CMOS

S S IMT

2002 2

CMOS

S S IMT

2002 2

2001 12 26

() () ()

Abstract

1.			1
2. S S	SIMT		3
2.	1 SSIMT		3
	2.1.1		3
	2.1.2	SSIMT	6
2.	2 SSIMT		9
	2.2.1		9
	2.2.2 SSIMT		9
	2.2.3 SSIMT		15
	2.2.4 SSIMT		21
3.			23
3.	1		23
3.	2		24
	3.2.1		24
	3.2.2		26
	3.2.3		30
	3.2.4		33
	3.2.5	(LPF)	34
	3.2.6		36
	3.2.7 A/D		38
3.	3		43
4.			49
			50

Integration of SSIMT using a CMOS Process

Youn-Gui Song

Department of Electronic Engineering, Graduate School. Pukyong National University

Abstract

A SSIMT (Suppressed Sidewall Injection Magnetotransistor) sensor with high linearity is presented in this thesis. This integrated SSIMT sensor is consists of SSIMT, amplifiers, chopper stabilization driving circuit, CMOS on-chip current reference circuit, LPF and A/D Converter.

The prototype is fabricated by using the Hynix 0.6µm P-substrate twin-well double poly three-metal CMOS Process.

The fabricated SSIMT shows that variation of the collector current is extremely linear by varing the magnetic flux density from -200mT to 200mT at $I_B = 500\mu$ A, $V_{CE} = 2V$ and $V_{SUB} = 5V$. The relative sensitivity is up to 120%/T. At B = 0, magnetic offset is about 79mT, there relative sensitivity is 30.5%/T. The nonlinearity of the fabricated SSIMT is measured about 1.4%.

The pre-amplifier and output-amplifier has the gain of 100 and 30, respectively. Also, the behavior of 8bit two-step flash A/D converter designed in this thesis is fine.

•

(System on a Chip; SoC) 기

가

.[2] 가 CMOS , 가 .

가 , , , , , , . 가 .

가 , 가 가 . 가

- 1 -

가 , 가 가 가 . 가 . ,

SSIMT (Suppressed Sidewall Injection Magnetotransistor) 1987 Lj, Ristic ,

가 substrate가

guard ring

• •

가

,

•

,

,

,

•

(LPF)

.

•

7 ! ? ! ! MCU(Microcontroller Unit)8 two-Step A/D

SSIMT ± 200[mT]

2. **S** S IM T

2.1 SSIMT

2.1.1

SSIMT	(Suppressed	Sidewall	Injecton	Magnetotr	ansistor)		
	(Lateral Magnetotransistor; LMT)						
1987 Lj	, Ristic		[3]	SSIMT			
Sidewall					가		
	,						
				가	가		
. Ristic	MOS	SSIM	Т	,			
		[4] •					
	SSIMT	가	2.1		. SSIMT		
					, C ₁		
		, C₂가					
subs	strate가				. SSIMT		
가	2.2	. SSI	MT				
					,		
			가		p^+		
					1		
	가.						
	$C_1, C_2,$	Csub	_				
	7F 7F	Csub	·				
				$\mathbf{C}_1 = \mathbf{C}_2$, 7ŀ		
			,	C_1, C_2	21		
			- 3 -				

SSIMT

•

$$(\mathbf{S}) = \frac{|\Delta I_{c1}| + |\Delta I_{c2}|}{I_{c1} + I_{c2}} - \frac{100}{B} (\% / T)$$
(1)

Ristic		SSIM	T MOS			,	•
Ristic	SSIMT	NPN	SSIMT	가			
PNP	SSIMT						Ristic
					가		

		Ristic			3000%/T	
가		[4] •	, 7mA		가	
				가		•
			PNP	SSIMT	NPN	SSIMT
	가			,		
		가		[4]		

2.1 SSIMT

2.2 SSIMT 가

2.1.2 **SSIMT**

SSIMT sidewall sidew all guard ring • , NPN SSIMT N-well n^+ substrate • , 2.3 SSIMT , . SSIMT 2.3(a) 2.3(b) , • 7 50[μm] × 120[μm] , , $12[\mu m] \times 12[\mu m]$ • gaurd ring sidewall 3.3[µm], 12[µm] 6[µm] SSIMT P-substrate p^+ , N-well n^+ , substrate n^+ sidewall p^+ N-well n^+ gurad ring substrate, P-sub N-sub , • TR 가 SSIMT NPN .

. Ic1, Ic2, Isub . N-well $4[\mu m]$ substrate . 7 N-well substrate ,

.

guard ring

sidewall			
	, sidewall		
SSIMT 가	LMT		•
SSIMT	,	guard ring	sidewall

(b) SSIMT

(c) SSIMT

2.2.1

2.1 2.2 SSIMT 7 SSIMT . , SSIMT SSIMT 3

 V_{SE}

I_B

.

2.2.2 SSIMT

SSIMT

•

,

•

, $Q_1 = Q_2$

C₁ **C**₂

- 9 -

$$I_{C} = (I_{C1} + I_{C2}) / 2$$

1)
$$I_{C} - V_{CE}$$

 $I_{C} - V_{CE}$, $V_{SE} = 10V$, I_{B} (2.5)
 $I_{sub} - V_{SE}$, $V_{CE} = 2V$, I_{B} (2.6)
 $I_{C} - V_{SE}$, $V_{CE} = 2V$, I_{B} (2.7)
 $I_{sub} - V_{CE}$, $V_{SE} = 10V$, I_{B} (2.8)

2)
$$I_{C} - I_{B}$$

 $I_{C} - I_{B}$, $V_{CE} = 2V$, $V_{SE} = 10V$ (2.9)
 $I_{sub} - I_{B}$, $V_{CE} = 2V$, $V_{SE} = 10V$ (2.10)

SSIMT	I _C			2.5	2.7	
. I _C	IB	가		가	V _{CE}	가
가		11	1			
		SSIN	TM			V _{CE}
2V				2V		
V _{SE} I _C		1V	V_{SE}			가
5V	가		V	' _{SE}	5V	
V _{CE} V _{SE}		I sub	フ	ŀ		I_B
가		가	, SSIMT			
가 substrate						

SSIMT I_C ? I_B ? V_{CE} I_B ?substrate I_{sub} ?? I_B I_{sub} ??

. .

2.5 $I_c - V_{CE}$

2.6 I_{sub} - V_{SE}

2.7 $I_c - V_{se}$

2.8 I sub - V CE

2.9 $I_c - I_B$

2.10 I_{sub} - I_B

2.2.3 SSIMT

SSIMT

,

(SM-1515A)

2.12 SSIMT $I_{\rm B} = 500 \mu \text{A},$ $V_{\text{CE}} = 2V \qquad V_{\text{SE}} = 5V$ 가 $\pm 200 \text{mT}$. 가 $\pm 200 \text{mT}$. 가 Ic2 7 Ic 1 $\Delta I_{C} = I_{C2} - I_{C1}$. ΔI_{c} 2.13 • 가 가 . B = 79mT $I_{C1} = I_{C2}$ SSIMT 가 , Ic 1 Ic 2 79mT . 30.5% • 1. SSIMT , , 2.14 가 가 . 가 가 • 가 가 가

. SSIMT

,

substrate

,

	가		가			
			가			
	5mA					
		\mathbf{I}_{C1} \mathbf{I}_{C2}				500 µA
		Vce	2V	V_{sub}	5V	
•						
	2.15					
	가		가		가	
		2 16	71			

,	2.16	가	
	가		
2. 17			
가			

가	가	

2. 15

- 20 -

2.2.4 SSIMT

	,	SSIMT	79mT		
	. SSIMT				가
	I _E r	R			
	가				
				2. 18	
			가		
가			2. 19	가	
			가		가
	가				

2.19

3.1

SSIMT			가
		,	,
			, SSIMT
	IB		, SSIMT
		,	
		,	
	,		A/D
		ç	SSIMT
		가가 MCU	(Microcontroller
Unit)		A/D	
	SSIMT	가	
Cadence	,		
HSPICE			SSIMT 가
	Hynix	"0.60 μm P- subs	trate, twin-well
double-poly three-meta	al CMOS"	,	•

- 23 -

A/D

.

,

,

3.2.1

3.2(a)

- 25 -

3.2(b)

3.2.2

,

,

가

. SSIMT 가 • substrate 가 . 가 가 가 . CMOS • 가 3.3 가 , 가 0.5[mA] , [5] 가 1. 가 3.4 A MN1-MN4 MOS MP1 (channel) \mathbf{I}_1 MOS 4 T1, T2 MP1 . NMOS MN5 MN6 • •

•

- 27 -

가

I₂, I₃ MP2-MP4, MP9 I₄ $.^{[5]}$

•

$$I_{4} = I_{3} - I_{2}$$

$$= \frac{1}{2} \mu_{n} C_{OX} \frac{1}{L_{MN5}} (W_{MN6} (V_{T1} - V_{thn})^{2} - W_{MN5} (V_{T2} - V_{thn})^{2})$$

$$= \frac{1}{2} \mu_{n} C_{OX} \frac{1}{L_{MN5}} (W_{MN6} (3V_{thn})^{2} - W_{MN5} (V_{thn})^{2})$$

$$= \frac{1}{2} \mu_{n} C_{OX} \frac{V_{thn}^{2}}{L_{MN5}} (9 W_{MN6} - W_{MN5})$$

$$I_{4} (2) NMOS$$

$$T^{-1.5}$$

$$NMOS - 1[mV/] 7!$$

I₄ (3)

$$\frac{I_4}{T} = I_4 \left(\frac{1}{\mu_n} - \frac{\mu_n}{T} + \frac{2}{V_{thn}} - \frac{V_{thn}}{T} \right) < 0$$
(3)

•

가

$$I = \frac{2 L_{N9}}{R^2 \mu_n C_{OX} W_9} \left(1 - \frac{1}{\sqrt{A}}\right)^2$$
(4)

.

.

.

$$, (A = \frac{W_8}{L_8} / \frac{W_9}{L_9}).$$
(4) $7 - 7 - 7$

가

(5)

$$\frac{I_{5}}{T} = \frac{I}{\mu_{n}} \frac{\mu_{n}}{T} + \frac{I}{R} \frac{R}{T} > 0$$

$$\left(\frac{1}{\mu_{n}} \frac{\mu_{n}}{T} \gg \frac{-2}{R} \frac{R}{T}\right)$$

$$(3) \quad (5)$$

$$7 + ,$$

$$7 + ,$$

$$.^{[5]}$$

$$3.5$$

(multiplexer)

3.6

.

,

SSIMT

0.5[mA]

3.2.3 SSIMT

 71
 ,

 S/N
 . CMRR

•

3.7

(instrumentation)

•

$$R2 = R3$$

$$A = 1 + 2\frac{R2}{R1}$$
(7)

3.8 SSIMT 7 0 1[mV] , 100

가

.

3.2.4

•

S SIMT

SSIMT

.

가 . 1/ f

•

,

3.2.5 (LPF) SSIMT

- 34 -

•

.

[10]

.

$$f_{c} = \frac{1}{2\pi R C} [\text{Hz}]$$
(8)

.

(chopper frequency) 120[kHz]

SSIMT

(capacitance) (resistance) 3.478 [kHz] 3.11 .

3.478 [kHz]

3.11 (LPF)

3.2.6

2		1	0
3	•	T	4

3.13

	30	, V	Joffset			
				가	3.1	13
					0	100[mV]
가	A/D		0	3[V]		
. A/D					가 가	

3.2.7 A/D

		SSIMT					
•	,	가 가	MCU(Mi	crocontroll	er Unit)		
		A/D					8
	two-step	A/D					
		two-	step	А	/ D		
,						two-ste	p
A/D			8	10			
		가			[11]	A/D	
						,	
		가		가			
		Two-st	ep A/D			A/D	
				A/]	D		
				가			
	[12]						
		two-	step A/D			3.14	
				(Sample-	and-Hold	Amplifier	:

SHA),	A/I)	(coarse fl	ash AD	C), D/A	(D	vigital
to Analo	g Converter :	DAC),				A/D	
(fine flas	sh ADC)	. t	wo-step A	A/D			
			,			A/D	
	A/D					A/	D
	MSB _s			А	./ D	LS	SBs
		ϕ_1	ϕ_2				
SHA					(samplin	ıg)	
	(hold	ing)			ϕ_1	low	
SHA			, ϕ_1 h	igh			
	A/D	SHA	(V _A)		MSB _s	
, MS	SB _s D/A					(V_B)	
	. D/A					(V_B)	
3.15(a)	SHA	(V _A)		7	ŀ	
		V _A	, V _B		,		A/D
					3.15 (b)	ļ	,
				ϕ_2 가	high		
A/D							
	LSB _S		two-st	ep A/D)		
	A/D			i	MSB _s		
			A/D			L S	B _S
						_	
	71		SHA	two-	-step A/I)	
	~1						

- 39 -

3.14 two-step A/D

3.15 two-step A/D

two-step A/D 2 A/D A/DA/D3.16 . , , N 가 A/D, 2^N - 1 2^N 가 가 . 0 1, A/D1 [13] (thermometer code) 가 A/D, A/D. A/D(logic) 가 V_{REF} , . 가 가 (monotonicity) [14] DNL(differential nonlinearity) , A/D 가 A/DΝ . 2^N 가 A/D 8 A/D. [14],[15] 4 A/DA/D.

3.16 A/D

•

3.17	8	Two-step	A/D		
		SSIMT			가 0[V]
3[V]	가				O[V]
3[V]	-	የት		8	

3.17 A/D

•

. 3. 22

가

3. 18 SSIMT

(b)

3.19

3.20 A/D

3.21

3.22

CMOS SSIMT, SSIMT MCU , A/D SSIMT , • **±** 200mT SSIMT , 79mT , 120%/T. 30.5%/T 가 . 가 \mathbf{I}_{B} . 가 가 가 I/V 100 , 1.4% 10m V 1V 100 .

(LPF) 3.4khz , 100mV 3V 30 . , A/D , SSIMT , SSIMT , ,

, A/D MCU 가 가 .

- 49 -

- W. Gopel, J. Hesse, J. N. Zemel, "Sensors", Vol. 5, VCH, pp. 45-52, 1989.
- [2] S.M. Sze, "Semiconductor Sensors", Wiley-Interscience, New York, pp. 473-475, 250 1994.
- [3] L. Ristics, H. Baltes, T. Smy, and I. Filanovsky, "Suppressed sidewall injection Magnetotransistor with Focused Emitter Injection and Carrier Doubledeflection", IEEE Electron device Lett., EDL-8 pp. 395-397, 1987.
- [4] Lj. Ristic "Magnetic Field Sensors Based on Lateral Magnetotra nsitors " pp. 239, 253, 257.
- [5] Min-Gyu Kim, Seung-Hoon Lee, Shin-II Lim, "A CMOS On-Chip Current Reference Circuit",電子工學會論文誌 第 33 券 A編 第 4號 pp. 702-707, 4月. 1996.
- [6] Philip E. Allen, Douglas R. Holberg, "CMOS Analog Circuit Design", Saunders college publishing, pp. 490-495, 1987.
- [7] K. Hsieh et al., "A low-noise chopper stabilized differential switched capacitor filtering technique", IEEE J. Solid-State Circuits, vol. SC- 16, no. 6, pp. 708-715, DEC.
- [8] C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing correlated double sampling and chopper stabilization." proc. IEEE, vol. 84, pp. 1584-1613, Nov. 1996.

- [9] C. C. Emz et al., "A CMOS chopper amplifier", IEEE J. Solid-State Circuit, vol. sc-22, pp. 335-341, June. 1987.
- [10] A. S. Sedra, K. C. Smith, "Microelectronic Circuit", Third Edition, Saunders College Publishing, pp. 68-73, 1993A. S. Sedra, K. C. Smith, "Microelectronic Circuit", Third Edition, Saunders College Publishing, pp. 68-73, 1993.
- [11] , , , , , "CMOS / ", pp. 120- 148, 1999.
- [12] Micheal K, Magers, Sing W. Chin, "A 200mW, 1Msample/s, 16-b Pipelined A/D Converter with On-Chip 32-b Microcontrolle r", IEEE J, Solid-State Circuits, vol. 31, no. 12, pp. 1862-1872, Dec. 1988.
- [13] Clemenz L. Portmann, Teresa H. Y. Meng, "Power-Efficient Metastability Error Reduction in CMOS Flash A/D Converters", IEEE J, Solid-State Circuits, vol. 31, no. 8, pp. 1132-1140, Aug. 1996.
- [14] Behzad Razavi, "Principles of Data Conversion System Desig n", IEEE Press, 1995.
- [15] Stepen H. Lewis, "Video-Rate Analog-to-Digital Conversion using Pipelined Architectures", Ph.D, Thesis, University of California at Berkeley, Nov. 18, 1987.