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1. INTRODUCTION

1.1 Experimental Design

Statisticians often use experimental design to compare the differences of
treatments in their experimental research. Experimental design is to design
and conduct experiments to obtain best information at a minimum cost. The
relationships of the effects of different levels in an experimental design are ex-
pressed as a linear model. The linear model of an experimental design is divided
into three kinds: fixed effects model, random effects model, and mixed effects
model. The fixed effects model with I populations and a random sample of size

J from each population is written as
Yij = p+ o+ Eyj (1.1)

i=1,.,0 i=1,..J

where Y;; is the jth observed sample value from the ith population, the quan-

tities 4 and a; are unobservable fixed constants called parameters, E;; is a

random error term with mean zero and variance o%. The objective of a fixed

effects model is to make inferences about all treatment levels included in the

experiment.

Suppose that four specific types of training methods are used by a company
to train operators to fill bottles with vegetable oil. The purpose of the exper-
iment, is to compare four training methods. Model (1.1) can be used for this
experiment where Y;; is the weight of the jth bottle filled with oil by the ith

method, p is a constant representing the average bottle weight filled with oil,
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; is the ith training method effect, and E;; is an independent normal random

variable with mean zero and variance ¢%. Specifically, I = 4 represents the

number of training methods, J is the number of bottles filled with oil by each
training method, and o% is a measure of variability of bottle weight filled with
oil for a particular method. The investigator is interested in making inferences
about four training methods in this experiment.

Consider a simple experiment in which treatment levels for a factor are ran-

domly selected from a large population. A random effects model is written

as

Yij=p+Ai+ Ey (1.2)

where A; and E;; are random variables with means of zero and variances o

and 0%, respectively. In this model we are interested in the variability of the

A; as measured by ¢%. The objective of a random effects model is inferences

concerning functions of variances. The random effects model is also referred to
as a variance component model.

As an example, consider machines in a large plant that are used to fill bottles
with vegetable oil. Five machines are selected at random from which a sample
of bottles are filled and weighted. The purpose of the experiment is to deter-
mine how much the weight variability in the bottles is attributed to variability
among machines. The experimental model is represented as (1.2.) where Y;;
represents the weight of the jth bottle filled with oil by the ¢th machine, p is
a constant representing the average bottle weight filled with oil, and A; and

E,; are mutually independent normal random variables with means of zero and

variances 0% and o%, respectively. In the context example, I = 5 represents
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the number of sampled machines, and J is the number of bottles filled with
oil by each machine. The variance component ¢% is a measure of variability
of bottle weight filled with oil across machines and o3 is a measure of weight
variability for any particular machine. The investigator is primarily interested
in determining the amount of variability among machines in the population.
Suppose that a second factor with specific treatment levels of interest is add
to model (1.2). If each level of factor A is crossed with each level of factor B

and each combination is replicated & times, the model is expressed as
Yije =+ A+ 585 + Eiji (1.3)

i=1,..0; j=1,..J; k=1,2,..K

where Y is the kth observed sample value in the ith level of factor A and
the jth level of factor B, A; is independently distributed as N(0,0%), 3, is the
effect of the jth level of factor B, E; ;i is independently distributed as N(0,0%)
and A; and Ejj;; are independent. Factor B in (1.3) is a fixed effect where
the selected treatment levels in the experiment are of interest. That is, an
investigator is interested in estimating functions of 8;. Model (1.3) includes
both a random effect (factor A) and a fixed effect (factor B). This type of
model is called a mixed effects model. The objective of a mixed effects model
is to make inferences concerning functions of variance o4 and inferences of 3;.

Suppose that two types of training courses are used by the company to train
operators to use the filling machines. After five machines are randomly selected

from the population of machines, three bottles are filled by operators using

each training course. The problem of interest is to not only determine weight
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variability among the machines but to also determine the difference between
the two training courses. Model (1.3) can be used for this experiment where
Yiir is the weight of the kth bottle filled on the ith machine by the jth training
course, y is a constant representing the average bottle weight filled with oil, A;
and F;; are mutually independent normal random variables with zero means
and variances 0% and 0%, respectively and 3; is the jth training course effect.
Additionally, I = 5 represents the number of machines for each training course,

J = 2 represents the number of training courses, and K = 3 represents the

number of bottles filled with oil by each combination of machine and training

course.



1.2 Statistical Inferences

Statistical inferences are largely divided into estimation and test of hypothe-
ses. Estimation includes point estimation and interval estimation. The selection
of a function of the sample values that will best represent the parameter of in-
terest is concerned with point estimation.

Interval estimation is generally more informative than point estimation be-
cause it is not enough to obtain a single value for the parameter under inves-
tigation and a point estimate has no information about confidence and bound
of error. An interval estimation provides this information. Let € represent a
parameter of interest. A confidence interval is a random interval whose end-
points L and U, where L < U are functions of the sample values such that
P[L < < U] =1-a The term 1 — a is the confidence coefficient and
is selected prior to data collection. A confidence interval [L, U] that satisfies
PIL < § < U] =1 - « is called an exact two-sided 1 — a confidence interval.
Often exact 1 — « confidence intervals do not exist and P[L < # < U] is only
approximately equal to 1 — . These intervals are referred to as approximate
intervals. An approximate interval is conservative if P[L < # < U] > 1 — « and
liberal f P[L <8 <U] <1«

Hypothesis testing refers to the process of trying to decide the truth or
falsity of hypotheses on the basis of experimental evidence. Confidence intervals
and tests of hypotheses are procedures for making statistical inferences that
attach measures of uncertainty to the inferences. It is almost always the case,
however, that confidence intervals are “uniformly more informative” than tests
of hypotheses for making decisions based on parametric values. Thus, tests of

hypotheses are seldom needed if confidence intervals are available.



1.3 Literature Review

If the number of observations in cells is not equal, then experimental designs

are unbalanced. The unbalanced one-fold nested design model is written as

Yij=p+ A+ By (1.4)

where y is an unknown constant, A; and E;; are mutually independent normal

random variables with means of zero and variances ¢ and a%, respectively,
I>2,J;,>1,and J; > 1 for at least one value of 7. The analysis of variance

table for the one-fold nested design is given in Table 1.1.

TABLE 1.1 ANOVA for One-fold Nested Design

SV DF MS EMS

Among Groups n; =1-1 82 0, =0% +c¢10%

Within Groups no =N -1 S 8= 02E

Total N-1

I
N = g Jiy (15)

S;=1% % (Y;-Y.)?  and
i==1 j=1
N- % J?/N
_ 1—1
A=



In the balanced design where all J; = J, N = IJ, and ¢; = J, n,5%/6;
and nyS%/6, are independent chi-squared random variables with ny and ng
degrees of freedom, respectively. In the unbalanced design, S7 and 57 are
still independent and n.5%/0; has a chi-squared distribution with n, degrees
of freedom. However, unless 04 = 0, n15%/6; no longer has a chi-squared

distribution.

Thomas and Hultquist (1978) proposed a statistic that can be used for con-

structing a confidence interval on ¢% in the unbalanced model. The proposed

statistic is

mSiy (1.6)
v

where

I 1 I -
nlSlU = i§1 22 - (F)(zgl 1 )2a
_ g, Y.
Y, = =8
jgl J;

The term n;5%, means the unweighted sums of squares of the treatment
means and h represents the harmonic mean of the J; values. They showed that

the moment generation function on n,57;; /61 approaches that of a chi-squared

_7_



random variable with n; degrees of freedom as all J; approach a constant or
if either A4 = ¢% /0% or all J; approach infinity. They showed that n,S% /6,y
is well approximated by a chi-squared random variables when A4 > 0.25. In
situations where the Thomas-Hultquist approximation works well, an interval
on ¢% can be formed by replacing S? with hS$%, and J with & in the balanced
design equations.

In extremely unbalanced designs where A4 < 0.25, the chi-squared approx-
imation for 1,57, /61y is not good and this substitution can yield a liberal
confidence interval. A method that works well over the entire range of A4 was
developed by Burdick and Eickman (1986). The Burdick-Eickman approximate

100(1 — )% confidence interval is

[ hSi?UL* i h’S%UU* ]
Foyimyoo (LA RL*Y Fi_gyin, .00 (1 + RU*)

(1.7)

where
- = S%U _ i
(Falziﬂl,ﬂzsg) m
U — 52, 1

(Fl"azzlﬂlsn2822) N ‘A_/f,
m = min(Jy, Jo, ..., Jr),
M:maX(leJQa'"sJI)v and

Gr1 + Q91 = Q2 + @9y = Q.

Burdick and Eickman conducted a simulation study to show (1.7) is generally
conservative. They showed that their method can always be recommended over

the Thomas-Hultquist approximation. The average interval lengths of these two
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methods never differed by more than 5% and the Burdick and Eickman method
maintains its confidence coefficient over a wider range of unbalanced designs
than does the Thomas-Hultquist method.

The variance component model with one explanatory variable is
Yij = p+ Xy + Ai + Eij (1.8)

i=1,..,01; j=1,..,J;

where A; is the cluster effect and assumed to be a random sample from N(0,0%),
and FE;; is an observational error within a cluster and assumed to be a random
sample from N(0,c%). The random variables 4; and E;; are independent. This
model is also referred to as a simple regression model with nested error structure.
In the balanced case where J; = J, ﬁ is the ordinary least squares estimator of
B. Several methods for point estimation of the regression coeflicients have been
proposed for model (1.8) and its various extensions.

Researches have also been done in confidence intervals and tests of hypothesis
in the variance component model with one explanatory variable in the balanced
case where J; = J. In this case the model is also called simple regression model
with balanced nested error structure. Tong and Cornelius (1989) compared
four estimators of regression coefficient ¢ in the model with respect to their
mean squared error in a Monte Carlo simulation study. Tong and Cornelius
(1991) investigated properties of tests of hypothesis for regression coefficient /3
in the model and compared with respect to type I error rate and power of test
in a Monte Carlo simulation study. Guven (1995) derived explicit maximum
likelihood estimators of regression coefficient 3 in the model.

Park and Burdick (1993) derived three approximate confidence intervals on

o% using distributional results for sums of squares associated with the model.

_9_



Park and Burdick (1994) proposed several confidence intervals on the regres-
sion coefficient 8 in the model and the intervals were compared using computer
simulation. Park and Hwang (2002) derived exact and approximate confidence
intervals for the mean response for a given level of the independent variable in
the simple linear regression model with nested error structure. Yu and Burdick
(1995) extended the model and considered confidence intervals on the variance
components in regression models with balanced {Q-1)-fold nested error struc-
ture. They used a method proposed by Ting, Burdick, Graybill, Jeyaratnam,
and Lu (1990). That is, the regression model with two-fold nested error struc-
ture was first considered and then results were generalized to the (Q-1)-fold

nested error structure.

_ 10_



2. A SIMPLE REGRESSION MODEL WITH AN
UNBALANCED ONE-FOLD NESTED ERROR STRUCTURE

The simple regression model with an unbalanced one-fold nested error struc-

ture is written as
Yij = p+ 08Xy + Ai + Eyj (2.1)

i=1,..1; j=1,..,J;

where Y, is the jth observation in the ith primary level, o and 3 are unknown
constants, X;; is a fixed predictor variable, and A; and E;; are jointly inde-

pendent normal random variables with zero means and variances 0% and 0%,
respectively, I > 2, J; > 1, and J; > 1 for at least one value of i. A; is an error
terin associated with the first-stage sampling unit and F;; is an error term as-
sociated with the second-stage sampling unit. Model (2.1) is unbalanced since
the number of observations in cells are not all equal. This model is referred
to as either a single-factor covariance model with one covariate or a variance
component model with one explanatory variable. Since the X;; and [ are fixed,
model (2.1} is a mixed model. This error structure yields response variables
that are correlated. That is,

oh+oy if i=1dj=j"

Cov(Y;;, Yy ) =< 0% if i=14,7#75 (2.2)
0 if i#4.

In order to form confidence intervals on linear functions of the variance compo-
nents, an appropriate set. of sums of squares is needed. One possible partitioning

of model (2.1} is shown in Table 2.1.
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TABLE 2.1 ANOVA for Model (2.1)

SV DF SS
Mean 1 JY?
Covariate
after mean 1 B2 (Swaza + Swaze)

Primary units

adjusted for regression I —1 Rwp+Rp
Residual J—-I—-1 Rp
I Js
Total J DY Ys
i=1j=1

The notation in Table 2.1 is defined as

1
J o= 2 Ju
=1
J
leij
X'i = >
. 7;
Ji
Yy
Y =1
i. 7; )
I J{ I
2 E X” by X’L Jz
)—( . 1=17=1 =1
.. J J. 3



i=145=1
1 — — _ _
Sw::ya — gl(Xl "‘X)( 7 -‘Y )Jz;
I J; _
Sw:r:ye - 21 'El(Xij Xz )(Y;j Y; )3
1=1j=

i=1
I J; 5
Swyye E E (}/U Y; ) 1
i=1j=1
B waya
WB — s
Swm:ra

BL — (Swmya + Swzye)
(Swa::m. + waa:e)

b

~

S’w.’E €
Br = 2

3
waa:e
22
RVVB - Swyya - /BW"BSw:z::z:aa
Ry = 3% 58 328
L — BWB weea T T wrre
52
- )BL(Swa:ma + Sw:ca:e), and
2
RT = Swyye - ﬁTSwa:a:e-
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Model (2.1) is written in matrix notation,
Y=Xa+ZU+E (2.3)

where Y is a J x 1 vector of observations, X is a J x 2 matrix of known values
with a column of 1’s in the first column and a column of X;;’s in the second

column, o is a 2 x 1 vector of parameters with i and 3 as elements, Z is a

I
J. x I design matrix with 0’s and 1’s,i.e. Z= ® 1;,,,, U is an I x 1 vector of
i=1

random effects, and £ is a J x 1 vector of random error terms. In particular,

Y 1 Xn \
YlJ; 1 X1J1
Yo 1 Xo
: : : A
Y = 3 X = ) - y &= ” ) U= :
= Yo, 1 Xoy, = I} = i
. . A
Y 1 Xn
Y1, } \1 Xig,
and
l-]l QJl QJ]
I 05, 1; 0,
7 — & lJl _ -2 .2 -2
i=1 : : :
QJI QJ} lJI



where 1; is a J; x 1 column vector of 1’s and & is the direct sum operator. The

direct sum of two matrices P and Q is defined as

P 0
P3Q=
0 Q

By the assumptions in (2.1) the response variables have a multivariate normal

distribution

Y ~ N(Xa,042Z + 01Dy ) (2.4)

where D; is a J x J identity matrix.
EY)=EXa+ZU + £)
= Xa + E(ZU) + E(E)
= Xa, and
V({Y)=V(Xa+ZU + E)
— V(ZU) + V(E)
— ZV(U)Z + oDy

= 0327 + 05Dy

In order to define unweighted sums of squares, the vector of means of response
variables of primary level and associated variance component matrix are needed.

These are defined in matrix notation as

MX: [}71.1}72.""3?].], :XM (25)
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where

o ko

[}
o
=
|
oy
=

and Y; is the mean of response variables of the ith primary level. The expecta-

tion and variance of vector of means of response variables of the primary level

are
E(XM) = E(MK)
= MXa

= Xpa, and
where Xy = MX
V(Y ) = V(IMY) (2.6)
= M(0¢%2Z + oDy )M/
= o MZZ'M' + eEMD ; M’
= o%3D; + o5 MM/
since MM’ = diag[J; '] and MZ = D; where Dy is an I x I identity ma-

trix. Thus, the vector of means of response variables of primary level has a

multivariate normal distribution
KM ~ N(XMQa VM) (2-7)

where Vyr = 05Dy + c2MM'.
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3. DISTRIBUTIONAL PROPERTY OF ERROR SUMS OF SQUARES

In this section we report distributional results used to derive confidence inter-

vals. Four regression coefficient estimators are considered. Consider weighted
between regression coeficient estimator BW g that is obtained from least squares

regression of Y; on X, with weigh J; for each primary level ¢ and Bw g 1s written

as

waya

Bwp =

S’LU.’I:JZ(I

The weighted between regression coefficient estimator is the second element of

the vector

(X WXar) "X WYy, (3.1)
where W = diag[J;]. The error sum of squares

72
RWB - Swyya - BVVBSw:Ema

= X;\JAWZM (3.2)

where Ayw = W — WX (X;\JWXM ) -1 X'}ww
Unweighted between regression coeffcient estimator considering primary level’s

means and their unwighted mean is used as an alternative of between regression
coeflicient estimator. Unweighted between regression coeficient estimator 8y g

is obtained from the least squares regression of Y; on X; and QU B 1S written as

B Suxya
Uup =— o
Suwma

— 17.-



where,

:H<II

I _ =
Sumya - g (X1 - X)( .

LI 7 \2
Su:m:a = g(X‘L —X) 3

>
I
o
)
=
o

The unweighted between regression coefficient estimator is the second ele-

ment of the vector

(X}LIXM)~1X§MXM (3.3)
The error sum of squares R4 associated with this regression model is

22
RUB - Suyya - ﬁUBSurra

=Y AvYy (3.4)

where Ay = Dy — XM(XQVIXM)”XQV‘,

The within regression coeflicient estimator 8r = Syzye/Swaze is obtained

from the least squares regression of Y;; on X,; and the grouping variables. The

point estimator Br is the second element of the vector

(XX "Xy (3.5)
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where X* = [X Z], and (X~ X*)~ is a generalized inverse of X*' X*. The error
sum of squares Ry associated with this regression model is
Ry = Swyye - ,B%Sum:a:e

=Y'TY (3.6)

where T = D, — X*(X*'X*) X*". and Dy_is an identity matrix of order J..

Finally, the total regression coeflicient estimator

(Sw:rya + Swmye)

ﬁL - (Siumma + Swz:ce) .

is obtained from the least squares regression of Y;; on X;;. The point estimator

[;’L is the second element of the vector
(X'X)"'X'Y. (3.7)

The error sum of squares Ry associated with this regression model is

RL = (Swyya + Swyye) - B]%(Sum::ra + wame) - RWB - RT

=Y (L-MAyM-T)Y (3.8)

where L = D; — X(X'X)"1X".

Theorem 1.

Rr/ O’% a chi-squared random variable with J — I — 1 degree of freedom.

Proof. Notice that T is idempotent. It can be shown that X*(X* X*)"X*' X =
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X and X*(X*'X*)"X*Z = Z by Theorem 7.1 in Searle (1987, p. 218). There-

fore, as may be easily verified, TX = 0 and TZ = 0. It follows that
E(Ry) = E(Y'TY)
=tr(TV)+ o'X'TXo
— tr((Dy — X*(X*'X*)"X*) (0322 + o4Dy))
= tr(o%(Dy — X*(X*X*) X))
= tr(ciT)
= a3,r(T)

=J - T~1)o%.

The distribution of Ry is determined by writing Rr/c% = Y'(T/0%)Y and not-
ing (T/o%)V = T(032Z' + 63D ;) /0% = T. By Theorem 2 in Searle (1971, p.

57) Rr/o% is a che-squared random variable with J — I — 1 degree of freedom.

Theorem 2.
If 6% =0, then Ry p/c% is a chi-squared random variable with I — 2 degree

of freedom.
Proof.
Notice that

Aw Vi =(W — WX (X5, WXy) X W) (05D + 05M)
=04 W — 02 WX 1 (X4, WX ) 1 X W
+02D; — o WX 3 (X, WX )1 X,

— 20-



since WMM' = diag[J;] - diag[J; !} = D; and

tr(WX (X, WX ) 71X, W) = ky
where

I — I 2o I 2 52
21 J1'Xi, 'El Ji X1 Z J E J X )/(J Sxa:a)

)

I -
klz(SJT,X

=1 i

I
EJE 2

It follows that
E(Rwg) = E(X);AwY )
= tr(Aw V) + o' Xy AwXuo
= o4 (tr(W) — k1) + ogtr(D; — WX (X WX ) ™' Xy)

= (J —k1)od +{I —2)o%
since Aw X s = 0. The distribution of Ry p is determined by writing
Rwp/og =Yy (Aw/oh)Y 4

and noting
(Aw/O'zE)VM == (O’E;/O’%)AW + Ayw MM’
= (0% /c%)Aw + Dy — WX (X WX )~ Xy
since WMM' = Dj;. Note that Dy — WX (X}, WX )X/, is idempotent.

It follows that Ry g/ 0% is a chi-squared random variable with I — 2 degrees of

freedom if O’% = 0.
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Theorem 3.
If 63 = 0, then Ry /0% is a chi-squared random variable with I — 2 degrees

of freedom.
Proof.
Notice that

Ay Vi =(Dr — X (X Xa) ' Xy) (04 D; + 02 MM/)
=02 (D; — X (XX ) "1 X0,)
+op(MM' — X (X3 X p) " X3, MM),
I
tr(MM') = ¥ (1/J;), and
i=1
tr(XM(X’MXM)_lX’MMM’) - kg
where
i1 =~
Y Y (Xe —Xe) /T

i=1 k=1
ko ="
I- Suz;na

and AyX = 0. Tt follows that
E(Rup) = E(Y )y AuY y)

= tT(AUVM) + QIX}MAU:XMQ

I
= UitT(DI — XM) + J%;('i\jl(l/(]i) — kg)

(1/Jz) — kz)()’%.

M~

= =2oh + (X

The distribution of Ry g is determined by writing

Ryp/oh = Y\ (Au/o2)Y a

— 22_



and noting (Ay/0%)Va = Ay + (64 /04)AyMM'. Note that Ay is idem-
potent. Thus Ryp/o? is a chi-squared random variable with I — 2 degrees of

freedom if cr%; = ().

Theorem 4.
Rwp/o% and Rr/o% are independent and Ryp/o% and Rp/o% are inde-
pendent.
Proof.
Notice that
M AwM(c3ZZ' + 05D ;)T = 64M' Ay MZZ'T + 02M' Ay MT

=0

using MT = MM'Z'T = 0 since M = MM'Z’ and Z'T = 0. Accordinly

Rwp/o% and Ry /0% are independent. Note that

M'AyM(03Z7 + 03D ;)T = e, M AyMZZ'T + c2M'AyMT

=0

Thus Ryp/o? and Ry /o% are independent.

Olsen et al.(1976), Thomas and Hultquist(1978), and El-Bassiouni(1994)
used spectral decomposition method to obtain following statistics. They pro-
posed a statistic SSM = U'U which is asymptotically chi-squared distributed.
In particular,

U'u
(0% + 0%/ Am)

— X(21-1) as cr% — 0
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where U = C*Z'(D; — X(X'X) 1X')Z, Ay is the harmonic mean of positive

eigenvalues, A;, of C,

Aff == ;:1 3
(,21 i/ Ai)

and r; is the multiplicity of positive eigenvalue A;. Thus,

2
%E

E(U'U) = (I-1)(c% + Y

).
It was also shown that U'U/(c% + 0% /Ag) and Ry/0% are independent.

If the covariate values within each group are same, this proposed statistics
becomes the error sum of squares associated with unweighted between regression
coefficient and the total regresion coefficient estimator reduces to the weighted

between regression coefficient estimator. That is, if X;; = X, for all 7, then
SSM = Rygp and BL = BW g. If group means of the covariate values are all

same, ie, X; = X = }? for all ¢, then X s is linearly dependent and BWB

and fiUB are not defined.



4. CONFIDENCE INTERVAL ON ¢?%

The expected mean squares are sumarized using the distributional property

of error sums of squares.

E(S‘Q,VB) :C10i+ O'%! :HW’Ba (41&)
E(Sip)= 0%+ coor =0y, and (4.1b)
E(S%) = o% = O (4.1c)
where
R
2 _ wB
Swe = (1-2)
Ryp
2
s = (7 gy
Ry
52 =
T -1-1y
(k)
) = e and

(?(I/J.) — ka)
(1 -2)

Co =

The mean square errors, SZ,, and S? 5, are independent of S2 and they are
exactly chi-squared distributed depending on cases where 0% = 0 and 0% = 0,
respectively.

In the case where ¢ — 0, S35 and S% should be used to construct con-

fidence intervals on ¢%. The variance component 0% can be represented by

functions of expected mean squares in (4.1a) and (4.1c),

0% = (bwp — 1)/
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An approximate confidence interval on ¢% can be constructed using the

method of Ting et al.(1990). In particular, the 1 — 2« two-sided confidence

interval for this form of 02 is

1 1
a[(S%VB ~ 8§%) — (G2Spy g + G354 + G1253 5 ST) 75

(St g — S2) + (HISh 5 + HZS% + H128% 552)%] (4.2)

where

Fy=Foag 2,111y
Fo=Fy_ar-27-1-1)

1

a F(a:I—Z,oo)7

Gy=1

1

B F(]ma:J.fffl,oo)

__1’

[(Fy —1)* - GIF} — GY]

G12 = I3 s
1
H=— 1
F(lfa-:I—Q,oc)
1
Hy=1- —,
F(a:J.——I—l,oo)
[(1 — F)? — HPF} — Hj]
H12 = 1

Fy

and Fs.n, n,) is the F-value for ny and ny degrees of freedom with ¢ area to the

right. Since 0% > 0, any negative bound is defined to be zero. Interval (4.2) is

referred to as TINGW method.
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Another approach is adapting generalized p-values method proposed by Khuri

et al.(1998) to construct an approximate confidence interval on ¢%. It was
shown in Chapter 3 that (I — 1)5%,/(0% + 0% /Ay) is chi-squared distributed
with (I — 1) degrees of freedom as ¢% approaches zero,

(J-I-1)8%

3 ~ X(J ~I-1)
0% ( )

and they are independent where $%, = SSM/(I — 1). Thus, using this prop-
erty, the estimators of 0% are obtained by (J — I — 1)s%/U; where s2 is an
observed value of S and U; has a chi-squared distribution with (J — I — 1)
degrees of freedom. The estimators of ¢% ; are obtained by (I —1)s%, /U where
04E = 04 +05/AH, 53 is an observed value of S3,, and Us has a chi-squared
distribution with (I — 1) degrees of freedom. Thus, a generalized pivotal quan-

tity 04 can by represented as

(I-1)s3, 1 (J-I-1)s%
Us An Ui .

o =

Accordingly, an approximate 1 — 2« two-sided confidence interval for this form
of 0% is

[Ca ) C]—a] (43)

where C,, is the ath percentile of the distribution constructed by the generalized
pivotal quantity. Interval (4.3) is referred to as GP(Q} method.

When ¢, approaches zero, S g and S% can be used and o2 is represented

2
Tp = BUB *CQBT
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from (4.1b) and (4.1c). The Ting et al. 1 — 2a two-sided confidence interval for

this form of crf1 is

[Sip — c2S% — (GIShp + 3GESH + 2G1258 553) %

8% 5 —caSh+ (H2SEp + AH2S4 + 0o Hi2SE 55%)3] (4.4)
Interval (4.4) is referred to as TINGU method.

If I =3, then ¢y = 1/c; and csAw = Ay. Thus S, 5/ci = c2SE 5 = Sip

and TINGW and TINGU methods are same.
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5. SIMULATION AND EXAMPLE

5.1 Simulation Study

The methods proposed in Chapter 4 are now compared using simulation
study. The criteria for analyzing the performance of the methods are ; 1) their
ability to maintain stated confidence coefficient, and 2) the average length of
two-sided confidence intervals. Although shorter average interval lengths are
preferable, it is necessary that the methods first maintain the stated confidence
coefficient. Four unbalanced patterns were selected for simulation study and

are shown in Table 5.1

TABLE 5.1 Unbalanced Patterns Used in Simulation

Pattern | 1 J;
1 3 3510
2 5 135710
3 7 1246810
4 101115555 1010 10

Let p = ¢4 /(0% + 0%). Without loss of generality 0% = 1 - o so that
p=0c%4 and 1 — p=0%. A; and E;; are independently generated from normal
populations with zero means and variance p and 1 p, respectively, using RAN-
NOR routines of SAS. Values of i1 and [ are respectively varied from -3 to 3 in
increments of 1 so that 49 different combinations of ;« and 3 are used. Any fixed
values of X;;’s are given. Then Y;’s are calculated according to model (2.1) and
Rwg, Rr, SSM, and Ry g are computed as shown in Chapter 3. Simulated
values for S% 5, S%, 8%, and S%5 are substituted into appropriate formula

and the intervals are computed. Values of p are varied from 0.001 to 0.999 in
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increments of 0.1. Each value of p is simulated 2000 times for each pattern.
Two-sided intervals are computed based on equal tailed F-values. Confidence
coeflicients are determined by counting the number of the intervals that contain
o%. Using the normal approximation to the binomial, if the true coefficient is
0.90, there is less than a 2.5% chance that an estimated confidence coefficient
based on 2000 replications will be less than 0.8866. The average lengths of the
two-sided confidence intervals are also calculated.

Table 5.2 and 5.3 present the results of the simulation for stated 90% con-
fidence intervals on ¢%. The numbers in the body of Table 5.2 and 5.3 re-
spectively report range of simulated confidence coefficients and average interval
lengths and minimum and maximum values for the range as p ranges from 0.001
to 0.999. Different combinations of u and 3 do not change the trend of simultion

results and the change of minimum values of stated confidence coefficients is at

most 0.012.
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TABLE 5.2 90% Range of Simulated Confidence Coefficients

Pattern 1 2
P TINGW GPQ TINGU | TINGW GPQ TINGU
0.001 | 0.9005 0.9035 0.9005 | 0.8905 0.894 (.87
0.1 0.908 0.9045 0.908 0.8925 0.894  0.883
0.2 0.898 0.9085 0.898 0.8875 0.8955 0.884
0.3 (.893 0.904 0.893 0.89 0.896  0.898
0.4 (.9095 0.905 0.9095 | 0.8845 0.8985 (.907
0.5 (.9015 0.905 0.9015 | 0.898 0.8985 (.905

0.6 0.897 0.905  0.897 0.88 0.897  0.9045
0.7 0.899 0.9065 0.899 0.8655 0.896  0.8905
0.8 0.898 0.907  0.898 0.87 0.897 0.893

0.9 0.8975 0.905 0.8975 | 0.8635 0.806  0.8935
0.999 | 0.902 0.905 0.902 0.872 0.86 0.8925
MAX | 0.9095 0.9085 0.9095 | 0.898 0.8985 0.907
MIN | 0.893 0.9035 0.893 0.8635 0.884 (.87

Pattern 3 4
0.001 | 0.9 0.908 0.854 0.897 0.8%9 0.8135

0.1 0.8965 0.9095 0.866 0.901 0.8895 0.853

0.2 0.8955 0.907 0.888 (0.8845 0.8985 0.868

0.3 0.8865 0.906  0.8955 | 0.8885 0.9015 0.8765

0.4 0.863 0.9065 0.883 0.869 0.905 0.8915

0.5 0.871 0.904 0.884 0.862 0.902 0.884

0.6 0.865 0.905  0.882 0.8715 0.903 0.891

0.7 0.8645 0.9055 0.895 0.862 0.9025 0.913

0.8 0.8735 0.901  0.907 0.857 0.902 0.898

0.9 0.858 0.9005 0.895 0.841 0.902 0.899
0.999 | 0.8685 0.8995 0.9045 | 0.8566 0.9 0.904
MAX ;0.9 0.9095 0.907 0.901 0.905 0.913
MIN | 0.858 0.8995 {.854 0.841 0.8985 0.8135
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TABLE 5.3 90% Range of Average Interval Lengths

Pattern 1 2
p TINGW GPQ TINGU TINGW GPQ TINGU
0.001 | 44.670385 4.7037761 44.670385 | 1.6963909 1.7565652 2.4211901
0.1 59.3063056 6.203999  59.306305 | 2.3232264 2.1452094 2.9775824
0.2 88.336569 7.7152441 88.336569 | 2.9723120 2.5340456 3.5968303
0.3 107.57395 9.2208541 107.57395 | 3.7117547 2.9165519 4.2278956
0.4 120.93906 10.721291 120.93906 | 4.1990992 3.2901384 4.6446833
0.5 142.92995 12.216601 142.92995 | 4.8447865 3.6554658 5.2186535
0.6 168.20474 13.706938 168.20474 | 5.6089767 4.0127826 5.7815406
0.7 185.563583 15.192167 185.53583 | 6.0088214 4.3633191 6.2783312
0.8 216.90426 16.673825 216.90426 | 7.0631375 4.7080909 7.0924004
0.9 245.96681 18.151819 245.96681 | 7.5738493 5.0491171 7.6091444
0.999 | 246.10563 19.612088 246.10563 | 8.4534132 5.3857702 8.5034603
MAX | 246.10563 19.612088 246.10563 | 8.4534132 5.3857702 8.5034603
MIN | 44.670385 4.7037761 44.670385 | 1.6963909 1.7565652 2.4211901
Pattern 3 4
0.001 | 0.8841862 1.2104748 1.4681376 | 0.3847124 0.7396307 0.7652631
0.1 1.3228924 1.5056313 1.8549788 | 0.6214983 0.9254198 0.9536777
0.2 1.848266  1.8000139 2.327806 | 0.8308489 1.1062396 1.1387063
0.3 2.2514865 2.0867147 2.6258684 | 1.0543185 1.2748048 1.3411049
0.4 2.7162211 2.3635822 3.127743 | 1.2549925 1.4296433 1.5096349
0.5 3.1438896 2.6303032 3.4974074 | 1.4559445 1.5735124 1.6897315
0.6 3.568139  2.8878889 3.7790143 | 1.5924883 1.7080275 1.7819612
0.7 4.0057759 3.1385151 4.1079702 | 1.806329  1.8377487 1.9402982
0.8 4.5275753 3.3852496 4.5825573 | 1.9948288 1.9655106 2.0982791
0.9 4.7874478 3.6297314 4.8973924 | 2.2045574 2.0037172 2.2359168
0.999 | 5.1810588 3.8715458 5.1928903 | 2.4126914 2.2214677 2.3882471
MAX | 51810588 3.8715458 5.1928003 | 2.4126914 2.2214677 2.3882471
MIN | 0.8841862 1.2104748 1.4681374 | 0.3847124 0.7396307 0.7652631
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Simulation results are consistent with our study since TINGW method im-
proves as p approaches zero while TINGU method performs well as p is closed
to one across all values of p for patterns 1. However, only GPQ method keeps
the stated confidence coefficients for all p values of four patterns. The average
interval lengths of three methods generate wider intervals as p increases for all
four patterns. For smaller p value, say p < 0.1, in pattern 3 and 4, TINGW
method has shortest interval lengths. For other values of p in four patterns,

GPQ method has shortest interval length.
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5.2 Numerical Example

The results of the simulation study are applied to a data set. Scheffe (1959,

p216) wrote a data set of 94 observations for seven types of starch film and
the data set was reproduced with permission of the author and publisher from
Industrial Statistics by Freeman (1942). The dependent variable in the data set
is the breaking strength in grams and the independent variable is the thickness
in 10™* inch from tests of starch film. The data set was constructed by select-
ing three types of starch, Potato, Canna, and Wheat. Three observations are
selected from Potato, five from Canna, and ten from Wheat. This data set has
the form of pattern 1 in Table 5.1 and is used to fit the simple linear regres-
sion model of the breaking strength on the thickness of starch film assuming an
unbalanced nested error structure.

The selected data set is listed in Table 5.4 In order to apply the methods
proposed in Chapter 4 to the data set a SAS code was programmed and 90%

confidence intervals on 0% were calculated. The resulting intervals were given in

Table 5.5 From SAS output the estimators 6% and 6%, are computed as 8479.97
and 3063.89, respectively. Therefore, the estimate of the ratio of variance in
primary unit to total variance g is 0.7345. GPQ should be used because it keeps
the stated confidence level and generates the shortest interval length among
three methods in patern 1 of Tables 5.2 and 5.3. The calculated interval lengths

in Table 5.5 are consistent with the results in Table 5.3.
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TABLE 5.4 The Data Set Used for The Example

Type Potato Canna Wheat

Obs. | X Y X Y X Y
1 13.0 983.317.7 791.7]50 263.7
2 13.3 958.816.3 610.0 3.5 130.8
3 10.7 747.8 |86 710.014.7 3829
4 11.8 940.7 | 4.3 3025
5 12.4 990.0 | 3.8 213.3
6 3.0 1321
7 42 2920
8 4.5 3155
9 4.3 2624
10 4.1 3144

TABLE 5.5 90% Confidence Intervals on o2

Methods Lower bound Upper bound Length
TINGW(TINGU) 2702.9 3359262.4 3356559.5
GPQ 915.6 216887.0 2159714
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6. CONCLUSIONS

Three approximate confidence intervals on the variance component of the
primary level in a simple linear regression model with unbalanced nested error
structure were proposed. The simulation study was conducted to compare the
proposed intervals on the selected unbalanced patterns in Table 5.1 From Tables
5.2 and 5.3 if p < 0.1 in pattern 2 and p U 0.1 in patterns 3 and 4, TINGW
method is recommended because it keeps the stated confidence coefficients as
well as shortest average interval lengths. For other values of p in four patterns

GPQ method is recommended.
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