2

= 1+ —(log———~—le w(ZO))2 2+i(10g1+ (0)) by wlz)
™ 1= y/w(z0) n? 1—Jw(z) ) 1— /w(zo)

= 1 lo cotg 4—3 lo cotg 2+ k
N 4 & 4 2 & 4 Wsing
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Then, by the simple calculation, we obtain

= o(f) - 1

But this contradicts our assumption. Therefore we complete the proof of

Theorem 3.3.2.

Taking p(z) = zf'(z)/f(z) in Theorem 3.3.2, we obtain the following.

Corollary 3.3.2. Let f € A. Then

Re {%—g—) (1+%2)} < % implies %GS’P(%,%).

Theorem 3.3.3. Let p is analytic in U with p(0) =1 and p(z) £ 1. If

p(z) + 2p/(z) — 1 ~
‘ A — B(p(z) + 2zp/(2)) < 2 |B|, (3.3.4)
where —1 < B < A <1, then
pla) — 1
l A= B | - b

Proof. At first, we note that p(z) # —A/B for z € Y. In fact, if A — Bp(z)

has a zero of order m at z = z; € U, then we can write
A—Bp(z) = (z—z1)"p1(2) (m € N),

where p; is analytic in &/ and p;(z;) # 0. Then we have

l p(z) + Zp'(Z) -1 (335)

A — B(p(z) + 2p/(z))
L
B (z = 21)™ 1 {(22 — 21)p1(2) + (2 — 21)2p}(2)}
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Choosing z — z; suitably, the real part of the right hand side of (3.3.5) can
take any infinite values, which contradicts the hypothesis (3.3.4). Now letting

_ o pz) -1
q(z) = A—_m,

then q is analytic in &/ with ¢(0) = 0 and ¢(z) # 0. Suppose that there exists

a point z in U such that

p(z) - 1
—_— f 3.
A — Bplo) <1 or lz| < |z (3.3.6)
and
plzo) — 1 }
— | = 1. 3.3.7
’ A — Bp(zo) (3:3.7)
From (3.3.6) and (3.3.7), we have
204 (20)
— =k > 1. 3.3.8
2(z0) > (3.3.8)

For the simplicity, we put,
z = Re p(zo) and y = Im p(20) (z, y€R).
Then, from (3.3.7), we have
A-B\? 1— AB \?
2 — —
v _(1—32) (m 1—B2>' (3:3.9)
Also, from Lemma 3.1.1, (3.3.7), (3.3.8) and (3.3.9), we obtain

A~ B+ k(A — Bp(z))
A—B~BMMm%ﬁ)’

’ p(z0) + 20p'(20) — 1

A — B(p(20) + 200'(20)) |
B ‘A—B—l—k(A—Bp(zo)) B
T | A-B-Bkp()-1) | ~

Here, we let h(z) = n(z)/d(z), where

:mmﬂ

h(z).

{ n(z) =—2Bk(k+1— B2z + (A+ B)k? + 24(1 — B?)k + (1 — B%)(A — B)
d(x)
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And then, by a simple calculation, we see that h is an increasing function for

B > 0 and a decreasing function for B < 0. Hence we have

1~A> B (k+1—B

2
> — _— > — B)? >
h(a:)__h(l_B Bk+1—B> > (2 )° for B>0

1+A> B ( k+1+B

2
> —_— _— > 2 < 0.
h(x)_h(1+B —Bk+1+B) > (2+B)* for B<0

p(z0) + zp'(20) — 1 B - B
A — B(p(z) + zop/(20)) | Vi) > (2-|BI)"

This is a contradiction to the assumption (3.3.4). Therefore we complete the

proof of Theorem 3.3.3.

Remark 3.3.1. Taking A =1 and B = 0 in Theorem 3.3.3, we have the
same result Corollary 3.2.1, which is obtained by Nunokawa et al. [27].

Taking A = 3, B= —f and 0 < 8 < 1 in Theorem 3.3.3, we obtain the

following.

Corollary 3.3.3. Let p is analytic in U with p(0) =1 and p(z) # 1. If

p(z) + 2zp'(z) — 1
. L+ p(2) + 200 \ < A2-4),
then
p(z) — 1
o)+ =7
Example 3.3.3. Let f € A with f'(2) # 1. Then
fi(z) + 2f"(2) — R fl(z) -1
L+ 70 + 20 < pB(2 - p) implies W < B.

Taking = 1 in Example 3.3.3, then we obtain the following.
Example 3.3.4. Let f € A with f'(z) # 1. Then

f'(z) + 2f"(z) — 1
1L+ fi(z) + 2f"(2)

< 1 implies f € R(1,-1)
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Chapter 4

Geometric Properties of

Analytic Functions

4.1 Introduction

A function f € A is said to be close-to-conver of order a and type 3 if

there is a function g € §*(() such that

zf'(z)
Re{ o(2) }>a 0 < B<1, z€lU),

which was studied by Goodman [8]. We denote by C(a, 3) the class of all

close-to-convex functions of order « and type 3.

In this chapter, we prove some integral preserving properties for certain
analytic functions which contained the result of Libera [15]. Further, we extend

the known results as special cases.

In order to prove our results, we need the following lemma given by Miller

and Mocanu [20].
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Lemma 4.1.1. Let p(z) = a + pp2" + puy12™! + ... be analytic in U
with p(z) # a andn > 1. If zg = roe’® (0 < ry < 1) and

Re p(2) = min Re p(z)

then
: nla — p(zo)/?
< . 4.1.1
Z0p (ZO) = 2 Re (a _ p(ZO)) ( )
We note that, for the case a = n =1 and Rep(z) = a (0 < a < 1) in

Lemma 4.1.1, the condition (4.1.1) is replaced by the simpler condition

(1 —a)? + (Im p(z))?
2(1-a) '

zop () < (4.1.1)

4.2 Integral preserving properties

In this section, we investigate the integral preserving properties where the
integral operators are defined by (2.1.1), (2.1.2) and (2.1.3) and extend the
result by Libera [15].

Theorem 4.2.1. Let f € Aand 0 < a < 1. If f € S*(B(a)) then
F. € 8*(a), where F. is the integral operator defined by (2.1.1) and

Blay=| @ Heap TaSesioie (121)
e ) 2.
Q= ey c>1-2a

Proof. Define the function

zF(z)
F.(2) "

Then we see that p is analytic in & with p(0) = 1 and p(z) # 1. If there

p(z) =

exists a point zp € U such that the conditions (2.2.2) and (2.2.3) are satisfied,
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then, from Lemma 4.1.1, we have z9p/(29) is a negative real number with the

condition (4.1.1)". From the condition (2.2.3), we have
p(z) = a + ilmp(z) = a+ iy (y €R).

Then, using the condition (4.1.1)’, we obtain

20f'(20) 2op'(20)
Re ) Re (;D(zo) 4 ot p() )
2P (20) )
a+c+y
(¢ + @)zop'(20)
(c+a)?+y?
c+a {(1~a)2+y2}

= Re(a+iy+

= O{+

S T i) oty
c+ «
= a — mh(t),

where
(1-a)? 4t

ht) = 22 T8 2 s,
®) (ctalZ+t y =0

Here, we know that h is a decreasing function for —a < ¢ < 1 — 2o and an

increasing function for ¢ > 1 — 2q, respectively. At first, for —a < ¢ < 1 - 2a,

we have
20f'(20) cta
Re ——— < a — —— lim h(t
o) = T 1w il
_ _ _CHa
T 1w
and for ¢ > 1 — 2a, we obtain
20 f'(20) c+a
Re ——— < o — ——— h(0
o) S 20— "0
_ _ l—«
B 2(c+a)
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This is a contradiction to the hypothesis. Therefore we complete the proof of

Theorem 4.2.1.

Putting ¢ = 0 and ¢ = 1 in Theorem 4.2.1, we obtain the following corol-

laries, respectively.

Corollary 4.2.1. Let f€ A and 0 < a < L. If f € S*(B(a)), then
Fy € 8*(a), where Fy is the integral operator defined by (2.1.2) and

| a — =2, 0<a<i
Bla) = oy T (4.2.2)
@ — S5 3 <a<l

Corollary 4.2.2. Let f€ A and 0 < a < 1. If f € §*(B(a)), then
Fy, € §*(a), where Fy is the integral operator defined by (2.1.3) and

1—-a

,B(a) = a — m

(4.2.3)

Remark 4.2.1. If we let @« = 0 in Corollary 4.2.2, then we have an
improvement of the result by Libera [15].

Theorem 4.2.2. Let f € A and 0 < a < 1. If f € K(B(«a)), then

F. € K(a), where F; is the integral operator defined by (2.1.1) and B(a) is
given by (4.2.1).

Proof. Define a function

21 (2)
Fi(z)

p(z) = 1 + (4.2.4)

Then p is analytic in ¢ with p(0) = 1 and p(z) # 1. Differentiating (4.2.4)

logarithmically, we have



Applying Lemma 4.2.1 to p at the point zy € U and using the same method

as in the proof of Theorem 4.2.1, we have the result.

Putting ¢ = 0 and ¢ = 1 in Theorem 4.2.2, we obtain the following corol-

laries, respectively.

Corollary 4.2.3. Let f € A and 0 < a < 1. If f € K(B(«a)), then
Fy € K(a), where Fy is the integral operator defined by (2.1.2) and B(a) is
given by (4.2.2).

Corollary 4.24. Let f€ A and 0 < a < 1. If f € K(B(«)), then
Fy € K(a), where Fy is the integral operator defined by (2.1.3) and B(a) is
given by (4.2.3).

4.3 Conditions for close-to-convex functions

In this section, we give a condition for close-to-convex functions by using

Lemma 4.1.1 with some special cases.

Theorem 4.3.1. Let f, g € A with z2f'(2)/g9(z) # 1 in U\{0} and
0 < a< 1. If

zf"(z)  zg'(2)

Re {1+ 2) — o(2) } > fBla),

then
zf'(z)
Re{ ) } > q,

where

Bla) = { Tmeay 0Ses) (4.3.1)

— lg_a", % <a<l



Proof. Let us put

o 2

Then p is analytic in & with p(0) = 1 and p(z) # 1. If there exists a point
2o € U such that the conditions (2.2.2) and (2.2.3) are satisfied, then by Lemma

4.1.1, we obtain (4.1.1)". Suppose that p(z) = o+ 1y and y = Im p(20) € R.
Then, from , (2.2.2), (2.2.3) and (4.1.1)’, we have

re {1+ 275 - 205} < e
- %_{_y?zop'(z())
< ‘2(1ia){(1;2afyty2}
= ——2—(13_—&—)h(t),
where
h(t):(l;—ffti—t, t =1 >0

Here, we know that h is a decreasing function for 0 < a < % and an

increasing function for 5 < o < 1, respectively. At first, for 0 < a < 1,
we have
20f"(20) Zog’(Zo)} o .
Re {1+ - < — ——— lim h(t
{ f'(z0) 9(2o) B 2(1 — o) t=oo ()
- >
N 2(1 - a)

and for% < a < 1, we obtain

20f"(20) 209 (20) __*
e {” F1(z0) g(zO)} = MO
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This is a contradiction to the hypothesis. Therefore we complete the proof of

Theorem 4.3.1.

Remark 4.3.1. In particular, if we take g € 8*(7) in the above theorem,
then f € C(a,7).

Putting ¢g(z) = f(z) and g¢(z) = z in Theorem 4.3.1 respectively, we

obtain the following corollaries.

Corollary 4.3.1. Let f € A with zf'(2)/f(z) # 1 inU\{0} and 0 <

a < 1. If
D) 2f(2) i
Re {” o) 1R } > Bla),

then f € 8*(a), where B(a) is given by (4.3.1).

Corollary 4.3.2. Let f € A with f'(z) #1 in U\{0} and 0 < a < 1.
If f € K(1+ (), then f € R(c), where 3(a) is given by (4.3.1).
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Chapter 5

Strongly Starlike Functions

5.1 Introduction

Let UCV be the class of uniformly convex functions as introduced by Good-
man [9]. Geometrically, the property of uniform convexity of a function means
that the image of every circular arc contained in I/, with center ¢ € U, is con-
vex. Further, Ronning [31](also, see [16]) gave a more applicable one variable

analytic characterization for UCV. That is, a function f € A is in UCV if and
zf"(z) } zf"(2)
Re {14 ——=) >
‘ { OB B ITE
A function f € A is called strongly starlike of order 4 if it satisfies

{503

We denote by S(§) the class of all strongly starlike functions of order 4. For

only if

‘ (z eld).

< gé 0<d6<1; z€U).

d =1, 8(1) = S* is the well known class of normalized starlike functions with
respect to origin. Furthermore, if 0 < § < 1, then the class S(§) consists only

of bounded starlike functions [5] and therefore the inclusion, S(§) C S*, is
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proper. The class S(d) and the related classes have been extensively studied

by Mocanu [23] and Nunokawa [25].

In this chapter , we investigate some criteria for the class S(4), applying
the result of Nunokawa [25], and give the relationship between the classes /CV

and S(9) as a special case.

In order to prove our results, we need the following lemma given by Nunokawa,

[25].

Lemma 5.1.1. Let p be analytic in U, p(0) = 1, and p(z) # 0 in Y.
Suppose that there exists a point zy € U such that

| arg p(z) | < g(s for 2| < |2 (5.1.1)
and
| arg p(z) | = g& (6 > 0). (5.1.2)
Then
zop'(#0) :
— = ikd, 5.1.3
p(zo) ( )
where
k> 1( +1) hen arg p(zo) = &6 (5.1.4)
= 5(at ) when arg p(z) = 34, 1.
1 1 0
k §—§ (a+g) when arg p(zo):—§6, (5.1.5)
and
{p(2)}? = +ia  (a > 0). (5.1.6)
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5.2 Criteria for strongly starlike functions of
order ¢

With the help of Lemma 5.1.1, we now derive

Theorem 5.2.1. Let f € A. If

Re {14«%‘;—)} > A

Zfll(z)
f'(2)

(z €U),

where

(14 6%)cos? 2§ 1/2
Al> (5(5 + sin 7d) + (1 — 62)sin? T (0 <d < dy)

and o 1s the solution of the equation dtan(mé/2) =1, then f € S(6).

Proof. Let

zf'(2)
f(z)
Then p is analytic in U with p(0) = 1 and p(z) # 0 in Y. If there exist a

point zp € U such that the condition (5.1.1) and (5.1.2) are satisfied, then

p(z) = (z €el).

(by Lemma 5.1.1) we obtain (5.1.3) under the restrictions (5.1.4), (5.1.5) and
(5.1.6).

At first, suppose that
p(z) = (ia)° (a>0).

Then we have

Re {1+—(—lz"f”z°} B Re {p(z@—km}

i) J P(zo)
Zof”!zg ) 2 p/!zo _
ey | p(z0) + w1

a?®cos? x5

1/2
(a” + 2a?¢ (k&sin 25 — cos %6) + k262 + 1)
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1/2
< a?cos? £ /
-~ \ a2 + 248 ((5sin 7 — cos %5) +62+1

E\/It) (t:a6>0).

Then ¢ has a maximum value at

02 +1
to = 6 < dp).
0 cos 3‘2—(5 — dsin %(5 (/<8 <)

Hence we obtain

9t) < \alto) (52.1)
B (1 + 8%)cos? 16 1/2
B ((5(5 + sin 78) + (1 — §2)sin® %6)
< AL

This contradicts the assumption of Theorem 5.2.1.

For the case of p(z9) = (—ia)® (a > 0), applying the same method as the above,

we also have (5.2.1). Therefore we complete the proof of Theorem 5.2.1.

If we take § = 1/2, we have the following

Corollary 5.2.1. If f € UCV, then f € S(1/2).

Theorem 5.2.2. Let f € Ay and a > 0. If

2f"(2) 2f'(z)
f'(2) f(2)

_a‘ < I\ (z W),

where
(a + 1)sin 76 + dcos T4

and &y 1s the solution of the equation dtan(nd/2) = a+ 1, then f € S(4).

Al < (0 <d <o)
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Proof. Let
z2f'(z
o) = TE Gew
Then p is analytic in U with p(0) =1 and p(2) # 0 in Y.

Suppose that there exist a point zyp € U such that the condition (5.1.1) and

(5.1.2) are satisfied, then (by Lemma 5.1.1) we obtain (5.1.3) under the re-
strictions (5.1.4), (5.1.5) and (5.1.6).
If we assume that

plz) = (ia)’ (a>0),

then we have

zof (2
A | A p(zo) |
L ORI CR]

a26

1/2
A
A (a” + 2a® (késin 26 — (ac+ 1)cos gd) + k262 + (a + 1)2)
< [Alyg(®),

where

t2
2+ 2t (6sin 20 — (a + 1)cos %6) +62+ (a+1)2

g(t) = (t=d° > 0).

Then g has a maximum value at
(a+1)*+ 6
(a4 1)cos 76 — dsin 26

to = (0<(5<5()).

Hence we have

9(t) < |Alyg(to)
(a+1)2 4 42

- lAl(a + 1)sin £0 4 dcos %6

IA

L
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which is a contradiction to the assumption of Theorem 5.2.2.

For the case of p(zg) = (—ia)® (a > 0), by using the same method of the proof
as the above, we have the contradiction to the assumption. Therefore we have

the theorem.

Theorem 5.2.3. Let f € Ay and o > 0. If

- (F5 1) raf G < |G eew
where '
< sin $6 + adcos £ (0<6<6)

V1 + o262

and &y 1is the solution of the equation dtan (76/2) = 1/a, then f € S(9).

Proof. Let

4,
p(Z) - f(Z) ( eu)

Then p is analytic in ¢ with p(0) = 1 and p(2) # 0 in Y. If there exist a
point zp € U such that the condition (5.1.1) and (5.1.2) are satisfied, then
(by Lemma 5.1.1) we obtain (5.1.3) under the restrictions (5.1.4), (5.1.5) and
(516).

For the case of p(z) = (ia)° (a > 0), we have

20 f'(20)

Al f(z0) |All p(20) |
_ z0f'(z0) __ 2f"(z0) | zop'(2)
| (=) (252 1) +o2f & | [ pa0) + a2 — 1 |

a26

1/2
Al — Z
a? + 2q¢ (akésm 20 —cos 56) + 1+ a2k242

< AWa(®),
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where

t? 5
) = t=a’ > 0).
9(t) t2 + 2t (adsin 50— cos;26) + 1 + o262 ( )

Then g has a maximum value at

1+ a?8?

to = :
cos %(5 — adsin %(5

(0 < & < dp).

The remaining part of the proof is a similar to that of Theorem 5.2.3 and so

we omit it.

Taking a = 0 in Theorem 5.2.2 or & = 1 in Theorem 5.2.3, we have the

following results.

Corollary 5.2.2. Let f € Ag. If

T < W e,
where .
A < SmE0E0SE0 g (5.2.2)

V1462
and & is given by Theorem 5.2.1, then f € §(4).
Corollary 5.2.3. Let f € Ay. If

zf"(z)
f'(2)

< Al

A7)
F8] < 9w,

then f € S8(1/2).

Theorem 5.2.4. Let f € Ay. If

_zf'(2) 2f"(z)  f(z) f(z)
e TS0 | < w5
where A and & are given by (5.2.2) and Theorem 5.2.1, respectively, then f €

S(6).

: (5.2.3)
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Proof. If we set

_ 2f'(2)
p(z) = 2) (z e l), (5.2.4)

then p is analytic in Y with p(0) = 1 and p(z) # 0 in Y. Taking differentiation

in both sides of (5.2.4) and simplifying, (5.2.3) can be written as
| 20'(2) + p(2) — 1] < [A] (z€U).

If there exist a point zo € U such that the condition (5.1.1) and (5.1.2) are sat-
isfied, then (by Lemma 5.1.1) we obtain (5.1.3) under the restrictions (5.1.4),
(5.1.5) and (5.1.6).

At first, we suppose that p(z) = (ia)? (a > 0). Then we have
| 20p'(20) + p(20) — 1]

= \/(1 + k262)a® + 2 (6ksin g—é — oS %6) a®+1

> \/(1 + 62)a? + 2 (5sin gé — cos gé) a+1
= 4/g(t) (t=a’>0).

Then the function ¢ has a minimum value at
‘ _cos 56 — dsin 76
0 1+ 62

Hence we obtain

o) = Ja(to)

sin g& + dcos %5

V1+ 62
> AL

where we have used the inequality (5.2.2). This is a contradiction to the
assumption (5.2.2). Similarly, for the case of p(z) = (—ia)’ (a > 0), we also

have the contradiction. Therefore we complete the proof of Theorem 5.2.4.
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Theorem 5.2.5. Let f € Ay. If

zf"(z) 2f'(z) f(z) < W‘ f(2) {, (5.2.5)

) ) (
70 M T B T 1)

where |A| < 1, then f € S*.

Proof. Letting

4@,
pe) = S5 (e,

we see that p is analytic in & with p(0) = 1 and p(z) # 0 in Y. Further, the

condition (5.2.5) can be written as

|zp'(z) — 1] < Al (z€l).

The remaining part of the proof is a similar to that of Theorem 5.2.4 and so

we omit it.
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