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Chapter 1

Introduction

The notion of Cayley digraphs were ¯rst introduced by Cayley in 1878 as a

graphical representation of abstract groups. The digraphs stem from a type

of diagrams now called Cayley colour diagrams. Cayley colour diagrams were

used by Coxeter and Moser [12] to investigate groups given by generators and

relations. For a Cayley digraph X of a group G , the vertices correspond to

the elements of the given group G . There is also a subset S of G which

does not contain the identity element 1 of G . An ordered pair (u; v) of two

vertices u and v is called an edge of X if and only if the element vu¡1 in G

belongs to S . In particular, if the inverse of each element of S also belongs

to S , then the Cayley digraph is called undirected. Each undirected Cayley

digraph gives rise to a graph by coalescing each pair of arc (x; y) and (y; x)

into a single undirected edge fx; yg ; the graph is called a Cayley graph. In this
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way, the undirected Cayley digraphs of G correspond to the Cayley graphs of

G and vice versa.

Cayley (di)graphs are very important algebraic construction with many

symmetries. In fact, the right multiplication on the vertices by each element

of the group preserves the adjacency relation of the Cayley (di)graph and the

group acts on the vertices regularly and so the group G may be viewed as

a regular subgroup of the automorphism group of the Cayley (di)graph. In

particular, the automorphism group Aut(X) of the Cayley (di)graph X acts

transitively on the vertex set G . The normalizer NAut(X)(G) of the regular

subgroup G is the semidirect product:

NAut(X)(G) = G ¢ Aut(G;S); where Aut(G;S) := f¾ 2 Aut(G) j S¾ = S g:

A (di)graph X is said to be edge-transitive if its automorphism group

Aut(X) is transitive on the edges. Also, for a graph X , the automorphism

group Aut(X) is transitive on the ordered pairs of adjacent vertices, then X

is said to be arc-transitive. It is di±cult to ¯nd the full automorphism group

of a (di)graph in general, and so this makes it di±cult to decide whether it

is edge-transitive, even for a Cayley (di)graph. As an accessible kind of edge-

transitive digraphs, Praeger [35] focuses attention on those Cayley digraphs

for which NAut(X)(G) is transitive on the edges. Such a Cayley (di)graph

is said to be normal edge-transitive. An approach to analyzing the family of

Cayley (di)graphs for a ¯nite group G was given by C.E. Praeger in 1999
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which identi¯es normal edge-transitive Cayley (di)graphs as a sub-family of

central importance.

Using the strategy in [35] to construct normal edge-transitive Cayley graphs

from quotients, Houlis [18] was able to determine the isomorphism types of

all connected normal edge-transitive Cayley graphs for Zpq , where p; q are

primes, and for G = Zp £ Zp , p is a prime, when Aut(G;S) acts reducibly

on G .

In this thesis, we consider ¯nite circulant digraphs, namely Cayley digraphs

of ¯nite cyclic groups. The main purpose of this thesis is to give a description

of a classi¯cation of normal edge-transitive Cayley digraphs for ¯nite cyclic

groups.

Two Cayley digraphs Cay(G;S) and Cay(G; T ) are said to be Cayley

isomorphic if there exists ® 2 Aut(G) such that T = S® . Cayley isomorphic

Cayley digraphs are of course isomorphic. ¶Ad¶am [1] conjectured that if two

circulant digraphs Cay(G;S) and Cay(G;T ) are isomorphic then they are

Cayley isomorphic; the conjecture was shown to be false (see for example,

[39]). It is known to be true if the number of vertices is either square-free or

twice square-free (see [30, 31]).

Let Zn = f 0; 1; :::; n¡1 g denote the additive group of integers modulo a

positive integer n , and let Un denote the multiplicative group of units in Zn .

We may identify Un with Aut(Zn) . Denote the Cayley digraph of Zn on the
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empty set by nK1 .

We now state the main results of the thesis; the proofs will be given in

chapter 4 . The following theorem gives a determination of all connected

normal edge-transitive circulant digraphs of order n .

Theorem 1.0.1. If S is a subgroup of Un , then Cay(Zn; S) is connected

normal edge-transitive. Every connected normal edge-transitive circulant di-

graph of order n is isomorphic to Cay(Zn; S) for some subgroup S of Un .

Let S and T be subgroups of Un . Then Cay(Zn; S) »= Cay(Zn; T ) if and

only if S = T .

We focus our attention again on the special case when n is a prime power.

Let p be an odd prime. For each positive divisor r of p¡1 , there is a unique

subgroup of order r in the cyclic group Upi . The Cayley digraph of Zpi on

the subgroup of order r in Upi is denoted by X(pi; r) .

For p = 2 , let X(2i; 1) = Cay(Z2i ; f1g) , X(2i; 2) = Cay(Z2i; f1;¡1g) ,

and X(2i; 3) = Cay(Z2i; f1;¡1+2i¡1g) . Then we have:

Theorem 1.0.2. (i) For an odd prime p , every connected normal edge-

transitive circulant digraph of order pm is isomorphic to the lexicographic

product X(pi; r)[pm¡iK1] for some positive divisor r of p¡ 1 and an integer

i with 1 ∙ i ∙ m ; di®erent choices of i or r give nonisomorphic digraphs.
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(ii) Every connected normal edge-transitive circulant digraph of order 2m

is isomorphic to the lexicographic product X(2i; j)[2m¡iK1] for some integers

i; j such that

1 ∙ j ∙ 3 ∙ i ∙ m or 1 ∙ j ∙ i = 2 for 3 ∙ m;

and

1 ∙ j ∙ i = m for m = 1; 2;

moreover, di®erent choices of i or j give nonisomorphic digraphs.

We note that the analogous result can be given for n = 2pm for an odd

prime p .

We also consider Cayley Isomorphism Problem for ¯nite circulant digraphs.

A Cayley digraph Cay(G;S) is called a CI-digraph of G if for each Cayley

digraph Cay(G; T ) isomorphic to Cay(G;S) , there exists ¾ 2 Aut(G) such

that S¾ = T .

Let G be a ¯nite cyclic group, written additively and let S be a Cayley

subset of G , namely a subset not containing the identity element 0 . Let K

be the set f a 2 G j a+S = S g . Then it is easy to show that K is a subgroup

of G . In fact, K is the largest subgroup of G such that S is a union of some

cosets of K in G . We denote the subgroup by Int(S) .

We also have the following theorem:
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Theorem 1.0.3. Let G be a ¯nite cyclic group and let S and T be Cay-

ley subsets of G . If Cay(G;S) »= Cay(G;T ) , then Int(S) = Int(T ) and

Cay(G=Int(S); S=Int(S)) »= Cay(G=Int(S); T=Int(S)) .

As a consequence of the above theorem, we have the following, which can

be regarded as a complement to Huang and Meng's result in [19].

Corollary 1.0.4. Let Cay(G;S) be a Cayley digraph of a ¯nite cyclic group

G with Int(S) = K . If Cay(G=K;S=K) is a CI-digraph of G=K , then

Cay(G;S) is a CI-digraph of G .

We ¯nally set up some general conventions and notation, which will be

used frequently in this thesis.

Throughout this thesis actions of groups and most algebraic maps such

as automorphisms, homomorphisms and isomorphisms are usually written as

right operators. If g and h are elements of a group, the conjugate h¡1gh is

denoted by gh .

The identity element of a multiplicative group is denoted by 1 and the

same notation is also used for the trivial subgroup consisting of the identity

element.

The kernel of a homomorphism ' of a group is denoted by ker' .

Let G be a group. The automorphism group of the group G is denoted
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by Aut(G) . If H is a subgroup of G , then the normalizer of H in G is

denoted by NG(H) .

Let H;N be groups and Á : H ¡! Aut(N) a homomorphism. Then the

homomorphism de¯nes a semidirect product of H and N ; we denote that

semidirect product by H nÁ N , or simply by H nN . We usually regard H

and N as subgroups of H nN via the natural identi¯cations.

The cardinality of a set X is denoted by jXj .
The notation and terminology not de¯ned in this thesis is standard and

can be found in almost all standard books on related areas.
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Chapter 2

Background results on group

theory

In this chapter, we present some general facts that will be useful in this thesis.

Some basic concepts and notation are also de¯ned.

2.1 Some basic facts on general group theory

We ¯rst consider subgroups of direct product of groups in this section; the

presentation here is in part based on the treatment of Suzuki (1982).

Let G = H£K be the direct product, let ´ and ∙ be the projection onto

the factors H and K , respectively. We regard H and K as subgroups of

G . Then we have the following lemma.
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Lemma 2.1.1. Let U be a subgroup of G .

(1) U \H E U; U \K E U .

(2) The map ' : u´ 7! u∙(U \K) de¯nes a homomorphism from U´ onto

U∙=(U \K) with kernel U \H .

(3) U = fhk jh 2 U´; k 2 U∙; h' = k(U \K)g:

Proof. For each element g of G , we have g = hk where h = g´ and k = g∙ .

If a subgroup U of G is given, U determine the four subgroups U´; U \H;
U∙; and U \K: Since the direct factors H and K are normal subgroups of

G; U \H is normal in U ; similarly, we have U \K E U:

Let ¾ be the restriction of ´ on U: Then ¾ is a homomorphism from U

onto U´ , and its kernel is U \ K: Thus, we have U¾ = U´ »= U=(U \ K):

The homomorphism ¾ maps U \ H onto U \ H: So U \ H E U´: If

u¾ 2 U\H; then u¾ = u´; from which we get (u¾)¡1u = u∙: This implies that

u∙ 2 U \K: Conversely, if u∙ 2 U \K; then u´ = u¾ 2 U \H: Thus, we have

(U\H)¾
¡1

= (U\H)(U\K): It follows that U´=(U\H) »= U=(U\H)(U\K):

Similarly, we get U∙=(U \ K) »= U=(U \ K)(U \ H): Therefore, we have a

homomorphism from U´ onto U∙=(U \K) with kernel U \H ; this is given

by ' : u´ 7! u∙(U \K): In fact, if u´ = v´ for two elements u and v of U;

then v¡1u = (v∙)¡1(v´)¡1u´u∙ = (v∙)¡1u∙ 2 U \K: So, the function de¯ned

by u´ 7! u∙(U \K) is a homomorphism from U´ onto U∙=(U \K); and its

kernel is U \H:
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To prove (3), denote

V = fhk jh 2 U´; k 2 U∙; h' = k(U \K)g:

We can easily show that V is a subgroup of G = H£K and U ∙ V . Clearly,

we have U´ = V ´ and U∙ = V ∙: An element of V \ H is of the form h1

where h' = 1(U\K): Since ' is a homomorphism from U´ onto U∙=(U\K)

with kernel U \H , the element h must belong to U \H; so U \H ¸ V \H
with U ∙ V , this implies that U \ H = V \ H . Therefore jU j = jV j and

hence U = V .

We here have some investigation about the automorphism groups of ¯nite

cyclic groups.

Let Zn denote the additive group of integers modulo n for a positive

integer n . The set Un of integers m modulo n which are relatively prime

to n forms an abelian group under multiplication modulo n . It is well-known

that the automorphism group of a cyclic group of order n can be identi¯ed

with this multiplicative group Un .

Lemma 2.1.2. The automorphism group Aut(Zn) is isomorphic to Un .

Proof. It follows from i® = (1®)i that any automorphism ® of Zn is com-

pletely speci¯ed by 1®: Another easy fact is that 1®k = k determines an

automorphism ®k of Zn if k is non-zero and prime to n; and all the auto-

morphisms of Zn are determined by such values of k in 1 5 k < n: Consider
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the correspondence in which ®k is paired with k in Un . That this is an

isomorphism of Aut(Zn) with Un is evident.

It is now reasonable to ask for the structure of Un in terms of the theory

of ¯nite abelian groups. The structure is well-known, see [29] for example. We

here just state the special case when n is a power of a prime number.

Theorem 2.1.3. (1) If p is an odd prime, then Up® is the cyclic group of

order (p¡ 1)p®¡1 .

(2) If p = 2 , then U2® is the direct product of the cyclic group h 5 i of

order 2®¡2 and the cyclic group h¡1 i of order 2 unless ® = 1 , and U2 is

trivial.

We close this section with following well-known result, which is known as

Dedekind Law.

Lemma 2.1.4. Let A; B and C be any subgroups of a group such that

A ∙ B . Then A(B \ C) = B \ AC .

2.2 Permutation groups

We here present some basic concepts and fundamental results on permutation

groups, which will be useful for our purpose. The presentation here is largely

based on the treatments of [8] and [13].
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Let X be a nonempty set. A permutation on X is a one-to-one corre-

spondence ® : X ¡! X . Two such permutations ® and ¯ can be composed

to give the permutation ®¯; which is de¯ned by the rule x(®¯) = (x®)¯ .

Under the operation of composition the set of all permutations on X forms a

group; we call it the symmetric group on X and denote by Sym(X) . If X

is the set f1; 2; :::; ng , we write Sn for Sym(X) . A subgroup G of Sym(X)

is called a permutation group on X ; the cardinality of X is called the degree

of G .

An action of a group G on a set X is de¯ned as the rules:

(1) x1 = x for all x 2 X ;

(2) (xg)h = xgh for all x 2 X and g; h 2 G .

If a group G acts on a nonempty set X , then to each element g 2 G we

can associate a mapping g of X into itself, namely x 7! xg . The mapping

g is a bijection since it has g¡1 as its inverse; hence we have a mapping

½ : G ¡! Sym(X) given by x½ := x . Moreover we see that ½ is a group

homomorphism. In general, every homomorphism of G into Sym(X) is called

a permutation representation of G on X . Hence, we see that each action of G

on X gives rise to a representation of G on X . The kernel of the action is the

kernel of the permutation representation ½ ; an action is faithful if ker ½ = 1 .

Each element g of a group G acts on the group G by right multiplica-

tion: xg := xg for all x; g 2 G , and so g yields a permutation R(g) of G;
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namely R(g) : x 7! xg: Denote R(G) := fR(g) j g 2 Gg and R(G) is called

the right regular representation of G . The action is faithful since the kernel

fg 2 G j xg = x for all x 2 Gg equals 1.

Let G be a ¯nite group acting on a ¯nite set X . The sets xG := fxg j g 2 Gg
for x in X are called the orbits of the action of G . Two orbits xG and yG

are either equal or disjoint, and so the set of all orbits is a partition of X into

mutually disjoint subsets. For each x in X , the set Gx = fg 2 G j xg = xg
forms a subgroup of G , which is called the stabilizer of x . The stabilizers of

two points in the same orbit are conjugate; in fact, if y = xg for some x 2 X
and g 2 G , then Gy = g¡1Gxg . Moreover, for each x 2 X and g; g0 2 G ,

xg = xg
0

if and only if (Gx)g = (Gx)g
0 . The following result is fundamental

and is often called `Orbit-Stabilizer Theorem'.

Theorem 2.2.1. Let G be a ¯nite group acting on a ¯nite set X . Then

jxGj = jGj=jGxj:

The proof of this theorem may be found in any standard text book on

permutation group theory.

De¯nition 2.2.2. G acts transitively on X if there exist precisely one orbit

in the action of G on X . Equivalently, G is transitive on X if for every pair

of points x; y 2 X; there exists g 2 G such that xg = y .

13



De¯nition 2.2.3. G acts regularly on X if G acts transitively on X and

Gx is trivial.

If a ¯nite group G acts transitively on a ¯nite set X , then the following

result follows immediately from Orbit-Stabilizer Theorem.

Theorem 2.2.4. Assume that G acts on X transitively. Then

(1) jXj = jGj=jGxj:
(2) If G is ¯nite, G acts on X regularly if and only if jGj = jXj .

The following result is also useful.

Lemma 2.2.5. Let G be a group acting transitively on a set X and let H

be a subgroup of G . If x 2 X , then G = (Gx)H if and only if G = H(Gx)

if and only if H is transitive on X .

The number of orbits of Gx on X is independent of choices of x in X if

G is transitive on X ; the number is called the rank of the transitive group G

on X .

In what follows we shall extend the action of G on X to 2X by de¯ning

Y g := fyg j y 2 Y g , for each Y ½ X:
Let G be a group acting transitively on a set X . A nonempty subset B

is a block for G if for each g 2 G either Bg = B or Bg \ B = ; .

14



Every group acting transitively on X has X and the singletons fxg for

x 2 X as blocks; these are called the trivial blocks. Any other block is called

nontrivial.

Let B be a block for the transitive group G and put § := fBg j g 2 Gg .

Then § is a partition of X and each element of § is a block for G ; we call

§ the system of blocks containing B .

Let G be a group which acts transitively on a set X . We say that G is

primitive if G has no nontrivial blocks; otherwise, G is called imprimitive.

The following theorem on the normalizers of regular groups is well-known:

Theorem 2.2.6. If G is a regular subgroup of Sym(X) , then NSym(X)(G)

is isomorphic to the semidirect product Gn Aut(G) with the natural action of

Aut(G) on G .
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Chapter 3

Vertex-transitive (di)graphs

In this chapter we shall describe some basic concepts of vertex-transitive di-

graphs with a short survey on the study. Some properties on the vertex-

transitive digraphs, which will be used in this thesis, will be also discussed.

3.1 Basic notation and concepts

We begin with the de¯nition of digraphs.

By a digraph (or directed graph) we mean a pair X = (V;E) where V is a

set whose elements are called the vertices of X , and E is a subset of ordered

pairs of distinct vertices whose elements are called the edges (or arcs) of X .

Similarly a (undirected) graph is a pair X = (V;E) where V is the set of

vertices of X , and E is a subset of unordered pair of distinct vertices which
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are called the edges of X ; the ordered pairs (x; y) of adjacent vertices that

is those for which fx; yg 2 E are called the arcs of X . For a diagraph, edges

and arcs are the same, but this is not the case for a graph. In particular, if

(x; y) 2 E implies (y; x) 2 E for a diagraph X = (V;E) , then X is called

undirected. Each graph X = (V;E) with the arc set A de¯nes a undirected

diagraph X¤ = (V;A) ; conversely, each undirected digraph give rise to a graph

by coalescing each pair of arc (x; y) and (y; x) into a single undirected edge

fx; yg . In this way, the graphs correspond to the undirected digraphs and vice

versa. The order of a ¯nite (di)graph is the number of vertices.

The complement ¹X of a graph X is the graph with the same vertex set

with X but two points are adjacent in ¹X if and only if they are not adjacent

in X .

The complete graph Kn is the graph such that every unordered pair of

distinct vertices is an edge of the graph. The complement of Kn is also denoted

by nK1 .

Given two (di)graphs X and Y , the lexicographic product, X[Y ] is de-

¯ned as the (di)graph with vertex set V (X)£ V (Y ) and the following adja-

cency relation:

(x; y) is adjacent to (x0; y0) in X[Y ] () either x is adjacent to x0 in X;

or x = x0; y is adjacent to y0 in Y:

Let X and Y be given two digraphs. If there exists a bijective map µ
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from V (X) onto V (Y ) such that e 2 E(X) implies eµ 2 E(Y ) , where

(x; y)µ = (xµ; yµ) for e = (x; y) in a digraph, while fx; ygµ = fxµ; yµg for

e = fx; yg in a graph, then X and Y are said to be isomorphic and denoted

by X »= Y ; such a bijective map µ is called an isomorphism from X onto Y .

Let X = (V;E) be a (di)graph. An automorphism of X is an isomorphism

from X onto X itself, and so an automorphism ® of X is a permutation

on V such that e 2 E(X) implies e® 2 E(X) . The set of all automorphisms

of X forms a subgroup of Sym(V ) ; we call the subgroup the automorphism

group of X and it is denoted by Aut(X) . It is easy to see that for a digraph

which is undirected, the automorphism group is that of the corresponding

undirected graphs. The automorphism group of the complement of a graph X

is the same with the automorphism group of X .

We now give some important summary properties.

De¯nition 3.1.1. A (di)graph X = (V;E) is called vertex-transitive if

Aut(X) is transitive on V .

A vertex-transitive (di)graph is not necessarily edge-transitive, and vice

versa. In a vertex-transitive (di)graph, all vertices have the same properties

with respect to the structure of the (di)graph. In particular, for a vertex-

transitive graph, each vertex is contained in the same number of edges; such

a number is called the valency of the vertex and the graph itself is said to be
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regular.

An automorphism ® of a (di)graph X acts on the edge set E in a natural

way.

De¯nition 3.1.2. A (di)graph X = (V;E) is called edge-transitive if Aut(X)

is transitive on E .

De¯nition 3.1.3. A graph X is arc-transitive if Aut(X) is transitive on the

arc set of X .

So if a digraph X is undirected, then X is edge-transitive if and only if

the corresponding undirected graph is arc-transitive. A graph which is vertex-

transitive and edge-transitive is not necessarily arc-transitive. Note that an

arc-transitive graph must be vertex-transitive and edge-transitive.

De¯nition 3.1.4. A graph X is called half-transitive if X is vertex-transitive

and edge-transitive but not arc-transitive.

We are now concerned with the relationship between transitive permuta-

tion groups and vertex-transitive digraphs. The vertex-transitivity of digraphs

corresponds to the transitivity of permutation group, and edge-transitive di-

graphs correspond to the so called orbital digraphs of a transitive permutation

group, while symmetric graphs correspond to the orbital graphs associated
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with so called symmetric orbital, which we shall give an explicit description

here. The presentation is basically from the treatment of [8].

Let us suppose that a transitive permutation group G on V is given; then

there is an induced action of G on V £ V , de¯ned by

(x; y)g = (xg; yg):

Since G is transitive, the diagonal ¢ = f(x; x) jx 2 V g is an orbit; we shall

write D0 instead of ¢ . Suppose that G has r orbits D0; D1; ¢ ¢ ¢ ; Dr¡1

on V £ V ; each Di is called an orbital of G . For a ¯xed x 2 V ,

and put Di(x) = fy 2 V j (x; y) 2 Dig for i = 1; 2; :::; r ¡ 1 . Then

D0(x);D1(x); ¢ ¢ ¢ ; Dr¡1(x) are precisely the orbits of Gx on V . Hence r

is the rank of G .

Each orbital Di associates with the digraph Xi = (V;Di) ; this digraph is

called an orbital digraph associated with Di . It is obvious that each orbital

digraph is edge-transitive. Conversely, each edge-transitive digraph X must

be an orbital digraph of the transitive group Aut(X) .

We have the following characterization of primitivity in terms of the asso-

ciate digraphs.

Theorem 3.1.5. Let G be a transitive permutation group on V . Then G is

primitive on V if and only if the orbital digraph Xi associated with each orbit

Di(6= D0) of G on V £ V is connected.
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Each orbit D di®erent from D0 is `paired' with its transpose:

Dt = f(x; y) j (y; x) 2 Dg:

In general, D and Dt are di®erent. When D = Dt , we say that D is

self-paired or symmetric. If D is symmetric, the orbital digraph associated

with D is undirected; the graph associated with each symmetric orbital D is

called an orbital graph associated with D . It is obvious that the orbital graph

associated with symmetric orbital is arc-transitive. On the other hand, each

arc-transitive graph X must be an orbital graph of the transitive group X .

Similarly, if we call a union of several orbitals of a transitive permutation

group G generalized orbital of G ; the associated digraph with a generalized

orbital is called a generalized orbital digraph. The undirected graph associ-

ated with a symmetric generalized orbital is called a generalized orbital graph.

Then all generalized orbital (di)graphs are vertex-transitive; and all vertex-

transitive (di)graphs X are generalized orbital (di)graphs for the transitive

groups Aut(X) .

3.2 Arc-transitive graphs

In this section we shall give an exposition of some known results on classi¯ca-

tions of some special classes of arc-transitive graphs. Recall that a undirected

graph X = (V;E) is said to be arc-transitive if Aut(X) is transitive on the
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arcs of X ; that is, Aut(X) acts transitively on the set of ordered adjacent

pair of vertices of X . It is easy to see that X is arc-transitive if and only if

Aut(X) acts transitively on V and for a ¯xed vertex x , the stabilizer Gx of

x in Aut(X) is transitive on the set of vertices adjacent to x .

The earliest work in this direction was done by C.Y. Chao. In 1971 he

classi¯ed all arc-transitive graphs with a prime order. The result may be

summarized as follows:

Let Zp = f0; 1; :::; p¡ 1g denote the cyclic group of order p written addi-

tively. The automorphism group Aut(Zp) of Zp is isomorphic to Zp¡1 . For

a positive divisor r of p¡ 1 , let Hr denote the unique subgroup of Aut(Zp)

of order r . The graph G(p; r) of order p is de¯ned for each even positive

divisor r of p¡ 1 by

V = Zp; E = ffx; yg jx¡ y 2 Hrg:

Chao [10] proved the following:

Theorem 3.2.1. Let p be an odd prime.

(1) If X is a arc-transitive graph of order p then either X = pK1 or

X = G(p; r) for some even divisor r of p¡ 1 .

(2) Conversely pK1 and each of the graphs G(p; r) is arc-transitive of

order p .

In 1987, Y. Chang and J. Oxley [11] determined all arc-transitive graphs
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of order 2p , for a prime p . It was possible because the classi¯cation of the

primitive groups of degree mp , m < p was given in 1985 by M.W. Libeck

and J. Saxl [28].

In 1993, C. Praeger and M. Xu [36, 37] was be able to give a classi¯cation

of the vertex-primitive arc-transitive graph of order a product of two distinct

primes. The imprimitive case was done by C. Praeger, R. Wang and M. Xu

[36] in the same year.

A undirected graph X is said to be half-transitive, it is vertex-transitive

and edge-transitive, but not arc-transitive. W.T. Tutte was the ¯rst who

considered half-transitive graphs. He proved

Theorem 3.2.2. If a graph X is vertex-transitive and edge-transitive and if

it has odd valency, then X is arc-transitive.

He asked whether there are such graphs of even valency. In 1970, I.Z.

Bouwer [9] gave an a±rmative answer for Tutte's question; he constructed a

half-transitive graph of valency n for each even number n ¸ 4 . The smallest

graph in this family was order 54 and valency 4. In 1981, D.F. Holt [17] found

another half-transitive graph which has valency 4 and order 27.

Since 1990 several authors have done much work on half-transitive graphs;

they are B. Alspach, M. Conder, C. Li, D. Marusic, L. Nowitz, C. Praeger, H.

Sim, D. Taylor and M. Xu. For these results, the reader is referred to a survey
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paper [26] and [41].

3.3 Cayley (di)graphs of ¯nite groups

The class of vertex-transitive (di)graphs is very interesting to especially group

theorist. One of the most important classes of vertex-transitive (di)graphs is

so-called Cayley (di)graphs of ¯nite groups.

The concept of Cayley graphs was introduced by A. Cayley in 1878 as

a graphical representation of abstract groups. Cayley graphs (Cayley colour

diagrams) were used by Coxeter and Moser to investigate groups given by

generator and relations. However, in the last forty years, the theory of Cayley

graphs has been developed to a rather big branch of algebraic graph theory.

We give a de¯nition of a Cayley (di)graph of a ¯nite group.

Let G be a ¯nite group. A subset S of G is called a Cayley subset if S

does not contain the identity element 1 of G . A Cayley subset S is called

symmetric if S = S¡1 where S¡1 := fs¡1 j s 2 Sg .

De¯nition 3.3.1. The Cayley digraph of a group G on a Cayley subset S is

the digraph with vertex set G and (x; y) is an edge if and only if yx¡1 2 S .

If S is symmetric then the adjacency relation is symmetric and thus the

Cayley digraph is undirected; the corresponding graph is called the Cayley
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graph of G on S . We denote the Cayley digraph of G on S by Cay(G;S) ;

abusing notation, we also denote the corresponding Cayley graph by the same

notation.

A Cayley (di)graph of a cyclic group is called a circulant (di)graph, or

simply a circulant.

We observe some elementary properties about Cayley (di)graphs.

Lemma 3.3.2. Let G be a ¯nite group and let S be a Cayley subset. Then

Cay(G;S) is connected if and only if S generates G .

Proof. Suppose that the Cayley digraph is connected and let g be an element

of G . Then there exists a sequence of vertices 1 = v0; v1; :::; vn = g such that

either (vi; vi+1) is an edge or (vi+1; vi) is an edge. Write si for viv
¡1
i¡1 for

i = 1; :::; n: Then either si 2 S or s¡1
i 2 S and g = snsn¡1 ¢ ¢ ¢ s2s1: So S gen-

erates G . Suppose that S generates G . Since G is ¯nite, for each g we have

g = snsn¡1 ¢ ¢ ¢ s2s1 for some si in S . Then (1; s1); (s1; s2s1); :::; (sn¡1 ¢ ¢ ¢ s1; g)

is a sequence of edges connecting 1 and g . This implies that Cay(G;S) is

connected. The proof is similar for the undirected case.

Since yx¡1 2 S implies (yg)(xg)¡1 2 S for every x; y and g in G ,

the right regular representation R(G) of the group G is a subgroup of the

automorphism group of every Cayley digraph of G , which acts regularly. The

same is true for undirected Cayley digraphs.
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Thus we have the following lemma.

Lemma 3.3.3. The automorphism group of a Cayley graph of a group G

contains a regular subgroup isomorphic to G . In particular, every Cayley

(di)graph of a group G is vertex-transitive.

The converse of the above result is also well-known; in fact, the Cayley

graphs of a group G can be characterized by the following lemma; see [8].

Lemma 3.3.4. A digraph X is a Cayley digraph of G if and only if Aut(X)

contains a regular subgroup isomorphic to G .

The following lemma is a consequence of Lemma 3.3.3 and Lemma 2.2.5.

Lemma 3.3.5. Let X = Cay(G;S) be a Cayley graph, A = Aut(X) , and

A1 the subgroup of A consisting of those automorphisms that ¯x the identity

element 1 of G: Then A = R(G)A1 and R(G) \ A1 = 1 .

We have shown that the right regular representation R(G) of G is a regular

subgroup of the automorphism group A of a Cayley graph X = Cay(G;S)

of G . We now determine the normalizer of the regular subgroup R(G) in the

automorphism group A of X .

Let X = Cay(G;S) be a Cayley graph of G ; we ¯rst set up the following

notation.
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Notation 3.3.6. Aut(G;S) := f® 2 Aut(G) : S® = Sg:

Obviously, Aut(X) ¸ R(G) Aut(G;S) . Write A := Aut(X) . We have

Lemma 3.3.7. NA(R(G)) = R(G) Aut(G;S):

Proof. Since the normalizer of R(G) in the symmetric group Sym(G) is the

holomorph of G: By Theorem 2.2.6, that is NSym(G)(R(G)) = R(G)Aut(G) ,

we have

NA(R(G)) = R(G)Aut(G) \A = R(G)(Aut(G) \A):

Obviously, Aut(G)\A = Aut(G;S) . Thus NA(R(G)) = R(G) Aut(G;S) .

Corollary 3.3.8. R(G) is normal subgroup of A if and only if A1 = Aut(G;S)

if and only if every automorphism of X that ¯xes the identity of G is an au-

tomorphism of G .

Some work has been devoted to characterizing Cayley graphs Cay(G;S) in

terms of Aut(G) . The problem of determining the full automorphism group

of a Cayley (di)graph is very di±cult in general; Since a Cayley (di)graph

of G is de¯ned by G , natural approach to the problem is to understand

the relationship between the full automorphism group and G , for example,

whether or not G , as regular subgroup, is normal in the automorphism of the

Cayley graph. We refer to [41, 7, 27] for some studies of those Cayley graphs
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for which the regular subgroup R(G) is normal in A . The extreme case where

A = R(G) has received considerable attention, see [4, 16, 22, 25].

Cayley (di)graphs form a proper subclass of vertex-transitive graphs. The

Petersen graph is the smallest vertex-transitive graph which is not a Cayley

graph. Mckay and Praeger conjecture that most vertex-transitive graphs are

Cayley graphs, see [35].

3.4 Cayley Isomorphisms of Cayley (di)graphs

The isomorphism problem for Cayley (di)graphs is to decide whether two given

Cayley (di)graphs are isomorphic or not. The problem is a fundamental prob-

lem in graph theory. We here give a brief survey on the study of the problem.

The presentation is in part based on [23].

The Cayley (di)graph Cay(G;S) is determined completely by G and S .

However, since it is very di±cult problem to decide whether or not any given

two Cayley (di)graphs are isomorphic in general. If ¾ is an automorphism of

G such that S¾ = T , then ¾ gives rise to an isomorphism from Cay(G;S)

onto Cay(G;T ) . Such an isomorphism is called a Cayley isomorphism. It is

of course possible for two Cayley (di)graphs Cay(G;S) onto Cay(G;T ) to be

isomorphic but no Cayley isomorphisms map S to T .

De¯nition 3.4.1. A Cayley (di)graph Cay(G;S) is called a CI-(di)graph of
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G if for each Cayley (di)graph Cay(G;T ) isomorphic to Cay(G;S) , there

exists ¾ 2 Aut(G) such that S¾ = T . The group G is called a DCI-group

if every Cayley digraph of G is a CI-digraph; G is called a CI-group if every

Cayley graph of G is a CI-graph.

We discuss some basic properties about CI-(di)graphs.

For a ¯nite group G and a Cayley subset S of G , if Cay(G;S) is discon-

nected then

Cay(G;S) »= jGj
jhS ijCay(hS i; S)

so that for any Cayley subset T of G ,

Cay(G;S) »= Cay(G; T ) if and only if Cay(hS i; S) »= Cay(hT i; T ):

Let H;L be two subgroups of G , and let S; T be Cayley subsets

such that hS i = H , hT i = L and Cay(H;S) »= Cay(L; T ) . Then

Cay(G;S) »= Cay(G; T ) . If Cay(G;S) is a CI-(di)graph, then S¾ = T for

some ¾ 2 Aut(G) . Thus H¾ = hS i¾ = hS¾ i = h T i = L; that is H is

conjugate under Aut(G) to L , and in particular, H »= L . Therefore we have:

Proposition 3.4.2. Let G be ¯nite group and let Cay(G;S) be a CI-(di)graph

of G .

(1) For each Cayley subset T of G , if Cay(hS i; S) »= Cay(hT i; T ) then

hS i is conjugate under Aut(G) to h T i , in particular, hS i »= h T i .

(2) All subgroups of G isomorphic to hS i are conjugate under Aut(G) .
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A criterion for CI-graphs due to Babai [5] plays an important role. We

state it as follows:

Theorem 3.4.3. Let X = Cay(G;S) be a Cayley (di)graph of a ¯nite group

G . Then X is a CI-(di)graph of G if and only if for every ¾ 2 Sym(G) with

¾R(G)¾¡1 ∙ Aut(X) , there exists an a 2 Aut(X) such that aR(G)a¡1 =

¾R(G)¾¡1 .

We present a proof of this fundamental theorem which is essentially the

same as Babai [5].

Proof. Assume that there is a ¾ 2 Sym(G) such that ¾R(G)¾¡1 ∙ Aut(X) .

Without loss of generality, we assume that ¾ ¯xes 1. Let X¾ be the digraph

with vertex set G and edge set f(g¾; (sg)¾) j g 2 G; s 2 Sg . Then we have

Aut(X¾) = ¾¡1Aut(X)¾ . Thus we have Aut(X¾) ¸ R(G) , which implies

that X¾ is also a Cayley digraph of G . Since the neighborhood of 1 in X¾

is S¾ , we see that X¾ = Cay(G;S¾) . Since Cay(G;S) is CI, there exists an

® 2 Aut(G) such that S® = S¾ , and so S¾®
¡1

= S and ¾®¡1 = a 2 Aut(X) .

Since ® normalizes R(G) , we have

aR(G)a¡1 = ¾®¡1R(G)®¾¡1 = ¾R(G)¾¡1:

Conversely, let ¾ be an isomorphism from X to another Cayley digraph

Y = Cay(G; T ) such that 1¾ = 1 . Then S¾ = T and Y = X¾: Hence

Aut(Y ) ¸ R(G) . This yields that there is an a 2 Aut(X) such that
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¾R(G)¾¡1 = aR(G)a¡1 , and we may also assume that 1a = 1 . Thus we

have ® = a¡1¾ normalizes R(G) and 1® = 1 . Therefore, ® 2 Aut(G) and

S® = Sa
¡1¾ = S¾ = T .

Next we use the Sylow Theorem to investigate CI-graphs of prime-power

order. Let G be a p -group for a prime p . Suppose that X is a connected Cay-

ley graph of G of valency less than p . Let A = Aut(X) . Then A = R(G)A1

such that p 6
¯̄̄
jA1j . Thus R(G) is a Sylow p -subgroup of A . By the Sylow

theorem, all regular subgroups of A are conjugate, and so X is a CI-graph

by Theorem 3.4.3. This simple property was ¯rst observed by Babai in [5] and

is slightly extended for undirected graphs in [24] as follows.

Proposition 3.4.4. Let p be a prime and let G be a p -group. Then G is a

connected (p¡1) -DCI- and (2p¡2) -CI-group. In particular, the cyclic group

Zp is a DCI-group.

A well-known open question about Cayley (di)graphs is which Cayley

(di)graphs for a group G are CI-(di)graphs. This question has received con-

siderable attention, and has been investigated under various conditions in the

literature. Interest in this question stems from a conjecture of ¶Ad¶am in 1967

that all circulant graphs were CI-graphs of the corresponding cyclic groups.

This conjecture was disproved by Elspas and Turner [15] in 1970, and since

then a lot of work has been devoted to seeking CI-graphs. ¶Ad¶am's conjecture
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asserts that every ¯nite cyclic group is DCI-group.

The following theorem outlines the main results in this direction.

Theorem 3.4.5. Let n be an integer greater than 1.

(1) The cyclic group Zn is a DCI-group if and only if n = k; 2k; or 4k

where k is odd square-free.

(2) The cyclic group Zn is a CI-group if and only if either n = 8; 9; 18 ,

or n = k; 2k; or 4k where k is odd square-free.

For the case n = p , a prime, the result was obtained by Turner [39] in 1967;

for the case where n = pq is a product of two distinct primes, by Alspach and

Parsons [3] in 1979; for the case when (n;'(n)) = 1 , by Pµalfy in 1987; for the

form of n of this theorem, by Muzychuk [30, 31] in 1995 and 1997. For the

`only if' part of the theorem, the results were mainly obtained by Babai and

Frankl [6].

Next theorem is about the CI-property of elementary abelian p -groups.

Theorem 3.4.6. Let p be a prime. Then

(1) Z2
p and Z3

p are CI-groups (see [2, 14])

(2) Z6
p is not a CI-group(see [33])

We state a conjecture made by Toida (1977) regarding a special class of

circulant graphs. Let G = Zn be a cyclic group of order n , and let Vn be
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the set of elements of G of order n .

Conjecture 3.4.7. If S ½ Vn , then Cay(G;S) is a CI-graph.

Very recently, the conjecture was proved independently in [21] and [32].
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Chapter 4

Cayley (di)graphs of cyclic

groups

4.1 Normal edge-transitive Cayley (di)graphs

A Cayley (di)graph X = Cay(G;S) is said to be edge-transitive if its auto-

morphism group Aut(X) is transitive on the edges. It is di±cult to ¯nd the

full automorphism group of a graph in general, and so this makes it di±cult

to decide whether it is edge-transitive, even for a Cayley graph. As an accessi-

ble kind of edge-transitive (di)graphs, Praeger [34] focuses attention on those

(di)graphs for which NAut(X)(G) is transitive on edges.

De¯nition 4.1.1. A Cayley (di)graph X = Cay(G;S) is said to be normal

edge-transitive if NAut(X)(G) is transitive on edges.
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Praeger gave an approach to analyzing normal edge-transitive Cayley

(di)graphs as a subfamily of central importance. In this section, we give a

preliminary discussion of normal edge-transitive (di)graphs of ¯nite groups.

As established in Chapter 2, we denote Aut(G;S) := f® 2 Aut(G) : S® = Sg:
By Lemma 3.3.7, NA(R(G)) = R(G) Aut(G;S); where elements of Aut(G;S)

have the natural conjugation action on the normal subgroup R(G); and also

acts naturally as permutations of R(G):

We ¯rst characterize normal edge-transitivity in terms of the action of

Aut(G;S):

Theorem 4.1.2. Let X = Cay(G;S) be a Cayley digraph of a ¯nite group

G on a Cayley subset S: Then X is normal edge-transitive if and only if

Aut(G;S) is transitive on S .

Proof. Suppose that X is normal edge-transitive. Let s; s1 2 S: Then

(1; s)¾ = (1; s1); for some ¾ 2 R(G)Aut(G;S): We set ¾ = ¯R(g); where

R(g) 2 R(G) and ¯ 2 Aut(G;S): Then (1; s)¾ = (1; s)¯R(g) = (1¯; s¯)R(g) =

(1; s¯)R(g) = (g; s¯g) = (1; s1): So g = 1 and s¯g = s1 . Hence s1 = s¯ for

some ¯ 2 Aut(G;S): Therefore Aut(G;S) is transitive on S:

Conversely, suppose that Aut(G;S) is transitive on S: Let (x; y) and

(x1; y1) are edges in X = Cay(G;S): Then yx¡1 = s and y1x
¡1
1 = s1;

for some s; s1 2 S: Since Aut(G;S) is transitive on S; s1 = s® for some

® 2 Aut(G;S): We have (x; y)R(x¡1)®R(x1) = (1; yx¡1)®R(x1) = (1; s)®R(x1) =
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(1®; s®)R(x1) = (1; s1)
R(x1) = (1; y1x

¡1
1 )R(x1) = (x1; y1):

Hence (x; y)R(x¡1)®R(x1) = (x1; y1); for some R(x¡1)®R(x1) 2 R(G)Aut(G;S):

Therefore X is normal edge-transitive.

Theorem 4.1.3. Let X = Cay(G;S) be a Cayley graph of a ¯nite group G

on a Cayley subset S such that S = S¡1: Then X is normal edge-transitive

if and only if either Aut(G;S) is transitive on S or S is the disjoint union

of sets T and T¡1 where both T and T¡1 are orbits of Aut(G;S) .

Proof. Suppose that X is normal edge-transitive. Assume that Aut(G;S)

is not transitive on S . Then sAut(G;S) is an orbit of Aut(G;S) for some

s 2 S: We set T = sAut(G;S) and let s1 2 S ¡ T: Since X is normal edge-

transitive, there exists ® 2 R(G)Aut(G;S) such that f1; sg® = f1; s1g: So

f1; sg® = f1; sgR(g)± = fg; sgg± = fg±; (sg)±g = f1; s1g for some R(g) 2 R(G)

and ± 2 Aut(G;S): (1) if g± = 1; then g = 1: Therefore s1 = (sg)± = s± 2 T:
This is contradiction to the fact that s1 2 S ¡ T: (2) if (sg)± = 1; then

sg = 1: So s1 = g± = (s¡1)± = (s±)¡1 2 T¡1: Hence S ¡ T ½ T¡1: Since

T¡1 = (s¡1)Aut(G;S) is Aut(G;S) orbit and S ¡ T = T¡1; it follows that

T \ T¡1 = ; and S = T [ T¡1:

Conversely, let fx; yg; fx1; y1g be any two edges of X = Cay(G;S): Then

yx¡1 = s and y1x
¡1
1 = s1; for some s; s1 2 S: We continue by taking each

case separately:

We assume that Aut(G;S) is transitive on S: Then fx; ygR(x¡1) = f1; sg
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and fx1; y1gR(x1
¡1) = f1; s1g: Since Aut(G;S) is transitive on S; there exists

® 2 Aut(G;S) such that f1; sg® = f1®; s®g= f1; s1g: Thus fx; ygR(x¡1)®R(x1) =

f1; sg®R(x1) = f1; s1gR(x1) = fx1; y1g: That is fx; ygR(x¡1)®R(x1) = fx1; y1g;
for some R(x¡1)®R(x1) 2 R(G)Aut(G;S): Therefore X is normal edge-

transitive. We assume that S = T [ T¡1 and that Aut(G;S) is transi-

tive on T: Suppose ¯rst that both s; s1 2 T: Since Aut(G;S) is transitive

on T there exists ® 2 Aut(G;S) such that s® = s1: So fx; ygR(x¡1)®R(x1) =

f1; sg®R(x1) = f1R(x1); s
R(x1)
1 g = fx1; y1g: That is fx; ygR(x¡1)®R(x1) = fx1; y1g;

for some R(x¡1)®R(x1) 2 R(G)Aut(G;S): Therefore X is normal edge-

transitive. If s; s1 2 T¡1; uses the same arguments. Now let s 2 T and

s1 2 T¡1: That is yx¡1 2 T and y1x
¡1
1 2 T¡1: Then fx; ygR(x¡1) = f1; yx¡1g

= f1; sg and f1; sgR(s¡1) = fs¡1; 1g: Since Aut(G;S) is transitive on T¡1

and s¡1; s1 2 T¡1; there exists ® 2 Aut(G;S) such that f1; s¡1g® = f1; s1g:
Hence fx; ygR(x¡1)R(s¡1)®R(x1) = fx1; y1g; for some R(x¡1)R(s¡1)®R(x1)

2 R(G)Aut(G;S): Therefore X is normal edge-transitive.

Lemma 4.1.4. Let X = Cay(G;S) be a Cayley graph of a ¯nite abelian

group G on a Cayley subset S such that S = S¡1 and let X¤ be the corre-

sponding Cayley digraph of X . Then X is normal edge-transitive if and only

if X¤ is normal edge-transitive.

Proof. Suppose that X is normal edge-transitive Cayley graph for a ¯nite

abelian group G: Then by Theorem 4.1.3, for s 2 S; the orbit sAut(G;S)

37



either be equal to S or equal to T such that S = T [ T¡1 and T \ T¡1 = ;:
But since G is abelian we have the mapping ® : x 7! x¡1 is an automorphism

of G: Also ® preserves the Cayley subset S because S® = S¡1 = S and in

the case S = T [ T¡1 it interchanges T and T¡1: Thus ® 2 Aut(G;S)

and the second case does not arise, and so Aut(G;S) is transitive on S: By

Theorem 4.1.2, X¤ is normal edge-transitive.

Conversely, suppose that X¤ is normal edge-transitive. Then Aut(G;S)

is transitive on S by Theorem 4.1.2. Therefore X is normal edge-transitive

by Theorem 4.1.3.

We close this section with some observation of lexicographic products of

digraphs. We recall again the de¯nition of lexicographic product of two di-

graphs:

Given two digraphs X and Y the lexicographic product X[Y ] is de¯ned

as the digraph with vertex set V (X) £ V (Y ) and the following adjacency

relation:

(x; y) is adjacent to (x0; y0) in X[Y ] () either x is adjacent to x0 in X;

or x = x0; y is adjacent to y0 in Y:

We then have following basic result; for the proof see, for example [18].

Lemma 4.1.5. Let X = Cay(G;S) be a Cayley digraph for a ¯nite group

G with S 6= ; . If S is a union of cosets of a normal subgroup M of G ,

then X »= Cay(G=M;S=M)[jM jK1] , where S=M denotes the set of cosets
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Ms; s 2 S .

Proof. Let T be a set of coset representatives for M in G; that is for any

g 2 G; there exists a unique t 2 T such that Mg = Mt (or gt¡1 2 M) . Let

° : G ¡! G=M £M de¯ned by g° = (Mg; gt¡1) where Mg = Mt; t 2 T:
We claim that ° is an isomorphism from X to Cay(G=M;S=M)[jM jK1]:

(1) if g 6= g1 and Mg = Mg1; then we will obtain two distincts vertices

(Mg; gt¡1); (Mg1; g1t
¡1) because gt¡1 6= g1t

¡1 . (2) if g 6= g1 and Mg 6= Mg1;

then g° 6= g1
°: By (1) and (2) ° is injective. Also ° is onto because if

(Mg; x) 2 G=M £ M with g; x 2 G then there exist t 2 T such that

Mg = Mt: Set g1 = xt 2 G , so that Mg1 = Mxt = Mt = Mg because

x 2 M: Hence (Mg; x) = (Mg1; x) = (Mg1; g1t
¡1) = g1

°: Therefore ° is

bijective from G to G=M £M: Finally we must show that ° is preserves ad-

jacency and nonadjacency. Since S is a union of cosets of M in G and 1 =2 S;
M \ S = ; because 1 2M: This means Ms 2 S=M if and only if s 2 S: So

(g; g1) is an edge in X = Cay(G;S) if and only if g1g
¡1 2 S if and only if

Mg1g
¡1 2 S=M if and only if (Mg;Mg1) is an edge in Cay(G=M;S=M) if

and only if ((Mg; gt¡1); (Mg1; g1t
¡1
1 )) is an edge in Cay(G=M;S=M)[jM jK1]

where t; t1 2 T such that Mg = Mt and Mg1 = Mt1: Therefore ° is an

isomorphism.
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4.2 Normal edge-transitive circulant (di)graphs

Using the strategy in [34] to construct normal edge-transitive Cayley graphs

from quotients, Houlis [18] was able to determine the isomorphic types of all

connected normal edge-transitive Cayley graphs for Zpq , where p; q primes;

for G = Zp £ Zp , p a prime, Houlis also made a classi¯cation which gives

all normal edge-transitive Cayley graphs Cay(G;S) such that Aut(G;S) acts

reducibly on G . In this section, we consider ¯nite circulant (di)graphs, namely

Cayley (di)graphs of ¯nite cyclic groups.

Two Cayley (di)graphs Cay(G;S) and Cay(G; T ) are said to be Cayley

isomorphic if there exists ® 2 Aut(G) such that T = S® . Cayley isomorphic

Cayley (di)graphs are of course isomorphic. ¶Ad¶am [1] conjectured that if two

circulant (di)graphs Cay(G;S) and Cay(G; T ) are isomorphic then they are

Cayley isomorphic; the conjecture was shown to be false (see for example, [39]).

It is known to be true if the number of vertices is either square-free or twice

square-free (see [30, 31]).

Let Zn = f 0; 1; :::; n¡1 g denote the additive group of integers modulo

a positive integer n , and let Un denote the multiplicative group of units in

Zn . We may identify Un with Aut(Zn) . Denote the Cayley graph of Zn on

the empty set by nK1 . The following theorem gives a determination of all

connected normal edge-transitive circulant digraphs of order n .
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Theorem 4.2.1. If S is a subgroup of Un , then Cay(Zn; S) is connected

normal edge-transitive. Every connected normal edge-transitive circulant di-

graph of order n is isomorphic to Cay(Zn; S) for some subgroup S of Un .

Proof. For the ¯rst part of the theorem, let S be a subgroup of Un . Since

1 2 S , we have Zn = hS i and so Cay(Zn; S) is connected by Lemma 3.3.2.

Identifying Un with Aut(Zn); S as an automorphism group acts transi-

tively on the subset S of Zn; the action is realised by multiplication. Since

Aut(Zn; S) = f a 2 Un j Sa = S g; we have Aut(Zn; S) = S; and therefore

Aut(Zn; S) is transitive on S: It follows from Theorem 4.1.2 that Cay(Zn; S)

is normal edge-transitive.

For the second part, let X be a connected normal edge-transitive circulant

digraph of order n: Then X is isomorphic to Cay(Zn; T ) for some subset

T of Zn: By Theorem 4.1.2, Aut(Zn; T ) is transitive on T: Write S for

Aut(Zn; T ) . Then we may regards S as a subgroup Un . Since hT i = Zn;

there exists t in T \Un . It follows that T = St . Therefore the map i 7! it;

i 2 Zn yields an Cayley isomorphism from Cay(Zn; S) onto Cay(Zn; T ) . This

completes the proof.

For normal edge-transitive circulant graphs, we only need to consider the

corresponding circulant digraphs by the virtue of Lemma 4.1.4. A normal edge-

transitive circulant digraph of order n is undirected if only if it isomorphic to

Cay(Zn; S) for some subgroup S of Un containing ¡1 .
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If n is square-free or twice square-free, then di®erent choices of S give

nonisomorphic digraphs. In addition to this trivial case, the following theo-

rem gives an answer for the isomorphism problem of normal edge-transitive

circulant digraphs of ¯nite order.

Theorem 4.2.2. Let S and T be subgroups of Un . Then Cay(Zn; S) »=
Cay(Zn; T ) if and only if S = T .

We focus our attention again on the special case when n is a prime power.

Let p be an odd prime. For each positive divisor r of p¡1 , there is a unique

subgroup of order r in the cyclic group Upi . The Cayley digraph of Zpi on

the subgroup of order r in Upi is denoted by X(pi; r) .

For p = 2 , let X(2i; 1) = Cay(Z2i ; f1g) , X(2i; 2) = Cay(Z2i; f1;¡1g) ,

and X(2i; 3) = Cay(Z2i; f1;¡1+2i¡1g) . Then we have:

Theorem 4.2.3. (i) For an odd prime p , every connected normal edge-

transitive circulant digraph of order pm is isomorphic to the lexicographic

product X(pi; r)[pm¡iK1] for some positive divisor r of p¡ 1 and an integer

i with 1 ∙ i ∙ m ; di®erent choices of i or r give nonisomorphic digraphs.

(ii) Every connected normal edge-transitive circulant digraph of order 2m

is isomorphic to the lexicographic product X(2i; j)[2m¡iK1] for some integers

i; j such that

1 ∙ j ∙ 3 ∙ i ∙ m or 1 ∙ j ∙ i = 2 for 3 ∙ m;
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and

1 ∙ j ∙ i = m for m = 1; 2;

moreover, di®erent choices of i or j give nonisomorphic digraphs.

We note that the analogous result can be given for n = 2pm for odd prime

p . The result can be stated as follows:

For each positive divisor r of p ¡ 1 , there is a unique subgroup of order

r in the cyclic group U2pi . The Cayley digraph of Z2pi on the subgroup of

order r in U2pi is denoted by X(pi; r) .

Theorem 4.2.4. For an odd prime p , every connected normal edge-transitive

circulant digraph of order 2pm is isomorphic to the lexicographic product

X(pi; r)[pm¡iK1] for some positive divisor r of p ¡ 1 and an integer i with

1 ∙ i ∙ m , di®erent choices of i or r giving nonisomorphic digraphs.

4.3 The isomorphism problem

First consider the case when n = 2m . We assume that m ¸ 3 . It is well

known that U2m = h¡1 i ¢ h 5 i »= Z2 £ Z2m¡2 . For each i = 2; 3; :::;m; let

Si = f 1 + k2i j k = 0; 1; :::; 2m¡i¡1 g:
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Then S2; S3; :::; Sm consist of all subgroups of h 5 i . For each i = 2; :::;m¡ 1;

let

Ti = Si+1 [ f¡1 + k2i j 1 ∙ k ∙ 2m¡i¡1; k : odd g:

Then Ti is a subgroup of U2m such that jTij = jSij = 2m¡i . Let T be a

subgroup of U2m ; and let ¼ be the natural projection from U2m onto h 5 i .

Then T ¼ = Si; for some i = 2; 3; :::;m . Then there exits a homomorphism µ

from Si to h¡1 i=h¡1 i \ T such that T = f st j sµ = t ¢ h¡1 i \ T; s 2 Si g .

If T contains ¡1; then the only such homomorphism is trivial; therefore T

is the direct product of Si and h¡1 i . Suppose that T does not contain ¡1 .

If Sµi = h 1 i; then µ is the trivial homomorphism, and hence T = Si . If

Sµi = h¡1 i; it follows from Kerµ = Si+1 and Sµi = h¡1 i »= Z2 that T = Ti

for some i = 2; :::;m¡1 .

Consequently, we have the following lemma.

Lemma 4.3.1. fSi; Tj ; h¡1 i ¢Si j i = 2; 3; :::;m; j = 2; 3; :::;m¡1 g is the

set of all subgroups of U2m .

Let S be a subset of Z2m . For each positive integer l; de¯ne ¢l(S) by

¢l(S) := f (s1; s2; :::; sl) j s1; s2; :::; sl 2 S; s1 + s2 + ¢ ¢ ¢+ sl = 0 in Z2m g:

Let µ : Cay(Z2m; S) ¡! Cay(Z2m ; T ) be an isomorphism with 0µ = 0; and let

x0 = 0; x1 = s1; x2 = s1 + s2; :::; xl = s1 + s2 + ¢ ¢ ¢+ sl:
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De¯ne ti = xµi ¡ xµi¡1 for each i = 1; 2; :::; l: Then (t1; t2; :::; tl) 2 ¢l(T ): The

map (s1; s2; :::; sl) 7! (t1; t2; :::; tl) de¯nes a bijective map between ¢l(S) and

¢l(T ):

To each subset S of Z2m; we assign a positive number g(S) de¯ned by

g(S) = minf l j ¢l(S) 6= ; g:

Then we have:

Lemma 4.3.2. If Cay(Z2m ; S) »= Cay(Z2m ; T ) then j¢l(S)j = j¢l(T )j and

g(S) = g(T ) for each l .

We now calculate g(Si) and g(Ti) . We recall that

Si = f 1 + k2i j k = 0; 1; 2; :::; 2m¡i¡1 g:

Since 1+k2i ´ 1 mod 2i; it follows that g(Si) ´ 0 mod 2i; that is, g(Si) ¸ 2i .

We observe that

2m = (2i ¡ 1) + (1+(2m¡i¡1)2i) = 1 + 1 + ¢ ¢ ¢+ 1 + (1+(2m¡i¡1)2i):

Therefore g(Si) ∙ 2i , and so g(Si) = 2i .

We then consider g(Ti) . We also recall that

Ti = f1+k2i j 0 ∙ k ∙ 2m¡i¡1; k : eveng[f¡1+k2i j 0 ∙ k ∙ 2m¡i¡1; k : oddg:
Since ¡1 + k2i ´ 1 mod 2 and 1 + k2i ´ 1 mod 2 , we have g(Ti) ´ 0 mod 2 .

If t1; t2 2 Ti and t1 + t2 ´ 0 mod 2m , then ¡1 = t1t
¡1
2 in Ti ; this yields a
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contradiction since Ti does not contain ¡1 . Therefore g(Ti) ¸ 4 . However,

since

1 + 1 + (¡1 + 2i) + (¡1+(2m¡i¡1)2i) = 2m;

we get g(Ti) = 4 .

We summarize this observation as follows.

Lemma 4.3.3. (i) g(Si) = 2i; (ii) g(Ti) = 4; (iii) g(Si) = g(Ti) () i = 2 .

Fixing m , we denote

U := f (a; b; c; d) j a+b+c+d = k2m¡2; 0 ∙ a; b; c ∙ 2m¡2¡1; a; b; c; d; k : integers g;

X := f(a; b; c; 0) 2 Ug; Y := f(a; b; c; 2m¡2) 2 U g;

Z := f(a; b; c; d) 2 U j 1 ∙ d ∙ 2m¡2¡1g:

Let ¸ : X ¡! Y be a map de¯ned by (a; b; c; 0)¸ = (a; b; c; 2m¡2): Then ¸ is

bijective, and so

jXj = jY j:

Let (a; b; c; d) be an element of Y [Z: Then 1+4a; 1+4b; 1+4c; 1+4(d¡1)

are contained in S2 and (1+4a) + (1+4b) + (1+4c) + (1+4(d¡1)) = k2m = 0

in Z2m : Therefore, we have that (1+4a; 1+4b; 1+4c; 1+4(d¡1)) 2 ¢4(S2):

The map ¹ : Y [ Z ¡! ¢4(S2) de¯ned by

(a; b; c; d)¹ = (1+4a; 1+4b; 1+4c; 1+4(d¡1))
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is bijective, and hence jY [ Zj = j¢4(S2)j:
Let (x1; x2; x3; x4) be an element of ¢4(T2): Since x1+x2+x3+x4 = k2m

and either xi ´ 1 mod 4 or xi ´ ¡1 mod 4; there exists a permutation ¾ on

f1; 2; 3; 4g such that x¾(1) ´ x¾(2) ´ 1 mod 4; and x¾(3) ´ x¾(4) ´ ¡1 mod 4:

De¯ne

y1 = (x¾(1)¡1)=4; y2 = (x¾(2)¡1)=4; y3 = (x¾(3)+1)=4; y4 = (x¾(4)+1)=4:

The map (x1; x2; x3; x4) 7! (y¾¡1(1); y¾¡1(2); y¾¡1(3); y¾¡1(4)) de¯nes an injec-

tive map from ¢4(T2) into X [ Z: Since (y1; y2; y3; y4) cannot be equal to

(0; 0; 0; 0); this map is not surjective. Therefore j¢4(T2)j < jX[Zj = jY [Zj
= j¢4(S2)j:

Thus we have:

Lemma 4.3.4. j¢4(S2)j > j¢4(T2)j:

Even though, it is not necessary to give the exact values of j¢4(S2)j and

j¢4(T2)j for the proof of the isomorphism theorem, we calculate the numbers

here:

Remark 4.3.5. (1) j¢4(S2)j = 23m¡6; (2) j¢4(T2)j = 3 ¢ 23m¡8:

Proof. (1) Let S(m; k) = f(x1; x2; x3; x4) jx1 + x2 + x3 + x4 = k2m¡2 ¡ 1;

0 ∙ x1; x2; x3; x4 ∙ 2m¡2¡1g and let H(m; k) = f(x1; x2; x3; x4) jx1+x2+x3+x4

= k2m¡2 ¡ 1; 0 ∙ x1; x2; x3; x4 ∙ k2m¡2 ¡ 1g:
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Then it is well-known that jH(m; k)j =2+k2m¡2 Ck¢2m¡2¡1:

Let a = 1 + 4x1; b = 1 + 4x2; c = 1 + 4x3; d = 1 + 4x4: Then

a+ b+ c+ d = 4 + 4(x1 + x2 + x3 + x4) = k ¢ 2m; k = 1; 2; 3: Since

¢4(S2) = f(a; b; c; d) j a; b; c; d 2 S2; a+ b+ c+ d = 0 in Z2mg;

where S2 = f1 + 4k j 0 ∙ k ∙ 2m¡2 ¡ 1g , it follows that (a; b; c; d) 2 ¢4(S2)

if and only if

x1+x2+x3+x4 = k2m¡2¡1; where 0 ∙ x1; x2; x3; x4 ∙ 2m¡2¡1; k = 1; 2; 3:

Thus

j¢4(S2)j = jS(m; 1)j+ jS(m; 2)j+ jS(m; 3)j:

By the straightforward calculation, we see that

H(m; 1) = S(m; 1); jH(m; 2)j = jS(m; 2)j+ 4jS(m; 1)j and

jH(m; 3)j = jS(m; 3)j+ 4jS(m; 2)j+ 10jS(m; 1)j:

This yields that j¢4(S2)j = jS(m; 1)j+ jS(m; 2)j+ jS(m; 3)j = 23m¡6:

(2) Recall that ¢4(T2) = f(x1; x2; x3; x4) jx1; x2; x3; x4 2 T2; x1+x2+x3+x4

= 0; in Z2mg; where T2 = f1+4k j 0 ∙ k ∙ 2m¡2¡1; k is even g [f¡1+4k j
0 ∙ k ∙ 2m¡2 ¡ 1; k is odd g:

Let T2(e) = f1 + 4k j 0 ∙ k ∙ 2m¡2 ¡ 1; k is even g and let

T2(o) = f¡1+4k j 0 ∙ k ∙ 2m¡2¡1; k is odd g: Then T2 = T2(e)[T2(o):

Therefore, if (x1; x2; x3; x4) 2 ¢4(T2); then two elements of fx1; x2; x3; x4g are

in T2(e) and two elements of fx1; x2; x3; x4g are in T2(o):
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De¯ne

yi =

8>><>>:
xi¡1

4
if xi 2 T2(e)

xi+1
4

if xi 2 T2(o)

If (x1; x2; x3; x4) 2 ¢4(T2); then we have x1 + x2 + x3 + x4 = k2m; where

x1; x2; x3; x4 2 T2; k = 1; 2; 3 and so x1+x2+x3+x4 = 4(y1+y2+y3+y4) = k2m;

where 0 ∙ y1; y2; y3; y4 ∙ 2m¡2 ¡ 1; k = 1; 2; 3:

Therefore y1 + y2 + y3 + y4 = k2m¡2; where 0 ∙ y1; y2; y3; y4 ∙ 2m¡2 ¡ 1;

k = 1; 2; 3; two elements of fy1; y2; y3; y4g are even, and two elements of

fy1; y2; y3; y4g are odd.

De¯ne

H(m; k) = f(x1; x2; x3; x4) jx1+x2+x3+x4 = k2m¡2; 0 ∙ x1; x2; x3; x4 ∙ k2m¡2g;
T (m;k) = f(y1; y2; y3; y4) j y1+y2+y3+y4 = k2m¡2; 0 ∙ y1; y2; y3; y4 ∙ 2m¡2¡1g;
Te(m; k) = f(y1; y2; y3; y4) 2 T (m; k) j y1; y2; y3; y4 : even g and

To(m; k) = f(y1; y2; y3; y4) 2 T (m;k) j y1; y2; y3; y4 : odd g .

Then j¢4(T2)j =
3X
k=1

jT (m; k)j ¡
3X
k=1

jTe(m; k)j ¡
3X
k=1

jTo(m; k)j and

jH(m; k)j =3+k2m¡2 Ck2m¡2 :

With the straightforward calculation, we have

jH(m; 1)j = jT (m; 1)j+ 4; jH(m; 2)j = jT (m; 2)j+ 4jT (m; 1)j+ 10

and jH(m; 3)j = jT (m; 3)j+ 4jT (m; 2)j+ 10jT (m; 1)j+ 20:

We then have
3X
k=1

jT (m;k)j = 23m¡6 ¡ 1:
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We now consider
3X
k=1

jTe(m;k)j . Let z1 = y1

2
; z2 = y2

2
; z3 = y3

2
; z4 = y4

2
:

Then z1 + z2 + z3 + z4 = k2m¡3; 0 ∙ z1; z2; z3; z4 ∙ 2m¡3 ¡ 1 . Hence

jTe(m;k)j
= jf(z1; z2; z3; z4) j z1 + z2 + z3 + z4 = k2m¡3; 0 ∙ z1; z2; z3; z4 ∙ 2m¡3 ¡ 1gj
= jT (m¡ 1; k)j:

Therefore
3X
k=1

jTe(m;k)j =
3X
k=1

jT (m¡ 1; k)j = 23(m¡1)¡6 ¡ 1 = 23m¡9 ¡ 1:

We want to know
3X
k=1

jTo(m;k)j:

Let z1 = y1¡1
2
; z2 = y2¡1

2
; z3 = y3¡1

2
; z4 = y4¡1

2
: Then we have

z1 + z2 + z3 + z4 = k2m¡3 ¡ 2; 0 ∙ z1; z2; z3; z4 ∙ 2m¡3 ¡ 1:

We observe that jTo(m; 1)j = jH(m¡ 1; 1)j: Since

jTo(m; 2)j
= jf(z1; z2; z3; z4) j z1 + z2 + z3 + z4 = 2m¡2¡ 2; 0 ∙ z1; z2; z3; z4 ∙ 2m¡3¡ 1gj;
jH(m¡ 1; 2)j = 4jTo(m; 1)j+ jTo(m; 2)j: If k = 3 , then

jTo(m; 3)j
= jf(z1; z2; z3; z4) j z1+z2+z3+z4 = 3¢2m¡3¡2; 0 ∙ z1; z2; z3; z4 ∙ 2m¡3¡1gj;

and so jH(m¡ 1; 3)j = jTo(m; 3)j+ 4jTo(m; 2)j+ 10jTo(m; 1)j:
Therefore, we have

3X
k=1

jTo(m;k)j = 23m¡9:

Since j¢4(T2)j =
3X
k=1

jT (m; k)j ¡
3X
k=1

jTe(m; k)j ¡
3X
k=1

jTo(m; k)j; we have

j¢4(T2)j = 23m¡6 ¡ 1¡ (23m¡9 ¡ 1)¡ 23m¡9 = 23m¡6 ¡ 23m¡8 = 3 ¢ 23m¡8:

50



Consequently, j¢4(S2)j = 4 ¢ 23m¡8 > 3 ¢ 23m¡8 = j¢4(T2)j .

We are now ready to give the proof of Theorem 4.2.2 for the case when

n = 2m; pm or 2pm for an odd prime p .

We ¯rst consider the case when n = 2m; m ¸ 3: Let S and T be sub-

groups of Un . Suppose that the corresponding Cayley digraphs are isomorphic.

Then of course jSj = jT j . If the Cayley digraphs are undirected, then both S

and T contain ¡1 , and hence S = T = h¡1 iSi for some i = 2; 3; :::;m , by

Lemma 4.3.1. We then assume that the Cayley digraphs are not undirected.

Then neither ¡1 2 S nor ¡1 2 T . Suppose that S 6= T . From Lemma 4.3.1,

we may assume that S = Si and T = Ti for some i = 2; 3; :::;m¡1 . If i > 2

then g(S) = 2i > 4 = g(T ) by Lemma 4.3.3; this is a contradiction to

Lemma 4.3.2. Therefore i = 2 . By Lemma 4.3.4, j¢4(S2)j 6= j¢4(T2)j , which

yields a contradiction by Lemma 4.3.2. Consequently S = T .

We now consider the other cases when n = 2; 4; pm; or 2pm for odd prime

p . In these cases Un is cyclic. Therefore if jSj = jT j then S = T . This

completes the proof.

The method we applied for this special case may not be applied to yield

a proof for general case, namely for arbitrarily given number n . Our isomor-

phism problem was solved in the author's joint paper [38] by using some basic

properties of Schur ring theory, and we describe it here.
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We will prove the following:

Lemma 4.3.6. If two connected normal edge-transitive circulant digraphs

Cay(Zn; S) and Cay(Zn; T ) are isomorphic, then they are Cayley isomorphic.

We note that Klin and PÄoschel in [20] ¯rst applied the method of Schur

rings to solve isomorphism problems of circulant digraphs and they succeeded

in solving the isomorphism problem for circulant digraphs of odd prime-power

order in [20]. We also note that our isomorphism theorem may be an immedi-

ate consequence of Toida Conjecture; after the ¯rst version of this thesis was

written, we just realized that Toida Conjecture was very recently proved.

Let G = Zn be the cyclic group order n . For the conveniency, we shall

use the multiplicative notation for the cyclic group Zn . So 1 , rather than 0,

denotes the identity element of Zn . We also choose a generator x , so that

G = Zn = f1; x; x2; :::; xn¡1g .

Let X = Cay(G;S) be a Cayley digraph of G on a subset S . Let A be

the automorphism group of the digraph X and let A1 be the subgroup of all

automorphisms of X that ¯x 1 . Let S1; S2; :::; Sk be all orbits of the natural

action of A1 on G . Let Z[G] be the group ring of G over the integer ring

Z , which consists of the formal sums
P

g2G cgg; where cg are integers.

For each subset T = ft1; t2; :::; tsg of G , we denote t1 + t2 + ¢ ¢ ¢ + ts

by T and call it a simple quantity. Then the transitivity module Z(G;A1)
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belonging to A1 is the module generated by S1; S2; :::; Sk , which are called

the basic quantities. It is known as Schur's fundamental theorem (see [40])

that the transitivity module is a subring of the group ring.

Let X = Cay(G;S) and Y = Cay(G; T ) be isomorphic circulant digraphs

with automorphism groups A and B , respectively. Let ¸ : G ¡! G be an

isomorphism of X onto Y such that 1¸ = 1 . Since A is vertex-transitive

we can choose such ¸ . Obviously, we have B = ¸¡1A¸ and B1 = ¸¡1A1¸ is

the group of all automorphisms of Y that ¯x 1 . The isomorphism ¸ extends

to a linear operator of Z(G;A1) onto Z(G;B1) . Of course ¸ sends each

simple quantity of Z(G;A1) to a simple quantity of Z(G;B1) . Let y be an

element of G and let R(y) be the right regular representation of y de¯ned

by zR(y) = zy for all z in G .

Then (Siy)
¸ = (Si)

R(y)¸R((y¸)¡1)¸¡1¸R(y¸) = (Si)
®¸R(y¸) = (Si)

¸y¸ where

® = R(y)¸R((y¸)¡1)¸¡1 is an automorphism of X such that 1® = 1 . Since

(Si ¢ y)¸ = (Siy)
¸ , we have (Si ¢ y)¸ = (Si)

¸ ¢ (y)¸ . This implies that the

linear operator ¸ preserves multiplication of the subring, and so ¸ is a ring-

isomorphism between Z(G;A1) and Z(G;B1) .

Let a be an automorphism of G . Let S = s1+s2+¢ ¢ ¢+st: Then we denote

Sa = s1
a+s2

a+¢ ¢ ¢+sta; and we also denote S(m) = sm1 +sm2 +¢ ¢ ¢+smt for each

positive integer m . We want to show (Sa)¸ = (S¸)a for each simple quantity

S of Z(G;A1) by using the same idea of the proof of Theorem 23.9(a) in [40].
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It is enough to prove that (S(p))¸ = (S¸)(p) for each prime p in Un . Since

(S)p ´ S(p) mod p , we have (S¸)p = (Sp)¸ ´ (S(p))¸ mod p . On the other

hand, S¸ is a simple quantity of Z(G;B1) and hence (S¸)p ´ (S¸)(p) mod p .

Thus (S¸)(p) ´ (S(p))¸ mod p . We know that both sides of the congruence

are simple quantities. Therefore (S¸)(p) = (S(p))¸ and so we have done. Since

S¸ = T , we have the following immediate consequence of this observation.

Lemma 4.3.7. If Cay(Zn; S) and Cay(Zn; T ) are isomorphic, then the fol-

lowing holds. Aut(Zn; S) = Aut(Zn; T ) .

Now let X = Cay(Zn; S) and Y = Cay(Zn; T ) be isomorphic connected

normal edge-transitive circulant digraphs. From the proof of Theorem 4.2.1

we have known that X and Y are Cayley isomorphic to Cay(Zn; S
0) and

Cay(Zn; T
0) respectively for some subgroups S0 and T 0 of Un . Then by

Lemma 4.3.7, Aut(Zn; S
0) = Aut(Zn; T

0) , that is S 0 = T 0 . This completes

the proof of Lemma 4.3.6, and so Theorem 4.2.2 is now proved.

Now we will give a proof of Theorem 4.2.3.

Let p be an odd prime. Then Upm is a cyclic group of order (p¡1)pm¡1 .

Let S be a subgroup of Upm and let B be the Sylow p -subgroup of S . Then

B = f 1 + kpi j k = 0; 1; 2; :::; pm¡i¡1 g for some integer i = 1; 2; :::;m and

jBj = pm¡i .

Let M := f kpi j k = 0; 1; 2; :::; pm¡i¡1 g . Then M is the subgroup of
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Zpm of order pm¡i , and B = 1 +M . We see that

S = [a2S aB = [a2S a(1 +M) = [a2S (a+M):

So S is a union of coset of M in Zpm . Let r denote jS=Bj , which is a divisor

of p¡1 . If a +M = a0 +M for some a; a0 in S , then a¡1a0 2 1 +M = B;

and so aB = a0B . Therefore jS=M j = r . By Lemma 4.1.5, we have

Cay(Zpm ; S) = Cay(Zpm=M;S=M)[pm¡iK1]:

We want to show that

Cay(Zpm=M; S=M) »= X(pi; r):

Let µ : Zpm ¡! Zpi be the natural homomorphism, namely xµ ´ x mod

pi . Then Kerµ = M and Sµ is a subgroup of Upi since µ preserves the

multiplication as well. The homomorphism µ induces the isomorphism ¹µ

from Zpm=M onto Zpi . Note that (S=M)
¹µ = Sµ . Therefore ¹µ is also an

isomorphism between Cay(Zpm=M;S=M) and Cay(Zpi; Sµ) . Since Sµ is the

unique subgroup of order r in Upi , it follows that Cay(Zpi; Sµ) = X(pi; r) .

The proof of (i) of the theorem is now complete.

We then consider (ii) of the theorem. We ¯rst assume that m ¸ 3 . Let

S be a subgroup of U2m . Then S is one of those listed in Lemma 4.3.1.

Write B for S \ h 5 i . Then B = f 1 + k2i j k = 0; 1; :::; 2m¡i¡1 g for

some i = 2; 3; :::;m . Let M := f k2i j k = 0; 1; 2; :::; 2m¡i¡1 g . Then
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M is a subgroup of order 2m¡i of Z2m . Since B = 1 + M , S is a

union of some cosets of M in Z2m . In fact either i) S = 1 + M , or

ii) S = (1 + M) [ (¡1 + M) , or iii) S = (1 + M) [ (¡1 + 2i¡1 + M) ,

3 ∙ i ∙ m from Lemma 4.3.1. Let µ : Z2m ¡! Z2i be the natural ho-

momorphism such that xµ ´ x mod 2i . Then Kerµ = M , and Sµ = f1g
for i), Sµ = f1;¡1g for ii) and Sµ = f1;¡1 + 2i¡1g , 3 ∙ i ∙ m for iii).

Since Cay(Z2m=M;S=M) »= Cay(Z2i; Sµ) , it follows from Lemma 4.1.5 that

Cay(Z2m ; S) »= Cay(Z2i ; Sµ)[2m¡iK1]; where i varies from 2 to m for i) and

ii), while i does from 3 to m for iii).

We observe that Cay(Z2i; Sµ) = X(2i; 1); 2 ∙ i ∙ m for i), Cay(Z2i; Sµ) =

X(2i; 2); 2 ∙ i ∙ m for ii), and Cay(Z2i; Sµ) = X(2i; 3); 3 ∙ i ∙ m for iii).

Consequently Cay(Z2m ; S) »= X(2i; j)[2m¡iK1] where 3 ∙ i ∙ m , 1 ∙ j ∙ 3 ,

or i = 2; j = 1; 2 . For m = 2 or 1 , S = f1g , or S = f1;¡1g , and so

Cay(Z2m ; S) = X(2m; j) where 1 ∙ j ∙ m . This proves (ii) of the theorem.

4.4 Cayley Isomorphisms for circulant digraphs

In this section, we consider Cayley Isomorphism Problem for ¯nite circulant

digraphs. We recall that a Cayley digraph Cay(G;S) is called a CI-digraph

of G if for each Cayley digraph Cay(G; T ) isomorphic to Cay(G;S) , there

exists ¾ 2 Aut(G) such that S¾ = T .
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We outline the Huang and Meng's observation in [19] with slightly di®erent

elucidation.

Let G be a ¯nite cyclic group, written additively and let S be a Cayley

subset of G , namely a subset not containing the identity element 0 . Let K

be the set f a 2 G j a+S = S g . Then it is easy to show that K is a subgroup

of G . In fact, K is the largest subgroup of G such that S is a union of some

cosets of K in G . We denote the subgroup by Int(S) .

Let M be a subgroup of the cyclic group G . A partition S = S1[S2 of a

Cayley subset S is called an M -partition if M is a subgroup of Int(S1) and

M contains S2 . An M -partition is maximal if S has no M -partition for all

subgroup containing M .

The following theorem has been given by Huang and Meng in [19].

Theorem 4.4.1. Let G be a ¯nite cyclic group and let S be a Cayley subset

of G . If S = S1 [S2 is a maximal M -partition for a nontrivial subgroup M

of G , then Cay(G;S) is a CI-digraph of G if and only if both Cay(G;S1) and

Cay(G;S2) are CI-digraphs of G and hAut(G;S1);Aut(G;S2) i = Aut(G) .

It is unhappy that this theorem does not tell us anything if S2 = ? ; the

case is, in fact, when Int(S) = M is nontrivial. To complement it we observe

the following theorem.
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Theorem 4.4.2. Let G be a ¯nite cyclic group and let S and T be a Cay-

ley subset of G . If Cay(G;S) »= Cay(G; T ) , then Int(S) = Int(T ) and

Cay(G=Int(S); S=Int(S)) »= Cay(G=Int(S); T=Int(S)) .

Proof. Let ' : Cay(G;S) ¡! Cay(G;T ) be an isomorphism from the Cayley

digraph Cay(G;S) onto the Cayley digraph Cay(G; T ) with 0' = 0 . Let

K := Int(S): Then Int(T ) = K' . Since G is cyclic, of course K' = K , and

so Int(S) = Int(T ) ; in particular, K® = K for each ® in Aut(Cay(G;S))

with 0® = 0 . Note that ®0 := R(x)'R(¡x')'¡1 for each x in G is an

automorphism of Cay(G;S) such that 0®0 = 0 . Therefore, K®0 = K . Thus

(K + x)' = KR(x)'R(¡x')'¡1'R(x') = K®0'R(x') = K + x':

Consequently, ' maps each coset of K to a coset of K . This implies that '

induces an isomorphism from Cay(G=K;S=K) onto Cay(G=K;T=K) .

As a consequence of the above theorem, we have the following, which com-

plements Huang and Meng's Theorem:

Corollary 4.4.3. Let Cay(G;S) be a Cayley digraph of a ¯nite cyclic group

G with Int(S) = K . If Cay(G=K;S=K) is a CI-digraph of G=K , then

Cay(G;S) is a CI-digraph of G .

Proof. Let G = Zn be a cyclic group of order n , written additively. Assume

that Cay(G=K; S=K) is a CI-digraph of G=K . Let Cay(G; T ) be a Cayley

digraph such that Cay(G;S) »= Cay(G; T ) . From the above theorem, we have
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Cay(G=K;S=K) »= Cay(G=K; T=K) . Since Cay(G=K; S=K) is a CI-digraph,

we have (S=K)® = T=K for some ® in Aut(G=K) . Then (K + 1)® = K + r

for some positive integer r relatively with m := jG=Kj . It is routine to show

that the map 1 7! r induces an automorphism ¯ of G such that S¯ = T .

Consequently, Cay(G;S) is a CI-digraph of G .
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