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Abstract 
 

Recently, the vibration problems in ships have received much attention. The 

vibration criteria given by the ship owners are constantly getting higher, not only 

for the consideration of ship durability but for the rise of crew's working 

environment. Especially these days, the use of higher output engines and lighter 

structure has caused more intense vibration problems. However, the excitation 

source of a ship is very complicated and vast, including the main engine, auxiliary 

engine, propeller, wave and fluid movement, etc. Therefore it is impossible to 

build a ship without vibration. However, systemization of experiences in the main 

causes of vibration and standardization of anti-vibration operation will help us in 

bringing down the cost in managing the vibration problems. 

In addition, the need for optimization is especially more emphasized since 

the rise in personnel expenses and materials have definitely called on the 

importance of doing so. The optimum design of a ship is a very complicated work. 

Especially, large ships like commercial ships have many degrees of freedom, 

which make it even more complicated. Therefore researchers came up with the 

method of scaling down the model, and sought to handle the problem with a 
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variety of optimizing techniques for the validity of optimizing technology. These 

efforts have worked efficiently in developing new designing technologies and 

optimization methods. Optimum design is about pursuing the best out of using the 

minimum materials in making the structure while guaranteeing its safety and 

efficiency, deciding on the structure's geometric shape and size.  

Three programs related to optimization have been developed in this thesis.  

Firstly, we have developed "NASTRAN external calling styled optimization 

framework" that can work efficiently in optimizing large structures like ships and 

it can also choose various objective functions and design variables. 

We call it "OPTSHIP”. The program uses NASTRAN as a solver for 

reaching the structure's own natural frequency, mode vector and forced response, 

and for figuring out global optimal solution, users can make an optimization 

algorithm by making a module. At present usable optimization modules are 

genetic algorithm (GA), random tabu search (R-tabu), simulated annealing (SA) 

and artificial life (AL) optimization algorithms. In addition, to check the 

efficiency of the proposed framework, it has been applied to the 2400 TEU 

containership to reduce the vibration level of the deckhouse which is placed in the 

rear of the ship. And to gain efficiency in analysis, sensitivity analysis of 

candidate design parameter with respect to objective function has been done and a 

design parameter with a sensitivity value of over 1.5 has been chosen for the final 

design parameter, in order to reduce the calculating time. In this thesis, R-tabu 

method is used as an external optimization module, and the result is compared 

with NASTRAN's optimum result to prove its excellency.   

Secondly, this research developed a non-linear integer optimization method 

in order to directly use an optimized design parameter value in the initial stage of 

design process. The design parameter used in this thesis has been programmed to 

freely choose the thickness of the steel plates and the size of stiffeners used in 

shipyards. The proposed algorithm is the upgraded version of GA that can 
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categorize design parameters into their size and express genotype. In addition, 

concerning the fact that differences exist in the calculating time and accuracy of 

optimal solution in accordance to parameters such as individual size, crossover 

probability, mutation probability, selection method and crossover method of GA, 

optimization of these parameters has been done with priority in calculating 

adequate values. To gain legitimacy of this optimization, the optimized parameter 

value of the structure in question has been tested and it was found that convergent 

speed to global solution was much better than those of other parameters. In 

addition, we have proven the validity of the developed method by applying this 

research's non-linear optimization algorithm in solving the vibration problem of 

the compass deck of a ship in danger from a vibration problem. 

Lastly, to improve the convergent speed and the variety of solutions at the 

same time, a new hybrid evolutionary algorithm (RHEA: RSM-based hybrid 

evolutionary algorithm) was suggested, which combined the excellent qualities of 

GA, tabu list, response surface methodology (RSM), etc. The tabu list from tabu 

search in GA is used to secure systematic diversity in solutions. As RSM, we have 

used data acquired from the process of GA, made approximate function of actual 

objective function, found the optimum point, and generated the minor (one) 

individual of the next generation. Going through this process enables the 

shortening down of the vast convergent time of a big structure being optimized. 

This research tests the validity of the newly developed algorithm in comparison 

with the general GA algorithm by using some traditional test functions.  

In addition, it applies that the algorithm suggested in designing for avoiding 

the resonance of the fresh water tank which is placed in the rear of the ship, 

showing that it efficiently searches for global optimum solution. 

According to the results, the proposed new hybrid algorithm (RHEA) is a 

very powerful global optimization algorithm from the view point of convergent 

speed and global search ability. 
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I. Introduction 

 

 

1. Background 

 

It was during the end of 19th century when the vibration problems of ships 

received much attention. From the beginning of the 19th century the steam 

reciprocating engine and spiral propeller was put into practical use, and the 

structure of ships were beginning to be made of steel, ships started to get larger, 

faster, and the output of ships became higher during the end of 19th century.  

  The main causes of vibration problems in rear and deckhouse of ships, the 

underneath deck of machinery in engine room and various kind of tanks are; 

guided moment of diesel engine, fluctuation pressure due to the propeller and 

thrust bearing force due to the coupled vibration between torsional and axial 

vibration of propulsion shafting system.  In essence, the causes of vibration in 

ships are various, including; main engine, auxiliary engine, propeller, wave, fluid 

movement. The structure and machineries of ships are various and complicated, 

so it is almost impossible to make a ship free of vibration [1].  

Recently, there exist stability problems in the deck house and local area of 

ship due to the light-weight structure not being concerned with the vibration 

problems. Especially, vibration problems in the limited areas of ships are 

frequently happening due to the various light-weight structures such as oil tanks, 

fresh water tanks, the compass deck and each bulkhead. Moreover, the deckhouse 

of the ship has been reducing living space due to crew cutdown brought in by 

navigation automation, and the strengthened visibility regulations which have 

forced its height to go higher though it’s length and width being reduced, causing 

stronger vibration through resonance between the deckhouse and the main 
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excitation source of ship because the natural frequencies of longitudinal and the 

transverse of the deckhouse having been reduced [2-6]. 

On the other hand, with the revision of ISO 6954 [7, 8] which is the 

regulation regarding vibration limit in the deckhouse of ships, ship owners are 

beginning to claim for severe vibration values for better living environments in 

ships. Moreover, vibration problems in the deckhouse and local structures found 

after it is built not only require huge expenses and time for remedy, but ship 

builders are losing faith in ship owners, and cause hardships in business for ship  

builders. 

Therefore anti-vibration design at the beginning stage of design is most 

effective. A superstructure anti-vibration solution being applied in shipyards apply 

beam analogy or empirical formulation based on measurement results of sister 

ships in the beginning stage of design, estimate natural frequency of the 

superstructure by using relatively simple analysis [1, 9-11], apply avoiding  

resonance designing method with main excitation sources such as the main engine 

and propeller, and apply allowable vibration response designing method based on 

forced vibration analysis by a 3D finite element method. And for the solution of 

local vibration problems of ships, anti-vibration designing method by local 

vibration analysis programs based on beam theory possessed by every shipyard or 

3D finite element method using the commercial program NASTRAN is used. In 

addition, for the anti-vibration designing method, anti-vibration standardization 

that uses optimization and experiences from vibration problems is efficiently used 

[12]. Moreover, optimization is constantly being emphasized for its importance 

due to the rise of personnel and material expenses in industrial fields.  

Optimization is utilized to determine the size or the geometric shape of the 

structure to obtain the maximum performance using minimal material with safety 

and availability of the target structure [13]. From a mathematical point of view, 

the optimization is to get design variables which are maximizing or minimizing a 
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desired objective function while satisfying the prevailing constraints. Usually, 

optimization needs a lot of time to get the desired information due to this 

repetitive process. Recently, optimization has been widely applied for decreasing 

the weight of structures in various industrial fields such as aerospace, civil,   

mechanical engineering, etc. through integrating methodology of engineering 

design with the technology of computer-aided engineering (CAE) and increased  

computer speed.  

These are partly being applied to shipyards in which possess world class 

technology and a vast number of orders but the scope of application is quite small 

and is limited to the field of structure design. Therefore optimum design with 

consideration for dynamic factors is in definite need. And especially, the need for 

appropriate programs and optimum method for large scale structures like ships is 

definitely required.  

 

 

2. Objective of Study  

 

In general, commercial software such as NASTRAN or ANSYS is used in 

analyzing vibration and structural characteristics of large structures. Especially, 

NASTRAN offers an optimum module which is based on sensitivity analysis but 

it has many limitations in setting of objective functions and design variables. It is 

also very hard to acquire a global optimum solution, because it is a local search 

method. Its demerit also includes the impossibility in combining the complicated 

user-defined optimum technique.  

Therefore, the first purpose of this research is in developing NASTRAN 

external calling styled optimization framework, with commonly used commercial 

program NASTRAN as a solver. So, it used the global optimization algorithm 

such as genetic algorithm (GA), random tabu search method (R-tabu method), 
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simulated annealing (SA) method, and artificial life (AL) optimization algorithm 

to prevent local convergence of general optimization algorithm. This program not 

only enables users to choose basic objective functions such as minimization of 

forced response, avoidance of resonance, etc. but also enables users to set up their 

own complicated objective functions and choose a variety of design variables.  

The second purpose of this research is in developing a non-linear integer 

optimization method. It is hard to directly apply real variable optimum results to 

fields that use standardized member just like actual shipyards. Generally, a value 

one step higher than that of optimized result is used in shipyards for extra safety. 

However, this method enables a stronger design in the structural point of view, 

but in view of vibration, it goes closer to resonance and can actually be quite 

dangerous. Therefore there is need for making usable member in the field into 

table, developing a non-linear integer program that chooses optimal size from the 

table and directly uses the optimal result values at the initial stage of design.  

Optimum design requires constant repetition of work, so it takes a lot of time 

to gain useful information. The development of CAE and the fast processing 

speed of computers have enabled users to save a lot of time, but still remains as a 

difficult problem to solve in optimum design. To solve this problem, recently a 

number of researchers have suggested various hybrid genetic algorithm that is 

combined GA with the merits of other algorithms. Because GA holds many merits 

such as its ability to search for an optimum solution without any background 

knowledge of the search space and its characteristics of not being influenced from 

an initial search starting position. The third purpose of this research is to do a 

more intensive search on the optimum solution of multi-peak function, more 

rapidly and accurately. To do so, a new hybrid evolutionary algorithm (RHEA: 

RSM-based hybrid evolutionary algorithm) was suggested, which combined the 

merits of GA, tabu list and response surface methodology (RSM). The mutation of 

GA offers random variety, but systematic variety can be achieved through the use 
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of tabu list of tabu search method.  

For large structure optimization it takes a lot of calculating time for one 

evaluation of objective function. Therefore, it is an important matter to bring 

down the evaluation number of objective function by using all the information 

attainable. From this point of view, GA's convergent speed can be improved by 

using RSM method which uses the information on the objective function acquired 

through GA process and then making response surface (approximate function) and 

optimizing this. Optimized solution was calculated without the evaluation of 

additional actual objective function, and the GA’s convergent speed could be 

improved. 

 

 

3. Outline of Thesis  

 

This research is comprised of 6 chapters. Except for the current introductory 

chapter, the rest of the chapters are summarized as follows.  

Chapter Ⅱ contains overall contents of optimization. The first half 

introduces general information on optimization, definition of it in the engineering 

point of view, and its history. The second half contains a variety of optimization 

methods. There are several ways to classify optimization, but this research 

explains on the local optimization and the global optimization. Especially, specific 

explanations on the main algorithms such as modified method of feasible 

direction (MMFD) and GA are given. The former is used in NASTRAN 

optimization module and uses usable-feasible search direction as searching way 

and the latter is used as a representing global optimization algorithm. The rest are 

concisely summarized.  

Chapter Ⅲ suggests a new optimization framework. For an optimum design 

of large-scale structures like ships, NASTRAN which is widely used in industries 
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is used. However, this optimization method is limited to a local search. When the 

searching environment is multi-peak, accurate solution is hard to acquire. Using a 

global searching algorithm to analyze complicated structures is also difficult 

because it's hard to work on an analysis model and programming, not to mention 

difficult to develop to the level of commonly used programs. Therefore, this 

chapter uses NASTRAN for solving the problem of a structure's natural frequency, 

forced response and mode vector. For global optimization, an optimization 

framework in which the user is capable of using a module made externally is 

introduced. In order to prove the validity of the program suggested, this chapter 

has applied it to deckhouse vibration minimization of 2400 TEU containership 

which has a possibility of vibration problem since the deckhouse area is placed in 

the rear of the ship. In this thesis, R-tabu method is used as an external 

optimization module, and the result is compared with NASTRAN's optimum 

result to prove its excellency.  

Chapter Ⅳ suggests a non-linear integer optimization method. Real variable 

optimization method cannot be directly applied in the design stage because in 

shipyards, the thickness of steel plates and size of stiffeners except some built-up 

stiffener are mostly standardized. In order to solve this problem, this chapter has 

extended real variables optimization problem to non-linear integer optimization 

algorithm and have applied it. Since the accuracy of the optimum solution and 

calculating time of GA which is used as an optimizer in this optimization are 

largely influenced by initial parameter values such as the size of individuals, 

crossover probability, mutation probability, selection method and crossover 

method, this chapter has proceeded with optimization for GA parameters. 

Optimized GA parameter is applied to structure in question and is illustrated as 

the optimum value. In addition, by using the suggested non-linear integer 

optimization algorithm, we have proceeded with optimization to a compass deck 

structure that actually is in danger of vibration problems and the problem is solved. 
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By doing so, we have proven the suggested method's validity and efficiency.  

Chapter Ⅴ suggests a new hybrid evolutionary algorithm that combined the 

merits of the popular programs such as genetic algorithm, tabu search method, 

response surface methodology and simplex method to search for an optimum 

solution of multi-peak function in high accuracy and high speed. This algorithm, 

in order to improve the convergent speed that is thought to be the demerit of GA, 

uses RSM and simplex method. Though mutation of GA offers random variety, 

systematic variety can be secured through the use of tabu list. Especially, in the 

initial stages, GA's convergent speed can be improved by using RSM method 

which uses the information on the objective function acquired through GA 

process and then making response surface (approximate function) and optimizing 

this. Optimized solution was calculated without the evaluation of additional actual 

objective function, and the GA’s convergent speed could be improved.  Efficiency 

of this method has been proven by applying traditional test functions and 

comparing the results to GA. It also proved that the newly suggested algorithm 

can effectively find the global optimum solution by applying it to weight 

minimization of the fresh water tank that is placed in the rear of the ship designed 

to avoid the resonance.  

Finally, it is concluded that the newly suggested algorithm (RHEA) is a very 

powerful global optimization algorithm from the view point of convergent speed 

and global search ability.  

Chapter VI summaries and discusses the results obtained in this thesis. 

 

 

4. Contribution of This Work  

 

 Executing optimum design utilizing the results from this thesis, the 

following contributions can be made.  
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4.1 NASTRAN external calling styled independent optimizing framework 

(OPTSHIP)  

1) Commercial software is used for vibration analysis of large structures. 

PATRAN is used for both modeling and pre/post processing and 

NASTRAN as a solver. Although there are optimization modules for 

existing general-purpose programs, as used a local search method, in the 

case of being multi-peak function, finding the global solution is difficult. 

Therefore, by utilizing the OPTSHIP suggested in this thesis, with an 

already completed model, optimum global solution of complex structures 

like the ship who is normally multi-peak function can be easily found by 

connecting it with exterior optimization modules. 

2) When using exterior optimizing modules, familiarizing the difficult 

internal general-purpose programming language is not necessary since it 

is possible for the user to comfortably apply not only global algorithms 

but also various optimization techniques. This also enables the user to 

increase the accuracy and the convergent speed of solution to all fields by 

using self-developed hybrid algorithm. 

3) Various objective functions and design variables are adjustable.  

4) OPTSHIP is not only executable in ships but can also be extended and 

applied on all complex structures of such matters. 

 

4.2 Nonlinear Integer Program  

1) Unlike real variables programs, it is possible to directly apply optimized 

results to actual designs.  

2) A usable design variable is tabled and then used, enabling the user to 

extend or reduce this according to need.  

3) Disabling of the accuracy and convergent speed of GA depending on the 



 12 

initial parameters is compensated by developing a GA parameter 

optimization program, allowing the user to initiate parameters with ease.  

4) This can be used as an exterior module for OPTSHIP. 

 

4.3 RSM-based Hybrid Evolutionary Algorithm (RHEA) 

1) Amendments have been made in the convergent speed of GA thus 

improving the convergent speed to reach the global solution. 

2) Unlike the combination of the existing global search and local search 

algorithm, a new region on a new hybrid GA is attempted. 

3) This can be used as an exterior module for OPTSHIP. 
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II. Class of Optimization Problems 
 

 

1. Introduction 

 

Designer, in industrial fields, supplies design parameters for the product as 

input into the computer simulation programs which is developed by commercial 

vender, runs the program and then analyzes the results. If the results do not meet 

the design goals then the designer changes the design parameters and repeats the 

process. Solutions to their problems have been based mostly on judgment and 

experience. However, increased competition and consumer demands often require 

that the solutions be optimum and not just feasible solutions. The challenge to the 

designer is to find the best design in as short a time period as possible. It can be 

realized to the designer through the optimization. 

Optimization is the process of maximizing or minimizing a desired objective 

function while satisfying the prevailing constraints. A small savings in a 

mass-produced part will result in substantial savings for the corporation. In ship, 

weight minimization can be contributed on cost reduction, ship’s performance, 

safety, free from the repeated work, etc. Limited material or labor resources must 

be utilized to maximize profit [1]. 

In order for engineers to apply optimization at their workplace, they must 

have an understanding of the theory, algorithms, and techniques. This is because 

practical problems invariably require tuning algorithmic parameters, scaling, and 

even modifying existing techniques to suit the specific application. Moreover, the 

user may have to try out several optimization methods to find one that can be 

successfully applied. In operations research and industrial engineering, use of 

optimization techniques in manufacturing, production and scheduling has resulted 
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in considerable savings for a wide range of business and industries. The 

importance of minimum weight design of structures was first recognized by the 

aerospace industry where aircraft structural designs are often controlled more by 

weight than by cost considerations. In other industries dealing with civil, 

mechanical and automotive engineering systems, cost may be the primary 

consideration although the weight of the system does affect its cost and 

performance.  A growing realization of the scarcity of raw materials and a rapid 

depletion of our conventional energy sources is being translated into a demand for 

lightweight, efficient and low cost structures. This demand in turn emphasizes the 

need for engineers to be cognizant of techniques for weight and cost optimization 

of structures. This chapter, in its first part, introduces the general area of 

optimization. The definition and history of optimization is considered from the 

viewpoint of engineering. In the latter part, looks at various optimization methods. 

There are many classes into which we may partition optimization problems, and 

also many competing algorithms which have been developed for their solution. 

We outline the areas of primary interest for the present work, with some brief 

contrasts to classes of problems that we do not consider here. In particular, 

modified method of feasible direction (MMFD) and a genetic algorithm was 

illustrated in detail. The former is the one of the algorithms to solve the 

approximate optimization problem. It used the usable-feasible search direction in 

search direction and is used NASTRAN optimization module. The latter is 

simulated a heuristic probabilistic search technique that is analogous to the 

biological evolutionary process. This algorithm is applied to the newly developed 

algorithms in this study.  
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2. Historical Sketch [2] 

 

The existence of optimization methods can be traced to the days of Newton, 

Lagrange and Cauchy. The development of differential calculus methods of 

optimization was possible because of the contributions of Newton and Leibnits to 

calculus. The use of a gradient method (requiring derivatives of the function) for 

minimization was first presented by Cauchy in 1847. He made the first application 

of the steepest descent method to solve unconstrained minimization problems. In 

spite of these early contributions, very little progress was made until the middle of 

the twentieth, when high-speed digital computers made the implementation of the 

optimization procedures possible and stimulated further research on new methods.  

Modern optimization methods were pioneered by Courant’s on penalty functions 

in 1943, Dantzig developed the simplex method for linear programming in 1947  

and Bellman stated the principle of optimal policy for system optimization for 

dynamic programming problems paved the way for development of the methods 

of constrained optimization in 1939 and Kuhn, and Tucker who derived the 

“KKT(Karush, Kuhn and Tucker)” optimality conditions for constrained problems 

laid the foundations for a great deal of later research in non-liner programming in 

1951. Fletcher and Reeves of the conjugate gradient methods pioneered on 

unconstrained minimization. Constrained optimization methods were pioneered 

by Rosen’s gradient projection method and Fiacco and McCormick’s SUMT 

techniques in 1968. Geometric programming was developed by Duffin, Zener and 

Peterson. Gomory did pioneering work in integer programming, which is one of 

the most exciting and rapidly developing areas of optimization. Dantzig, Charnes 

and Cooper developed stochastic programming techniques and solved problems 

by assuming design parameters to be independent and normally distributed. In the 

1960’s, also, there were developments in non–gradient or ‘direct’ methods, 

principally Rosenbrock’s method of orthogonal directions in 1960, the pattern 
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search method of Hooke and Jeeves in 1961, Powell’s method of conjugate 

directions in 1964, the simplex method of Nelder and Meade [3]. Sequential 

quadratic programming (SQP) methods for constrained minimization were 

developed in the 1970’s. Development of interior methods for linear programming 

started with the work of Karmarkar in 1984. Most recent among direct methods 

are genetic algorithms (Holland [4], Goldberg [5]), Tabu search algorithm which 

was developed independently by Glover [6, 7] and Hansen [8] for solving 

combinatorial optimization problems and simulated annealing algorithms was 

derived from an analogy with the annealing process of material physics by 

Kirkpatric [9]. Special methods that exploit some particular structure of a problem 

were also developed. Pareto optimality was developed in the context of 

multi-objective optimization. The use of nonlinear optimization techniques in 

structural design was pioneered by Schmit in 1960. Today, applications are 

everywhere, from identifying structures of protein molecules to decreasing the 

weight of ship structures.  

 

 

3. Definition of Optimization Problem 

 

The design optimization problems are commonly found in manufacturing 

industries and can be represented by the following mathematically formulation. 

find 1 2( , , , ) n
nx x x R= ⋅⋅⋅ ∈x   

which maximize or minimize f(x) 

subject to the constraints 

jg (x) 0≤ , jh (x) 0= ,  j  = 1 to m  

This formulation supports the specification of unconstrained and constrained 

problems with a single objective. Where n  is the dimension of variable and m is 



 19 

the total number of the constraint condition(or function). x is a real or integer 

vector of n  dimension. f(x) is an objective function or a cost function. 

jg (x) 0≤  and jh (x) 0=  are an inequality and an equality constraints, 

respectively. If x satisfies jg (x) 0≤ and jh (x) 0= , x is called a feasible solution 

and lies in feasible. In an opposite situation, x is an infeasible solution.  

In the optimization problem formulation, three elements are considered such 

as design variables, constraints and an objective function. Also some terminology 

is introduced. 

 

3.1 Design Variables 

 

The idea of improving or optimizing a structure implicitly presupposes some 

freedom to change the structure. The potential for change is typically expressed in 

terms of ranges of permissible changes of a group of parameters. Such parameters 

are usually called design variables in structural optimization terminology and 

denoted by a vector 1 2( , , , ) n
nx x x R= ⋅⋅⋅ ∈x . Design variables can be 

cross-sectional dimensions or member sizes, they can be parameters controlling 

the geometry of the structure, its material properties, etc. Design variables may 

take continuous or discrete values. Continuous design variables have a range of 

variation, and can take any value in that range. Discrete design variables can make 

only isolated values, typically from a list of permissible values. Material design 

variables are often discrete. Design variables that are commonly treated as 

continuous are often made discrete due to manufacturing considerations. For 

example, if the beam is designed to minimize weight, then we may need to limit 

ourselves to commercially available cross sections. So we have to solve the 

problem with discrete variables. This is done by employing integer (discrete) 

programming. The choice of design variables can be critical to the success of the 

optimization process. In particular it is important to make sure that the choice of 
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design variables is consistent with the analysis model. 

    

3.2 Constraints 

 

Constraints introduce the notion of limits on the design variables in the 

optimization problem formulation. Because of their simplicity, these upper and 

lower limit constraints on the values of the design variables are often treated in a 

special way by solution procedures, and are refereed to as side constraints. 

Constraints which impose upper or lower limits on quantities are by their very 

nature inequality constraints. Sometimes we need equality constraints. However, 

some strategies for the solution of nonlinear optimization problems are unable to 

handle equality constraints, but are limited to inequality constraints only. In such 

instances it is possible to replace the equality constraint with two inequality 

constraints that form upper and lower bound constraints with a same limiting 

value. However, it is usually undesirable to increase the number of constraints. 

 

3.3 Objective Function 

 

The objective function, when expressed as a function of the design variables, 

is known to the criterion with respect to which the design is optimized. The choice 

of objective function is governed by the nature of the problem. For structural 

optimization problems, weight, displacement, stresses, vibration frequencies, 

buckling loads, and cost or any combination of these can be used as objective 

functions. In some situations, there may be more than one criterion to be satisfied 

simultaneously. An optimization problem involving multiple objective functions 

is known as a multi-objective programming problem. With multiple objectives 

there arises a possibility of conflict, and one simple way to handle the problem is 

to construct an overall objective function as a linear combination of the conflicting 
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multiple objective function. Thus if 1f (x) and 2f (x) denote two objective 

functions, construct a new (overall) objective function for optimization as 

1 1 2 2( ) ( ) ( )f x f x f xα α= +         (2.1) 

where 1α  and 2α  are constants whose values indicate the relative importance of 

one objective function relative to the other. 

 

3.4 Smoothness 

 

Functions for which continuous derivatives of sufficiently high order exist 

are referred to as smooth. For continuous optimization, we are usually interested 

in having continuous derivatives up to and including second order. Minimization 

problems in which the objective and constraint functions are of such type can 

make use of techniques of multivariable differential calculus which are 

unavailable for non-smooth functions. We refer primarily to the extensive set of 

methods which make use of gradient and curvature information to direct an 

iterative search process toward a local minimum. Methods in this very broad class 

include the Newton or quasi-Newton methods. For functions which are not 

smooth, only function value information can be used to direct the search process. 

Such techniques are referred to generally as direct search. One early approach is 

the simplex method of Nelder and Mead [3]. 

 

3.5 Discrete Optimization 

 

We discuss integer programming (both linear and nonlinear) later in this 

thesis, however the apparently more general problem of nonlinear optimization 

subject to general discrete restrictions has also received some recent attention. 

Such problems require a (generally nonlinear) objective to be minimized subject 
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to nonlinear inequality constraints, with the added requirement that certain or all 

of the structural variables must take values from specified finite sets; the elements 

of these sets need not be integers. For a recent example in which the classical 

penalty function approach (Sequential Unconstrained Minimization Technique 

(SUMT) of Fiacco and McCormick [10]) is applied in order to satisfy both 

nonlinear constraints and the discrete requirements, see the 1990 paper by Shin, 

Güerdal and Griffin [11], in which applications to engineering truss design are 

considered. 

 

3.6 Nonlinear Integer Programming (NIP) 

 

Nonlinear integer programming was suggested by Reiter and Rice for solving 

a general quadratic programming problem, where both the objective and 

constraint function are quadratic. They applied a modified gradient-type method, 

very similar to the methods used in the continuous nonlinear programming field, 

to solve the problem. NLIP is an intrinsically hard problem. As with most 

domains of engineering, nonlinear Therefore, nonlinear problems are often solved 

by generating a sequence of solution to linear problems which in some sense 

approximate the original nonlinear problem. The NIP problem can be 

mathematically expressed as follows: 

Maximize (or minimize)    f(x)  

subject to the constraints  ,≤ ≤L Ux x x  

     x ,nZ∈  

where, x 1 2,( , , )T

nx x x= ⋅ ⋅⋅  is a vector of variables or unknown in the NIP problem,  

nZ  is a set of n -dimensional integer vector, 1 2( , ), , TL L L
nx x x= ⋅⋅ ⋅Lx nZ∈ are 

1 2( , ), , TU U U
nx x x= ⋅ ⋅ ⋅Ux nZ∈  are n-dimensional constant vectors, and L Ux x≤ .   

Let { }: , nS Z= ≤ ≤ ∈L Ux x x x x denote a solution space, thus :f S R→ is a 
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cost function. Some of the NIP problems can also be viewed as integer and 

combinatorial optimization problem [12]. 

 

3.7 Linear Programming (LP) 

 

Linear programming (LP) problems are linear in both objective and 

constraints. The special nature of this class of problems makes possible a very 

elegant solution algorithm known as the revised simplex method. The basic result 

of LP theory stems from the nature of the feasible set. The feasible set can be 

characterised geometrically as a convex polytope (or simplex), which can be 

imagined to be a n -dimensional polyhedron, and if an optimal solution exists, 

then there is at least 

one vertex of the feasible set that is optimal. Fig. 2.1 illustrates a trivial LP in 

which the interior of the shaded quadrilateral OPQR represents the feasible set. 

The fundamental result tells us that if a finite optimal point exists, then (at least) 

one of the vertices O, P, Q and R (corresponding to so-called basic feasible 

solutions) is optimal. 

 

Fig. 2.1 Linear programming 
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3.8 Integer Linear Programming 

 

Integer linear programming problems (ILPs) are LP problems in which extra 

constraints requiring some or all variables to be integer valued have been 

imposed.  

ILP is a very common problem class where variables representing indivisible 

units, eg men, machines do not admit fractional solutions. Fig. 2.2 shows the 

combinatorial nature of such problems by an enumeration of the (finite) feasible 

set of lattice points, rather grossly depicted by the filled squares. 

 

Fig. 2.2 Integer linear programming 

 

3.9 Local and Global Optima 

 

An unconstrained local minimum is a point x nR∈  such that there exists a 

neighborhood in which the objective at each other point is no better. For a smooth 

function, it can be pictured geometrically as being at the bottom of a through at 
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which the gradient vector is zero and the Hessian matrix is necessarily positive 

semi-definite. Such points are normally not too hard to find using methods that 

make use of first and second derivative information, typically methods of the 

Newton class. In a constrained problem, a local minimum may occur at a point 

where the gradient is not zero, since a constraint boundary may have been reached. 

In general there may be many local minima, and it is also of interest to find which 

of the local minima is the “best”. Such is global minimization, for which a number 

of alternative methods exist. In general, the task of finding a global minimum is a 

much harder problem than the task of finding a local minimum, primarily because 

it is much harder to verify that the claimed global minimum is actually that. 

For a large class of practical problems, global minimization is, in general, an 

impossible task, although in a number of practical cases, such problems have been 

solved in a satisfactory manner. Normally, "real-world" optimization problems are 

global, constrained, mixture of discrete and continuous, nonlinear, multivariate 

and nonconvex.  

Interestingly, some of the more imaginative of recent attempts at 

optimization methods try to mimic perceived processes of nature. One such 

approach is that of simulated annealing; another is evolution via the class of 

so-called genetic algorithms. 

The application of any nonlinear optimization method can only ensure the 

attainment of a local optimum which in the case of nonconvex objective functions 

(often the case with practical problems) is not necessarily the global optimum. 

Most practical engineering problems can be formulated in the light of global 

optimization, i.e. optimization problems in which the objective function is 

nonconvex and possesses many local optima in the resign of interest. In case the 

objective function is multimodal, i.e. has several optima, the aim of the global 

optimization method is to find the smallest local minima or the largest local 

maxima depending upon the problem. 
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3.10 Global Optimality 

 

In the optimum design of system, global optimum must be satisfied under the 

following conditions. 

1) If the cost function f(x) is continuous on a closed and bounded feasible 

region, then Weierstrass Theorem guarantees the existence of a global 

minimum. For this situation, if we can calculate all the optimum points, 

and then select a solution that gives the least value to the cost function. 

2) By showing the optimization problem to be convex because in that case 

any local minimum is also a global minimum. 

 

 

4. Optimization Methods 

 

The optimum seeking methods are also known as mathematical 

programming technique and are generally studied as a part of operations research. 

Operations research is a branch of mathematics concerned with the application of 

scientific methods and techniques to decision making problems and with 

establishing the best or optimal solutions. There are many classes into which we 

may partition optimization problems, and also many completing algorithms which 

have been developed for their solution. We outline the areas of primary interest 

for the present work, with some brief contrasts to classes of problems that we do 

not consider here. 

 

4.1 NASTRAN Optimization [13] 

 
The optimization algorithms in MSC NASTRAN belong to the family to 
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methods generally referred to as “gradient-based”, since, in addition to function 

values, they use function gradients to assist in the numerical search for an 

optimum. NASTRAN Optimization can be effectively solved design optimization 

in the big model with many design variables. Because it has used the function of 

approximation model, design variable linking and screening of constraints. Also, 

it can solve the structural optimization problem considering static analysis, normal 

mode analysis, buckling analysis, transient response analysis, frequency response 

analysis, aeroelastic analysis, flutter analysis. The optimizer in MSC NASTRAN 

are MMFD (modified method of feasible directions), SLP(sequential linear 

programming) and SQP(sequential quadratic programming). MMFD here is 

default in MSC NASTRAN optimization.      

    

4.1.1 Modified Method of Feasible Directions (MMFD) 

After the objective function and constraints are approximated and their 

gradients with respect to the design variables are calculated based on the 

approximation, we are able to solve the approximate optimization problem. 

MMFD is one of the algorithms used in the optimizer. The general formulation of 

optimization is as follows: 

 

Find the set of design variablesix , i =1, 2, ···, n 

Minimize   f(x) 

Subject to   jg (x) 0≤  j =1, 2, ···, gn  

   L U
i i ix x x≤ ≤  i =1, 2, ···, n  

Given an initial x-vector x 0 , the design will be updated according to Eq. 

(2.2) 

  x q = x 1q− * qSα+              (2.2) 
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The overall optimization process now proceeds in the following steps: 

Step 1: Start, 0,q =  x q = x m . 

Step 2: 1q q= +  

Step 3: Evaluate objective function f(x) and constraints jg (x)  
where j =1, 2, …, gn  

Step 4: Identify the set of critical and near critical constraints J  

Step 5: Calculate gradient of objective function f∇ (x) and jg∇ (x) for all 

j J∈  

Step 6: Find a usable-feasible search direction S q  

Step 7: Perform a one-dimensional search to find *α  

Step 8: Set x q = x 1q− *α+ S q  

Step 9: Check for convergence to the optimum. If satisfied, go to step 10 

otherwise, go to step 2. 

Step 10: x 1m+ = x q  

 

1) Search direction 

In order to make further improvement in an optimization loop, a new search 

direction must be found that continues to reduce the objective function but keeps 

the design feasible. We seek a usable-feasible search direction, in which: 

A usable direction is the one that reduces the objective function, and a 

feasible direction is the one that a small move in this direction will not violate the 

constraints.  

This situation is shown in Fig. 2.3 

 

2) Convergence to the optimum 

Since numerical optimization is an iterative process and one of the most 

critical and difficult tasks is determining when to stop. The optimizer uses several 
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criteria to decide when to end the iterative search process. This process is applied 

to the only solution of the approximate optimization problem. 

 

(1) Maximum iteration 

The maximum number of iterations (search directions) is included. The 

default for this is 40 iterations. Usually, an optimum is found sooner than this; 

therefore, the maximum is mainly intended to avoid excessive computations. 

 

 
Fig. 2.3 Usable-feasible search directions (Vanderplaats, 1984) 

 

(2) No feasible solution 

If the initial design is infeasible (constraints are violated), the first priority is 

to overcome these violations and find a feasible solution. However, if there are 

conflicting constraints, a feasible solution may not exist. Therefore, if a feasible 

design is not achieved in 20 iterations, the optimization process is terminated. 

 

(3) Changes of objective function 
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To measure the progress made in the successive iterations, this is particularly 

true because this program is solving an approximate problem that is to be updated 

on the next design cycle. Here, two criteria are used. The first criteria require that 

the relative change in the objective between iterations be less than a specified 

tolerance objδ Thus, the criteria are satisfied if: 

1

1

( ) ( )

( )

q q

objq

f f

f
δ

−

−

−
≤

x x

x
                             (2.3) 

The default value for objδ  is 0.001. 

The second criterion is that the absolute change in the objective between the 

iterations is less than a specified toleranceobjδ . This criteria is satisfied if 

1( ) ( )q q
objf f δ−− ≤x x         (2.4) 

The default value for objδ  is the maximum of 0.001f× (x 0 ) and 1.0E-20. 

The first criterion, relative change, is an indication of convergence if the 

objective function is large. However, the convergence is controlled by the second 

criterion, absolute change, if the objective function is small. 

 

3) Satisfaction of Kuhn-Tucker conditions 

In the case of an unconstrained problem, the conditions where the gradient of 

the objective function vanishes as follow: 

∇ f(x) = 0 

Fig. 2.4 shows the relative and global minima in the design space. 

In the case of the constrained problem, the conditions of optimality are more 

complex. By using the Lagrangian multiplier method, we define the Largangian 

function as the following: 

∇ f(x) + j jgλ ∇∑ (x) = 0, jλ ≥ 0       (2.5) 
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Fig. 2.4 Relative and global minima in the design space 

 

Differentiating the Lagranigian function with respect to all variables we 

obtain the Kuhn-Tucker conditions which are summarized as follows: 

 2( , , ) ( ) ( )j j jX t f X g tλ λΓ = + +∑        (2.6) 

The corresponding jλ  is zero if a constraint is not active. 

The physical interpretation of these conditions is that the sum of the gradient 

of the objective function and the scalars jλ times the associated gradients of the 

active constraints must vectorally add to zero shown in Fig 2.5. 

Fig. 2.7 Kuhn-Tucker condition at a constrained optimum. The Kuhn-Tucker 

condition is also sufficient for optimality when the number of active constraints is 

equal to the number of design variables. Otherwise, sufficient conditions require 

the second derivatives of the objective function and all of the constraints are 

convex, the Kuhn-Tucker conditions are also sufficient for global optimality. 
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Fig. 2.5 Kucker-Tucker condition at a constrained optimum 

 

 4.1.2 Sequential Linear Programming (SLP) 

SLP can obtain the solution of nonlinear problem to linear approximation 

using the linear programming methods. This approach can be linearized about this 

point, repeating the process until a precise solution is achieved. SLP linearize the 

nonlinear programming via a first-order Taylor series expansion as Eqs. (2.7) to 

(2.11)    

Objective function: f(x) ≅ f(x 0 ) +∇ f(x 0 ) δ⋅ x                      

(2.7) 
Constraints: jg (x) jg� (x 0 ) jg+ (x 0 ) δ⋅ x 0, 1,j m≤ =     (2.8) 

   kh (x) � kh (x 0 ) + kh (x 0 ) δ⋅ x 0, 1,k m= =       (2.9) 

    x L
i ≤ x i + δ x ≤ , 1,U

ix i m=                       

(2.10) 

   δ x = x − x 0        (2.11) 

where, zero superscript identifies the point about which this Taylor series 

expansion is performed. 
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This represents a linear programming problem where the design variables are 

contained in the vector δ x, and the function and gradients at x 0  are constants 

and coefficients, respectively. Fig. 2.6 shows a geometric interpretation of the 

SLP method. At the initial design x 0 , the objective and constraints are linearized 

to give the straight-line representations of the functions. The optimum of this 

linear problem is found and is seen to be near the nonlinear optimum, but it is 

infeasible. However, if we relinearize at this point and repeat the process, we 

would expect to approach the precise optimum in a few iterations. For fully 

constrained problems, SLP often converges rapidly to the solution. However, for 

under-constrained problems, those where there are fewer active constraints at the 

optimum than there are design variables, the method often performs poorly. 

 

 

Fig. 2.6 The linearized problem 

 

4.1.3 Sequential Quadratic Programming (SQP) 

The basic concept is very similar to sequential linear programming. First the 

objective and constraint function are approximated using Taylor series 

approximations. However, a quadratic, rather than a linear approximation of the 
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objective function is used. Linearized constraints are used with this to create a 

direction finding problem of the form; 

Minimize : 0 1
( )

2
T TQ S f f S S BS= + ∇ +      (2.12)  

subject to 0( ) 0 1,T
j jg S g j m∇ + ≤ =            (2.13) 

where the design variables are the components of S. The matrix B is a positive 

definite approximation of the Hessian of the Lagrangian that is updated using the 

BFGS (Broyden, Fletcher, Goldfarb and Shanno) formula with∇ L replacing ∇ f. 

However, in the linearization method, B = I  = Identity matrix. This method is 

considered to be an excellent method by many theoreticians. 

 

4.2 Modified Simplex Method 

 

The simplex method is a local search technique that uses the evaluation of the 

current set of data to determine a promising search direction. A simplex is defined 

by a number of points equal to one more than the number of dimensions of the search 

space. For an optimization problem involving N variables, the simplex method 

searches for an optimal solution by evaluating a set of N+1 points, denoted as xxxx1, 

xxxx 2, …, xxxx N+1. The method continually forms a new simplex by replacing the worst point 

in the simplex, denoted as xxxx w, with a new point xxxx r generated by reflecting xxxx w over 

the centroid x
r
of the remaining points: 

xxxx r (= + −
ur ur
x x xxxx )w  (2.14) 

where 

1

1

1
,

n

i
i

i w
n

+

=
= ≠∑

ur
x x  

The new simplex is then defined as 2
1 2 1 1,w N rx x x x x+ ++ + ⋅⋅⋅ + + ⋅⋅⋅+ . This 

cycle of evaluation and reflection iterates until the step size (i.e., x r − x w ) 
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becomes less than a predetermined value or the simplex circles around an 

optimum. 

Nelder and Mead [3] developed a modification to the basic simplex method 

that allows the procedure to adjust its search step according to the evaluation 

result of the new point generated. This is achieved through three ways. Firstly, if 

the reflected point is very promising (i.e., better than the best point in the current 

simplex), a new point, further along the reflection direction, is generated using the 

equation: 

x e (γ= + −
ur ur
x x x )w  (2.15) 

where γ  is the called the expansion coefficient (γ  > 1), because the resulted 

simplex is expanded.  

Secondly, if the reflected point x e  is worse than the worst point in the 

original simplex (i.e., x w ), a new point, close to the centroid on the same side of 

x w , is generated using the following equation: 

x (c β= − −
ur ur
x x x )w  (2.16) 

where β  is called the contraction coefficient (0 <β < 1) because the resulted 

simplex is contracted.  

Finally, if the reflected point x e  is not worse than x w , but is worse than the 

second worst point in the original simplex, a new point, close to the centroid on 

the opposite side of x w , is generated using the contraction coefficient β. 

x (c β= − −
ur ur
x x x )w  (2.17) 
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Fig. 2.7 Example of two-dimensional simplex 

 

Fig. 2.7 illustrates how this method applies to an optimization problem 

involving two variables. Supposed points xxxx 1, xxxx 2 and xxxx 3 are from an original simplex, 

and point xxxx 3 (= xxxx w ) has the worst evaluation. Point 
ur
x  represents the centroid of 

xxxx 1 and xxxx 2. The reflecting point xxxx 3 across 
ur
x  generates xxxx e, which together with 

points xxxx 1 and xxxx 2, forms the new simplex. 

However, general objective function is subjected to constraint conditions and 

parameters setting a minimum and a maximum value (xxxx min ≤ x x x x ≤  x x x x max). That is to say, 

if the optimum solution can’t satisfy constraint conditions or parameter range, even 

if the solution is the optimum solution, it cannot be selected. Therefore, in order 

to satisfy the above restriction, Nelder’s simplex algorithm is modified as follows:  

    

1) If xxxx max ≤  x x x x r  or xxxx min ≥  x x x x r , then the value of xxxx r  is replaced by xxxx min  or xxxx max. 

When xxxx r  is created by expansion, contraction or reflection, this process will 

guarantee that there is xxxx r  in the parameter range.  

2) If xxxx r  can’t satisfy constraint conditions, then xxxx w  is replaced by the second 

worst point in the original simple. This process is similar to the contraction 

because they are almost equal in the resulted simplex. 
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4.3 Genetic Algorithms (GA) 

 

Genetic algorithm simulates a probabilistic search technique that is 

analogous to the biological evolutionary process. The GA consists of three main 

strategies, reproduction, crossover and mutation. The performance of the GA 

depends on the operating parameters, namely crossover, mutation and 

reproduction.  

The GA consists of three main strategies (reproduction, crossover and 

mutation). Using reproduction in the GA, individuals are selected from the 

population and recombined, producing offspring, which will comprise the next 

generation. Two individuals are selected and their chromosomes are recombined. 

Crossover is the operation when two individuals are taken and their chromosomes 

are cut at some randomly chosen position, to produce two head and tail segments. 

These segments are swapped to reproduce two new full-length chromosomes. The 

offspring inherits some genes from each parent. Mutation is the technique used to 

randomly alter the genes with a small probability and is typically applied after 

crossover. Crossover is more important for rapidly exploring a search space. 

Usually, mutation provides a small amount of random search. 

 

4.3.1 Composition of GA [4,5] 

A GA for a particular problem must have the following five components: 

1) A genetic representation for potential solutions to the problem. 

2) A way to create an initial population of potential solutions. 

3) An evaluation function that plays the role of the environment, rating 

solution in terms of their “fitness”. 

4) Genetic operator that alters the composition of children from parents. 

5) Values for various parameters that the GA uses (population size, 

probabilities of applying genetic operators, etc.). 
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The parameters to be optimized are usually represented in a string (or 

chromosome) from since genetic operators are suitable for this type of 

representation. The method of representation has a major impact on the 

performance of the genetic algorithms. Different representation schemes might 

cause different performances in term of accuracy and calculating time. There are 

two common representation methods for numerical optimization problems [14, 

15].  

 

4.3.2 Genetic Operators  

It seems that there are two important issues in the evolution process of the 

GA. The one is population diversity and the other is selective pressure. These 

factors are strongly related: an increase in the selective pressure decreases the 

diversity of the population, and vice versa. In other words, strong selective 

pressure supports the premature convergence of the GA and a weak selective 

pressure can make the search ineffective. Thus it is important to keep a balance 

between these two factors.  

There are three common genetic operators: selection, crossover and mutation. 

An additional reproduction operator, inversion, is sometime also applied.  

 

1) Selection 

The aim of the selection procedure is to reproduce more copies of individuals 

whose fitness values are higher than those whose fitness values are low. The 

selection procedure has a significant influence on driving the search towards a 

promising area and finding food solutions in a short time. However, the diversity 

of the population must be maintained to avoid premature convergence and to 

reach the global optimal solution. Selection determines the reproduction 

provability of each individual in selection pool. This probability depends on the 

own objective value and the objective value of all other individuals. Three kind of 



 39 

selection method is usually used in application. 

 

(1) Roulette wheel selection [4] 

The mechanism of this selection is reminiscent of the operation of a roulette 

wheel. Fitness values of individuals represent the widths of slots on the wheel. 

After a random spinning of the wheel to select an individual for the next 

generation, individuals in slots with large widths representing high fitness values 

will have a higher chance to be selected.  

 

(2) Rank-based selection [16] 

According to this procedure, each individual generates an expected number 

of offspring, which is based on the rank of its fitness value and not on actual 

evaluation values. This strategy is similar to roulette wheel selection, excluding 

the application of uniform region and control better the selective pressure than 

that of the roulette wheel strategy.  

 

(3) Tournament selection [17] 

This method selects randomly a group, k, of individuals from a beginning 

population, and from this group, the most fitness individual is chosen to move on 

to the next population. This process is repeated population-size number of times. 

It is clear, that large value of k increases selective pressure of this procedure.  

 

2) Crossover 

This operator is considered the one that makes the genetic algorithm different 

from other algorithms, such as dynamic programming. It is used to create two new 

individuals (children or offspring) from two existing individuals (parent) picked 

from the current population by the selection operation. There are several ways of 

doing this.  
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(1) Simple crossover 

Simple crossover is two kinds of crossover, single or one point crossover and 

multi-point crossover. First, two individuals are randomly selected as parents from 

the pool of individuals formed by the selection procedures. Second, they are cut at 

a randomly chosen point. Finally, the tails, which are the parts after the cutting 

point, are swapped, and then two new individuals (offspring) are produced.  

 

(2) Uniform crossover 

Uniform crossover is proposed to overcome the problem that the process of 

simple crossover may be lost a sequence of string, which is schema. This is 

important in that an individual solution is coded as a string. In the concept, 

uniform crossover is similar to multi-point crossover. The difference between 

simple crossover and uniform crossover is in the way that a swapping point is 

selected. 

 

3) Mutation 

The part of mutation is that the initial individuals are widely distributed in 

the search space and prevented the initial local convergence. In this procedure, all 

individuals in the population are checked bit by bit and the bit values are 

randomly reversed according to a specified rate. Unlike crossover, this is a 

monadic operation. That is, a child string is produced from a single parent string. 

The mutation operator forced the algorithm to search new areas. Eventually, it 

helps the GA avoid premature convergence and find the global optimal solution. 

In the binary coding, this simply means changing a 1 to a 0 and vice versa, and is 

the occasional random alteration of the value of a string position.  
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(1) Classical mutation 

Goldberg [5] proposed this strategy in a basic GA, which was modeled by 

Holland [4]. A genotype of selected parent is exchanged by mutation rate, which 

is similarly small (or smaller) in natural population. 

 

(2) Uniform mutation 

It is similar to the definition of the classical version, which searches a new 

point with a uniform probability distribution. This operator requires a single 

parent x and produces a single offspring'x . The operator selects a random 

component (1,k ∈  , )q⋅ ⋅ ⋅ of the vector 1( , , , , )k qx x x= ⋅⋅⋅ ⋅ ⋅ ⋅x  and  

Produces ' '
1( , , , , )k qx x x= ⋅⋅⋅ ⋅ ⋅⋅x .  

' ( ), [0 1]L U L
k k k kn n R= + − ∈x x x x       (2.18) 

where L
kx  and U

kx  are the lower and upper boundaries of the parameter kx , 

respectively, and n is the real value selected randomly from 0 to 1.  

 

(3) Dynamical mutation 

If a high mutation rate is applied to all stages, we may loose the good 

searched candidates for optimum solutions from the previous generation. In order 

to avoid this problem, the elite preservation strategy and the dynamical mutation 

are applied. One conserves the individuals that have higher fitness with a certain 

proportion rate and the other guarantees that the search point (initial candidates) is 

wildly distributed in the search space.  

Eq. (2.19) shows the dynamical mutation, which considered in the global 

search steps. 
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where ig is the ith generation number, G is the total generation number, id  is the 

reproduced offspring number at the ith generation and D is the population 

number. 

The feature of the dynamical mutation decreases exponentially at once with 

the generation increasing and is fluctuated by the reproduction rate, which is a 

total population number to a generation number. 

 

4.3.3 Differences from Other Traditional Methods 

Goldberg had summarized the characteristic of GA in comparison with 

conventional optimizations as follows [5]: 

•  GA is a multi-point search algorithm using a population, which is a set of 

random solutions, not using a potential solution. 

•  GA works with a coding of candidate set, not solutions themselves. 

•  GA uses only fitness function, not derivative or other auxiliary 

knowledge.  

•  GA is a stochastic search algorithm based on the mechanism of the 

natural world and natural genetics. GA starts with an initial set of random 

solutions called population. 

•  GA uses probabilistic transition rules, not deterministic rules. 

GA do not have much mathematical requirements about the optimization 

problems. Due to their evolutionary nature, GAs will search for solutions without 

regard to the specific inner workings of the problem. GAs can handle any kind of 

objective functions and any kind of constraint (i.e., linear or nonlinear) defined on 

discrete, continuous, of mixed search spaces. GAs do not associate with an initial 

point problem. To be precise, because GAs compose randomly a group of 

potential solutions, GAs do not have the notion of an initial point problem. That 
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provides us with the great belief that GAs can find out global optimum solutions 

and a flexibility to hybridize with domain-dependent heuristics to make an 

efficient implementation for a specific problem.  

 

4.3.4 Limitations of Algorithm 

However, GAs have also the following drawbacks or limitations they are: 

•  A binary code is not free to make a genotype of individuals 

•  The fittest individual may be lost during the selection process due to its 

stochastic nature. 

•  Fit individuals may be copied several times and a fit individual may 

quickly dominate the population at an early stage, especially, if the 

population size is small. 

•  The selection operation alone explores no new points in a search space. 

In other words, if cannot create new schemata. 

•  Different genetic parameters such as population size, crossover 

probability, mutation probability, etc. greatly affect the accuracy and 

calculation time of optimum solution. 

 

4.3.5 Simple Genetic Algorithm [15, 16, 18] 

Fig. 2.8 shows the flowchart of simple GA. A simple GA randomly generates 

an initial population. The GA proceeds for a fixed number of generations or until 

it satisfy some stopping criterion. During each generation, the GA performs 

fitness proportionate selection, followed by single-point crossover and mutation. 

Fig. 2.9 illustrates closely a process of evolution at k generation. 

First, fitness proportionate selection assigns each individual structure in the 

populationP , according to the ratio of fitness and the probability of selection. 

Second, using the single-point crossover P% is composed. After the crossover 

stage has finished, the mutation stage begins. For every string that advances to the 
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mutation stage, each of its bits is flipped with probability (mutation rate). The 

population resulting from the mutation stage then overwrites the old population 

(the one prior to selection), completing one generation (k+1). Subsequent 

generations follow the same cycle of selection, crossover and mutation. 

 

StartStart

Production of the initial 
individuals

Production of the initial 
individuals

Calculation of the fitness Calculation of the fitness 

Reproduce individualReproduce individual

SelectionSelection

Crossover and MutationCrossover and Mutation

terminal
condition OK

terminal
condition OK

Change old population with new 
population

Change old population with new 
population

No

Yes

EndEnd

 

Fig. 2.8 Flowchart of the simple genetic algorithm 
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Fig. 2.9 Structure of the simple genetic algorithm 

 

4.4 Random Tabu Search Method (R-tabu Method) 

 

Hu [19] had improved tabu search method proposed by Glover [7] and had 

applied to constrained optimum. In the case of minimizing an objective function 

“ ( )f x ” with constraint range [a, b], new parameters, step number and count 

number, are introduced by random tabu search method. Step number is the 

number of searching the neighbors and count number is the maximum iteration 

number of searching to search a neighbors. The initial value which is the first 

approximate solution satisfying the constraint condition, symbolizes 0x , and then 

0x  surrounding neighbors 0 1( , )N hx  are 

0 1( , )N hx , 0 2( , )N hx , · · · , 0( , )rN hx   

where ih ( i =1, 2, · · · , r ) refers to step size, r  means step number. The set 

of step size, H, is 
H = { 1h , 2h , · · · , rh } 

where 1h  = b-a, 2h  = 1h P, 3h  = 2h P, ···, rh  = 1rh −  P, P is step ratio 

The procedure of R-tabu method is as follows. If ( )f x  which is led by 
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randomly generating x  in each neighbor is less than( )f 0x , then x  is 

supposed to minimum value among its neighbors. The smallest x  in the 

minimum value of each neighbor becomes the second approximate solution1x , 

and repeats at the each neighbor which is set up at the x  surrounding. The 

basic principle is similar to the method combined pattern searching of the direct 

search method proposed by Hook-Jeeves with a lattice search method, but it is 

different to take a neighbor in steady of improved step size and to use several 

different step sizes. Features of R-tabu method are as follows. First1y, it can 

reduce an iteration number and promote the efficiency of searching, because 

each searching solution locates at different searching domain. Secondly, it is 

possible with this method to take a global optimum and to avoid trapping in a 

local optimum because of utilizing random searching. Finally, it is possible to 

get the optimum solution fast and accurately, if the method is combined with 

other optimization methods. Fig. 2.10 shows the flowchart of R-tabu method. 

 

(a) Setting neighbor 

Fig. 2.10 Flowchart of random tabu search method (Continued) 
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(b) Initializing neighbor 

 

 

 

(c) Comparison 

Fig. 2.10 Flowchart of random tabu search method (Continued) 
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(d) Selecting and setting new value 

Fig. 2.10 Flowchart of random tabu search method 

 

4.5. Artificial Life Algorithm 

 

The origin of artificial life started in the late 1960s when John Conway began 

work in his “Game of Life”. This was simply an array of cellular automata whose 

two states were metaphorically dubbed by Conway “live” and “dead”. Langton 

who has contributed to artificial life greatly, defines artificial life as follows: 

“Artificial life is the study of man-made systems that exhibit behaviors 

characteristic of natural living systems” [20]. The most important two 

characteristics of artificial life are emergence and dynamic interaction with the 

environment. The emergence is the result of dynamic interaction among the 

individuals consisting of the system and is not found in an individual. The 

micro-interaction with each other in the artificial life’s group results in emergent 

colonization, the emergence, in the whole systems. The artificial world in the 

artificial life algorithm is defined as the domain of the given optimization 

problem.  

Fig. 2.11 shows a circular food chain, which consists of four kinds of 

resources and four species of artificial organisms [21]. Artificial organisms can 
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move about in the world consuming energy resources and producing waste. The 

four species of artificial organisms compose a circular food chain where one 

species’ waste is another’s food. Artificial organisms can only metabolize the 

resources, which they want to. The demanded resources are determined according 

to the four species of artificial organisms. Artificial organisms have a sensory 

system, which enables them to see resources as well as other artificial organisms 

in the world. They are also able to determine the location of the nearest resources 

and other artificial organisms from their present location. This nearest location of 

resource becomes the goal, which drives them to move forward. Artificial 

organisms must maintain a minimum internal energy level in order to exist. Once 

an artificial organism’s energy level drops below the minimum energy, it is 

considered to be “dead” and removed from the world. 
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Fig. 2.11 Circular food chain of an artificial algorithm 

 

4.6. Simulated Annealing 

 

The simulated annealing algorithm was derived from statistical mechanics. 

Kirkpartick et al. [9] proposed an algorithm, which is based on the analogy 

between the annealing of solids and the problem of solving combinatorial 

optimization problems. Annealing is the physical process of heating up a solid and 

then cooling it down slowly until it crystallizes. The atoms in the material have 

high energies at high temperatures and have more freedom to arrange themselves. 

As the temperature is reduced, the atomic energies decrease. A crystal with 

regular structure is obtained at the state where the system has minimum energy. If 

the cooling is carried out very quickly, which is known as rapid quenching, 
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widespread irregularities and defects are seen in the crystal structure. 

This algorithm eliminates most disadvantages of the hill-climbing methods: 

solutions do not depend on the starting point any longer and are usually close to 

the optimum point. This is achieved by introducing a probability of acceptance 

(i.e., replacement of the current point by a new point). The probability of 

acceptance is a function of the values of objective function for the current point 

and the new point, and an additional control parameter, temperature, T. In general, 

the lower temperature T is, the smaller the chances for the acceptance of the 

system, T, is lowered in steps. This is Metropolis’s criterion [22] based on 

Boltzman’s probability. 

 

 

5. Summary  
 

In this chapter, the general items of optimization are summarized for the 

understanding of the theory, algorithms, and technique of it. This is because 

practical problems invariably require tuning algorithmic parameters, scaling, and 

even modifying existing techniques to suit the specific application. Also, the 

history of optimization is described from a view point of engineering. Finally, the 

optimization method is treated. There are many classes into which we may 

partition optimization problems, and also many competing algorithms which have 

been developed for their solution. We outline the areas of primary interest for the 

present work, with some brief contrasts to classes of problems that we do not 

consider here. In particular, modified method of feasible direction (MMFD) and a 

genetic algorithm were illustrated in detail. The former is the one of the 

algorithms to solve the approximate optimization problem. It used the 

usable-feasible search direction in a search direction and is used NASTRAN 

optimization module which can be effectively solved design optimization in the 
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big model with many design variables. Because it has used a function of 

approximation model, design variable linking and screening of constraints. The 

latter is simulated a heuristic probabilistic search technique that is analogous to 

the biological evolutionary process. The genetic algorithm consists of three main 

strategies (reproduction, crossover and mutation). Using reproduction in the 

genetic algorithm, individuals are selected from the population and recombined, 

producing offspring, which will comprise the next generation. Two parents are 

selected and their chromosomes are recombined. Crossover is the operation when 

two individuals are taken and their chromosomes are cut at some randomly chosen 

position, to produce two head and tail segments. These segments are swapped to 

reproduce two new full-length chromosomes. The offspring inherit some genes 

from each parent. Mutation is the technique used to randomly alter the genes with 

a small probability and is typically applied after crossover. Crossover is more 

important for rapidly exploring a search space. Usually, mutation provides a small 

amount of random search. This algorithm is applied to the newly developed 

algorithms in this study.  
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III. Development of NASTRAN External Calling 

Styled Optimization Framework (OPTSHIP) 

 

 

1. Introduction 

 
Recently, the issue of ship vibration is emerging due to the large scale, high 

speed and lightweight of ship. Therefore, shipbuilders are suggested to concern and 

applying the strict vibration criteria for low vibration levels at the deckhouse in the cabin 

for pleasantness (human comfort). This issue becomes an important condition for taking 

orders from customers, so the optimization solution to get a sound ship and to reduce the 

construction cost is needed.  

In industrial fields, much commercial software such as NASTRAN [1], 

ANSYS, etc are used to analyze and predict the response of vibration and 

structure. The capabilities of this software cover application to the complicated 

and big structures like ships. Nowadays, all shipbuilders try to save the 

construction and design costs due to the continuously increasing costs of labor and 

material costs. Traditionally, the ship design is based on a sequential and iterative 

approach and is a very complex problem, which has been approached by 

optimization methods only in the last two decades. This problem is more 

complicated and difficult in the case of a large ship such as a merchant ship 

because of the large number of degrees of freedom of the structure. Many 

researchers have studied the reduction model to save the running time and they 

have attempted to solve the complicated ship design problems using different 

optimization techniques. These efforts effectively contributed to the development 

of new design and effective optimization method [2].  
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Optimization is to determine the size or the geometric shape of the structure 

to obtain the maximum performance using minimal material with safety and 

availability of the target structure which is a ship in this case [3]. We consider 

three kinds of approaches for size optimization of a ship for vibration reduction 

design. Firstly, the optimization module of MSC/ NASTRN [4] is considered. 

This module is based on the sensitivity analysis which is the sensitivity 

derivatives of that response with respect to the variables of the problem. The 

demerits of using this module are as follows,  

• Many constraints to set an objective function and a design variable 

• Difficulty of performing global optimization by the local search method 

• The limitation of the optimization methods which cannot combine any 

complex user-defined optimization method.  

The second approach is using the NASTRAN/DMAP [5]. This enables the 

user to extract useful information during the analysis. However, NASTRAN 

execution is accompanied by many difficulties in iterative information exchange 

with external programs like a user-defined optimization programs. Furthermore, 

using the DMAP requires considerable knowledge for a non-expert user. Due to 

these limitations, this approach provides limited functionality for the user who 

wants to optimize a structure. 

Finally, this thesis presents a new optimization approach called OPTSHIP 

which uses NASTRAN for vibration analysis and global optimization algorithms 

for preventing the local convergence. The OPTSHIP employs MSC/NASTRAN 

and user-defined optimization methods as the analyzer and optimizer respectively. 

Any function optimization method can be the optimizer of the OPTSHIP. 

Especially, the global optimization methods are considered in this thesis, which 

are the genetic algorithm (GA) [6] and the random tabu search method (R-tabu) 

[7]. GA has an excellent ability in searching through the broad solution space and 

its usefulness has been demonstrated by various optimization problems. R-tabu is 
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an iterative procedure for solving discrete combinational optimization problems. 

R-tabu prevents convergence to the local optimum solution and can improve the 

convergence level of the optimum solution. The two methods are widely used 

broadly and well studied by many researchers [8-14]. OPTSHIP uses forced 

response, mode shape vector, natural frequency, weight and combined results of 

those values as the objective function. Thickness of shell element, area of beam 

element, stiffness of spring element and thickness of shear element can be used as 

design variables at this stage. We applied the OPTSHIP to an actual containership, 

and compared the forced response of the optimized model to the original model one 

to verify the reliability and performance of the proposed algorithm.  

 

 

2. Optimization Method Using NASTRAN As a Solver  
 

2.1 NASTRAN Optimization Module 

 

The function of the NASTRAN optimization module is to find a modified 

model to minimize (or maximize) the objective function while satisfying the 

constraints from the current analysis model. The design variables are categorized 

commonly into two groups. One is shape variables which relate to the shape 

optimization, and the other is sizing variables which relate to the size optimization. 

This module can be used in the linear static analysis, normal mode analysis and 

frequency response analysis for the optimization and sensitivity analysis. The 

objective function includes a user-defined simple expression as well as a direct 

result from one of the above analyses. However, the module cannot use the 

objective function for a design variable when the user defined expression used in 

the objective function is complex because this module is based on the sensitivity 

analysis. Since the local optimization methods such as modified feasible 
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directions method, sequential linear programming and sequential quadratic 

programming are used in a NASTRAN optimization module, the module can only 

locally optimize a model.  

The functions of NASTRAN/DMAP include constructing an objective 

function by extracting the meaningful information during the analysis process, 

modifying the sequence of the analysis process and making a user-defined 

program to perform a specific function. Engineering optimization requires a large 

number of iterative analyses. The analysis results require estimation of the 

objective function at each iteration. This iteration can be performed by using a 

specialized program called toolkit. Unfortunately the use of the toolkit asks for a 

highly skilled operator [5]. 

Therefore this thesis proposes a new methodology called OPTSHIP for an 

optimization using NASTRAN as an analyzer. The proposed methodology will 

provide a user with an easier optimization method than those of NASTRAN/ 

DMAP and NASTRAN/OPT modules. 
 

2.2 OPTSHIP: NASTRAN External Calling Styled Optimization Framework 

 

The flowchart of the proposed algorithm is described in Fig. 3.1. The 

OPTSHIP uses the MSC/NASTRAN [4] as a solver to estimate a user-defined 

objective function. Running the OPTSHIP needs a user-defined objective function, 

a design variable set and an analysis model file. In addition, the OPTSHIP consists 

of five modules: initiation module, optimization module, interface module with 

NASTRAN, estimation module of the objective function and base module. The 

term “module” is not intended as an independent execution of each module, but to 

emphasize functional specialization of each module. All modules are functionally 

related to each other and need to execute the OPTSHIP.  

The base module controls the process of the OPTSHIP and manages the data 
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which is used in the OPTSHIP by using another four properly modules according 

to the execution process. The information of a model, a set of design variables and 

an objective function are loaded by an initiation module. This module sends the 

analysis results which enable the estimation of the objective function and design 

variable, such as forced responses at specified node points, natural frequencies 

and mode vectors, to the interface module. The initiation module informs which 

optimization method is used to optimization module, and what kind of objective 

function that used to the estimation module of objective function. Logically, the 

optimization module can be constituted with most of the optimization methods. 

But for the present condition, this module consists of GA [6, 8, 9, 11-14], R-tabu 

[7, 8], simulated annealing method [15, 16] and the artificial life optimization 

algorithm [17]. The selected optimization module optimizes the design variable set. 

And the optimization module receives the revised objective function value f(x*) 

which is returned from the estimation module of the objective function with a new 

trial design variable set x*. This module has a convergence decision with an 

optimized design variable set and the optimized objective function value. 

Simultaneously the results will be transferred into the base module when the 

convergence criteria are satisfied. If the estimation of the objective function 

module receives a new trial design variable set x* from optimization module, it 

transfers the results to interface module with NASTRAN and receives the analysis 

results needs to estimate the objective function from the interface module. This 

module returns the estimated value of objective function to the optimization 

module. The objective function value can be a function of one or more of the 

forced responses at the specified node points, natural frequencies, weights and 

mode vectors. The interface module updates the analysis model with the trial 

design variable set x* by the returning estimation module of the objective function, 

updates NASTRAN input file and executes NASTRAN to analyze the model. The 

NASTRAN analysis results concerned with estimation of objective function are 
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transferred to the estimation module of the objective function according to the set 

up condition in the initiation module.  

The description on the OPTSHIP is valid for readers to understand the 

overall structure of the OPTSHIP functionally, which explains the functions of the 

OPTSHIP which are divided into five modules depending on the functions. 

A sequential description is also required to understand the optimization 

process of the OPTSHIP as follows. 

 

Step 0: An analysis model file is made by PATRAN [18] or CAD and then 

the information of an objective function and a design variable set is 

determined and are saved into a file.  

Step 1: The base module activates the initiation module. 

Step 2: The analysis model, the information of a design variable set and an 

objective function are loaded. The analysis model and the required 

results to estimate the objective function are informed to the 

interface module. 

Step 3: The base module activates the optimization module. 

Step 4: The optimization module activates the estimation module and passes 

a trial design variable set x* to the estimation module.  

Step 5: The trial design variable set x* is passed to the interface module. The 

interface module is activated.  

Step 6: The analysis model is updated with consideration of the trial design 

variable set x*. 

Step 7: The updated analysis model is written into a NASTRAN input file. 

Step 8: Interface module executes the NASTRAN. 

Step 9: The analysis results by NASTRAN are loaded, which depends on the 

objective function. 

Step 10: The selected results are returned to the estimation module. 
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Step 11: The objective function value is estimated by the analysis results and 

returned to the optimization module. 

Step 12: The convergence condition is estimated. 

Step 13: If the condition is satisfied, then the optimized design variable is 

returned to the base module and the optimization module is 

terminated. However, if the condition is not satisfied then a new trial 

design variable set is generated. The procedure is returned to step 4. 

The updating method of the design variable depends on the selected 

optimization method. However the generation of a new design 

variable is generalized by x* = x* + ∆x where ∆x is the increment of 

a trial design variable which depends on the optimization method. 

Step 14: Base module prints the optimized design variable set and the 

optimized analysis model, and then the OPTSHIP is terminated. 
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Fig. 3.1 Flowchart of OPTSHIP 
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3. Application of Optimum Design on an Actual Container Ship 

 

In this study, two cases are presented as examples to show the process of 

searching for the optimum design of an actual containership. In these examples, the 

optimization process is carried out using verification and validation of the proposed 

optimization algorithm. In case 1, we compared and reviewed the optimized values of 

OPTSHIP and NASTRAN optimization. While in case 2 we are concerned about the 

results of optimization using R-tabu and GA as optimizers of the OPTSHIP. 

The objective of this optimization is to find the design variables x = (x1, x2, 

…, xm)T to minimize the vibration response f(x) under the constraint condition 

g(x). This optimization problem can be stated as 

Find design variables vector

Minimize ( )

Subject to ( ) 0, 1, 2, ,k

L U

f

g k n≤ =

≤ ≤

K

x

x

x

x x x

                            (3.1) 

where n is the number of constraint conditions.  

 

3.1 Analysis Model  

 

The 2400 TEU containership is chosen as an analysis model [19] as shown in 

Fig. 3.2. The principal dimensions are shown in Table 3.1. The whole ship is 

idealized using a complete finite element (FE) model for the vibration analysis.  

The FE model has been constituted of a fine mesh with 3 or 4 frame spacing for 

the deckhouse, engine room and after body, and a relatively coarse mesh for the 

fore body. Table 3.2 shows the total number of nodes and elements used in this 

model. The main engine is also incorporated into the FE model of the whole ship 

to take account for realistic behavior. Furthermore, decks, bulkheads, continuous 
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walls and side shell plates have been modeled as membrane element while girders 

and stiffeners are modeled as truss elements. Other descriptions for analysis 

model are as follows: 
 

 

Fig. 3.2 Full model of a container ship 

 

Table 3.1 Principal data of ship 

Items Value 

Length overall 
Length between perpendiculars 
Breadth  
Depth 
Draft design 

208 m 
196 m 
29.8 m 
16.4 m 
10.2 m 

 

Table 3.2 Description of finite element model 

Item Value 

Number of total nodes  
Number of used elements 
Plate thickness  

4,558 
11,781 
8.0 - 32.0 mm 
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3.1.1 Lightship weight and cargo mass 

The steel weight is automatically considered by the material properties of 

idealized elements while some structure not being modeled and lighter equipment 

components have been taken into the FE model by an appropriate adjustment of 

material density. Meanwhile, the mass of heavy equipments has been applied as 

nodal masses. The deadweight including cargo mass, ballasting liquid and the 

others which are documented including in the trim and stability calculation [20] 

has been distributed to the corresponding nodal points as concentrated masses in 

accordance with loading conditions.  
 

3.1.2 Hydrodynamic mass 

The virtual mass method(VMM) module in NASTRAN is used to calculate 

the hydrodynamic masses due to surrounding water. By this module, three 

dimensional hydrodynamic masses dependent upon vibration modes have been 

automatically applied to corresponding nodal points. 
 

3.1.3 Damping 

The vibration response are dependent upon various kinds of damping such as 

structural damping caused by the cargo, outfitting etc. and material damping by 

the surrounding water. The actual value of damping is very difficult to predict for 

the ship vibration analysts since it depends on the mode shapes and loading 

conditions. In this analysis, the modal damping coefficients linearly dependent on 

the frequency have been employed such as 0 % at 0 Hz and 6 % at 20.0 Hz.  
 

3.1.4 Main excitation 

The main excitation sources are the guide force moments of main engine and 

fluctuating pressures of propeller acting on the shell plates of the after body. 

External moments are given by an engine manufacturer (Sulzer) that used as the 
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main engine excitation. Table 3.3 shows the dominant excitation sources of the 

main engine. The magnitude of the guide force moment linearly depends on the 

main engine revolution. Because the guide force is dependent upon the maximum 

pressure in the cylinder and thus the guide force moment is roughly proportional 

to the main engine revolution as the following formulation.  

k

r
r MCR

MCR

N
M M

N

 
= × 

 
                                   (3.2) 

where, Mr and MMCR mean relevant moment and moment at maximum continuous 

rating (MCR) speed (rpm), respectively. Nr and NMCR mean the relevant speed of 

the main engine and the main engine speed at MCR condition respectively, k 

equals to 1 for guide force moment and internal moment. This is converted into 

force (FH, FX) using the following formulas. 

,
2

H X
H X

M M
F F

H L
= =                                       (3.3) 

where MH and MX mean H-moment and X-moment of the main engine 

respectively, H and L are height and breadth of the main engine respectively as 

shown in Fig. 3.3.  
 

Table 3.3 Excitation moment of main engine at rating speed (97 rpm) 

Lateral moment (± kN⋅m) Excitation 

order X-moment H-moment 

2nd 
3rd 
4th 
5th 
6th 

129 
513 
550 
0 
0 

0 
0 
0 
0 

1193 
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(a) H-moment         (b) X-moment 

Fig. 3.3 Exciting force of main engine 

 

The propeller excitation due to fluctuating pressure have been considered at 

once and twice blade passing frequency. The fluctuating pressure has been 

calculated with the software HPUF-3A [21] developed by Massachusetts Institute 

of Technology for a region covering longitudinally from the transom to three 

times diameter of propeller by using the measured wake data of the model test. 

The calculated pressure has been distributed to corresponding nodal points of the 

outer shell. For reference, hull surface forces used for the forced vibration analysis 

are documented in Table 3.4. The calculated propeller pressure has been adjusted 

in accordance with the propeller speed by using the following formula. 

3

r
r MCR

MCR

N
P P

N

 
= × 

 
         (3.4) 

where Pr and PMCR mean relevant pressure and pressure at MCR speed 

respectively, Nr and NMCR mean relevant speed of propeller and propeller speed at 

MCR condition. 
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Table 3.4 Excitation force of propeller 

Excitation force (kN) Excitation 

order ΣFx ΣFy ΣFz 

1st 48.00 1.70 82.00 
 

 

3.1.5. Location of forced vibration response 

Several nodal points representing the overall vibration behavior are selected 

for the evaluation of the forced vibration response. The selected points come from 

the front wall of the deckhouse on the port side of navigation deck. 
 

3.2 Free Vibration Analysis  

 

Free vibration analysis has been carried out up to the natural frequency of 

18.3 Hz with the Lanczos method by means of NASTRAN. The frequency of 18.3 

Hz, which corresponds to the main engine speed of 110 rpm, is far away from the 

MCR speed of 97 rpm, it is quite high to cover the highest dominant excitation 

frequency of propeller 2nd order (16.17 Hz). Among the free vibration analyses, 

several primary natural frequencies and the corresponding mode shape of the 

deckhouse are shown in Fig. 3.4. 
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(a) Longitudinal mode of deckhouse coupled with hull girder mode and double bottom 
(4.59 Hz) 

 

 

(b) Torsional mode of deckhouse coupled with hull girder (6.44 Hz) 
 

 

(c) Torsional mode of deckhouse coupled with hull girder (7.00 Hz) 
Fig. 3.4 Typical modes and natural frequencies of deckhouse area and stern of a 

ship (Continued) 
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(d) Longitudinal mode of deckhouse coupled with after body and double bottom  
(8.36 Hz) 

 

 

 

(e) Torsional mode of deckhouse coupled with after body (8.41 Hz) 

 

 

(f) Torsional mode of deckhouse coupled with hull girder (9.24 Hz) 
Fig. 3.4 Typical modes and natural frequencies of deckhouse area and stern of a 

ship (Continued) 
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(g) Longitudinal mode of deckhouse coupled with after body and double bottom  
(10.62 Hz) 

Fig. 3.4 Typical modes and natural frequencies of deckhouse area and stern of a 

ship 

 

3.3 Case 1: To verify the reliability and performance of the OPTSHIP 

 

In the first optimization, we compared and evaluated the optimization results 

of NASTRAN optimization module and OPTSHIP to verify the reliability and 

performance of the proposed algorithm. The components of H-moment and 

X-moment of the main engine and the fluctuation force of the propeller were 

considered as the excitation source as shown in Tables 3.3 and 3.4. The method of 

global optimization needs more time for running than the local ones and many 

design variables increase the running time to converge. It is strongly 

recommended that the design variables should be reduced to save the running time 

for optimization. In this study, we divided the selection of design variables into 

two stages for reducing running time. In the first stage, we selected candidate 

design variables which are the plate thickness of deckhouse, shell expansion, 

engine room which have effects on the vibration response of the deckhouse 

directly. According to the area which has a different plate thickness and another 

tier, the design variables are selected differently from each other. However, if they 
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are a symmetric structure, the same design variables are selected. We defined the 

interest range of design variables as the area highly affects the vibration mode of 

the deckhouse as shown in Fig. 3.5. Fig. 3.6 shows the typical design variables in 

the first stage. In the second stage, we carried out sensitivity analysis for design 

variables which were selected in the first stage by NASTRAN. Here, design 

variables which have the most sensitive values among the candidate design 

variables were selected as the final design variables. The number of the final 

design variables is reduced from 319 to 64 through sensitivity analysis.      

Finally, we conducted the optimization with design variables which were 

decided by the second stage. The lower and upper limits of the design variables 

were decided as 90 ~ 140 % of the original design variables.  
 

 

 

Fig. 3.5 The interest range of design variable in the containership 
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(b) Shell expansion 

Fig. 3.6 An example of design variables (Continued) 
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(c) Deckhouse (Frame 5 ~ 19 SEC)  

Fig. 3.6 An example of design variables 

 
 

To minimize the forced vibration response, the objective function is 

considered as the rms value. The maximum value among the rms value at each 

direction is taken as the rms value of vibration velocity response. Each rms value 

is obtained by taking root of the average value. The average value is taken as the 

square of velocity response Vq which is multiplied by weighting factor wq based 

on the international standard ISO 6954 [22], three directions are considerable 

(longitudinal, transverse and vertical) in the case of the response position within 

the interest frequency range. 
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where N is the number of peak considered, Vq,L , Vq,T and Vq,V  are the vibration 

velocity amplitude of qth frequency at longitudinal, transverse and vertical 

directions, respectively. 

This value is the realistic requirement which has been applied on the 

conventional ship construction. The upper and lower limits of the frequency range 

for forced vibration response are considered as the Rth frequency component of 

the main engine as follows 

upper

lower

1.07
 =   (Hz)

60
1.07

  =   (Hz)
120

MCR
f R

MCR
f R

××

××

                                 (3.6) 

In this thesis, the speed of the main engine is considered as 107 % of MCR 

which takes into account safety margin. The interest frequency range is 

determined by Eq. (6) as shown in Table 3.5. The optimized results of the rms 

values for H-moment of the main engine which is the dominant excitation source 

for the deckhouse are shown in Fig. 3.7. Here, horizontal axis means rotating 

speed (rpm) of the main engine while vertical axis means vibration velocity 

response of longitudinal, transverse and vertical direction from top to bottom. The 

maximum responses in the longitudinal direction which is the dominant mode of 

the deckhouse were obtained at about 93 rpm which is close to NCR. They are 

12.41 mm/s, 11.82 mm/s and 8.25 mm/s for original model, NASTRAN 

optimization module and OPTSHIP, respectively. It can be concluded that we can 

obtain the better result by using OPTSHIP than NASTRAN optimization module. 

Table 3.6 shows the comparison of objective function between original and 

optimized model considering the main excitation source of the subject ship. This 

table shows that the values of objective function of H-moment of the main engine 

represent 5.51, 5.28 and 4.28 for the original model, NASTRAN optimization 
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module and OPTSHIP, respectively. According to the results, the variation of 

objective function of OPTSHIP is much improved by 79.8 % than that of the 

original one.  

We compared the variation of final design variables considering the 

excitation force as H-moment of the main engine between OPTSHIP and 

NASTRAN optimization module as shown in Table 3.7. According to the results, 

the results of NASTRAN are convergent to the lower or upper limit of design 

variables which have been already defined. In the case of the OPTSHIP, however, 

design variables are distributed throughout the constraints ranges. This is assumed 

that the optimization by NASTRAN module converges to the local optima while 

the OPTSHIP does to the global optima.  
 

Table 3.5 Interesting frequency range for four excitation components 

Excitation components Frequency range (Hz) 

H-moment 6th 
Propeller force 1st 
X-moment 4th 
X-moment 3rd 

5.19 - 10.38 
4.32 - 8.65 
3.46 - 6.92 
2.60 - 5.19 
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Fig. 3.7 Optimized results of rms value for H-moment of main engine 

 

Table 3.6 Comparison of objective function between original and optimized 

model 

NASTRAN optimum module OPTSHIP 
Exciting force 

Original 

model Value Variation Value Variation 

X-moment 3rd  7.83×10-5  2.04×10-5 -73.9%  1.59×10-5  -79.8% 

X-moment 4th  2.32×10-5  2.18×10-5  -6.3%  2.12×10-5  -8.9% 

Propeller 1st 7.40×10-5 4.81×10-4 -35.0% 5.10×10-4 -31.1% 

H-moment 6th 5.51×10-5 5.28×10-3  -4.3% 4.28×10-3 -22.3% 
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Table 3.7 Comparison of optimization result (H-moment 6th, rms value) 

Variation of design variables 
(%) 

Variation of design variables 
(%) SHELL 

ID No. 

Original 
value 
(mm) NASTRAN OPTSHIP 

SHELL 
ID No. 

Original 
value 
(mm) NASTRAN OPTSHIP 

1019   8.00 138 127 1201 17.00 140 112 

1020 12.22 118 130 1203 30.00 140 130 

1021   8.10 140 137 1204 22.33   90 137 

1022   8.10 140 125 1205 15.78   90   94 

1024   8.10 119   94 1206 10.80   90 106 

1025   8.10   90   95 1208 10.90 114 139 

1058   9.80 140 131 1220 30.00   90 116 

1059   8.10 109 138 1222 14.00   90 112 

1060   8.10   97 138 1248 13.00   90 133 

1063   8.10 104 123 1262 62.00   90 121 

1093 12.22   90 140 1266 77.00   90   93 

1094 12.22   94 138 1272 62.00   90 105 

1095   9.80   92 128 1280 62.00   90   99 

1096   8.10   95 135 1284 15.78   90 126 

1097   8.10   90 134 1287 12.00   90 100 

1101 12.22 101 136 1289 13.00   90 135 

1102   9.80 124 130 1290 15.78   90 123 

1103   9.10 104 108 1291 23.56 140 120 

1104   9.80   90   99 1295 12.00   98 125 

1105   9.10   90 114 1297 14.00   90 137 

1106   9.10   90 100 1305 11.67 139 125 

1107   9.10   90   90 1318 19.00   90 127 

1151 13.56 126 120 1321 16.56   90 126 

1156 28.00 134   97 1322 16.56   90 136 

1160 12.56 139 138 1324 22.00   90 129 

1165 11.67 101 108 1325 17.78   90 102 

1188 17.33   90   99 1333 18.00   90 107 

1189 11.67   90 106 1334 18.00   90 112 

1191 11.22   90 111 1335 19.00   90 107 

1198 17.78 140 131 1336 21.00   90 110 

1199 19.00   90 104 1342 17.78   90 134 

1200 17.00   90 140 1343 11.22   93 111 
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3.4 Case 2: To verify the utility of the global algorithm in OPTSHIP 

 

The second optimization was conducted to verify the utility of the global 

algorithm which is not only R-tabu method but also another optimization method. 

The optimization with R-tabu and GA method were carried out, and the results 

were compared with each other. In this case, the 3rd order component of 

X-moment of the main engine was applied as the excitation force. The procedure 

of selecting a design variable is the same as that of the first optimization method. 

However, the areas of all design variables were re-adjusted as close as possible in 

the FE model. Because the sensitivity changes according to the areas of the design 

variables. In the first stage, therefore the number of design variables was 279 shell 

elements while it was 319 elements in Case 1. And it was reduced from 279 to 51 

elements in the second stage. Table 3.8 shows the variation of the number of 

design variable in the first and second optimizations. The objective function in 

this optimization is considered as the peak value. This is the maximum vibration 

velocity amplitude V, which was taken within frequency range at the three 

directions as follows. 

( ) = max[ (frequency, direction)]f x V         (3.7) 

The range of interest frequency and weighting factor are different. The upper 

and lower limits of interest frequencies are defined as follows: 

upper

lower

1.07
  =   (Hz)

60
 10

  =   (Hz)
60

MCR
f R

NCR
f R

××

−×

                                  (3.8) 

where NCR is the normal continuous rating speed (rpm).  

The lower limit frequency applied is the speed of (NCR − 10) rpm which is 

used to avoid the resonance of the structure. The weighting factor is 1.0 within the 
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interest frequency, 0.5 for the others  

upperlower( ) 1.0 : if

0.5: else

w f f f f= < <
=

        (3.9) 

Fig. 3.8 shows the comparison of the original model and optimization results 

of longitudinal, transverse and vertical directions at port side of navigation deck. 

In this figure, the horizontal axis represents interest frequency range (83~104 

rpm) and vertical axis represents vibration velocity at a specific point. The values 

of objective function are reduced further about 8.65 % for GA and 6.7 % for 

R-tabu than that of the original one as shown in Table 3.9. Their vibration 

responses on the navigation deck in the longitudinal direction (4.59 Hz) are 

0.1214 mm/s, 0.1133 mm/s and 0.1109 mm/s for original, R-tabu and GA, 

respectively. As a result, GA method gets better results than R-tabu one. However 

considering the evaluation number, it is not easy to decide which method is better 

than the others. We reached a conclusion that both algorithms can be easily 

applied to the complex system. 

 

 
Table 3.8 The reduction of the number of design variables 

The number of design variables 
Optimization 

Candidate Final 

Case 1 

Case 2 

319 

279 

64 

51 
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Table 3.9 Comparison of objective function between original and optimized model 

R-tabu GA Exciting 

force 

Original 

model Value Variation Value Variation 

X-moment 

3rd 
1.214×10-4 1.133×10-4 - 6.7% 1.109×10-4 - 8.65% 

 

 

 

85 90 95 100
0

0.05

0.1

0.15

V
e

lo
ci

ty
 [m

m
/s

]

 Navi.Deck(Port, Longi.), Mag

SGA
RTabu
Original

85 90 95 100
0

0.05

0.1

0.15

V
e

lo
ci

ty
 [m

m
/s

]

 Navi.Deck(Port, Trans.), Mag

85 90 95 100

0.05

0.1

0.15

V
e

lo
ci

ty
 [m

m
/s

]

Main Engine R.P.M.

Navi.Deck(Port, Verti.), Mag

 

 

Fig. 3.8 Comparison of optimization results of peak value for X-moment (3rd) of 

main engine 
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4. Conclusions 

 

This paper proposed a new optimization framework called OPTSHIP which employs 

NASTRAN as external analyzer for optimization method to obtain a global optimum 

solution of a large ship structure. The algorithm is applied to search the optimum design 

of an actual containership model for verification and validation purpose of the proposed 

algorithm. Moreover, to save running time, we carried out sensitivity analysis for 

design variables by NASTRAN. According to the analysis of results, we found 

out that the OPTSHIP have searched better solution than the NASTRAN optimum 

module. Furthermore, the optimization using R-tabu and GA optimization method 

was carried out to verify the performance of OPTSHIP as an optimizer. We 

confirmed that both algorithms get good results in this example. Finally, it can be 

concluded that the proposed optimization algorithm in this study can serve and 

contribute to solve the vibration problems on the ship structure.  
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ⅣⅣⅣⅣ. Nonlinear Integer Programming Based on GA 

Parameter Optimization 

 

 

1. Introduction 

 

Optimization is utilized to determine the size or the geometric shape of the 

structure to obtain the maximum performance using minimal material with safety 

and availability of the target structure [1]. From a mathematical point of view, the 

optimization is a process to obtain the design variables which are the maximizing 

or minimizing a desired objective function while satisfying the prevailing 

constraints. Usually, optimization needs a lot of time to get desired information 

due to the repetitive process. Recently, optimization has been widely applied for 

decreasing the weight of structure in various industrial fields such as aerospace, 

civil, mechanical engineering, etc., through integrating methodology of 

engineering design with the technology of computer-aided engineering (CAE) and 

increased computer speed.  

In shipbuilding, optimum design has been used in many areas. However, the 

applications are limited and most researches have emphasized on static 

optimization which does not consider dynamic factors [2-5]. Also, optimum 

design for ship vibration has rarely been studied. Yang et al. [6] worked on 

optimization of ship stiffened panel, and Kitamura et al. [7] carried out the 

optimal structural design of a ship’s engine room. They did the optimization 

considering static and dynamic constraints, and adopted a simplified analysis 

model to enhance computing efficiency during optimization process. Also, Yang 

et al. [8] and Kong et al. [9] proposed a new optimization tool called OPTSHIP 
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(OPTimization for SHIP) which combines NASTRAN that used as a solver with 

global optimization algorithm, namely random tabu search method (R-tabu) to 

enhance optimum design for vibration reduction of ship structure. In OPTSHIP, 

NASTRAN is called externally and used for calculation of the objective function. 

They applied it to the vibration optimal design of global and local containership 

using continuous variables, respectively.  

In general, the final design variables that have been chosen are bigger in size 

than optimized results to consider the safety margin in an actual application. Of 

course, this choice enables the structure stronger than the optimized model. But, 

the natural frequency of the structure may be closer to its resonance and more 

dangerous than optimized design in the vibration aspects. [10, 11]. 

However, theses optimization results are not suitable for actual application 

since the selections of web and girder sizes are limited in standard shaped steel 

members that commercially available. Therefore, the real values programming 

need to be extended to non-linear integer programming (NIP) in order to apply 

directly the optimized result to an actual design. NIP was suggested by Reiter and 

Rice for solving a general quadratic programming problem in 1966, where both 

the objective and constraint function are quadratic. They applied a modified 

gradient-type method, very similar to the methods used in the continuous 

nonlinear programming field, to solve the problem. NIP is an intrinsically hard 

problem. There are rich literatures on the NIP problems [12, 13]. However, many 

of the NIP problems are computationally intractable and their solutions are NP 

complete. Thus, the optimal solutions can not be obtained in a reasonable amount 

of time and memory [14]. Heuristic algorithms were developed to find 

approximations to the optimum. Current research is on the effective 

approximation methods such as genetic algorithm (GA) [15], simulated annealing 

(SA) [16] and tabu search (TS) [17]. These methods are mainly used to solve 

combinatorial optimization problems. Recently, it is remarkable to apply GA to 
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effectively solve a combinatorial problem as one of the solution methods. GA is a 

very powerful tool for solving a NIP problem like optimal design of system 

reliability and can handle any kind of objective functions and constraints.  

In this thesis, we present a method for solving the NIP problem to get the 

best compromise solution easily while holding a nonlinear property by using the 

genetic algorithm for an actual design. GA is used to obtain global solutions in the 

proposed method. As we know, there are many parameters have to be set for GA, 

such as the population size, mutation probability, crossover probability, selection 

methods and crossover methods that greatly affect the accuracy and calculation 

time of optimum solution. The setting process is hard for users, and there are no 

rules to decide these parameters. In order to overcome these demerits, the 

optimization for these parameters has been also conducted using GA itself. The 

reliability of the proposed method has been demonstrated for solving the vibration 

problem on compass deck of a ship. 

 

 
2.   Nonlinear Integer Programming (NIP) 

 

As with most domains of engineering, nonlinear problems are often solved 

by generating a sequence of solution to linear problems which in some sense 

approximate the original nonlinear problem. The NIP problem can be 

mathematically expressed as follows: 

Maximize (or minimize)    ( )f x  

Subject to the constraints    ,≤ ≤L Ux x x  ,nZ∈x  

where, 1 2,( , , )T

nx x x= ⋅ ⋅ ⋅x is a vector of variables or unknown in the NIP problem,  

Zn is a set of n-dimensional integer vector, 1 2( , ), , TL L L
nx x x= ⋅ ⋅ ⋅Lx nZ∈ and 

1 2( , ), , TU U U
nx x x= ⋅ ⋅ ⋅Ux nZ∈  are n-dimensional constant vectors, and ≤L Ux x .   
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Let { }: , nS Z= ≤ ≤ ∈L Ux x x x x denote a solution space, thus :f S R→ is a 

cost function. Some of the NIP problems can also be viewed as integer and 

combinatorial optimization problem [18].   

 

 

3.   The Optimization for GA Parameters 

 

As mentioned before, initial parameters setting of GA is hard for users and 

influences the optimization results. For example, a proper mutation probability 

can increase the probability for a getting a global optimum solution due to the 

diversity of solutions, but high mutation probability has effect on the convergent 

speed. Also, population size is critical to get a precise solution. If population size 

is too small, it may fail to reach the optimal solution, on the contrary if not, it 

brings out falling-off in efficiency.  

In this study, the optimization for GA parameters is carried out based on GA 

itself using trial function. The flowchart for optimization is shown in Fig. 4.1, 

where, Ne, Nea and Ane mean the number of evaluation, all evaluation and average 

evaluation, respectively. GAF represents GA for function optimization, while 

GAP does GA parameter optimization. GAP consists of design variables with 

GAF’s parameters, namely, population size, crossover probability, mutation 

probability, selection method and crossover method. When the GAF is terminated, 

the individual fitness of GAP is determined on the number of average evaluations 

of objective function in GAF. GAF will be terminated if the condition of Eq. (4.7) 

is satisfied. Since GA is probability search, the same processes are repeated M 

times (M = 5) using the same parameters, and the number of average evaluation is 

obtained. The objective function of GAF is defined as the trial function Eq. (4.4). 

Design variables and constraints are expressed as Eqs. (4.5) and (4.6). This trial 
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function has a global solution (f(x = 0) = 0) and 27N local solutions. There are 10 

design variables that are the same as the number of design variables for the 

applied structure, which is shown in Eq. (4.5). 
 

 

Fig. 4.1 Flowchart of GA for parameter optimization 
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3.1   Formulation for Optimization 

In this study, five GA parameters are considered for optimization: population 

size, crossover probability, mutation probability, selection method and crossover 

method which have effect on genetic calculation, as shown in Eq. (4.2). 
 

3.1.1 Formulation for GAP 

Minimize  

f(x) = Ane (= Nea / M)           (4.1) 

where M means the number of evaluation of GAF for identical GA parameters, 

here M = 5. 

Design variables  

 x = {Ps Pc Pm Ms Mc}
T           (4.2) 

Subject to: 

Ps = {10, 20, 30, ···, 180, 190}        (4.3) 

Pc = {0.1, 0.2, ···, 0.8, 0.9} 

Pm = {0.005, 0.01, ···, 0.065, 0.9, 0.95} 

Ms = {Roulette wheel selection, Ranking based selection} 

Mc = {Simple crossover, Multi-point crossover, Uniform crossover} 

where, Ps, Pc and Pm are population size, crossover probability and mutation 

probability of GAF, respectively. Ms and Mc represent selection method and 

crossover method, respectively. 
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3.1.2 Formulation for GAF 

Minimize  

2

1

2
( ) [ cos( ) ]

N
i

i i i
i i

x
f x x

πα α
β=

= − +∑         (4.4) 

Design variables:  

{ T

1 2 3 4 5 6 7 8 9 10}x x x x x x x x x x=x        (4.5) 

subject to  

-10 ≤ xi ≤ 100, i = 1, …, N        (4.6) 

where, 1iα = , 4iβ = , 10N = . 

  The termination condition of GAF is as follows: 

( ) ( )

1

1
best optN

i i

error
i i

x x

N x
ε ε

=

−
= ≤

∆∑         (4.7) 

where, ε is predefined value, here 0.01, ( )best
ix is the best solution at each 

generation, ( )opt
ix is the optimum solution of ith design variable. ix∆  represents 

the interval of design variables. The optimization results are shown in Table 4.1. 
 

Table 4.1 Comparison of GA parameters before and after optimization 

Parameter Original Optimum 

Population size 100 10 

Crossover probability 0.8 0.1 

Mutation probability 0.1 0.065 

Selection method Roulette Ranking 

Crossover method Uniform Simple 
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In order to confirm the validity of optimization results, the objective function 

is evaluated using other parameters and optimum parameters. The compared 

results are shown in Table 4.2 and Figs. 4.2 – 4.6. According to the results, the 

optimum parameters are good for the accuracy and speed of convergence in GA. 

Based on the above demonstration, the optimum GA parameters can be used 

for the integer optimum design of a compass deck. 
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Fig. 4.2 Comparison of population size 

 



 94 

0 200 400 600 800 1000

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

  Pc  = 0.1
  Pc  = 0.2
  Pc  = 0.6 

 

 

O
bj

ec
tiv

e 
fu

nc
tio

n

Evaluation  

Fig. 4.3 Comparison of crossover probability 

 

0 200 400 600 800 1000

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10
  Pm = 0.065
  Pm = 0.02
  Pm = 0.04
  Pm = 0.08

 

 

O
bj

ec
tiv

e 
F

un
ct

io
n

Evaluation  

Fig. 4.4 Comparison of mutation probability 



 95 

0 200 400 600 800 1000

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

 

 

O
bj

ec
tiv

e 
F

un
ct

io
n

Evaluation

 Ms : LBS
 Ms : RBS

 

Fig. 4.5 Comparison of selection method 
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Fig. 4.6 Comparison of crossover method 
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Table 4.2 Comparison of the optimization results according to GA parameters   

Parameters Function value No. of evaluation 

10 0.98304 242 

20 0.98304 758 Population Size 

30 0.99246 1000 

0.1 0.98304 242 

0.2 0.99469 1000 
Crossover 

Probability 

0.6 0.99524 1000 

0.02 0.98304 392 

0.04 0.99159 1000 

0.065 0.98304 242 

Mutation  

Probability 

0.08 0.99410 1000 

Roulette Wheel  

Selection 
0.99004 1000 

Selection  

Method Ranking Based 

Selection 
0.98304 242 

Simple Crossover 0.98304 242 

Multi-point 

Crossover 
0.99004 1000 

Corssover 

Method 

Uniform Crossover 0.99004 1000 
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4.  Vibration Analysis of Compass Deck  

  

The vibration analysis of a compass deck is carried out by using NASTRAN 

which is a commercial finite element program and widely used for big structures 

like a ship. Fig. 4.7 shows the model of compass deck and radar mast. In 

particular, the girder and web of a compass deck is displayed as three dimensions, 

which are design variables in this study. Fig. 4.8 shows the design variables and 

boundary conditions of a compass deck. The main dimensions of subject ship are 

shown in Table 4.3 and the main data of modeling of compass deck are listed in 

Table 4.4. 

Considering the precision of analysis and time consuming modeling process, 

the range of modeling of a compass deck is constrained to the its deck only based 

on experience of analysis and impact test at the shipyard. The boundary 

conditions for the model are specified: the simple supports are used to the 

bulkheads shown as solid lines and two pillars are connected between the compass 

deck and the navigation deck. Fixed supports are used at the cross-points of 

bulkheads. We modeled the arbitrary box at the location of radar mast and 

considered the weight by adjusting the mass density, because the weight of radar 

mast on compass deck has considerable effect on the vibration behavior of the 

compass deck. Table 4.5 shows the specification of main excitation sources.  

In general, the design for avoiding local structure resonance of a ship 

requires that natural frequency of a structure must be two times higher than the 

blade passing frequency of propeller under the maximum rpm of main engine. In 

this study, design target frequency is set above 18.87 Hz which is considered 

safety margin and twice blade passing frequency of the propeller (16.33Hz). 

  Fig. 4.9 shows the first three modes and natural frequencies of a compass 

deck structure by NASTRAN. The 1st mode (16.78 Hz), which frequently 
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occurred on the compass deck during the voyage, is the vertical mode on front 

area of the radar mast as shown in Fig. 4.9(a). The lower part of compass deck 

could not be installed the bulkhead because of problems securing the workspace 

compared to the other cabins. Therefore, the corresponding weak stiffness of the 

structure results in low natural frequency which is close to the main excitation 

source of ship. In this model, the 1st natural frequency of structure is also within 

the resonance region where twice blade passing frequency of propeller is 16.33 

Hz. The safety margin is only 2.8 %, which is usually 10 %. The 2nd and 3rd 

modes occurred on the sides of the compass deck. Their natural frequencies are 

higher than the main excitation frequency of the ship and the possibility of 

resonance is rare. So, in order to design a safe structure, the 1st vertical mode of a 

compass deck is specified as the concerned mode in this study.  

 

 
 

Fig. 4.7 Model of compass deck and radar mast 
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Fig. 4.8 Design variables and boundary conditions of a 

compass deck 

 

Table 4.3 Principal dimensions 

  Length overall  208 m 

  Length between perpendiculars  196 m 

  Breadth moulded  29.8 m 

  Depth moulded  16.4 m 

  Draft design  10.2 m 
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Table 4.4 Main data of modeling 

Geometry data Material data 

 Plate thickness 8.0 m  Elastic modulus 206 GN/m2 

 Web & girder size 250×90 ×10/15A  Poisson  ratio 0.3 

 Frame/ longitudinal space 800 mm  Mass  density 7850 kg/m3 

 

Table 4.5 Specification of main excitation sources 

Excitation Excitation 
source 

MCR 
Order Frequency 

3rd 4.90 Hz 

4th 6.53 Hz 
Main engine 
(6RTA72U) 

6th 9.80 Hz 

1st 8.17 Hz Propeller 
(Blade: 5EA) 

98 rpm 

2nd 16.33 Hz 

 

    

 
 

(a) 1st mode (16.78 Hz) 

Fig. 4.9 Mode shapes of compass deck (Continued) 
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(b) 2nd mode (30.09 Hz) 

 

 
(c) 3rd mode (34.28 Hz) 

Fig. 4.9 Mode shapes of compass deck 

 

 

5.   Optimum Design of Compass Deck 

 

5.1   Formulation for Optimum Design 

 

5.1.1 Design variables 

The main vibration mode on the compass deck is a global mode of girder and 
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web in vertical direction. One of the most important factors is the stiffness of 

girder and web. In this study, the size of girder and web on the compass deck in 

Fig. 4.8 are defined as design variables in Eq. (4.8). 

x = {W1 W2 W3 G1 G2 G3 G4 G5 G6 G7}
T      (4.8) 

where W and G mean the size of girder and web, respectively. 

 

5.1.2 Constraints 

The web length of stiffener Lw is restricted as Eq. (4.9) due to ceiling height, 

namely the distance from navigation deck to compass deck, which is based on the 

building specification. The stiffener is also restricted to available standard sizes in 

the fields as shown in Table 4.6. 

200 ≤  Lw ≤  550 mm         (4.9) 

Also, the basic concept of local vibration design is the minimization of the 

response at each point. However, it is difficult to evaluate how much the 

excitation force influences on local structure. So, in this study, natural frequency 

of the structure is restricted as Eq. (4.10) which is considered safety margin with 

twice blade passing frequency of the propeller. 

 ωn ≥ 18.87Hz          (4.10) 

Fig. 4.10 shows section of stiffener and plate. 
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Table 4.6 Corresponding cross section of steel members 

Stiffener size Lw × Lf  × Tw/ Tf 

200A 200 × 90 × 9/14 

250A 250 × 90 × 10/15 

300A 300 × 90 × 11/16 

350A 350 × 100 × 12/17 
400A 400 × 100 × 12/18 

450A 450 × 125 × 11.5/18 

500A 500 × 150 × 11.5/18 

550A 550 × 150 × 12/21 

 

 

 
Fig. 4.10 Section of stiffener and plate. 

 

5.1.3 Objective function 

In general, the main target of the optimum design is to decrease the weight of 

structure or to reduce the vibration level on the specific point with avoiding the 

resonance between excitation source and the natural frequency of subject structure. 

In this thesis, we considered the objective function as two cases as follows:  
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1) Case 1 

The objective function combines linearly the weight of compass deck, 1W  

with maximum vibration velocity response, 1R  at an interest range (below MCR 

rpm) like Eq. (4.11). 

Minimize f(x) = α( 1W / 0W ) + β( 1R / 0R )      (4.11)  

where, α and β are weighting factors. In this study, α = 1, β = 0 [9]. W0 means 

initial weight (including the weight of radar mast), R0 is a basis vibration velocity 

response (vertical direction, the maximum amplitude at center).  

 

2) Case 2 

The objective function combines linearly the weight of compass deck, 1W  

with natural frequency of structure is expressed by Eq. (4.12). The objective is to 

get an economic and sound structure to reduce the weight of stiffener and to 

increase the natural frequency. 

Minimize 1

0

( ) ( ) ( )tW
f

W

ωα β
ω

= +x       (4.12)  

where, tω and ω  mean target and current natural frequency, respectively.  

α and β are weighting factors. In this study, α = 0.5, β = 0.5. 

 

5.2 Optimization Results and Discussion 

 

The optimum design was carried out to obtain an optimal size of web and 

girder on the compass deck to maintain the anti-vibration design of it. Nonlinear 

integer algorithm by GA is used as an optimal algorithm in order to apply directly 

the optimized result to an actual design. As stated above in section 3, the optimum 

GA parameters are applied to this problem. 
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Tables 4.7 and 4.8 show the results of the design variables before and after 

optimization for case1 and case2, respectively. It shows that the center girder of 

structure G3 is increased 80% and the others are reduced 20% in case 1. In case 2, 

the center girder of structure G4 is increased 120 % and the others are similar to 

case 1. These results indicate that the most reasonable modification method is to 

increase the stiffness of a member where the maximum amplitude exists in 

vibration mode. To get a higher natural frequency of structure, it is required to 

increase the stiffness of G4 which is located in a wider area than that of G3. The 

role of G7 in case 2 supports the stiffness of G4 due to limit stiffener size. Tables 

4.9 and 4.10 show the natural frequency, vibration response at a MCR in a unit 

excitation force and the weight of compass deck before and after optimization for 

case 1 and case 2, respectively.  According to the results, the 1st natural 

frequency increased 12.69% and 38.74% from 16.78Hz to 18.91Hz and 23.28Hz, 

and the safety margin with twice passing frequency of propeller correspondingly 

changed from 2.80% to 15.80% and 42.60% for case 1 and case 2, respectively. 

Therefore, the structure is free from the resonance. Moreover, the amplitude of 

vibration velocity response for case 1 and case 2 reduced 61.24% and 93.40%, 

respectively. The weights of stiffeners which are applied to design variables also 

decreased in spite of higher natural frequency and reduced the vibration response. 

In summary, the local vibration problems have been successfully solved by the 

proposed optimization method, which moves the natural frequency to a higher one 

without any additional weight. Fig. 4.11 shows the 1st vibration mode after 

optimization. Although there is a little change on the 1st vibration mode shape due 

to the mode of the global compass deck, the natural frequency increased based on 

the calculation result. And we confirmed that the vibration response at the MCR 

rpm has been significantly reduced as shown in Fig. 4.12 for case 1 and Fig. 4.13 

for case 2, respectively. 
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Table 4.7 Comparison of original and optimal design variables for case 1 

Design variable Original Optimum Remarks 

W1 250 200 -20% 

W2 250 200 -20% 

W3 250 200 -20% 

G1 250 200 -20% 

G2 250 200 -20% 

G3 250 450 80% 

G4 250 200 -20% 

G5 250 200 -20% 

G6 250 200 -20% 

G7 250 200 -20% 
 

Table 4.8 Comparison of original and optimal design variables for case 2 

Design variable Original Optimum Remarks 

W1 250 200 -20% 

W2 250 200 -20% 

W3 250 200 -20% 

G1 250 200 -20% 

G2 250 200 -20% 

G3 250 200 -20% 

G4 250 550 120% 

G5 250 200 -20% 

G6 250 200 -20% 

G7 250 250 0% 
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Table 4.9 Comparison of results for case 1 

 

 

 

 

 

 

Table 4.10 Comparison of results for case 2 

 

 

 

 

 

 

 

 

Fig. 4.11 Mode shape of compass deck after optimization 

 

 

Item Original Optimum Remarks 

Natural frequency 16.78Hz 18.91Hz 12.69% 

Response at MCR 10.50mm/s 4.07mm/s -61.24% 

Weight 2760kg 2537kg -8.08% 

Item Original Optimum Remarks 

Natural frequency 16.78Hz 23.28Hz 38.74% 

Response at MCR 20.17mm/s 0.69mm/s -93.48% 

Weight 2760kg 2757kg -0.11% 
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Fig. 4.12 Comparison of response between original and optimum 

results for case 1 
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Fig. 4.13 Comparison of response between original and optimum  

results for case 2 
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6. Conclusions 

 

In this study, we proposed non-linear integer programming to apply directly 

the optimized result to an actual design. GA is used to obtain global solutions in 

the proposed method. In order to get proper GA parameters, the optimization of 

GA parameters is also carried out through the trial function by GA itself. The 

reliability of the proposed method has been demonstrated for solving the vibration 

problem on compass deck of a ship. After optimization, local vibration problem 

has been successfully solved: the structure is free from resonance, safety margins 

increased, and the amplitude of vibration velocity response reduced without 

additional weight. The results indicated that the proposed method can be used as 

an optimum design tool in other structure optimization designs. 
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ⅤⅤⅤⅤ. RSM-based Hybrid Evolutionary Algorithm  

 

 

1. Introduction 

 

The focus of many dynamic analyses is to find the maximum response   

and avoid the resonance in a given structure under all excitation forces. Usually, 

these features provide the basis of a design limit and are thus employed to 

determine the dynamic characteristics of a structure and its weight. For this reason, 

weight minimization for reducing the response and avoiding resonance has always 

been a major concern of design engineers. Many classic optimization methods and 

practical software have been developing and most of them are very effective, 

especially to solve the practical problems. However they are a hard task to find a 

global optimum solution for the system. To overcome this disadvantage, many 

search algorithms have been developed for searching for a global optimum 

solution. One of the most popular methods is the genetic algorithm (GA) [1, 2]. 

The GA is a technique in the field of evolutionary computation and it is a 

powerful and general global optimization method, which does not require the 

strict continuity of classical search techniques, instead it allows non-linearity and 

discontinuity to appear in the solution space. Due to the evolutionary 

characteristics, the GA can handle all kinds of objective functions and constraints 

defined on discrete, continuous, or mixed search spaces. However, the global 

access of the GA requires a computationally random search. So, the convergent 

speed to the exact solution is slow. Furthermore, the coding of the chromosome 

for a large dimensional problem will be very long, in order to get a more accurate 

solution. This results in a large search space and huge memory requirements for 
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the computation. To overcome these demerits, many researchers have studied to 

develop many hybrid genetic algorithms which combined genetic algorithm with 

other ones [3, 4]. These can save computation time and find the global solution as 

far as it goes. However, new algorithms are requested for better accuracy and 

faster convergent speed to get an optimum solution in the complicated and big 

structures like ship.  

  In this thesis, to search for the optimum solution of multi-peak function in 

high accuracy and high speed, a new hybrid evolutionary algorithm is suggested, 

which combines the merits of the popular programs such as GA, tabu search 

method, response surface methodology (RSM) and simplex method. This 

algorithm, in order to improve the convergent speed that is thought to be the 

demerit of GA, uses RSM and simplex method. Though mutation of GA offers 

random variety, systematic variety can be secured through the use of tabu list of 

tabu search method. Especially, in the initial stages, GA's convergent speed can be 

improved by using RSM which is using the information on the objective function 

acquired through GA process and then making response surface (approximate 

function) and optimizing this. The optimum solution was calculated without the 

evaluation of an additional actual objective function, and the GA’s convergent 

speed could be improved. This method has been proven to be the efficiency by 

applying traditional test functions and comparing the results to GA. It also 

confirmed that the global optimum solution is being searched efficiently by 

applying the proposed algorithm to weight minimization where avoiding 

resonance of the fresh water tank located on the rear of the ship was considered.  
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2. Response Surface Methodology (RSM)  

 

2.1 Introduction 

 

RSM [5] is an optimization tool that was introduced in the early 1950’s by 

Box and Wilson [6]. It is a collection of statistical and mathematical techniques 

that is useful for developing, improving, and optimizing processes. These 

techniques are employed in order to estimate the optimization function and to find 

search directions to sub-regions of the domain with improved and hopefully 

optimal solutions.  

The most extensive applications of RSM are in particular situations where 

several input variables potentially influence some performance measure or quality 

characteristic of the process. Thus performance measure or quality characteristic 

is called the response. The input variables are sometimes called independent 

variables, and they are subject to the control of the scientist or engineer. The RMS 

usually contains three stages: 1) design of experiments, 2) response surface 

modeling through regression, and 3) optimization. The main advantage of RSM is 

the reduced number of experimental trial needed to evaluate multiple parameters 

and their interactions. The experimental data was utilized to build mathematical 

models using regression methods. Once an appropriate approximating model is 

obtained, this model can then be analyzed using various optimization techniques 

to determine the optimum conditions for the process. In general, the engineer is 

concerned with a product, process, or system involving a response y that depends 

on the controllable input variables 1 2, , , kξ ξ ξ⋅ ⋅ ⋅ . The relationship is 

1 2( , , , )ky f ξ ξ ξ ε= ⋅⋅⋅ +          (5.1) 

where the form of the true response function f  is unknown and perhaps very 

complicated, and ε is a term that represents other sources of variability not 
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accounted for in f . Usually ε includes effects such as measurement error on the 

response, background noise, the effect of other variables, and so on. Usually ε is 

treated as a statistical error, often assuming it to have a normal distribution with 

mean zero and variance 2σ . If the mean of ε is zero, then 

[ ]1 2 1 2( ) ( , , , ) ( ) ( , , , )k kE y E f E fη ξ ξ ξ ε ξ ξ ξ= = ⋅⋅⋅ + = ⋅⋅⋅      (5.2) 

The variables 1 2, , , kξ ξ ξ⋅ ⋅ ⋅ in Eq. (5.2) are usually called the natural 

variables, because they are expressed in the natural units of measurement, such as 

degrees Celsius(℃), pounds per square inch(psi), etc. In much RSM work it is 

convenient to transform the natural variables to coded variables1 2, , , kx x x⋅⋅ ⋅ , 

which are usually defined to be dimensionless with mean zero and the same 

standard deviation. In terms of the coded variables, the response function (5.2) 

will be written as 

1 2( , , , )kf x x xη = ⋅⋅⋅          (5.3) 

Because the form of the true response function f is unknown, we must 

approximate it. In fact, successful use of RSM is critically dependent upon the 

experimenter’s ability to develop a suitable approximation for f. Usually, a 

low-order polynomial in some relatively small region of the independent variable 

space is appropriate. In many cases, either a first-order or a second order model is 

used. 

The first-order model is likely to be appropriate when the experimenter is 

interested in approximating the true response surface over a relatively small 

region of the independent variable space in a location where there is little 

curvature in f. 

For the case of two independent variables, the first-order model in terms of 

the coded variables is 

0 1 1 2 2x xη β β β= + +           (5.4) 
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The form of the first-order model in Eq. (5.4) is sometimes called a main 

effects model, because it includes only the main effects of the two variables 1x  

and 2x . If there is an interaction between these variables, it can be added to the 

model easily as follows: 

0 1 1 2 2 12 1 2x x x xη β β β β= + + +         (5.5) 

This is the first-order model with interaction. Adding the interaction term 

introduces curvature into the response function. 

Often the curvature in the true response surface is strong enough that the 

first-order model (even with the interaction term included) is inadequate. A 

second-order model will likely be required in these situations. For the case of two 

variables, the second-order model is  

2 2
0 1 1 2 2 11 1 22 2 12 1 2x x x x x xη β β β β β β= + + + + +       (5.6) 

This model would likely be useful as an approximation to the true response 

surface in a relatively small region. 

The second-order model is widely used in response surface methodology for 

several reasons: 

1) The second-order model is very flexible. It can take on a wide variety of 

functional forms, so it will often work well as an approximation to the 

true response surface. 

2) It is easy to estimate the parameters β  in the second-order model. The 

method of least squares can be used for this purpose. 

3) There is considerable practical experience indicating that second-order 

models work well in solving real response surface problems. 

In general, the first-order model is 

0 1 1 2 2 k kx x xη β β β β= + + + ⋅⋅⋅ +         (5.7) 

and the second-order model is 
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2
0

1 1 1 2

k k k k

j j jj j ij i j
j j i j

x x x xη β β β β
= = = =

= + + +∑ ∑ ∑∑       (5.8) 

In some infrequent situations, approximating polynomials of order greater 

than two are used. The general motivation for a polynomial approximation for the 

true response function f is based on the Taylor series expansion around the point 

10 20 0, , , kx x x⋅ ⋅⋅ . For example, the first-order model is developed from the 

first-order Taylor series expansion 

0
10 20 0

1

( , , , )k x x

f
f f x x x

x =

∂≅ ⋅⋅⋅ +
∂

 

0 0
2 1

x x x x

f f

x x= =

∂ ∂+ + ⋅⋅⋅+
∂ ∂

        (5.9) 

where x refers to the vector of independent variables and x0 is that vector of 

variables at the specific point 10 20 0, , , kx x x⋅ ⋅⋅ . In Eq. (5.9) we have only included 

the first–order terms in the expansion, thus implying the first-order approximating 

model in Eq. (5.7). If we were to include second-order terms in Eq. (5.9), this 

would lead to the second-order approximating model in Eq. (5.8). 

Finally, let’s note that there is a close connection between RSM and linear 

regression analysis. For example, consider the model 

0 1 1 2 2 k ky x x xβ β β β ε= + + + ⋅⋅⋅+ +       (5.10) 

Theβ ’s are a set of unknown parameters. To estimate the values of these 

parameters, we must collect data on the system we are studying. Because, in 

general, polynomial models are linear functions of the unknownβ ’s, we refer to 

the technique as linear regression analysis. 

Optimization theory consists of a body of numerical methods for finding and 

identifying the best candidate from a collection of alternatives without having to 

explicitly evaluate all possible alternatives [7]. In the context of RSM, empirical 
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(mathematical) models are built using regression techniques on the results of a 

selected set of experiments. A well fitted model represents, approximately, all 

possible experiments with their experimental factors within the preset bounds. 

Through the use of optimization techniques, the optimum of the model 

corresponding to the experiment with conditions that will presumably produce the 

best result can thus be found. The final step is to perform experimental 

verification based on the optimal, experimental conditions. Among the 

optimization techniques, the steepest ascent (or descent) is commonly used, but 

the method is relatively inefficient and is a local optimization technique capable 

of finding only local optima. Global optimization techniques such as GA, tabu 

search method, etc., although even less efficient than the steepest ascent from the 

viewpoint of convergent speed, are considered. In this thesis, tabu search method 

is used as global schemes.  

 

2.2 Sequential Nature of the Response Surface Methodology 

 

Most applications of RSM are sequential in nature as follows: 

Phase 0: At first some ideas are generated concerning which factors or 

variables are likely to be important in the response surface study. It is usually 

called a screening experiment. The objective of this factor screening is to reduce 

the list of candidate variables to a relatively few so that subsequent experiments 

will be more efficient and require fewer runs or tests. The purpose of this phase is 

the identification of the important independent variables. 

Phase 1: The experimenter’s objective is to determine if the current settings 

of the independent variables result in a value of the response that is near the 

optimum. If the current settings or levels of the independent variables are not 

consistent with optimum performance, then the experimenter must determine a set 

of adjustments to the process variables that will move the process toward the 
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optimum. This phase of RSM makes considerable use of the first-order model and 

an optimization technique called the method of steepest ascent (descent). 

Phase 2: Phase 2 begins when the process is near the optimum. At this point 

the user usually wants a model that will accurately approximate the true response 

function within a relatively small region around the optimum. Because the true 

response surface usually exhibits curvature near the optimum, a second-order 

model (or perhaps some higher-order polynomial) should be used. Once an 

appropriate approximating model has been obtained, this model may be analyzed 

to determine the optimum conditions for the process. 

This sequential experimental process is usually performed within some 

region of the independent variable space called the operability region or 

experimentation region or region of interest. 

 

 

3. Radial Basis Function Networks 

 

Radial basis function (RBF) networks are feed-forward networks trained 

using a supervised training algorithm. They are typically configured with a single 

hidden layer of units whose activation function is selected from a class of 

functions called basis functions. While similar to back propagation in many 

respects, radial basis function networks have several advantages. They usually 

train much faster than back propagation networks. They are less susceptible to 

problems with non-stationary inputs because of the behavior of the radial basis 

function hidden units. 

Radial basis functions were first introduced by Powell to solve the real 

multivariate interpolation problem [8]. This problem is currently one of the 

principal fields of research in numerical analysis. In the field of neural networks, 

radial basis functions were first used by Broomhead and Lowe [9]. Other major 
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contributions to the theory, design, and applications of RBF networks can be 

found in papers by Moody and Darken [10], RBF networks have proven to be 

useful neural network architecture. The design of a RBF network in its most basic 

form consists of three separate layers. The input layer is the set of source nodes 

(sensory units). The second layer is a hidden layer of high dimension. The output 

layer gives the response of the network to the activation patterns applied to the 

input layer. The transformation from the input space to the hidden-unit space is 

nonlinear. On the other hand, the transformation from the hidden space to the 

output space is linear. A mathematical justification of this can be found in the 

paper by Cover [11]. Cover states that a pattern classification problem cast in a 

high-dimensional space is more likely to be linearly separable than in a 

low-dimensional space. This statement is called Cover’s theorem on separability 

of patterns. It is also the reason for making the dimension of the hidden-unit space 

high in an RBF network. 

The major difference between RBF networks and back propagation networks 

(that is, multilayer perceptron trained by back propagation algorithm) is the 

behavior of the single hidden layer. Rather than using the sigmoidal or S-shaped 

activation function as in back propagation, the hidden units in RBF networks use a 

Gaussian or some other basis kernel function. Each hidden unit acts as a locally 

tuned processor that computes a score for the match between the input vector and 

its connection weights or centers. In effect, the basis units are highly specialized 

pattern detectors. The weights connecting the basis units to the outputs are used to 

take linear combinations of the hidden units to produce the final classification or 

output. 

 

3.1 Cover’s Theorem on the Separability of Patterns 

 

Before we talk about the radial basis function networks, we need to introduce 
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the term “separability of patterns.” The Cover’s theorem gives a detailed 

description of the separability of patterns. This theorem explains how a radial 

basis function network can perform a complex pattern classification task. 

Considering the Cover’s theorem, Haykin declares that a radial basis function 

network performs a complex pattern-classification task by transforming the 

problem into a high-dimensional space in a nonlinear manner [12]. He gives a 

detailed definition of Cover’s theorem as follows: 

Consider a family of surfaces, each of which naturally divides an input space 

into two regions. Let X  denote a set of N  patterns (points) 1 2, , , Nx x x⋅ ⋅⋅ , 

each of which is assigned to one of two classes X +  andX − . This dichotomy 

(binary partition) of the points is said to be separable with respect to the family of 

surfaces if there exists a surface in the family that separates the points in the class 

X +  from those in the classX − . For each pattern X∈x , define a vector made up 

of a set of real-valued functions{ }( ) 1, ,i i Mϕ = ⋅⋅⋅x , as shown by 

[ ]1 2( ) ( ), ( ), , ( )
T

Mϕ ϕ ϕ ϕ= ⋅⋅⋅x x x x        (5.11) 

Suppose that the pattern x  is a vector in a p -dimensional input space. The 

vector ( )ϕ x  then maps points in p -dimensional input space into corresponding 

points in a new space of dimensionM . We refer to ( )iϕ x  as a hidden function, 

because it plays a role similar to that of a hidden unit in a feed forward neural 

network. A dichotomy { },X X+ −  of X  is said to be ϕ -separable if there 

exists an M -dimensional vector w  such that we may write [11]  

( ) 0,Tw ϕ ≥x     X +∈x   

and  

( ) 0,Tw ϕ <x    X −∈x         (5.12) 

The hyperplane defined by the equation 

( ) 0Tw ϕ =x           (5.13) 
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describes the separating surface in the j space. The inverse image of this 

hyperplane, that is,  

{ }: ( ) 0Tw ϕ =x x          (5.14) 

defines the separating surface in the input space. 

After giving the definition of the Cover’s theorem on separability of patterns, 

Haykin gives a mathematical explanation for the class of mapping explained 

above. The separating surfaces corresponding to such mappings are referred to as 

rth-order rational varieties. A rational variety of order r in a space of dimension 

p is defined by the rth-degree homogenous equation in the coordinates of the 

input vectorx , as illustrated by 

1 2 1 2

1 20

0
r r

r

i i i i i i
i i i p

a x x x⋅⋅⋅
≤ ≤ ≤⋅⋅⋅≤ ≤

⋅ ⋅ ⋅ =∑         (5.15) 

where ix  is the i th component of input vectorx , and 0x  is set equal to unity in 

order to express the equation in a homogenous form. Some examples of this type 

of separating surfaces are hyperplanes (first-order rational varieties), quadrics 

(second-order rational varieties), and hyperspheres (quadrics with certain linear 

constraints on the coefficients). Fig. 5.1 illustrates the examples for a 

configuration of five points in two dimensions 

. 

 

 
(a) Linearly separable dichotomy 

Fig. 5.1 Three examples of ϕ -separable dichotomies of different sets of five 

points in two dimensions (Continued) 
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(b) Spherically separable dichotomy 

 

 

 
(c) Quadrically separable dichotomy 

Fig. 5.1 Three examples of ϕ -separable dichotomies of different sets of five 

points in two dimensions 

 

Polynomial separability, as defined here, can be considered as a natural 

generalization of linear separability. Haykin provides an important point, which 

states that given a set of patterns x in an input space of random dimensionp , a 

non-linear mapping ( )xϕ  of high enough dimension M can be found so that 

linear separability in the space is obtained. The next section talks about the 

interpolation problem which has great importance in solving the nonlinearly 

separable pattern classification problem. 

 

3.2 Interpolation Problem 

 

This section talks about the interpolation problem that allows us to solve the 

nonlinearly separable pattern classification problem. The interpolation plays the 

final role in solving the problem since it finds the linear weight vector of the 
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network. 

In solving a nonlinearly separable pattern classification problem, there is 

generally a practical benefit in mapping the input space into a new space of 

sufficiently high dimension. This is an important point that comes forth from 

Cover’s theorem on the separability of patterns. Let us consider a feed forward 

network with an input layer, a single hidden layer, and an output layer having a 

single unit. The network can be designed to perform a nonlinear mapping from the 

input space to the hidden space, and a linear mapping from the hidden space to the 

output space. 

The network represents a map from p -dimensional input space to the single 

dimensional output space, expressed as  

1: ps R R→          (5.16) 

The theory of multivariable interpolation in high-dimensional space has a 

long history starting with Davis [13]. The interpolation problem, in its strict sense 

can be stated as follows: 

Given a set of N different points { }1, 2, ,p
ix R i N∈ = ⋅⋅⋅  and a 

corresponding set of N  real numbers{ }1 1, 2, ,id R i N∈ = ⋅⋅⋅ , find a 

function 1: Nf R R→  that satisfies the interpolation condition [12]: 

( )i if x d=       1, 2, ,i N= ⋅⋅⋅        (5.17) 

The interpolating surface (i.e. functionf ) has to pass through all the training 

data points. The radial basis function technique consists of choosing a function 

that has the following form given by Powell [8]. 

 
1

( ) ( )
N

i i
i

f x w x xϕ
=

= −∑         (5.18) 

where { }( ) 1, 2, , )ix x i Nϕ − = ⋅⋅⋅  is a set of N  random (usually nonlinear) 

functions, known as radial basis functions, and || . || represents a norm that is 
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generally Euclidean. 

The known data points ,p
ix R∈  1, 2, ,i N= ⋅⋅⋅ are the centers of radial basis 

functions [8]. 

If the interpolation conditions Eq. (5.17) are inserted in Eq. (5.18), the 

following set of simultaneous linear equations can be obtained for the unknown 

coefficients (weights) of the expansion :iw  

 
1 111 1

1

N

N NN N N

w d

a a w d

ϕ ϕ     
     =    
         

K

M O M M M

L

       (5.19) 

where ( )ji j ix xϕ ϕ= −        , 1, 2, ,j i N= ⋅⋅⋅      (5.20) 

Let  

[ ]1 2, , ,
T

Nd d d= ⋅⋅⋅d              (5.21) 

[ ]1 2, , ,
T

Nw w w= ⋅⋅⋅w         (5.22) 

The vectors d  and w  represent the desired response vector and linear weight 

vector, respectively. Let ϕϕϕϕ  denote an N -by- N  matrix with elements jiϕ : 

{ }, 1, 2, ,ji j i Nϕ= = ⋅⋅⋅ϕϕϕϕ        (5.23) 

The matrix ϕϕϕϕ  is called the interpolation matrix. Eq. (5.19) can be written in the 

compact form: 

=w xϕϕϕϕ           (5.24) 

Assuming that ϕϕϕϕ  is nonsingular and therefore that the inverse matrix 1−ϕϕϕϕ  exists, 

we may go on to solve Eq.(5.24) for the weight vectorwas shown by 

1−=w xϕϕϕϕ           (5.25) 

  Micchelli [14] gives a remarkable property for a class of radial basis functions 

which obtains a positive definite interpolation matrix ϕϕϕϕ . This remarkable 

property can be expressed as follows: 
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Let 1 2, , , Nx x x⋅ ⋅⋅  be distinct in pR . Then the N -by- N  interpolation 

matrix ϕϕϕϕ  whose thji  element is ( )ji j ix xϕ = −ϕϕϕϕ , is nonsingular. 

The common examples of this specific class of radial basis functions are given as 

follows: 

1) Multiquadrics: 

2 2 1/ 2( ) ( )r r c= +ϕϕϕϕ  for some 0c >  and r R∈      (5.26) 

2) Inverse multiquadrics: 

  
2 2 1/ 2

1
( )

( )
r

r c
=

+
ϕϕϕϕ  for some 0c >  and r R∈      (5.27) 

3) Gaussion Functions: 

2

2
( ) exp( )

2

r
r

σ
= −ϕϕϕϕ  for some 0σ >  and r R∈     (5.28) 

The multiquadrics and inverse multiquadrics are both due to Hardy [15]. For 

the radial-basis function listed in Eq. (5.26) to Eq. (5.27) to be nonsingular, the 

points 1 2, , , Nx x x⋅⋅⋅  must all be different (i.e., distinct). This is all that is 

required for nonsingularity of the interpolation matrix ϕϕϕϕ , whatever the values of 

size N of the data points or dimensionality p  of the vectors (points)ix . 

The inverse multiquadrics of Eq. (5.27) and the Gaussian function of Eq. 

(5.28) share a common property: They are both localized functions, in the sense 

that ( ) 0r →ϕϕϕϕ  as r → ∞ . In both of these cases the interpolation matrix ϕϕϕϕ  is 

positive definite. By contrast, the multiquadrics of Eq. (5.26) are nonlocal in that 

( )rϕϕϕϕ  becomes unbounded as r → ∞ ; and the corresponding interpolation matrix 

ϕϕϕϕ  has 1N −  negative eigenvalues and only one positive eigenvalue, however, is 

that an interpolation matrix ϕϕϕϕ  based on Hardy’s multiquadrics is nonsingular, 

and therefore suitable for use in the design of RBF networks. 

In this thesis, Gaussian function which is most commonly used. It can be 

used to approximate a smooth input-output mapping with greater accuracy than 
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those that yield a positive-definite interpolation matrix 

 

 

4. Concept of RSM-based Hybrid Evolutionary Algorithm (RHEA) 

 

The main idea is to reduce the evaluation number of the objective function 

by using RSM which is one among the designed experiments to reduce the 

repetitive number, since it is one of the demerits of optimum design. The RHEA 

consists of four main categories: GA for governing the general algorithm; tabu-list 

for systematic variety of solution; RSM for improving convergent speed for 

getting a candidate solution; modified simplex method for local search. Fig. 5.2 

represents the flowchart of the RHEA. The left side of the flow chart shows global 

search region that is similar to the flowchart of standard genetic algorithm, 

excluding the function assurance criterion (FAC), Sh (part A), tabu-list (part B), 

and RSM (part C). These parts offer candidate solutions, which are considered as 

initial search points in the local search region. The right side represents the local 

search region. This part finds out the optimum solution by the modified simplex 

method, which use the final solution by results of global search as initial search 

point. 

  

4.1 Sh (a set of History) 

 

Part A in Fig. 5.2 shows the Sh region which provide the well distributed 

points to make a response surface (refer to Fig. 5.3). The Sh is constructed the 

following procedures: 

 

Step 1: Read individuals from the current population 

Step 2: NSh = NSh + pop_size   
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where NSh and pop_size mean size of a set of history and size of 

population, respectively 

Step 3: if NSh ≤ maxNsh , then go to Step 7 

where maxNsh  means maximum size in Sh. 

Step 4: Evaluate the dense grade (DG) for each individual 

max ( ) ( )ik ikDG d mean d= +  

where ikd  is Euclidian distance between i  and k ;  

( ) ( ) ,i kx x−  1, , ;i NSh= ⋅⋅⋅  i k≠  

Step 5: Rank the individuals for DG 

Step 6: Select the higher ranked first maxNsh  individuals. 

Step 7: Store the solutions in Sh and go out. 

 

4.2 Tabu List 

 

Part B in Fig. 5.2 shows that the tabu list is checked to have a diversity of 

solution (refer to Fig. 5.4). The one individual which is selected in GA’s 

individuals after crossover is reviewed to secure the diversity of solution. If 

diversity of solution is secured, we select the individual and if not, we repeat the 

crossover process. That is, individual is selected when it is located far away from 

the dense area. So, a dense grade criterion of solution and acceptance criteria of 

individual are made as follows: 

 

1) Definition 

ND R⊂  : Normalized domain, where N is number of design variables 

NV R⊂  : A domain having the equally divided by maxNsh  from D . 

Let V is size of V, then 
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max

Nl
V

Nsh
=             (5.29) 

l  : One side length of D 

Rδ ∈  : One side Euclidian length of hyper-polygon in V as follows: 

max

N

N

l
V

Nsh
δ = =         (5.30) 

2) To decide the acceptance of individual, an aspiration function for a given 

target design vector is represented as follows: 

1

1 ( )
Nsh

t
k

f h r
=

= −∑  =  
1

1 ( ) k t

Nsh
X X

k

h r e γ− −

=

− =∑      (5.31) 

Let h(r) = re γ− ,  where r = k tX X− ,  tX  is target individual position 

3) To set the γ , it is assumed that the following ideal conditions are 

satisfied. 

l  Sh is full 

l  All members of Sh are placed in the center of the maxNsh  sub-domains 

which are supposed to have same hyper-volume and not to have any 

cross set of each other and to fit the domain D absolutely. That is, 

 i jV V =I φ  i j≠ ,  
max1 2 NshV V V D⋅⋅ ⋅ =U U U    (5.32) 

Then, set astf β= , where β  means acceptance probability criterion. 

4) Find γ  from the following equation. 

1

1
Nsh

r
t

k

f e γβ −

=

= = −∑  =  1 2N e Rγδ− − +       (5.33) 

The first term on the right side corresponds to the closest member of Sh to 

the target individual. The second term, R, is the residuals. The nature of h(r), 

which is exponentially decreasing along with distances, makes R be much smaller 

than the first term, namely R can be neglected. 
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1 2tf N e γδβ −= ≈ −         (5.34) 

1
ln

2
e

N
γδβ −− =  

         (5.35) 

1 1
ln( )

2N

βγ
δ

−= −          (5.36) 

In the case of considering first and second terms, we can write as follows: 

1

1
Nsh

r
t

k

f e γβ −

=

= = − ∑ = 2
21 2 2 ( 1)N e N N e Rγδ γδ− − − + − +     (5.37) 

5) Aspiration criteria 

l  If rand > tf   then accept, where rand = [0 1] 

l  If trial number > maximum trial number (where, set 50) 

If target individual is not satisfied with above aspiration criteria, one 

crossover is generated again. And the process is repeated.  

 

Example: This example is to get γ  

Set maxNsh = 9, N = 2, l =1 and β  = 0.5. 

From Eq. (5.30) and Eq. (5.36), 

max

N

N

l
V

Nsh
δ = =  =

2

1

9
 = 0.3333  

1
ln( )

2N

βγ
δ

= −  = 
1 0.5

ln( )
1/ 3 4

−  = 6.2383 

Fig. 5.5 shows the graph of aspiration function using above results. 

The procedure is summarized as follows: 

 

Step 1: Read (N-1) individuals from selection process. 

Step 2: Crossover (N-2) individuals according to the crossover probability  
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and go to step 5. 

Step 3: One individual selected for tabu-list. 

Step 4: If rand > if , then go to step 5, otherwise return to step 3 

Step 5: Add generated individuals. 

 

4.3 RSM (Response Surface Methodology) 

 

Part C in Fig. 5.2 represents an RSM region. It is largely divided by 3 parts. 

Firstly, considering the boundary condition in the response surface for 

optimization, the upper and lower values of design variables can be considered in 

this calculation process. However, the merits of this method are diminished when 

addition constraints like natural frequency are considered, because it has to 

evaluate the objective function to get the results from external calculations. To 

overcome this problem, this thesis used Sh as training data and inferred the 

satisfaction of constraint condition using RBF network [16]. In this way, 

calculation of actual problems could be avoided. 

Secondly, it makes a response surface from Sh by using the least square 

method (LSM) as shown in Fig. 5.6 C2  

Finally, the optimum solution of the response surface is calculated by using 

tabu search method as shown in Fig. 5.6 C3. To increase optimization speed, 

gradient based algorithm can be used. However, the solutions satisfying constraint 

condition cannot be guaranteed since the constraint condition is difficult to define 

precisely. Also we adopt tabu search method which has an excellent initial 

convergent speed, because the implementation of the response surface concept is 

to search for the approximate candidate solution. 

 The generated optimum solution in Fig. 5.6 C3 is added with other existing 

GA’s individuals according to the sequence of Fig. 5.2 and fitness calculation is 

performed.  
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Fig. 5.2 Flowchart of RHEA 
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Fig. 5.4 Flowchart of the crossover + tabu list 
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4.4 Final Global Candidate Solution 

 

Each candidate for optimum solutions is decided by the FAC [17]. The FAC 

defined by Eq. (5.38) is a standard value to estimate the convergence of the initial 

candidate. 

 
2

1

1 1( ) ( )

T
i i

T T
i i i i

f f
FAC

f f f f
−

− −

=         (5.38) 

 

where if  is the row vector, formed by the fitness values of the individuals at the 

i th generation and Tf  is the transpose of f .  

The row size depends on the number of optimum solutions according to a 

designer’s requirement. Theoretically the range of FAC is from 0 to 1.0. When the 

value is equal to 1, the convergence of optimization is completed. The value, 

however, is difficult to converge to 1.0 considering the many candidate solution to 

evaluate the FAC. Therefore, in this thesis, the FAC is set to 0.9999. 

 

 

5. Procedures of RSM-based Hybrid Evolutionary Algorithm (RHEA) 

 

RSM-based hybrid evolutionary algorithm (RHEA) is introduced as follows: 

Step 1: The parameters are set up as follows: 

Pop_size: population size 

cP : cross probability 

mP : mutation probability 

sM : selection method 

cM : crossover method 

Step 2: Generate the initial chromosome ( 1, 2, , _ )kv k pop size= ⋅⋅⋅  
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randomly with n  elements. 

1 2[ ]k k k knv x x x= ⋅⋅⋅  

When generating the chromosomes, following conditions should be satisfied: 

The element value range of each chromosome is satisfied as below, 

L U
kj j kjx x x≤ ≤  

Each chromosome satisfies all constraints as follows: 

( ) 0,i kg v i≥ ∀  

When a chromosome does not satisfy the conditions, then the chromosome 

has the lowest fitness. So it has a low possibility of selection to the next 

generation after all.  

Step 3: Generate the initial solutions, and estimate constraint and set up a 

parameter range 

Step 4: Evaluate the fitness of individuals 

Step 5: Evaluate the FAC, if it is satisfied, go to step 13 otherwise go to step 

6 

Step 6: Update Sh : { }Sh ( , ) ,N
sh shX F X R F R= ∈ ∈  

where 1 2[ , , , , , ]sh i NX x x x x= ⋅⋅⋅ ⋅ ⋅ ⋅   

Step 7: Selection 

Step 8: Crossover and check tabu list 

Step 9: Construct RS ( Response Surface) from Sh:  

1
2

0
1 1 2 1

N N N i

rs ii i ii i ij i j
i i i j

f x x x xα α α α
−

= = = =

= + + +∑ ∑ ∑∑      (5.39) 

where 0, ,ii ijα α α  are coefficients calculated by LSM 

Step 10: Train RBF network by Sh to construct the constraint conditions 

approximately. 
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Step 11: Calculate the optimum design on the response surface by tabu 

search method and generate one individual based on X*. 

Step 12: Mutate and go to step 4 

Step 13: Search the optimum solutions by the local concentration search 

(modified simplex method) for best candidate. 

 

 

6. Numerical Examples of Several Function Optimizations 

 

Three test functions are used to verify the efficiency of the proposed hybrid 

algorithm: the first one is the four-peak function, which has one global optimum 

with three local optima; and the second one is Rosenberk’s function which is 

known as banana function and has just one global optimum; and the last one is the 

Rastrigin function which has one global minimum with 220 local minima. 

 

6.1 Four-Peak Function [18] 

 

( )

2 2
1 2

10 10
0.2 0.1

log (0.25) log (0.25)
6 60.8 0.8

1 2 1 2

1 2

( , ) cos (1.5 ) cos (1.5 )

0.4 , 1

x x

f x x e x e x

x x

π π
− −   × ×   

   = × + ×
− ≤ ≤

  (5.40) 

This test function has a global optimum solution ( )f x = 1.954342 at 1x  = 0, 

2x  = 0, and three local optima solutions ( )f x = 1.807849, 1.705973, 1.559480 

as shown in Fig. 5.7. Conventional gradient based hill-climbing algorithms can be 

easily stuck to local optimum because of their dependency on start point, while 

global search algorithm finds global optimum in general. 
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Fig. 5.7 Four-peak function 

 

 

6.2 Rosenbrock Function [19] 

 

2 2
1 2 1 2 1 1 2( , ) 100( ) (1 ) , ( 2.0 , 2.0)f x x x x x x x= − + − − ≤ ≤  (5.41) 

This function is called banana function whose shape is the one like Fig. 5.8.  

The objective of this function is to find the variable x, which minimizes the 

objective function. This function has only one optimum solution ( )f x  = 0 at 1x   

= 1.0 and 2x  = 1.0. It is difficult to find an optimum solution because of a valley 

phenomenon [20]. 
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Fig. 5.8 Rosenbrock function 

 

6.3 Rastrigin Function [21] 

 

This function is often used to evaluate the global search ability because there 

are many local minima around the global minimum as shown in Fig. 5.9. It is not 

easy to find a global minimum within a limited function call. The objective of this 

example is to minimize a function defined by Eq. (5.42). This function has 220 

local minima and one global minimum ( )f x  = 0 at (0, 0). 

2
2

1

( ) 2 10 { 10cos(2 )}i
i

f x iπ
=

= × + −∑x  1 2( 5.0 , 5.0)x x− ≤ ≤   (5.42) 
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Fig. 5.9 Rastrigin function 

 

 Figs. 5.10-5.12 represent the convergent trend of objective function for each 

test function. According to the results, GRSM (GA+RSM) and GRSMT 

(GA+RSM+Tabu list) algorithms which are based on RSM have faster convergent 

speed and more accurate solutions than GA, which validated the efficiency of 

RSM on the calculation. Also tabu list enables convergence to solutions quickly 

on the multi-peak function due to the systematic diversity of solution. The setting 

parameters for each algorithm are listed in Table 5.1. Table 5.2 shows the 

comparison of optimization results for the above stated three test functions. The 

evaluation number means total evaluation number of the objective function used 

in optimization procedure, and it is directly proportion to the total calculation time. 

Fig. 5.13 shows the contour for optimum solutions obtained by RHEA. According 

to the results, for all test functions, RHEA can give better solutions than GA on 

accuracy and convergent speed. For the Rastrigin function, which is very useful to 
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evaluate the global search ability because there are many local minima around the 

global minimum, RHEA found global minimum with higher accuracy and less 

elapsed time compared to GA. According to these results, the proposed new 

hybrid algorithm is a powerful global optimization algorithm from the view of 

convergent speed and global search ability. 

 

 
Fig. 5.10 Convergent trend of objective function (Four-peak function) 
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Fig. 5.11 Convergent trend of objective function (Rosenbrock function) 

 

 

Fig. 5.12 Convergent trend of objective function (Rastrigin function) 
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Table 5.1 Set parameters for GA and RHEA 

Parameters Value Remarks 

No. of generation 100 

Population size 100 

Crossover probability 0.5 

Mutation probability 0.1 

GA & RHEA 

Size of Sh for RSM (Nshmax) 1000 

Step size for R-tabu 10 

Count number for R-tabu 3 

RHEA only 

 
Table 5.2 Comparison of optimization results 

Results Test 
function 

Exact  
solutions 

Methods 
f(x) ( 1x , 2x ) 

No. of  
evaluation 

GA 1.927 
2.403 e-3 

2.787 e-3 2353 
Four-peak 

function 

f(x) = 1.9543 

1x = 2x =0 
RHEA 1.927 

2.736 e-3 

2.736 e-3 459 

GA 1.640 e-5 
9.960 e-1 

9.960 e-1 1046 
Banana 

function 

f(x) = 0 

1x = 2x =1 
RHEA 0.0 

1.0 

1.0 419 

GA 1.586 e-4 
1.408 e-4 

8.15 e-4 2109 
Rastrigin 

function 

f(x) = 0 

1x = 2x =0 
RHEA 0.0 

-3.076 e-9 

-7.747 e-10 514 
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(a) Four-peak function 

 

 
(b) Rosenbrock function 

Fig. 5.13 Optimum solution obtained by RHEA (Continued) 
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(c) Rastrign function 

Fig. 5.13 Optimum solution obtained by RHEA 

 

 

7. Application for Optimum Design of Fresh Water Tank of Ship 
 

In the engine room and the rear of the ship, there are so many tank structures 

contacting with fresh water, sea water or oil. Also these possibly subject to the 

excessive vibration during voyage because they are arranged around the main 

excitation sources of ship such as the main engine and propeller. If problems 

occur, it takes a lot of cost, time and effort to improve the situation because the 

reinforcement work for empting the fluid out of the tanks, additional welding and 

special painting and so on is required. It is therefore very important to predict the 

precise vibration characteristics of the tank structures at the design stage. 

Optimum design needs to be applied. Especially when the structure is in contact 

with fluid much analysis time is taken. So, a new hybrid optimization algorithm is 
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required for getting a short analysis time and accurate solution. In this thesis, 

optimum design of a fresh water tank in an actual ship is carried out to verify the 

validity of the proposed optimization algorithm (RHEA) and the results are 

compared to that of GA. 

 

7.1 Vibration Analysis of Fresh Water Tank 
 

It is difficult to predict the vibration response of a local structure due to the 

complicated transfer mechanism of excitation force and the difficulty of assuming 

the damping ratio. Traditionally, therefore, the vibration analysis considering the 

design of avoiding resonance is conducted to prevent the local vibration. 

 In this thesis, the vibration analysis of the fresh water tank is carried out 

using NASTRAN which is a commercial finite element program and widely used 

for big structures like ships. Fig. 5.14 shows the model and arrangement of the 

fresh water tank. Fig. 5.15 shows the design variables and boundary condition of 

the fresh water tank. Considering the precision of analysis and time consuming 

modeling process, the range of modeling of fresh water tank is constrained to one 

side of the tank. The boundary conditions for the model are specified: the simple 

supports are used to the tank boundary area which is connected to the other 

bulkhead and deck. Table 5.3 shows the specification of main excitation sources.  

In general, the design for avoiding local structure resonance in ships requires 

that the natural frequency of the structure must be two times higher than the blade 

passing frequency of the propeller under the maximum rpm of the main engine. In 

this thesis, design target frequency is set as above 14.02 Hz which considers 

safety margins and twice blade passing frequency of the propeller (12.13Hz). 

  Fig. 5.16 shows the first three modes and natural frequencies of the fresh 

water tank by NASTRAN. These three modes frequently occurred on the fresh 

water tank during voyage. Especially, the 1st mode (8.60 Hz) is a stiffener 
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(stringer) mode which generates a strong vibration and much effect on the 

structure. In this model, the 1st natural frequency of the structure is also within the 

resonance region where twice blade passing frequency of propeller is 12.13 Hz. 

Therefore, the natural frequency of structure is needed to be increased up to the 

target frequency under the condition that the tank is fully filled. The natural 

frequency of structure which is contacting with fluid can be changed according to 

the water line of the tank. So, in order to design a safe structure, the three modes 

of the fresh water tank are concerned in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.14 Model and arrangement of fresh water tank 
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Fig. 5.15 Design variables and boundary conditions of fresh water tank 

 

 

Table 5.3 Specification of main excitation sources 

Excitation Excitation 
source 

MCR 
Order Frequency 

3rd 4.55 Hz 

4th 6.07 Hz 
Main engine 
(6S 70MC-C) 

6th 9.10 Hz 

1st 6.07 Hz Propeller 
(Blade: 4EA) 

91 rpm 

2nd 12.13 Hz 
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(a) 1st mode (8.60 Hz) 

 

 

 

(b) 2nd mode (18.82 Hz) 

 

 

 
(c) 3rd mode (19.17 Hz) 

Fig. 5.16 Mode shapes of fresh water tank 
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7.2 Optimum Design of Fresh Water Tank 
 

7.2.1 Formulation for Optimum Design 

a) Design variables 

The main vibration modes on the fresh water tank are stiffener modes in 

transverse direction. One of the most important factors is the stiffness of stiffeners. 

In this study, the stiffener size and plate thickness of fresh water tank in Fig. 5.15 

are defined as design variables in Eq. (5.43). 

x = {S1 S2 S3 S4 S5 S6 S7 S8 P1 P2}
T        (5.43) 

where Sand P mean stiffener size and plate thickness, respectively. 

b) Constraints 

The web length of stiffener Lw is restricted as two categories such as Eq. 

(5.44) and (5.45) according to the shipyard’s practice. 

150 ≤  Lw ≤  450 mm for stiffeners (S1-S7)     (5.44) 

500 ≤  Lw ≤  1000 mm for stringer (S8)     (5.45) 

Also, the basic concept of local vibration design is the minimization of the 

response at each point. However, it is difficult to evaluate how much the 

excitation force influences on local structure. So, in this study, natural frequency 

of the structure is restricted as Eq. (5.46) which considers a safety margin of twice 

blade passing frequency of the propeller. 

ωn ≥ 14.02 Hz          (5.46) 

c) Objective function 

The objective function combines linearly the weight of fresh water tank with 

natural frequency of structure like Eq. (5.47). The objective is to get an economic 

and sound structure to reduce the weight of stiffener and to increase the natural 

frequency. 
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Minimize 1

0 0

( ) tW
f x

W

ωα β
ω

   
= +   

   
      (5.47)  

where, tω and ω 0 mean target and current natural frequency, respectively. α and 

β are weighting factors (α = 0.5, β = 0.5). 
 

7.3 Optimization Results and Discussion 
 

The optimum design was carried out to get an optimal size of stiffener and 

plate thickness on the fresh water tank to maintain the anti-vibration design of it. 

Table 5.4 shows the results of the design variables before and after optimization. 

It shows that the stringer S8 is increased by 72% and the others by 4.0-52%. This 

result indicates that the most reasonable modification method is to increase the 

stringer which has an effect on the decreasing the span of the vertical stiffeners. In 

this case, however, the plate thickness does not have any effect on the natural 

frequency of the structure. Table 5.5 shows the variation of natural frequency and 

weight of structure before and after optimization. According to the results, the 1st 

natural frequency increased by 163 % from 8.6Hz to 14.02Hz, and the safety 

margin with twice passing frequency of the propeller correspondingly changed 

from -29.1% to 11.56%. Therefore, the structure is free from resonance. Moreover, 

the weights of stiffeners which are applied to the design variables also decreased 

in spite of higher natural frequency. In summary, the local vibration problems 

which require avoidance of structure resonance through the movement of natural 

frequency without additional weight has been successfully solved by the proposed 

optimization method. Table 5.6 and Fig. 5.17 show the comparison of 

optimization results between GA and RHEA. The evaluation number means a 

total evaluation number of the objective function used in the optimization 

procedure, and is directly proportional to the total calculation time. According to 

the results, RHEA can give better solutions than GA on accuracy and convergent 
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speed. These results lead us to draw the conclusion that the proposed new hybrid 

algorithm is a more powerful global optimization algorithm from the view of 

convergent speed and global search ability. 

 
Table 5.4 Comparison of original and optimal design variables  

Optimum 
Design variable Original 

GA RHEA 

Remarks 
(RHEA) 

S1 200 214 207 4.0 % 

S2 200 320 223 12.0 % 

S3 200 253 285 43.0 % 

S4 200 325 283 42.0 % 

S5 200 328 303 52.0 % 

S6 200 277 251 26.0 % 

S7 200 281 230 15.0 % 

S8 550 893 947 72.0 % 

P1 11.0 10.7 10.3 -6.36 % 

P2 11.0 10.6 10.0 -9.09 % 
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Table 5.5 Comparison of results  

 

 

 

 

 
Table 5.6 Comparison of optimization results 

Item 
Natural 

frequency 
Weight 

Objective 

function 

No. of 

evaluation 

GA 14.04 Hz 5001 kg 0.5547 1846 

RHEA 14.02 Hz 4652 kg 0.5167 1638 
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Fig. 5.17 Convergent trend of objective function  

 
 

 

Item Original Optimum Remarks 

Natural frequency 8.60 Hz 14.02 Hz 163 % 

Weight 4883kg 4652 kg -4.73 % 
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 8. Conclusions 

 

This chapter introduces an RSM-based hybrid evolutionary algorithm, as a 

new kind of a hybrid optimization algorithm that combined the merits of the 

popular programs such as genetic algorithm, tabu search method, response surface 

methodology. This algorithm, in order to improve the convergent speed that is 

thought to be the demerit of genetic algorithm, uses response surface methodology 

and simplex method. Though mutation of GA offers random variety, systematic 

variety can be secured through the use of tabu list. Especially, in initial stages, 

GA's convergent speed can be improved by using RSM method which use the 

information on objective function acquired through GA process and then making 

response surface (approximate function) and optimizing this. An optimized 

solution was calculated without the evaluation of additional actual objective 

function, and the GA’s convergent speed could be improved.  Efficiency of this 

method has been proven by applying traditional test functions and comparing the 

results to GA. It also proved that the newly suggested algorithm can effectively 

find the global optimum solution by applying it to weight minimization of fresh 

water tank that is placed in the rear of ship designed to avoid resonance. Finally it 

is concluded that the proposed new hybrid algorithm (RHEA) is a very powerful 

global optimization algorithm from the view point of convergent speed and global 

search ability.  
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VI. Conclusions 
 

 

The objective of this paper is to propose algorithms and a framework for 

optimum design in order to reduce the vibration on large structures like ships. For 

this purpose, two algorithms and a framework related to optimization have been 

developed in this study. They have been applied to known test functions to 

ascertain their usefulness, and their excellence was proven. To prove the 

practicality of the algorithms and a framework, an optimization work for global 

and local vibration of ships constructed in shipbuilding was executed.  

Firstly, in order to optimize large structures, an optimization framework was 

developed. This framework is able to choose from many global optimization 

methods and use NASTRAN as a solver. This framework was called OPTSHIP 

and the merits of OPTSHIP are as follows.  

• Large structures like ships can be easily optimized.  

• General-purpose analysis program, NASTRAN is used as a solver.  

• Various optimization algorithms can be diversely utilized as an optimizer.  

• Implementation of new optimization method created by the user is easy.  

• Objective functions can be diversely selected.  

• Various design variables can be selected.  

• Global optimum solution can be obtained.  

To verify the reliability and performance of OPTSHIP, this algorithm is 

applied to minimize the vibration level of the deckhouse in the 2400 TEU 

containership. The excellence of the result is proven by comparing it with the 

optimization result of the existing NASTRAN optimization module which is 

widely used for general-purpose program.  

Secondly, a non-linear integer programming (NIP) algorithm based on GA 
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was developed. This method enables the optimized result directly applicable in the 

design of the stiffeners and steel plates which used in the shipbuilding. Especially, 

taking the difference of the accuracy of optimum solution and convergent speed 

according to the initial parameters due to the characteristics of GA into account, 

this thesis executed optimization of GA parameters simultaneously. Then, the 

optimized GA parameters were applied to the object structure and it is proven that 

parameters were an optimized value. The NIP algorithm was used to perform 

optimum design of the compass deck structure of a ship with potential vibrations, 

thus solving the vibration problems proved the efficiency of the proposed method.  

Thirdly, a new hybrid evolution algorithm (RHEA: RSM-based hybrid 

evolutionary algorithm) was developed. This method employs the GA as its base 

in order to ensure tabu list of tabu search method that provides a systematic 

variety of solutions and to secure response surface methodology (RSM) which 

provides a quick convergent speed. Mutation of GA provides random diversity, 

but by implementing tabu list of tabu search method, a systematic variety could be 

obtained. By using the information of objective function obtained in the process 

of GA while implementing RSM, response surface (approximation function) was 

created. By optimizing this, optimized solution was calculated without the 

evaluation of additional actual objective function, and the GA’s convergent speed 

could be improved. The efficiency of this method has been proven by applying 

traditional test functions and comparing the results to GA. Finally, we can 

conclude that the proposed new hybrid algorithm (RHEA) is a very powerful 

global optimization algorithm from the view point of convergent speed and global 

search ability.  

Additionally, the outcome of this thesis is open to applications on ships as well 

as other complex structures. The optimization process of a ship can be applied not 

only to structures but also other various fields and it is useful to attain a dominant 

position in the competition of future shipbuilding. Furthermore, an expanded 
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application as well as a perennial development on a more efficient optimization 

algorithm is necessary. Finally, by undergoing numerous experiences, I hope that 

the enhanced version of the algorithm mentioned in this thesis being developed.  
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최적화 알고리듬과 프레임웍 개발 및  

선박 구조물의 최적설계에의 적용  

 

 

공 영 모 

 

부경대학교 대학원 기계공학부 

 

 

국문 요약 

 

 최근 선박 진동문제에 있어서 대두되고 있는 과제는 과대 진동에 따른 

구조물의 피로파괴 회피와 선원의 근무환경 여건의 고급화에 따른 선실의 

쾌적함 추구이다. 이에 따라 선주가 요구하는 진동 허용치가 지속적으로 

엄격해지고 있다.   

그러나 본질적으로 선박 진동의 기진원은 주기관, 보조기관, 프로펠러, 파도, 

유체운동 등으로 다양하며, 구조계 및 선내 기계장치가 복잡하게 설치되어 

있어 진동이 없는 선박을 건조한다는 것은 사실상 불가능하다. 더구나 선박의 

고출력 엔진 채용과 경량화를 지향하고 있는 최근의 동향과 맞물려 심각한 

진동문제가 야기되고 있는 실정이다. 따라서 전술했던 제반 문제의 

해결방안은 빈번하게 진동문제를 일으키는 부분을 경험적으로 체계화하여 

선박 최적설계를 도모함으로써 방진 표준화 작업을 수행하여 진동을 

최소화하는 것이다.  
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여기에서 말하는 ‘최적설계’란 대상구조물의 안정성과 유용성을 가지고 

최소의 재료를 사용하여 최대의 효과를 얻을 수 있도록 구조물의 부재 치수 

혹은 기하학적인 형상을 결정하는 것을 의미한다.  

이와 같은 선박 최적설계는 근간 산업현장의 임금 인상과 선박 제조에 

필요한 재료비 인상에 따라 보다 절박하게 요구되고 있는 선박 건조 비용 

절감 측면에서 보건대 진동문제 해결을 위한 경비를 경감할 수 있으므로 

경제적 효용가치 또한 높다.  

그러나 현실적으로 선박 최적설계는 손쉽게 해결할 수 있는 과제가 아니다. 

특히 상선과 같은 큰 배의 경우에는 구조물의 자유도수가 많기 때문에 더욱 

복잡하고, 어렵다. 그에 따라 이 분야의 선행 연구자들은 실행 시간 단축을 

위하여 모델 축소화를 시도하고, 최적화 도구의 유용성을 높이기 위하여 

다양한 최적화 기술을 도입·적용함으로써 복잡한 최적설계 상의 문제를 

해결해왔다.  

 

본 연구에서는 두 가지의 최적화 알고리듬과 한 가지의 최적화 프레임웍을 

제안하고, 그에 따른 관련 프로그램을 개발하였다. 그 세부 내용을 요약해 

보면 다음과 같다.  

 

첫째, 대형 구조물의 최적화에 용이하고, 다양한 목적함수를 선정할 수 

있으며, 설계변수를 다양하게 선택할 수 있는 NASTRAN 외부 호출형 독립 

최적화 프레임웍을 개발하고, 이를 OPTSHIP 이라 명명하였다.  

OPTSHIP 은 구조물의 고유진동수, 강제응답 및 모드벡터 등을 구하기 위한 

Solver 로써 NASTRAN 을 사용하였고, 전역 최적해를 구하기 위한 최적화 

알고리듬은 외부에서 이용자가 모듈을 만들어 사용할 수 있도록 하였다. 현재 

사용 가능한 최적화 모듈은 유전알고리듬(GA), 랜덤터부탐색(R-tabu)법, 

시뮬레이티드어닐링(SA)법, 인공생명(AI) 최적화 알고리듬 등이다.  

제안된 프레임웍의 유용성을 검증하기 위하여 2400TEU 컨테이너선의 거주구 

진동 최소화에 적용하였다. 왜냐하면 위 컨테이너선의 거주구가 선미부에 
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위치하여 진동 측면에서 매우 불리한 특성을 지니고 있어 본 프로그램의 

효용가치를 확인하기 위한 최적의 구조물로 판단되었기 때문이다.  

OPTSHIP 을 활용한 해석의 효율성을 높이기 위하여 목적함수에 대한 

후보설계변수의 감도해석을 NASTRAN 을 이용하여 수행하였다. 그에 따라 감도 

값이 1.5 이상인 설계변수를 최종설계변수로 채택하여 계산시간을 단축할 수 

있었다.  

본 예제에서는 OPTSHIP 최적화 외부 모듈로써 R-Tabu 법을 사용하여 그 

계산결과와 상용 프로그램인 NASTRAN 최적화 결과를 비교해 봄으로써 그 

우수성을 입증하였다.  

 

둘째, 본 논문에서는 최적화된 설계변수 값을 초기 설계 단계에서 

직접적으로 사용할 수 있도록 ‘비선형 정수형 최적화 기법’을 개발하였다.  

비선형 정수형 최적화 기법은 현재 조선소에서 널리 사용하고 있는 강판의 

두께와 형강의 크기를 설계변수로 하여 이를 자유롭게 설정할 수 있도록 

프로그래밍화한 것이다.  

개발된 알고리듬은 이들 설계변수의 크기가 같은 것끼리 그룹으로 나누어 

유전형을 표현하도록 GA 를 개선한 것으로써 GA 의 개체 크기, 교배 확률, 

돌연변이 확률, 선택 방법 및 교배 방법 등과 같은 파라미터의 최적화를 우선 

수행하여 가장 적합한 값을 구하였다. 이는 파라미터의 변화에 따라 최적해의 

정도와 계산 소요시간 상의 차이가 발생하는 점을 고려한 것이다.  

본 프로그램을 활용하여 산출한 최적화 파라미터 값을 대상 구조물에 

적용한 결과 전역해에 수렴하는 속도가 다른 값들에 비하여 양호함을 확인할 

수 있었다. 

그리고 실제 진동이 발생할 우려가 있는 선박의 컴퍼스 갑판 구조물을 

대상으로 최적설계를 수행하여 문제를 해결함으로써 본 기법의 유용성을 

검증하였다.  
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마지막으로, 새로운 조합 진화 알고리듬(RHEA: RSM-based Hybrid 

Evolutionary Alogrithm)을 제안하였다. 이는 해의 다양성과 수렴속도를 

동시에 개선할 수 있는 GA, Tabu list 와 실험계획법으로 잘 알려져 있는 

반응표면법(Response Surface Methodology)의 장점들을 활용·결합하여 만든 

알고리듬이다. 이는 Tabu 탐색법의 Tabu list 를 GA 에 도입하여 해의 체계적인 

다양성을 확보하고, RSM 을 적용하여 실제 목적함수 평가에 많은 시간이 

소요되는 대형 구조물의 최적화에 수렴하는 속도를 향상시킨 것이다. 

RSM 을 활용한 목적함수 평가 과정은 다음과 같다. GA 의 과정 중에 얻어진 

정보를 이용하여 목적함수의 근사함수를 만들어 최적점을 찾은 후, 그 값을 

다음 세대의 집단 중 소수(1 개)의 개체를 생성시켜 최적화를 수행한 것이다. 

그에 따라 추가적인 목적함수 평가 없이 보다 최적화된 값을 얻을 수 있었다. 

본 기법의 유용성을 검증하기 위하여 다음과 같은 연구를 수행하였다. 즉, 

전통적으로 이용되고 있는 시험함수를 사용하여 기존의 탐색알고리듬인 GA 와 

RHEA 의 결과치를 비교하여 보았다. 그리고 선미부에 위치한 청수탱크의 

공진회피설계를 고려한 중량 경량화에 본 알고리듬을 적용하여 보았다. 그에 

따라 새롭게 제안된 조합알고리듬(RHEA)이 해의 정확성이 높고, 수렴속도가 

탁월함을 확인할 수 있었다. 

 

이상과 같이 본 연구를 통해 보다 효율적이고, 높은 해의 정확성 및 

신뢰도를 지닌 OPTSHIP (NASTRAN External Calling Styled Optimization 

Framework), NIP(Nonlinear Integer Program), RHEA(RSM-based Hybrid 

Evolutionary Alogrithm)를 개발하였다. 본 연구는 제안된 신기법을 특정 

선박의 일부분에만 적용하여 그 유효성을 검증한 것으로 앞으로 여러 종류의 

선박에 확대·적용하여 그 경험을 체계화하고, 보다 우수한 알고리듬 개발과 

선박 최적설계 기술 발전을 위해 지속적인 노력을 기울여야 할 것으로 본다.  
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고 지금은 진동팀을 떠났지만, 오랜 친구와 선후배로 남겨 있는 손성완님, 김

영찬님, 강동억님, 정윤호, 제종준, 장강석, 서상윤, 민덕기 에게도 고마움을 전

합니다. 본 논문이 완성되기까지 연구실 생활 동안 여러 선배님들의 가르침과 

도움이 없었다면 이 논문은 완성되기 힘들었을 것입니다. 김 원철 교수님, 전 

순기 교수님, 김 인수 부장님, 김 남설 사장님, 임 우섭 본부장님, 유영훈 교수

님, 김진욱 박사님, 최원호 박사님, 김종완 박사님, 안영공 박사님, 이장우 박

사님 그리고 석사과정 시절에 함께 연구실 생활을 하였던, 최성필 박사, 박준

호, 이재무 김병수, 하종훈, 하진수, 김영찬 박사, 주호진, 장우교, 김유신, 박형

섭, 이윤희, 그리고 박사과정 시절 함께 알게 된 사랑스런 후배들: 철현, 소환, 

용한, Han Tian, 영천, 용수, 호일, 종룡, 광진, 원우, 상일, 형은, 동호, 종덕, 민

찬, 재갑, 선화, 애희, 도균, 기태, 기용, 백석, Widodo, Niu Gang, Di Xiao, Feng 

박사에게 감사를 드립니다. 같이 수업을 하면서 많은 도움을 주신 신창혁님, 

이수목 부장님, 길병래 교수님 감사합니다. 이경석 부장님 이하 해석팀 멤버와 

조강문 부장님 최종석 부장님 이하 거주구 식구들, 영원한 벗 삼영회 친구들, 

함께 유학 생활을 시작하면서 많은 격려를 주신 유민철님에게 고마움을 전합

니다. 

항상 힘이 되어준 고향 친구인 배선, 재갑, 진석, 병두, 경찬, 병권, 종오 및 

438 동기회에 감사하고, 객지에 나와 끈끈한 정을 나눈 친구인 정인, 영포, 신

우에게 감사하며, 특히 바보성 친구들과 그 가족들에게도 감사함을 전합니다. 

저에게 무한한 사랑을 가르쳐 주신 부모님, 늘 그 사랑을 베풀어 주시기만 

하셨던 두 분께 조그마한 기쁨과 자랑이 되길 바라는 마음으로 이 논문을 바

칩니다. 큰형님과 형수님, 영만 형님과 형수님, 영삼 형님과 형수님, 누나와 자

형, 그리고 미희와 안서방에게도 감사의 마음을 전합니다. 부족한 사위지만 저

를 자랑스럽게 여기시고, 격려해주신 장모님과 사위 사랑도 느껴 보지 못하시
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고 하늘 나라에 계시는 장인어른께도 깊은 감사의 마음을 전하며, 처남과 처

제께도 감사를 드립니다. 너무나 착하고 순수한 나의 아들 민제와 민서, “아빠, 

논문 이제 몇 장 썼어요?” 하고 볼 때 마다 확인하는 큰아들 민제, “아빠, 오

늘 자고 가면 안돼요?” 하고 조금이라도 아빠와 같이 있고 싶어하는 까불이 

민서, 두 아들의 응원과 웃음 덕분에 논문을 잘 마무리 할 수 있었습니다. 오

직 사랑으로 공가네를 이끌어 가면서 이 논문을 만들기까지 힘찬 격려를 아끼

지 않으며 내조해준 나의 아내 미경씨에게 미안함과 동시에 사랑과 감사함을 

이 논문에 담아 선사합니다.  
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