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Development of Optimization Algorithms and Framekvand Their
Applications to Optimum Design of Ship Structures

Young-Mo Kong

Department of Mechanical Engineering, The Grad&ateool,
Pukyong National University

Abstract

Recently, the vibration problems in ships have ikmtemuch attention. The
vibration criteria given by the ship owners are stantly getting higher, not only
for the consideration of ship durability but foretlrise of crew's working
environment. Especially these days, the use ofeniglitput engines and lighter
structure has caused more intense vibration prablétiowever, the excitation
source of a ship is very complicated and vastpuiiclg the main engine, auxiliary
engine, propeller, wave and fluid movement, etcer&fore it is impossible to
build a ship without vibration. However, systemiaatof experiences in the main
causes of vibration and standardization of antratibn operation will help us in
bringing down the cost in managing the vibratioalpems.

In addition, the need for optimization is espegiatiore emphasized since
the rise in personnel expenses and materials hafaitdly called on the
importance of doing so. The optimum design of @ &hia very complicated work.
Especially, large ships like commercial ships haveny degrees of freedom,
which make it even more complicated. Therefore agseers came up with the
method of scaling down the model, and sought todkeathe problem with a



variety of optimizing techniques for the validity @ptimizing technology. These
efforts have worked efficiently in developing newstyning technologies and
optimization methods. Optimum design is about puagsthe best out of using the
minimum materials in making the structure while igudeeing its safety and
efficiency, deciding on the structure's geometniape and size.

Three programs related to optimization have beerldped in this thesis.

Firstly, we have developed "NASTRAN external calistyled optimization
framework" that can work efficiently in optimizirigrge structures like ships and
it can also choose various objective functions @eglgn variables.

We call it "OPTSHIP”. The program uses NASTRAN assalver for
reaching the structure's own natural frequency,engettor and forced response,
and for figuring out global optimal solution, usezan make an optimization
algorithm by making a module. At present usableinoghtion modules are
genetic algorithm (GA), random tabu search (R-tabuulated annealing (SA)
and artificial life (AL) optimization algorithms.nl addition, to check the
efficiency of the proposed framework, it has be@pliad to the 2400 TEU
containership to reduce the vibration level of deekhouse which is placed in the
rear of the ship. And to gain efficiency in anadyssensitivity analysis of
candidate design parameter with respect to obgdétimction has been done and a
design parameter with a sensitivity value of ovértas been chosen for the final
design parameter, in order to reduce the calcgjdime. In this thesis, R-tabu
method is used as an external optimization modane, the result is compared
with NASTRAN's optimum result to prove its exceltgn

Secondly, this research developed a non-lineagénteptimization method
in order to directly use an optimized design patamealue in the initial stage of
design process. The design parameter used inhiagssthas been programmed to
freely choose the thickness of the steel platesthadsize of stiffeners used in
shipyards. The proposed algorithm is the upgradesion of GA that can



categorize design parameters into their size amates® genotype. In addition,
concerning the fact that differences exist in thEwating time and accuracy of
optimal solution in accordance to parameters s&cindividual size, crossover
probability, mutation probability, selection methadd crossover method of GA,
optimization of these parameters has been done puitbrity in calculating
adequate values. To gain legitimacy of this optatian, the optimized parameter
value of the structure in question has been tesmteldt was found that convergent
speed to global solution was much better than thaisether parameters. In
addition, we have proven the validity of the deypeld method by applying this
research's non-linear optimization algorithm invea the vibration problem of
the compass deck of a ship in danger from a vilmmgtroblem.

Lastly, to improve the convergent speed and théetyaof solutions at the
same time, a new hybrid evolutionary algorithm (RHIERSM-based hybrid
evolutionary algorithm) was suggested, which coraBithe excellent qualities of
GA, tabu list, response surface methodology (RSKt), The tabu list from tabu
search in GA is used to secure systematic diveirsisplutions. As RSM, we have
used data acquired from the process of GA, madeoappate function of actual
objective function, found the optimum point, andngeted the minor (one)
individual of the next generation. Going throughisttprocess enables the
shortening down of the vast convergent time of@dtructure being optimized.
This research tests the validity of the newly depetl algorithm in comparison
with the general GA algorithm by using some tradiél test functions.

In addition, it applies that the algorithm suggdste designing for avoiding
the resonance of the fresh water tank which isgalao the rear of the ship,
showing that it efficiently searches for globaliopim solution.

According to the results, the proposed new hyblgbrghm (RHEA) is a
very powerful global optimization algorithm fromethview point of convergent

speed and global search ability.



l. Introduction

1. Background

It was during the end of 19th century when the atibn problems of ships
received much attention. From the beginning of #®h century the steam
reciprocating engine and spiral propeller was pub ipractical use, and the
structure of ships were beginning to be made ddlsghips started to get larger,
faster, and the output of ships became higher duhie end of 19th century.

The main causes of vibration problems in rear deckhouse of ships, the
underneath deck of machinery in engine room anduwsrkind of tanks are;
guided moment of diesel engine, fluctuation pressiwe to the propeller and
thrust bearing force due to the coupled vibrati@tween torsional and axial
vibration of propulsion shafting system. In essenbe causes of vibration in
ships are various, including; main engine, auxtliangine, propeller, wave, fluid
movement. The structure and machineries of shipsvarious and complicated,
so it is almost impossible to make a ship freeibfation [1].

Recently, there exist stability problems in theldbouse and local area of
ship due to the light-weight structure not beingha@ned with the vibration
problems. Especially, vibration problems in the iled areas of ships are
frequently happening due to the various light-weigiuctures such as oil tanks,
fresh water tanks, the compass deck and each adkiMoreover, the deckhouse
of the ship has been reducing living space dueréw cutdown brought in by
navigation automation, and the strengthened visibilegulations which have
forced its height to go higher though it's lengtidavidth being reduced, causing
stronger vibration through resonance between thekhieise and the main

4



excitation source of ship because the natural #eqges of longitudinal and the
transverse of the deckhouse having been reducéf [2-

On the other hand, with the revision of ISO 6954 8 which is the
regulation regarding vibration limit in the deckiseuof ships, ship owners are
beginning to claim for severe vibration values @tter living environments in
ships. Moreover, vibration problems in the deckleoasd local structures found
after it is built not only require huge expensesl dme for remedy, but ship
builders are losing faith in ship owners, and cauwselships in business for ship
builders.

Therefore anti-vibration design at the beginninggst of design is most
effective. A superstructure anti-vibration solutio&ing applied in shipyards apply
beam analogy or empirical formulation based on mmeasent results of sister
ships in the beginning stage of design, estimatturala frequency of the
superstructure by using relatively simple analygis 9-11], apply avoiding
resonance designing method with main excitatiomcasusuch as the main engine
and propeller, and apply allowable vibration resggodesigning method based on
forced vibration analysis by a 3D finite elementtiheel. And for the solution of
local vibration problems of ships, anti-vibratioresipning method by local
vibration analysis programs based on beam themsyggssed by every shipyard or
3D finite element method using the commercial progMNASTRAN is used. In
addition, for the anti-vibration designing methauahti-vibration standardization
that uses optimization and experiences from vibragiroblems is efficiently used
[12]. Moreover, optimization is constantly being mmasized for its importance
due to the rise of personnel and material expeinseslustrial fields.

Optimization is utilized to determine the size be tgeometric shape of the
structure to obtain the maximum performance usingmal material with safety
and availability of the target structure [13]. Frarmathematical point of view,

the optimization is to get design variables whioh maximizing or minimizing a



desired objective function while satisfying the ya#ing constraintsUsually,
optimization needs a lot of time to get the desimefbrmation due to this
repetitive process. Recently, optimization has beelely applied for decreasing
the weight of structures in various industrial dielsuch as aerospace, civil,
mechanical engineering, etc. through integratinghodology of engineering
design with the technology of computer-aided engiimg (CAE) and increased
computer speed.

These are partly being applied to shipyards in twipossess world class
technology and a vast number of orders but theesobppplication is quite small
and is limited to the field of structure design.eféfore optimum design with
consideration for dynamic factors is in definiteedeAnd especially, the need for
appropriate programs and optimum method for laogdesstructures like ships is
definitely required.

2. Objective of Study

In general, commercial software such as NASTRANANISYS is used in
analyzing vibration and structural characteristiédarge structures. Especially,
NASTRAN offers an optimum module which is basedsensitivity analysis but
it has many limitations in setting of objective @tions and design variables. It is
also very hard to acquire a global optimum solytioecause it is a local search
method. Its demerit also includes the impossibilitcombining the complicated
user-defined optimum technique.

Therefore, the first purpose of this research isl@veloping NASTRAN
external calling styled optimization framework, witommonly used commercial
program NASTRAN as a solver. So, it used the glai@imization algorithm
such as genetic algorithm (GA), random tabu seamethod (R-tabu method),



simulated annealing (SA) method, and artificiag I{fAL) optimization algorithm
to prevent local convergence of general optimizattgorithm. This program not
only enables users to choose basic objective fomgtsuch as minimization of
forced response, avoidance of resonance, etcldmenables users to set up their
own complicated objective functions and choosergewaof design variables.

The second purpose of this research is in devejopimon-linear integer
optimization method. It is hard to directly appbal variable optimum results to
fields that use standardized member just like dchipyards. Generally, a value
one step higher than that of optimized result sdus shipyards for extra safety.
However, this method enables a stronger desighanstructural point of view,
but in view of vibration, it goes closer to resoc@arand can actually be quite
dangerous. Therefore there is need for making asat@mber in the field into
table, developing a non-linear integer program tiatoses optimal size from the
table and directly uses the optimal result valugbeainitial stage of design.

Optimum design requires constant repetition of werkit takes a lot of time
to gain useful information. The development of CARd the fast processing
speed of computers have enabled users to saveohtlote, but still remains as a
difficult problem to solve in optimum design. Tolhs® this problem, recently a
number of researchers have suggested various hgeneétic algorithm that is
combined GA with the merits of other algorithmscBese GA holds many merits
such as its ability to search for an optimum solutiithout any background
knowledge of the search space and its characterigtinot being influenced from
an initial search starting position. The third pase of this research is to do a
more intensive search on the optimum solution oftinpeak function, more
rapidly and accurately. To do so, a new hybrid ettohary algorithm (RHEA:
RSM-based hybrid evolutionaigorithm) was suggested, which combined the
merits of GA, tabu list and response surface metlogy (RSM). The mutation of
GA offers random variety, but systematic variety b& achieved through the use



of tabu list of tabu search method.

For large structure optimization it takes a lotoaficulating time for one
evaluation of objective function. Therefore, it as important matter to bring
down the evaluation number of objective functionusing all the information
attainable. From this point of view, GA's convergspeed can be improved by
using RSM method which uses the information onaibiective function acquired
through GA process and then making response suf@@peoximate function) and
optimizing this. Optimized solution was calculatedthout the evaluation of
additional actual objective function, and the GA&snvergent speed could be
improved.

3. Outline of Thesis

This research is comprised of 6 chapters. Excepthi® current introductory
chapter, the rest of the chapters are summarizéalews.

Chapter II contains overall contents of optimization. Thestfirhalf
introduces general information on optimization,inigbn of it in the engineering
point of view, and its history. The second half taams a variety of optimization
methods. There are several ways to classify opétioa, but this research
explains on the local optimization and the glol@imization. Especially, specific
explanations on the main algorithms such as matlifieethod of feasible
direction (MMFD) and GA are given. The former isedsin NASTRAN
optimization module and uses usable-feasible sedirelction as searching way
and the latter is used as a representing globahattion algorithm. The rest are
concisely summarized.

Chapter Il suggests a new optimization framework. For annoytn design
of large-scale structures like ships, NASTRAN whighvidely used in industries



is used. However, this optimization method is ladito a local search. When the
searching environment is multi-peak, accurate 8oius hard to acquire. Using a
global searching algorithm to analyze complicatédicsures is also difficult
because it's hard to work on an analysis modelpgogramming, not to mention
difficult to develop to the level of commonly usg@dograms. Therefore, this
chapter uses NASTRAN for solving the problem ofracture's natural frequency,
forced response and mode vector. For global opatitia, an optimization
framework in which the user is capable of using @date made externally is
introduced. In order to prove the validity of theogram suggested, this chapter
has applied it to deckhouse vibration minimizatmn2400 TEU containership
which has a possibility of vibration problem sirtbe deckhouse area is placed in
the rear of the ship. In this thesis, R-tabu metl®dused as an external
optimization module, and the result is comparechwNASTRAN's optimum
result to prove its excellency.

Chapter IV suggests a non-linear integer optimization metiRwehl variable
optimization method cannot be directly applied lwe tdesign stage because in
shipyards, the thickness of steel plates and dizgifteners except some built-up
stiffener are mostly standardized. In order to edhis problem, this chapter has
extended real variables optimization problem to-l@ar integer optimization
algorithm and have applied it. Since the accurdcthe optimum solution and
calculating time of GA which is used as an optimiize this optimization are
largely influenced by initial parameter values suwsh the size of individuals,
crossover probability, mutation probability, seleot method and crossover
method, this chapter has proceeded with optiminatior GA parameters.
Optimized GA parameter is applied to structure uregjion and is illustrated as
the optimum value. In addition, by using the sugggsnon-linear integer
optimization algorithm, we have proceeded with mation to a compass deck
structure that actually is in danger of vibrationlgems and the problem is solved.



By doing so, we have proven the suggested methalifity and efficiency.

Chapter V suggests a new hybrid evolutionary algorithm timahbined the
merits of the popular programs such as geneticrighgo, tabu search method,
response surface methodology and simplex methose#wch for an optimum
solution of multi-peak function in high accuracydamgh speed. This algorithm,
in order to improve the convergent speed thatasight to be the demerit of GA,
uses RSM and simplex method. Though mutation of d#ars random variety,
systematic variety can be secured through the tisgba list. Especially, in the
initial stages, GA's convergent speed can be ingafdyy using RSM method
which uses the information on the objective funttiacquired through GA
process and then making response surface (apprtexionaction) and optimizing
this. Optimized solution was calculated without &waluation of additional actual
objective function, and the GA’s convergent speaala be improved. Efficiency
of this method has been proven by applying trad#tiotest functions and
comparing the results to GA. It also proved tha tlewly suggested algorithm
can effectively find the global optimum solution @pplying it to weight
minimization of the fresh water tank that is placedhe rear of the ship designed
to avoid the resonance.

Finally, it is concluded that the newly suggestlgathm (RHEA) is a very
powerful global optimization algorithm from the wigpoint of convergent speed
and global search ability.

Chapter Visummaries and discusses the results obtainedsithtbsis.

4. Contribution of This Work

Executing optimum design utilizing the results nfrothis thesis, the

following contributions can be made.
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4.1 NASTRAN external calling styled independent optizing framework

(OPTSHIP)

1) Commercial software is used for vibration analysf large structures.
PATRAN is used for both modeling and pre/post pssoeg and
NASTRAN as a solver. Although there are optimizatimodules for
existing general-purpose programs, as used a $@@zath method, in the
case of being multi-peak function, finding the glbbolution is difficult.
Therefore, by utilizing the OPTSHIP suggested iis tfesis, with an
already completed model, optimum global solutiortaiplex structures
like the ship who is normally multi-peak functioarcbe easily found by
connecting it with exterior optimization modules.

2) When using exterior optimizing modules, familiarg the difficult
internal general-purpose programming language isnaocessary since it
is possible for the user to comfortably apply notyoglobal algorithms
but also various optimization techniques. This asables the user to
increase the accuracy and the convergent speedubios to all fields by
using self-developed hybrid algorithm.

3) Various objective functions and design varialalesadjustable.

4) OPTSHIP is not only executable in ships but almo be extended and

applied on all complex structures of such matters.

4.2 Nonlinear Integer Program
1) Unlike real variables programs, it is possildedirectly apply optimized
results to actual designs.
2) A usable design variable is tabled and then ,usedbling the user to
extend or reduce this according to need.
3) Disabling of the accuracy and convergent spdgdfodepending on the

11



initial parameters is compensated by developing A farameter
optimization program, allowing the user to initigi@ameters with ease.

4) This can be used as an exterior module for ORPSH

4.3 RSM-based Hybrid Evolutionary Algorithm (RHEA)
1) Amendments have been made in the convergentdspeeGA thus
improving the convergent speed to reach the glsblaltion.
2) Unlike the combination of the existing globalsgh and local search
algorithm, a new region on a new hybrid GA is afézd.
3) This can be used as an exterior module for ORPSH
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Il. Class of Optimization Problems

1. Introduction

Designer, in industrial fields, supplies designgmaeters for the product as
input into the computer simulation programs whistdeveloped by commercial
vender, runs the program and then analyzes thégeHuhe results do not meet
the design goals then the designer changes thgndparameters and repeats the
process. Solutions to their problems have beendbasestly on judgment and
experience. However, increased competition andwuoes demands often require
that the solutions be optimum and not just feassblations. The challenge to the
designer is to find the best design in as shoima period as possible. It can be
realized to the designer through the optimization.

Optimization is the process of maximizing or mireing a desired objective
function while satisfying the prevailing constrantA small savings in a
mass-produced part will result in substantial sgwifor the corporation. In ship,
weight minimization can be contributed on cost i, ship’s performance,
safety, free from the repeated work, etc. Limiteatenial or labor resources must
be utilized to maximize profit [1].

In order for engineers to apply optimization atitheorkplace, they must
have an understanding of the theory, algorithmd, tanhniques. This is because
practical problems invariably require tuning al¢femic parameters, scaling, and
even modifying existing techniques to suit the #jpeapplication. Moreover, the
user may have to try out several optimization mashto find one that can be
successfully applied. In operations research awmldisimial engineering, use of
optimization techniques in manufacturing, productamd scheduling has resulted
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in considerable savings for a wide range of businesd industries. The
importance of minimum weight design of structuressviirst recognized by the
aerospace industry where aircraft structural desaye often controlled more by
weight than by cost considerations. In other indest dealing with civil,
mechanical and automotive engineering systems, owsy be the primary
consideration although the weight of the systemsda#fect its cost and
performance. A growing realization of the scarcfyraw materials and a rapid
depletion of our conventional energy sources iadp#ianslated into a demand for
lightweight, efficient and low cost structures. Jltiemand in turn emphasizes the
need for engineers to be cognizant of techniques/éight and cost optimization
of structures. This chapter, in its first part,radtuces the general area of
optimization. The definition and history of optimtion is considered from the
viewpoint of engineering. In the latter part, lo@tssarious optimization methods.
There are many classes into which we may partibpiimization problems, and
also many competing algorithms which have been Idped for their solution.
We outline the areas of primary interest for thespnt work, with some brief
contrasts to classes of problems that we do nosiden here. In particular,
modified method of feasible direction (MMFD) andgenetic algorithm was
illustrated in detail. The former is the one of th&gorithms to solve the
approximate optimization problem. It used the usdbbsible search direction in
search direction and is used NASTRAN optimizatioodule. The latter is
simulated a heuristic probabilistic search techaidbat is analogous to the
biological evolutionary process. This algorithmaplied to the newly developed

algorithms in this study.
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2. Historical Sketch [2]

The existence of optimization methods can be tracdtie days of Newton,
Lagrange and Cauchy. The development of differerdédculus methods of
optimization was possible because of the contrmgtiof Newton and Leibnits to
calculus. The use of a gradient method (requiriagvdtives of the function) for
minimization was first presented by Cauchy in 184& .made the first application
of the steepest descent method to solve unconstramnimization problems. In
spite of these early contributions, very little gress was made until the middle of
the twentieth, when high-speed digital computerslenthe implementation of the
optimization procedures possible and stimulateth&rrresearch on new methods.
Modern optimization methods were pioneered by Quaiisaon penalty functions
in 1943, Dantzig developed the simplex method ifeedr programming in 1947
and Bellman stated the principle of optimal policy system optimization for
dynamic programming problems paved the way for greent of the methods
of constrained optimization in 1939 and Kuhn, angdcker who derived the
“KKT(Karush, Kuhn and Tucker)” optimality conditigrfor constrained problems
laid the foundations for a great deal of later agske in non-liner programming in
1951. Fletcher and Reeves of the conjugate gradiegthods pioneered on
unconstrained minimization. Constrained optimizatimethods were pioneered
by Rosen’s gradient projection method and Fiaccd BltCormick’'s SUMT
techniques in 1968. Geometric programming was d@eel by Duffin, Zener and
Peterson. Gomory did pioneering work in integergpaonming, which is one of
the most exciting and rapidly developing areasmifroization. Dantzig, Charnes
and Cooper developed stochastic programming teabei@nd solved problems
by assuming design parameters to be independemanahlly distributed. In the
1960’s, also, there were developments in non—gnadog ‘direct’ methods,
principally Rosenbrock’s method of orthogonal dil@es in 1960, the pattern
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search method of Hooke and Jeeves in 1961, Powal€thod of conjugate
directions in 1964, the simplex method of Nelded aieade [3]. Sequential
quadratic programming (SQP) methods for constraimeidimization were
developed in the 1970’s. Development of interiothods for linear programming
started with the work of Karmarkar in 1984. Mostaet among direct methods
are genetic algorithms (Holland [4], Goldberg [S[abu search algorithm which
was developed independently by Glover [6, 7] anchdéa [8] for solving
combinatorial optimization problems and simulatethealing algorithms was
derived from an analogy with the annealing processmaterial physics by
Kirkpatric [9]. Special methods that exploit sonatular structure of a problem
were also developed. Pareto optimality was develope the context of
multi-objective optimization. The use of nonlineaptimization techniques in
structural design was pioneered by Schmit in 19B68day, applications are
everywhere, from identifying structures of protemolecules to decreasing the

weight of ship structures.

3. Definition of Optimization Problem

The design optimization problems are commonly foumdnanufacturing
industries and can be represented by the followiathematically formulation.

find x =(x, %, x)0 R

which maximize or minimizé(x)

subject to the constraints
gj(X)SO, hj(X)ZO, J =1tom

This formulation supports the specification of unstwained and constrained
problems with a single objective. Where is the dimension of variable anohis
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the total number of the constraint condition(or dtion). X is a real or integer
vector of n dimension.f(x) is an objective function or a cost function.
g; ) =0 and h; (x) =0 are an inequality and an equality constraints,
respectively. Ifx satisfies g; (x)<0and h; (x)=0, x is called a feasible solution
and lies in feasible. In an opposite situatioms an infeasible solution.

In the optimization problem formulation, three etnts are considered such
as design variables, constraints and an objectinetion. Also some terminology
IS introduced.

3.1 Design Variables

The idea of improving or optimizing a structure imply presupposes some
freedom to change the structure. The potentiatfh@ange is typically expressed in
terms of ranges of permissible changes of a gréyga@meters. Such parameters
are usually called design variables in structunalinsization terminology and
denoted by a vectorx = (x, x,00] x) O R . Design variables can be
cross-sectional dimensions or member sizes, thaybeaparameters controlling
the geometry of the structure, its material prdpsrtetc. Design variables may
take continuous or discrete values. Continuousgdegariables have a range of
variation, and can take any value in that rangsci@ie design variables can make
only isolated values, typically from a list of passible values. Material design
variables are often discrete. Design variables #ra commonly treated as
continuous are often made discrete due to manufagticonsiderations. For
example, if the beam is designed to minimize weithgn we may need to limit
ourselves to commercially available cross sectid®s.we have to solve the
problem with discrete variables. This is done bypkaying integer (discrete)
programming. The choice of design variables cawgrliieal to the success of the
optimization process. In particular it is importdatmake sure that the choice of
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design variables is consistent with the analysideho

3.2 Constraints

Constraints introduce the notion of limits on thesign variables in the
optimization problem formulation. Because of th&implicity, these upper and
lower limit constraints on the values of the designiables are often treated in a
special way by solution procedures, and are referteeas side constraints.
Constraints which impose upper or lower limits araitities are by their very
nature inequality constraints. Sometimes we neetlagy constraints. However,
some strategies for the solution of nonlinear ofation problems are unable to
handle equality constraints, but are limited togunaity constraints only. In such
instances it is possible to replace the equalitgstaint with two inequality
constraints that form upper and lower bound comggawith a same limiting

value. However, it is usually undesirable to inseethe number of constraints.

3.3 Objective Function

The objective function, when expressed as a funaifahe design variables,
is known to the criterion with respect to which thessign is optimized. The choice
of objective function is governed by the naturetloé problem. For structural
optimization problems, weight, displacement, s&sssvibration frequencies,
buckling loads, and cost or any combination of ¢hean be used as objective
functions. In some situations, there may be moaa ttne criterion to be satisfied
simultaneously. An optimization problem involvingultiple objective functions
is known as a multi-objective programming probléiith multiple objectives
there arises a possibility of conflict, and one@enway to handle the problem is
to construct an overall objective function as &éincombination of theonflicting
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multiple objective function. Thus iff (x) and f, (x) denote two objective

functions, construct a new (overall) objective fume for optimization as
fX)=a fi(X)+a,f,(X (2.1)

where a, and a, are constants whose values indicate the relatyp®itance of

one objective function relative to the other.

3.4 Smoothness

Functions for which continuous derivatives of sti#fintly high order exist
are referred to as smooth. For continuous optinumawe are usually interested
in having continuous derivatives up to and inclgdsecond order. Minimization
problems in which the objective and constraint fioms are of such type can
make use of techniques of multivariable differdnt@alculus which are
unavailable for non-smooth functions. We refer ity to the extensive set of
methods which make use of gradient and curvatufernmation to direct an
iterative search process toward a local minimumthidés in this very broad class
include the Newton or quasi-Newton methods. Forcfimms which are not
smooth, only function value information can be usedirect the search process.
Such techniques are referred to generally as deemtch. One early approach is

the simplex method of Nelder and Mead [3].
3.5 Discrete Optimization

We discuss integer programming (both linear andlinear) later in this
thesis, however the apparently more general proldémonlinear optimization

subject to general discrete restrictions has at®eived some recent attention.
Such problems require a (generally nonlinear) dhjedo be minimized subject
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to nonlinear inequality constraints, with the addequirement that certain or all
of the structural variables must take values frpmctied finite sets; the elements
of these sets need not be integers. For a recampz in which the classical
penalty function approach (Sequential Unconstraiividimization Technique

(SUMT) of Fiacco and McCormick [10]) is applied order to satisfy both

nonlinear constraints and the discrete requiremesats the 1990 paper by Shin,
Guerdal and Griffin [11], in which applications &mgineering truss design are

considered.
3.6 Nonlinear Integer Programming (NIP)

Nonlinear integer programming was suggested byeRaitd Rice for solving
a general quadratic programming problem, where bibih objective and
constraint function are quadratic. They applied aifred gradient-type method,
very similar to the methods used in the continueaislinear programming field,
to solve the problem. NLIP is an intrinsically hapdoblem. As with most
domains of engineering, nonlinear Therefore, n@airproblems are often solved
by generating a sequence of solution to linear lprab which in some sense
approximate the original nonlinear problem. The Nffoblem can be
mathematically expressed as follows:

Maximize (or minimize)  f(x)

L U

subject to the constraints X SX<X,
xdz",

where,x=(x, x, x,)" is a vector of variables or unknown in the NIPkpemn,
Z is a set of n-dimensional integer vectorx" =(x",x,0Mx)" OZ" are

n

x" =(x’,x% 0%’ ) 0z" aren-dimensional constant vectors, and < X’ .

Let Sz{x x"<x<xY,x0 Z“} denote a solution space, thus:S - Ris a
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cost function. Some of the NIP problems can alsoviesved as integer and

combinatorial optimization problem [12].

3.7 Linear Programming (LP)

Linear programming (LP) problems are linear in baibjective and
constraints. The special nature of this class obl@ms makes possible a very
elegant solution algorithm known as the revisedpm method. The basic result
of LP theory stems from the nature of the feassg@e The feasible set can be
characterised geometrically as a convex polytopes(mplex), which can be
imagined to be an-dimensional polyhedron, and if an optimal solutiexists,
then there is at least
one vertex of the feasible set that is optimal.. &g illustrates a trivial LP in
which the interior of the shaded quadrilateral OP@PBresents the feasible set.
The fundamental result tells us that if a finitdio@l point exists, then (at least)
one of the vertices O, P, Q and R (correspondingaeaalled basic feasible

solutions) is optimal.
x2 A

7 -

o 2 : ‘ ) ’x1

Fig. 2.1 Linear programming
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3.8 Integer Linear Programming

Integer linear programming problems (ILPs) are t&bfems in which extra
constraints requiring some or all variables to bégder valued have been
imposed.

ILP is a very common problem class where varialdgsesenting indivisible
units, eg men, machines do not admit fractionautsmis. Fig. 2.2 shows the
combinatorial nature of such problems by an enutioeraf the (finite) feasible
set of lattice points, rather grossly depictedh®yfilled squares.

A

Fig. 2.2 Integer linear programming

3.9 Local and Global Optima

An unconstrained local minimum is a pokifl R" such that there exists a
neighborhood in which the objective at each otlwntis no better. For a smooth
function, it can be pictured geometrically as bestighe bottom of a through at
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which the gradient vector is zero and the Hessiatrimis necessarily positive
semi-definite. Such points are normally not toodhtr find using methods that
make use of first and second derivative informatitypically methods of the
Newton class. In a constrained problem, a localimmiim may occur at a point
where the gradient is not zero, since a constkainhdary may have been reached.
In general there may be many local minima, and &l$o of interest to find which
of the local minima is the “best”. Such is globahmmization, for which a number
of alternative methods exist. In general, the w@isknding a global minimum is a
much harder problem than the task of finding allogaimum, primarily because

it is much harder to verify that the claimed globahimum is actually that.

For a large class of practical problems, globalimimation is, in general, an
impossible task, although in a number of practieaes, such problems have been
solved in a satisfactory manner. Normally, "realdafboptimization problems are
global, constrained, mixture of discrete and cardgirs, nonlinear, multivariate
and nonconvex.

Interestingly, some of the more imaginative of rdceattempts at
optimization methods try to mimic perceived proess®f nature. One such
approach is that of simulated annealing; anotheevislution via the class of
so-called genetic algorithms.

The application of any nonlinear optimization methtan only ensure the
attainment of a local optimum which in the cas@aficonvex objective functions
(often the case with practical problems) is notessarily the global optimum.
Most practical engineering problems can be fornedain the light of global
optimization, i.e. optimization problems in whiclhet objective function is
nonconvex and possesses many local optima in gignref interest. In case the
objective function is multimodal, i.e. has sevesatima, the aim of the global
optimization method is to find the smallest locainima or the largest local
maxima depending upon the problem.
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3.10 Global Optimality

In the optimum design of system, global optimum niugssatisfied under the

following conditions.

1) If the cost functiorf(x) is continuous on a closed and bounded feasible
region, then Weierstrass Theorem guarantees ttsteage of a global
minimum. For this situation, if we can calculaté tAke optimum points,
and then select a solution that gives the leastevi the cost function.

2) By showing the optimization problem to be conmcause in that case

any local minimum is also a global minimum.

4. Optimization Methods

The optimum seeking methods are also known as matneal
programming technique and are generally studieal et of operations research.
Operations research is a branch of mathematicsecoed with the application of
scientific methods and techniques to decision ngakproblems and with
establishing the best or optimal solutions. Theemany classes into which we
may partition optimization problems, and also maagpleting algorithms which
have been developed for their solution. We outthne areas of primary interest
for the present work, with some brief contrastglesses of problems that we do
not consider here.

4.1 NASTRAN Optimization [13]

The optimization algorithms in MSC NASTRAN belong the family to
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methods generally referred to as “gradient-bassitite, in addition to function
values, they use function gradients to assist ® mlomerical search for an
optimum. NASTRAN Optimization can be effectivelylwsd design optimization
in the big model with many design variables. Beeat$as used the function of
approximation model, design variable linking andesaing of constraints. Also,
it can solve the structural optimization problenmsidering static analysis, normal
mode analysis, buckling analysis, transient resp@malysis, frequency response
analysis, aeroelastic analysis, flutter analystse ®ptimizer in MSC NASTRAN
are MMFD (modified method of feasible directionSSLP(sequential linear
programming) and SQP(sequential quadratic progragmiMMFD here is
default in MSC NASTRAN optimization.

4.1.1 Modified Method of Feasible Directions (MMFD)

After the objective function and constraints argragimated and their
gradients with respect to the design variables cakeulated based on the
approximation, we are able to solve the approximagpéimization problem.
MMFD is one of the algorithms used in the optimiZEme general formulation of

optimization is as follows:

Find the set of design variabbes i=1,2, - - - ,n

Minimize f(x)

Subject to g,x)<0 j=1,2, - - -, n,
x"<x<x’ i=1,2, - - -, n

Given an initialx-vector x°, the design will be updated according to Eq.
(2.2)

x9=x9"+g'S (2.2)
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The overall optimization process now proceeds enftiiowing steps:

Step 1Start, g=0, x9=x".

Step2 g=q+1

Step 3 Evaluate objective functioifx) and constraintsg; (x)

where j=1, 2, ..., n,

Step 4 Identify the set of critical and near criticalnsraints J

Step 5 Calculate gradient of objective functionf (x) and Ug; (x) for all
j0Jd

Step 6 Find a usable-feasible search direct®in

Step 7 Perform a one-dimensional search to find

Step 8Setx=x""+a" S

Step 9 Check for convergence to the optimum. If satifigo to step 10
otherwise, go to step 2.

Step 10x ™= x1

1) Search direction

In order to make further improvement in an optirticma loop, a new search

direction must be found that continues to redueedbjective function but keeps

the design feasible. We seek a usable-feasiblelséaection, in which:

A usable direction is the one that reduces the abibge function, and a

feasible direction is the one that a small movthia direction will not violate the

constraints.

This situation is shown in Fig. 2.3

2) Convergence to the optimum

Since numerical optimization is an iterative pracesd one of the most

critical and difficult tasks is determining whendtwp. The optimizer uses several
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criteria to decide when to end the iterative seandtess. This process is applied

to the only solution of the approximate optimizatfroblem.

(1) Maximum iteration
The maximum number of iterations (search direcdioissincluded. The
default for this is 40 iterations. Usually, an optim is found sooner than this;

therefore, the maximum is mainly intended to awidessive computations.

PG

Lisohle
secior

g lx)=0

o pa

Fig. 2.3 Usable-feasible search directions (Vanderplaats, 1984)

(2) No feasible solution

If the initial design is infeasible (constraint® asiolated), the first priority is
to overcome these violations and find a feasibletem. However, if there are
conflicting constraints, a feasible solution may egist. Therefore, if a feasible

design is not achieved in 20 iterations, the oation process is terminated.

(3) Changes of objective function
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To measure the progress made in the successiaéiotes, this is particularly
true because this program is solving an approximpaiblem that is to be updated
on the next design cycle. Here, two criteria aredug he first criteria require that
the relative change in the objective between itemat be less than a specified

tolerance 9J,;

\f(xq)—f(xq*)\< |
[y

Thus, the criteria are satisfied if:

(2.3)
The default value ford,,; is 0.001.

The second criterion is that the absolute chandkdrobjective between the
iterations is less than a specified toleradige This criteria is satisfied if

f(Xq)_ f(xq_l)SJObj (2.4)

The default value ford,, is the maximum of 0.004f (x°) and 1.0E-20.
The first criterion, relative change, is an indioatof convergence if the
objective function is large. However, the convergers controlled by the second

criterion, absolute change, if the objective fuoiatis small.

3) Satisfaction of Kuhn-Tucker conditions

In the case of an unconstrained problem, the comditwhere the gradient of
the objective function vanishes as follow:

Of(x)=0

Fig. 2.4 shows the relative and global minima i design space.

In the case of the constrained problem, the caditof optimality are more
complex. By using the Lagrangian multiplier methed; define the Largangian

function as the following:

Of(x) + > A,09, () =0,4, 20 (2.5)

30



@)

Fig. 2.4 Relative and global minima in the desigace

Differentiating the Lagranigian function with regpeo all variables we
obtain the Kuhn-Tucker conditions which are sumaettias follows:

F(X,t,A)= £(X)+> A, (g +17) (2.6)

The corresponding), is zero if a constraint is not active.

The physical interpretation of these conditionthet the sum of the gradient
of the objective function and the scaladstimes the associated gradients of the
active constraints must vectorally add to zero showFig 2.5.

Fig. 2.7 Kuhn-Tucker condition at a constrainedraptm. The Kuhn-Tucker
condition is also sufficient for optimality whenettmumber of active constraints is
equal to the number of design variables. Othervdgs#ficient conditions require
the second derivatives of the objective function @ll of the constraints are

convex, the Kuhn-Tucker conditions are also sudfitifor global optimality.
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Fig. 2.5 Kucker-Tucker condition at a constrained optimum

4.1.2 Sequential Linear Programming (SLP)

SLP can obtain the solution of nonlinear problemlinear approximation
using the linear programming methods. This appra@arhbe linearized about this
point, repeating the process until a precise swiut achieved. SLP linearize the
nonlinear programming via a first-order Taylor ssrexpansion as Eqgs. (2.7) to

(2.11)
Objective functionf(x) Ll f(x°) +0f(x°) D x
2.7)
Constraints: g; (X)J g, (x°) +g; (x°)dx<0, j=1,m (2.8)
h (X)L h (x°) +h (x°)@x=0, k=1, m (2.9)
Xy X, +9x<x, i=L, m
(2.10)
Ox=x-x° (2.11)

where, zero superscript identifies the point abwdtich this Taylor series
expansion is performed.
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This represents a linear programming problem wttezadesign variables are
contained in the vectod x, and the function and gradientsxat are constants
and coefficients, respectively. Fig. 2.6 shows angetric interpretation of the
SLP method. At the initial desiga®, the objective and constraints are linearized
to give the straight-line representations of thacfions. The optimum of this
linear problem is found and is seen to be neamthdinear optimum, but it is
infeasible. However, if we relinearize at this goand repeat the process, we
would expect to approach the precise optimum irew fterations. For fully
constrained problems, SLP often converges rapalié solution. However, for
under-constrained problems, those where thereeaverfactive constraints at the
optimum than there are design variables, the metifteth performs poorly.

Xz

Linear approximation
to £,(X%)=0

optimum

Fig. 2.6 The linearized problem

4.1.3 Sequential Quadratic Programming (SQP)

The basic concept is very similar to sequentiadinprogramming. First the
objective and constraint function are approximatading Taylor series
approximations. However, a quadratic, rather thdimesar approximation of the
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objective function is used. Linearized constraiate used with this to create a
direction finding problem of the form;

Minimize : Q(S)= P +0f" s+% g B (2.12)

subjectto (Og;)' S+ <0 j=1, m (2.13)

where the design variables are the componen® @he matrixB is a positive
definite approximation of the Hessian of the Lagian that is updated using the
BFGS (Broyden, Fletcher, Goldfarb and Shanno) féamvith L replacing Of.
However, in the linearization metho,= | = Identity matrix. This method is
considered to be an excellent method by many tkieiznes.

4.2 Modified Simplex Method

The simplex method is a local search technique that uses the evaluation of the
current set of data to determine a promising search direction. A simplex is defined
by a number of points equal to one more than the number of dimensions of the search
space. For an optimization problem involving N variables, the simplex method
searches for an optimal solution by evaluating a set of M1 points, denoted as x,
X2, ', Xm. The method continually forms a new simplex by replacing the worst point
in the simplex, denoted as x,, with a new point x, generated by reflecting x, over

the centroid Xof the remaining points:

x, = X+(X-x,) (2.14)
where
. 1 n+1
X==>x, izw
n =

The new simplex is then defined xas x, + I+ ., + 3 X,,, %°. This
cycle of evaluation and reflection iterates untiketstep size (i.ex,-Xx,)
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becomes less than a predetermined value or thelesingrcles around an
optimum.

Nelder and Mead [3] developed a modification to blasic simplex method
that allows the procedure to adjust its search amgwrding to the evaluation
result of the new point generated. This is achiatedugh three ways. Firstly, if
the reflected point is very promising (i.e., betitean the best point in the current
simplex), a new point, further along the reflectatirection, is generated using the

equation:

X, = X+py(X-x,) (2.15)

where y is the called the expansion coefficiept (> 1), because the resulted
simplex is expanded.

Secondly, if the reflected point, is worse than the worst point in the
original simplex (i.e.x ), a new point, close to the centroid on the saithe of

X, IS generated using the following equation:
X, = Xx=B(x-x,) (2.16)

where g is called the contraction coefficient (0f< 1) because the resulted
simplex is contracted.

Finally, if the reflected poink, is not worse thaw ,, but is worse than the
second worst point in the original simplex, a nevinfy close to the centroid on
the opposite side of, is generated using the contraction coeffici@nt

X, = x=B(x-x,) (2.17)
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Fig. 2.7 Example of two-dimensional simplex

Fig. 2.7 1illustrates how this method applies to an optimization problem
involving two variables. Supposed points x1, x» and x3 are from an original simplex,
and point x5 (= XW) has the worst evaluation. Point ; represents the centroid of
x1 and x,. The reflecting point x3 across } generates x,, which together with
points x; and x., forms the new simplex.

However, general objective function is subjected to constraint conditions and

parameters setting a minimum and a maximum value (x, < x £ x.,). That is to say,

min
1f the optimum solution can’t satisfy constraint conditions or parameter range, even
1f the solution is the optimum solution, it cannot be selected. Therefore, in order
to satisfy the above restriction, Nelder’'s simplex algorithm is modified as follows:

D If xS x, or X, 2 Xx,, then the value of x, is replaced by x,,, or x

r?’ max *

When x, is created by expansion, contraction or reflection, this process will
guarantee that there is x, in the parameter range.

2) If X, can't satisfy constraint conditions, then x, is replaced by the second
worst point in the original simple. This process is similar to the contraction

because they are almost equal in the resulted simplex.
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4.3 Genetic Algorithms (GA)

Genetic algorithm simulates a probabilistic seatgthnique that is
analogous to the biological evolutionary procedse GA consists of three main
strategies, reproduction, crossover and mutatidre performance of the GA
depends on the operating parameters, namely cmssawutation and
reproduction.

The GA consists of three main strategies (reprodugctcrossover and
mutation). Using reproduction in the GA, individsiaire selected from the
population and recombined, producing offspring, akihwill comprise the next
generation. Two individuals are selected and tbleiomosomes are recombined.
Crossover is the operation when two individualstaken and their chromosomes
are cut at some randomly chosen position, to predwo head and tail segments.
These segments are swapped to reproduce two nkelerfgth chromosomes. The
offspring inherits some genes from each parentalturt is the technique used to
randomly alter the genes with a small probabilibg as typically applied after
crossover. Crossover is more important for rapiekploring a search space.
Usually, mutation provides a small amount of randarch.

4.3.1 Composition of GA4,5]

A GA for a particular problem must have the follagifive components:

1) A genetic representation for potential solutitm¢he problem.

2) A way to create an initial population of potahgolutions.

3) An evaluation function that plays the role ot tenvironment, rating
solution in terms of their “fitness”.

4) Genetic operator that alters the compositioohiitiren from parents.

5) Values for various parameters that the GA ussspuylation size,
probabilities of applying genetic operators, etc.).
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The parameters to be optimized are usually reptedem a string (or
chromosome) from since genetic operators are deitdbr this type of
representation. The method of representation hamagor impact on the
performance of the genetic algorithms. Differerpresentation schemes might
cause different performances in term of accuraayaaiculating time. There are
two common representation methods for numericainopation problems [14,
15].

4.3.2 Genetic Operators

It seems that there are two important issues inetfwdution process of the
GA. The one is population diversity and the otreiselective pressure. These
factors are strongly related: an increase in tHectee pressure decreases the
diversity of the population, and vice versa. In esttwords, strong selective
pressure supports the premature convergence oiGfkend a weak selective
pressure can make the search ineffective. Thusiiportant to keep a balance
between these two factors.

There are three common genetic operators: seledioasover and mutation.
An additional reproduction operator, inversions@netime also applied.

1) Selection

The aim of the selection procedure is to reproduoee copies of individuals
whose fithess values are higher than those whases§ values are low. The
selection procedure has a significant influencedawing the search towards a
promising area and finding food solutions in a shione. However, the diversity
of the population must be maintained to avoid pitemeaconvergence and to
reach the global optimal solution. Selection detees the reproduction
provability of each individual in selection poolhi§ probability depends on the
own objective value and the objective value ofbodtler individuals. Three kind of
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selection method is usually used in application.

(1) Roulette wheel selection [4]

The mechanism of this selection is reminiscenhefdperation of a roulette
wheel. Fitness values of individuals representwiths of slots on the wheel.
After a random spinning of the wheel to select adividual for the next
generation, individuals in slots with large widtlepresenting high fitness values
will have a higher chance to be selected.

(2) Rank-based selection [16]

According to this procedure, each individual getesaan expected number
of offspring, which is based on the rank of its)diss value and not on actual
evaluation values. This strategy is similar to etid wheel selection, excluding
the application of uniform region and control bettiee selective pressure than
that of the roulette wheel strategy.

(3) Tournament selection [17]

This method selects randomly a grolp.of individuals from a beginning
population, and from this group, the most fitnes$ividual is chosen to move on
to the next population. This process is repeatguliation-size number of times.
It is clear, that large value &fincreases selective pressure of this procedure.

2) Crossover

This operator is considered the one that makegehetic algorithm different
from other algorithms, such as dynamic programmiinig.used to create two new
individuals (children or offspring) from two exisg individuals (parent) picked
from the current population by the selection operatThere are several ways of
doing this.
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(1) Simple crossover

Simple crossover is two kinds of crossover, simglene point crossover and
multi-point crossover. First, two individuals asndomly selected as parents from
the pool of individuals formed by the selectiongadures. Second, they are cut at
a randomly chosen point. Finally, the tails, whare the parts after the cutting
point, are swapped, and then two new individudis|going) are produced.

(2) Uniform crossover

Uniform crossover is proposed to overcome the prmbihat the process of
simple crossover may be lost a sequence of studgch is schema. This is
important in that an individual solution is codedl a string. In the concept,
uniform crossover is similar to multi-point crossov The difference between
simple crossover and uniform crossover is in theg teat a swapping point is
selected.

3) Mutation

The part of mutation is that the initial individaadre widely distributed in
the search space and prevented the initial loaatergence. In this procedure, all
individuals in the population are checked bit by and the bit values are
randomly reversed according to a specified ratelikencrossover, this is a
monadic operation. That is, a child string is progtlfrom a single parent string.
The mutation operator forced the algorithm to dearew areas. Eventually, it
helps the GA avoid premature convergence and fiedgtobal optimal solution.
In the binary coding, this simply means changirigta a O and vice versa, and is
the occasional random alteration of the value sifiag position.
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(1) Classical mutation

Goldberg [5] proposed this strategy in a basic @hich was modeled by
Holland [4]. A genotype of selected parent is exgje by mutation rate, which
is similarly small (or smaller) in natural poputati

(2) Uniform mutation

It is similar to the definition of the classicalrs®n, which searches a new
point with a uniform probability distribution. Thisperator requires a single
parentx and produces a single offspring The operator selects a random
componentk (1, [Q)of the vectox = (x, [ ,[Lx ) and

Produces x =(x, (I, O x, ).
X, = X; +n(xy = x;), nOR[0 1] (2.18)

where x. and x. are the lower and upper boundaries of the paranmete
respectively, and is the real value selected randomly from O to 1.

(3) Dynamical mutation

If a high mutation rate is applied to all stageg® wmay loose the good
searched candidates for optimum solutions fronptiegious generation. In order
to avoid this problem, the elite preservation sggtand the dynamical mutation
are applied. One conserves the individuals thae liagher fithess with a certain
proportion rate and the other guarantees thateheck point (initial candidates) is
wildly distributed in the search space.

Eq. (2.19) shows the dynamical mutation, which aered in the global
search steps.
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_ _ b _4g
M, = exp( 5@, +1) Gj (2.19)

where g, is the ith generation numbés,is the total generation numbed, is the

reproduced offspring number at the ith generationl is the population
number.

The feature of the dynamical mutation decreasesrexgially at once with
the generation increasing and is fluctuated byrdproduction rate, which is a
total population number to a generation number.

4.3.3 Differences from Other Traditional Methods

Goldberg had summarized the characteristic of GAcamparison with
conventional optimizations as follows [5]:

* GA is a multi-point search algorithm using a p@piain, which is a set of

random solutions, not using a potential solution.

* GA works with a coding of candidate set, not Sohd& themselves.

* GA uses only fitness function, not derivative other auxiliary
knowledge.

* GA is a stochastic search algorithm based on tkeehanism of the
natural world and natural genetics. GA starts \aithinitial set of random
solutions called population.

* GA uses probabilistic transition rules, not det@rstic rules.

GA do not have much mathematical requirements abfmitoptimization
problems. Due to their evolutionary nature, GAd sélarch for solutions without
regard to the specific inner workings of the probl€5As can handle any kind of
objective functions and any kind of constraint.(ilmear or nonlinear) defined on
discrete, continuous, of mixed search spaces. @Asotl associate with an initial
point problem. To be precise, because GAs compasdomly a group of
potential solutions, GAs do not have the notioranfinitial point problem. That

42



provides us with the great belief that GAs can foud global optimum solutions
and a flexibility to hybridize with domain-dependeheuristics to make an
efficient implementation for a specific problem.

4.3.4 Limitations of Algorithm

However, GAs have also the following drawbacksmoithtions they are:

* A binary code is not free to make a genotype dividuals

* The fittest individual may be lost during the séilen process due to its
stochastic nature.

* Fit individuals may be copied several times anét andividual may
quickly dominate the population at an early stagspecially, if the
population size is small.

* The selection operation alone explores no newtpdoma search space.
In other words, if cannot create new schemata.

+ Different genetic parameters such as populatiore, sicrossover
probability, mutation probability, etc. greatly eft the accuracy and
calculation time of optimum solution.

4.3.5 Simple Genetic Algorithm [15, 16, 18]

Fig. 2.8 shows the flowchart of simple GA. A sim@@ randomly generates
an initial population. The GA proceeds for a fixadmber of generations or until
it satisfy some stopping criterion. During each ayation, the GA performs
fitness proportionate selection, followed by singtent crossover and mutation.
Fig. 2.9 illustrates closely a process of evolutbk generation.

First, fitness proportionate selection assigns eadlvidual structure in the
populationP, according to the ratio of fitness and the prolitgbof selection.
Second, using the single-point crossouvkis composed. After the crossover
stage has finished, the mutation stage beginse¥ny string that advances to the
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mutation stage, each of its bits is flipped witlolpability (mutation rate). The
population resulting from the mutation stage theerarites the old population
(the one prior to selection), completing one geti@na (k+1). Subsequent
generations follow the same cycle of selectionssower and mutation.

Production of the initial
individuals

y

1 Calculation of the fitness I

y

terminal
condition O

No End
Reproduce individual

L

Selection

Y

Crossover and Mutation

L

Change old population with new
population

Fig. 2.8 Flowchart of the simple genetic algorithm
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1 generation 1
| | 1
PK) 01110111 01110111
01111110 01111110
= | 11000101 > 11000101
01000100 01000100 P(k+1)
Evgluatlon_) selection mutation = Evgluatlon*
fitness fitness
01110111 01110111
|3(k+1) 01111110 01111110 ~
11000101 11000101 | P(k+1)
01000100 01000100

Crossover

Fig. 2.9 Structure of the simple genetic algorithm

4.4 Random Tabu Search Method (R-tabu Method)

Hu [19] had improved tabu search method propose&loyer [7] and had
applied to constrained optimum. In the case of mining an objective function
“f(x)” with constraint ranged, b, new parameters, step number and count
number, are introduced by random tabu search metBtgp number is the
number of searching the neighbors and count nunsbdre maximum iteration
number of searching to search a neighbors. Thalinialue which is the first
approximate solution satisfying the constraint ¢bod, symbolizex,, and then
X, surrounding neighbordN(x,,h) are

N(Xp, ), N(X, h), - - - N(Xp, )
where h(i=1,2, - - -, r) refers to step size; means step number. The set
of step sizeH, is

H={h, K, -, h}
where hy =b-a, h, = hP, h, = h,P,, h = h_ P, Pis step ratio

The procedure of R-tabu method is as follows.flfx) which is led by
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randomly generatingx in each neighbor is less thdutx,), then x is
supposed to minimum value among its neighbors. $imallest x in the
minimum value of each neighbor becomes the secppdaimate solutiox,,
and repeats at the each neighbor which is set upeak surrounding. The
basic principle is similar to the method combineditgrn searching of the direct
search method proposed by Hook-Jeeves with adasearch method, but it is
different to take a neighbor in steady of improwtep size and to use several
different step sizes. Features of R-tabu methodaaréollows. Firstly, it can
reduce an iteration number and promote the effagienf searching, because
each searching solution locates at different séagctdomain. Secondly, it is
possible with this method to take a global optimanad to avoid trapping in a
local optimum because of utilizing random searchirigally, it is possible to
get the optimum solution fast and accurately, & thethod is combined with
other optimization methods. Fig. 2.10 shows thev¢leart of R-tabu method.

4

S &)

n

u - u .‘
X

(a) Setting neighbor
Fig. 2.10Flowchart of random tabu search methGaiftinued
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h,= h,.1/ step ratio
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o= Iy step ratio

(b) Initializing neighbor

Nxo, 1)

save value, Xsve(1)

count loop

new neighbour

(c) Comparison

Fig. 2.10Flowchart of random tabu search methGaiitinued
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select optimum value

i

Keave(1) Nsave(?) Xsave(3) T Xsave(n)

(d) Selecting and setting new value
Fig. 2.10Flowchart of random tabu search method

4.5. Artificial Life Algorithm

The origin of artificial life started in the lat®80s when John Conway began
work in his “Game of Life”. This was simply an ayraf cellular automata whose
two states were metaphorically dubbed by Conwaye”liand “dead”. Langton
who has contributed to artificial life greatly, deds artificial life as follows:
“Artificial life is the study of man-made systemséat exhibit behaviors
characteristic of natural living systems” [20]. Theost important two
characteristics of artificial life are emergencel atynamic interaction with the
environment. The emergence is the result of dynamieraction among the
individuals consisting of the system and is notnfun an individual. The
micro-interaction with each other in the artificlde’s group results in emergent
colonization, the emergence, in the whole systehe artificial world in the
artificial life algorithm is defined as the domaof the given optimization
problem.

Fig. 2.11 shows a circular food chain, which cassisf four kinds of

resources and four species of artificial organi$gig. Artificial organisms can
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move about in the world consuming energy resouaces producing waste. The
four species of artificial organisms compose autac food chain where one
species’ waste is another’'s food. Artificial orgams can only metabolize the
resources, which they want to. The demanded ressune determined according
to the four species of artificial organisms. Adiéil organisms have a sensory
system, which enables them to see resources assvether artificial organisms
in the world. They are also able to determine tuation of the nearest resources
and other artificial organisms from their presedaltion. This nearest location of
resource becomes the goal, which drives them toemiowward. Atrtificial
organisms must maintain a minimum internal eneeygll in order to exist. Once
an artificial organism’s energy level drops belowe tminimum energy, it is
considered to be “dead” and removed from the world.
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&
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Resource(R)
O ! Artificial oroanism [_] : Resource

Fig. 2.11 Circular food chain of an artificial algorithm

4.6. Simulated Annealing

The simulated annealing algorithm was derived figtatistical mechanics.
Kirkpartick et al. [9] proposed an algorithm, which based on the analogy
between the annealing of solids and the problemsal¥ing combinatorial
optimization problems. Annealing is the physicalqass of heating up a solid and
then cooling it down slowly until it crystallize$he atoms in the material have
high energies at high temperatures and have meeeldm to arrange themselves.
As the temperature is reduced, the atomic enerdezsease. A crystal with
regular structure is obtained at the state whezesylstem has minimum energy. If
the cooling is carried out very quickly, which isidwn as rapid quenching,
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widespread irregularities and defects are seemdretystal structure.

This algorithm eliminates most disadvantages ofhifleclimbing methods:
solutions do not depend on the starting point amgér and are usually close to
the optimum point. This is achieved by introducengrobability of acceptance
(i.e., replacement of the current point by a newnto The probability of
acceptance is a function of the values of objedtivestion for the current point
and the new point, and an additional control patamé&mperature, T. In general,
the lower temperature T is, the smaller the charioeshe acceptance of the
system, T, is lowered in steps. This is Metropslistiterion [22] based on
Boltzman’s probability.

5. Summary

In this chapter, the general items of optimizatame summarized for the
understanding of the theory, algorithms, and tegimmiof it. This is because
practical problems invariably require tuning algfemic parameters, scaling, and
even modifying existing techniques to suit the fpe@pplication. Also, the
history of optimization is described from a viewiqtoof engineering. Finally, the
optimization method is treated. There are manyselssinto which we may
partition optimization problems, and also many cetimg algorithms which have
been developed for their solution. We outline thesaa of primary interest for the
present work, with some brief contrasts to clasgeproblems that we do not
consider here. In particular, modified method afsible direction (MMFD) and a
genetic algorithm were illustrated in detail. Thernmier is the one of the
algorithms to solve the approximate optimizationolgpem. It used the
usable-feasible search direction in a search diecand is used NASTRAN

optimization module which can be effectively solhaekign optimization in the
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big model with many design variables. Because ® hged a function of
approximation model, design variable linking andesaing of constraints. The
latter is simulated a heuristic probabilistic séatechnique that is analogous to
the biological evolutionary process. The genetgoathm consists of three main
strategies (reproduction, crossover and mutatidiging reproduction in the
genetic algorithm, individuals are selected frora gopulation and recombined,
producing offspring, which will comprise the nex¢rgration. Two parents are
selected and their chromosomes are recombineds@resis the operation when
two individuals are taken and their chromosomesatat some randomly chosen
position, to produce two head and tail segmentgs&lsegments are swapped to
reproduce two new full-length chromosomes. Thepoiifig) inherit some genes
from each parent. Mutation is the technique use@dmndomly alter the genes with
a small probability and is typically applied aftetrossover. Crossover is more
important for rapidly exploring a search space.allgumutation provides a small
amount of random search. This algorithm is appliedhe newly developed
algorithms in this study.
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lll. Development of NASTRAN External Calling
Styled Optimization Framework (OPTSHIP)

1. Introduction

Recently, the issue of ship vibration is emerging tb the large scale, high
speed and lightweight of shifpherefore, shipbuilders are suggested to concedn an
applying the strict vibration criteria for low vigion levels at the deckhouse in the cabin
for pleasantness (human comfort). This issue bes@memportant condition for taking
orders from customers, so the optimization solutdget a sound ship and to reduce the

construction cost is needed.

In industrial fields, much commercial software suah NASTRAN [1],
ANSYS, etc are used to analyze and predict theoresp of vibration and
structure. The capabilities of this software coapplication to the complicated
and big structures like shipNowadays, all shipbuilders try to save the
construction and design costs due to dbetinuously increasing costé labor and
material costsTraditionally, the ship design is baseth a sequential and iterative
approach and is a very complex problem, which hasnbapproached by
optimization methods only in the last two decad&his problem is more
complicated and difficult in the case of a largeépséuch asa merchant ship
because of the large number of degrees of freedbrtheo structure. Many
researchers have studied the reduction model te & running timend they
have attemptedo solve the complicated ship design problems qusdifferent
optimization techniques. These efforts effectivebytributed to the development
of new design and effective optimization method [2]
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Optimization is to determine the size or the geoimeshape of the structure
to obtain the maximum performance using minimal enat with safety and
availability of the target structure which is asltm this case [3]. We consider
three kinds of approaches for size optimizatiora agfhip for vibration reduction
design. Firstly, the optimization module of MSC/ §ARN [4] is considered.
This module is based on the sensitivity analysisiciwhis the sensitivity
derivatives of that response with respect to thealsdes of the problem. The
demerits of using this module are as follows,

» Many constraints to set an objective function artésign variable

« Difficulty of performing global optimization by ¢local search method

* The limitation of the optimization methods whicanoot combine any

complex user-defined optimization method.

The second approach isingthe NASTRAN/DMAP [5]. This enables the
user to extract useful information during the asslyHoweve; NASTRAN
executionis accompanied bynany difficulties in iterative information exchange
with external programs like a user-defined optirti@@a programs Furthermore,
using the DMAP requires considerable knowledgeafaron-expert user. Due to
these limitations, this approach provides limiteehdtionality for the user who
wants to optimize a structure.

Finally, this thesis presents a new optimizatioprapch called OPTSHIP
which uses NASTRAN for vibration analysis and gllobptimization algorithms
for preventing the local convergence. The OPTSHtipleys MSC/NASTRAN
and user-defined optimization methods as the aaalgud optimizer respectively.
Any function optimization method can be the optienizof the OPTSHIP.
Especially, the global optimization methods aresidered in this thesis, which
are the genetic algorithm (GA) [@nd the random tabu search method (R-tabu)
[7]. GA has an excellent ability in searching thghutthe broad solution space and
its usefulness has been demonstrated by varioimiagtion problems. R-tabu is
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an iterative procedure for solving discrete comtiamel optimization problems.
R-tabu prevents convergence to the local optimulutiso and can improve the
convergence level of the optimum solution. The twethods are widely used
broadly and well studied by many researchers [8-DRTSHIP uses forced
response, mode shape vector, natural frequencghtvand combined results of
those values as the objective function. Thickndsshell element, area of beam
element, stiffness of spring element and thickréshear element can be used as
design variables at this stage. We applied the G $ an actual containership,
and compared the forced response of the optimizeakhto theoriginal model one

to verify the reliability and performance of theoposed algorithm.

2. Optimization Method Using NASTRAN As a Solver

2.1 NASTRAN Optimization Module

The function of the NASTRAN optimization module ts find a modified
model to minimize (or maximize) the objective fuoat while satisfying the
constraints from the current analysis model. Th&gitevariables are categorized
commonly into two groups. One is shape variableschvielate to the shape
optimization, and the other is sizing variableschhielate to the size optimization.
This module can be used in the linear static amgly®rmal mode analysis and
frequency response analysis for the optimizatiod sensitivity analysis. The
objective function includes a user-defined simpteression as well as a direct
result from one of the above analyses. However, ntloglule cannot use the
objective function for a design variable when tiserudefined expression used in
the objective function is complex because this nwdibased on the sensitivity
analysis. Since the local optimization methods swash modified feasible
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directions method, sequential linear programmingl aequential quadratic
programming are used in a NASTRAN optimization mledthe module can only
locally optimize a model.

The functions of NASTRAN/DMAP include constructingn objective
function by extracting the meaningful informationriehg the analysis process,
modifying the sequence of the analysis process mafting a user-defined
program to perform a specific function. Engineeramgimization requires a large
number of iterative analyses. The analysis restdtpuire estimation of the
objective function at each iteration. This iteratican be performed by using a
specialized program called toolkit. Unfortunatetg tuse of the toolkit asks for a
highly skilled operator [5].

Therefore this thesis proposes a new methodologdc®PTSHIP for an
optimization using NASTRAN as an analyzer. The psgd methodology will
provide a user with an easier optimization methioahtthose of NASTRAN/
DMAP and NASTRAN/OPT modules.

2.2 OPTSHIP: NASTRAN External Calling Styled Optimization Framework

The flowchart of the proposed algorithm is desdibe Fig. 3.1. The
OPTSHIP uses the MSC/NASTRAN [4] as a solver toneste a user-defined
objective functionRunningthe OPTSHIFheedsa user-defined objective function,
a design variable set and an analysis modelifiladdition,the OPTSHIP consists
of five modules: initiation module, optimization chde, interface module with
NASTRAN, estimation module of the objective functiand base module. The
term “module” isnot intended as amdependent execution of each module, but to
emphasize functional specialization of each modallemodules are functionally
related to each other and need to execute the OFPTSH

The base module controls the process of the OPT&HKdAmanages the data
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which is used in the OPTSHIP by using another fooperly modules according
to the execution process. The information of a maiset of design variables and
an objective function are loaded by an initiationdule. This module sends the
analysis results which enable the estimation ofdibjective function and design
variable, such as forced responses at specifie@ pothts, natural frequencies
and mode vectors, to the interface module. Théatiroh module informs which
optimization method is used to optimization modaed what kind of objective
function that used to the estimation module of cioye function. Logically, the
optimization module can be constituted with mostha optimization methods.
But for the present condition, this module consi§t&A [6, 8, 9, 11-14], R-tabu
[7, 8], simulated annealing method [15, 16] and #hnkficial life optimization
algorithm [17]. Theselected optimization modutgptimizes the design variable set.
And the optimization module receives the revisejedtive function valugi(x)
which is returned from the estimation module of dhgective function with a new
trial design variable sex. This module has a convergence decision with an
optimized design variable set and the optimizedeabje function value.
Simultaneously the results will be transferrétto the base module when the
convergence criteria are satisfied. tife estimation of the objective function
module receives a new trial design variablexs€rom optimization module, it
transfers the results to interface module with NR&N and receives the analysis
results needs to estimate the objective functiomfthe interface module. This
module returns the estimated value of objectivection to the optimization
module. The objective function value can be a fiwmcbf one or more of the
forced responses at the specified node pointsralattequencies, weights and
mode vectors. The interface module updates theysisamodel with the trial
design variable sef by the returning estimation module of the objezfiunction
updates NASTRAN input file and executes NASTRAMNatalyze the model. The
NASTRAN analysis results concerned with estimatiérobjective function are
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transferred to the estimation module of the obyecfunction according to the set
up condition in the initiation module.

The description on the OPTSHIP is valid for readrsunderstand the
overall structure of the OPTSHIP functionally, whiexplains the functions of the
OPTSHIP which are divided into five modules depagdn the functions.

A sequential description is also required to unie the optimization
process of the OPTSHIP as follows.

Step 0:An analysis model file is made by PATRAN [18] oADQ and then
the information of an objective function and a dasvariable set is
determined and are saved into a file.

Step 1:The base module activates the initiation module.

Step 2:The analysis model, the information of a desigrnialde set and an
objective function are loaded. The analysis moadel #he required
results to estimate the objective function are rimied to the
interface module.

Step 3:The base module activates the optimization module.

Step 4:The optimization module activates the estimatiamduie and passes
a trial design variable sgt to the estimation module.

Step 5:The trial design variable setis passed to the interface module. The
interface module is activated.

Step 6:The analysis model is updated with consideratiothe trial design
variable sex .

Step 7:The updated analysis model is written into a NABNRnput file.

Step 8:Interface module executes the NASTRAN.

Step 9:The analysis results by NASTRAN are loaded, wiiepends on the
objective function.

Step 10:The selected results are returned to the estimatimdule.
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Step 11The objective function value is estimated by thalgsis results and
returned to the optimization module.

Step 12The convergence condition is estimated.

Step 13:If the condition is satisfied, then the optimizegsidn variable is
returned to the base module and the optimizatiorduieo is
terminated However, if the condition is not satisfighen a new trial
design variable set is generated. The procedustusned to step 4.
The updating method of the design variable dependbe selected
optimization method. However the generation of av reesign
variable is generalized by = X + Ax where4x is the increment of
a trial design variable which depends on the oation method.

Step 14:Base module prints the optimized design varialde and the
optimized analysis model, and then the OPTSHIBriminated.
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3. Application of Optimum Design on an Actual Contairer Ship

In this study, two cases are presented as exanplsBow the process of
searching for the optimum desighan actual containership. In these examples, the
optimization process is carried out using verifimatand validation of the proposed
optimization algorithm. In case 1, we compared esdewed the optimized values of
OPTSHIP and NASTRAN optimization. While in case 2 ware concerned about the
results of optimization using R-tabu and GA asmjzérs of the OPTSHIP.

The objective of this optimization is to find thesign variablex = (x3, X,

..., Xm)' to minimize the vibration respon$&) under the constraint condition
g(x). This optimization problem can be stated as

Find design variables vector
Minimize f (x)
Subjecttog, &k k 0, k= 1,2,. n

x-<x<xY

(3.1)

wheren is the number of constraint conditions.

3.1 Analysis Model

The 2400 TEU containership is chosen as an anatystel [19] as shown in
Fig. 3.2. The principal dimensions are shown inl@ahl. The whole ship is
idealized using a complete finite element (FE) nhddethe vibration analysis.
The FE model has been constituted of a fine me# 3vor 4 frame spacing for
the deckhouse, engine room and after body, anthtvedy coarse mesh for the
fore body. Table 3.2 shows the total number of saaled elements used in this
model. The main engine is also incorporated ineoR&E model of the whole ship
to take account for realistic behavior. Furthermaiecks, bulkheads, continuous
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walls and side shell plates have been modeled asbna@e element while girders
and stiffeners are modeled as truss elements. Qibscriptions for analysis

model are as follows:

Fig. 3.2 Full model of a container ship

Table 3.1 Principal data of ship

ltems Value
Length overall 208 m
Length between perpendiculars 196 m
Breadth 29.8m
Depth 16.4m
Draft design 10.2m

Table 3.2 Description of finite element model

ltem Value
Number of total nodes 4 558
Number of used elements 11,781
Plate thickness 8.0-32.0 mm
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3.1.1 Lightship weight and cargo mass

The steel weight is automatically considered by riegterial properties of
idealized elements while some structure not beingeted and lighter equipment
components have been taken into the FE model gppropriate adjustment of
material density. Meanwhile, the mass of heavy mgents has been applied as
nodal masses. The deadweight including cargo nieksting liquid and the
others which are documented including in the trimd atability calculation [20]
has been distributed to the corresponding nodaltp@s concentrated masses in
accordance with loading conditions.

3.1.2 Hydrodynamic mass

The virtual mass method(VMM) module in NASTRAN ised to calculate
the hydrodynamic masses due to surrounding watgr.tiBs module, three
dimensional hydrodynamic masses dependent upomtidhr modes have been
automatically applied to corresponding nodal points

3.1.3 Damping

The vibration response are dependent upon varimas lof damping such as
structural damping caused by the cargo, outfitegy and material damping by
the surrounding water. The actual value of damgBngery difficult to predict for
the ship vibration analysts since it depends on rttuele shapes and loading
conditions. In this analysis, the modal dampingdffacients linearly dependent on
the frequency have been employed such as 0 % atahéi6 % at 20.0 Hz.

3.1.4 Main excitation

The main excitation sources are the guide force emsnof main engine and
fluctuating pressures of propeller acting on thellsplates of the after body.
External moments are given by an engine manufac{@&uazer) that used as the
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main engine excitation. Table 3.3 shows the domimgitation sources of the
main engine. The magnitude of the guide force martieearly depends on the
main engine revolution. Because the guide foraegendent upon the maximum
pressure in the cylinder and thus the guide foroenent is roughly proportional

to the main engine revolution as the following fotation.

k
M, = M( N J (3.2)

NMCR

where,M; andMycgr mean relevant moment and moment at maximum canisu
rating MCR) speed (rpm), respectivelp, andNycgr mean the relevant speed of
the main engine and the main engine speeM@R condition respectivelyk

equals to 1 for guide force moment and internal xmThis is converted into

force Fn, Fx) using the following formulas.

Fo= g =My

=M 3.3
o Fe= T (3:3)

where My and Mx mean H-moment andX-moment of the main engine
respectivelyH andL are height and breadth of the main engine respdygtas
shown in Fig. 3.3.

Table 3.3 Excitation moment of main engine at gapeed (97 rpm)

Excitation Lateral moment (+ ki)
order X-moment H-moment
2nd 129 0
3rd 513 0
4th 550 0
5th 0 0
6th 0 1193
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(a) H-moment (bX-moment

Fig. 3.3 Exciting force of main engine

The propeller excitation due to fluctuating presshave been considered at
once and twice blade passing frequency. The flticigapressure has been
calculated with the software HPUF-3A [21] develofmwdMassachusetts Institute
of Technology for a region covering longitudinaliyom the transom to three
times diameter of propeller by using the measuradlendata of the model test.
The calculated pressure has been distributed tesmonding nodal points of the
outer shell. For reference, hull surface forcesldeethe forced vibration analysis
are documented in Table 3.4. The calculated preppliessure has been adjusted
in accordance with the propeller speed by usinddhewing formula.

3
P = P( N, ) (3.4)

NMCR

where P, and Pycr mean relevant pressure and pressureM&R speed
respectivelyN; andNycr mean relevant speed of propeller and propelleecjpe
MCR condition.
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Table 3.4Excitation force of propeller

Excitation Excitation force (kN)
ks Fy SF, SF,
1st 48.00 1.70 82.00

3.1.5. Location of forced vibration response

Several nodal points representing the overall vidanabehavior are selected
for the evaluation of the forced vibration respordee selected points come from

the front wall of the deckhouse on the port sideafigation deck.

3.2 Free Vibration Analysis

Free vibration analysis has been carried out ufhéonatural frequency of
18.3 Hz with the Lanczos method by means of NASTRARE frequency of 18.3
Hz, which corresponds to the main engine speed @frfim, is far away from the
MCR speed of 97 rpm, it is quite high to cover thehkgt dominant excitation
frequency of propeller 2nd order (16.17 Hz). Amdhg free vibration analyses,
several primary natural frequencies and the coomdipg mode shape of the

deckhouse are shown in Fig. 3.4.
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(a) Longitudinal mode of deckhouse coupled witH birtdler mode and double bottom
(4.59 Hz)

(b) Torsional mode of deckhouse coupled with hutley (6.44 Hz)

(c) Torsional mode of deckhouse coupled with hitley (7.00 Hz)
Fig. 3.4 Typical modes and natural frequenciessacktiouse area and stern of a

ship Continued
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(d) Longitudinal mode of deckhouse coupled witlkeafiody and double bottom
(8.36 Hz)

(e) Torsional mode of deckhouse coupled with ditety (8.41 Hz)

(f) Torsional mode of deckhouse coupled with hidligr (9.24 Hz)
Fig. 3.4 Typical modes and natural frequenciessacktiouse area and stern of a

ship Continued
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(g) Longitudinal mode of deckhouse coupled witleafiody and double bottom
(10.62 Hz)
Fig. 3.4 Typical modes and natural frequenciessaktiouse area and stern of a

ship

3.3 Case 17To verify the reliability and performance of the T&HIP

In the first optimization, we compared and evaldates optimization results
of NASTRAN optimization module and OPTSHIP to verihe reliability and
performance of the proposed algorithm. The compnef H-moment and
X-moment of the main engine and the fluctuation doof the propeller were
considered as the excitation source as shown ife$&3 and 3.4. The method of
global optimization needs more time for runningnthihe local ones and many
design variables increase the running time to omwe It is strongly
recommended that the design variables should heeedo save the running time
for optimization. In this study, we divided the exgtion of design variables into
two stages for reducing running time. In the fissige, we selected candidate
design variables which are the plate thickness emfkdouse, shell expansion,
engine room which have effects on the vibrationpoese of the deckhouse
directly. According to the area which has a différplate thickness and another
tier, the design variables are selected differeintlgn each other. However, if they
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are a symmetric structure, the same design vadabie selected. We defined the
interest range of design variables as the aredyhajfects the vibration mode of
the deckhouse as shown in Fig. 3.5. Fig. 3.6 shbwsypical design variables in
the first stage. In the second stage, we carri¢dsensitivity analysis for design
variables which were selected in the first stageNASTRAN. Here, design
variables which have the most sensitive values gmihie candidate design
variables were selected as the final design vasabrhe number of the final
design variables is reduced from 319 to 64 thraaeagisitivity analysis.

Finally, we conducted the optimization with desigariables which were
decided by the second stage. The lower and upmés|of the design variables

were decided as 90 ~ 140 % of the original desagrables.

Fig. 3.5 The interest range of design variabléadontainership
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Wheel House Top Plan

Navi. deck

F deck
E deck

D deck

C deck

B deck

A deck

(a) Deckhouse (PLAN)

1265 1264 MAIN DK

(b) Shell expansion

Fig. 3.6An example of design variableS¢ntinued
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D ~ E
eck House (Frame 5~19 SEC) Wheel House Top Plan
Navi. deck

F deck

E deck

D deck

C deck

B deck

A deck

FR5 FR8 FR11  FR13 FR15 FR19

FR17
(c) Deckhouse (Frame 5 ~ 19 SEC)

Fig. 3.6An example of design variables

To minimize the forced vibration response, the oibje function is
considered as the rms value. The maximum value grifoe rms value at each
direction is taken as the rms value of vibratiotogiy response. Each rms value
is obtained by taking root of the average valuee @lerage value is taken as the
square of velocity respondg which is multiplied by weighting factar, based
on the international standard ISO 6954 [22], thd&ections are considerable
(longitudinal, transverse and vertical) in the caééhe response position within
the interest frequency range.
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f(x)= max[\/%iwq OV \/%ZN: W OGr \/—,tZN‘, VKD\GZ,\/} (3.5)
gq=1 g=1 1

whereN is the number of peak consider&, , Vot andVyy are the vibration
velocity amplitude ofgth frequency at longitudinal, transverse and valtic
directions, respectively.

This value is the realistic requirement which haserb applied on the
conventional ship construction. The upper and lovmeits of the frequency range
for forced vibration response are considered afRthefrequency component of
the main engine as follows
MCR x1.07

f =R x MERXLO7
upper 60 ( Z) (3.6)
f=Rx MCR x1.07 (H2)

120

In this thesis, the speed of the main engine isidened as 107 % dICR
which takes into account safety margin. The intergequency range is
determined by Eq. (6) as shown in Table 3.5. Thi@noped results of the rms
values forH-moment of the main engine which is the dominamitakon source
for the deckhouse are shown in Fig. 3.7. Here,zbatal axis means rotating
speed (rpm) of the main engine while vertical axisans vibration velocity
response of longitudinal, transverse and vertigalction from top to bottom. The
maximum responses in the longitudinal directionclhis the dominant mode of
the deckhouse were obtained at about 93 rpm wisiatiose toNCR They are
12.41 mm/s, 11.82 mm/s and 8.25 mm/s for originaddeh, NASTRAN
optimization module and OPTSHIP, respectively.aih e concluded that we can
obtain the better result by using OPTSHIP than NRBN optimization module.
Table 3.6 shows the comparison of objective fumcti®tween original and
optimized model considering the main excitationreewf the subject ship. This
table shows that the values of objective functibienoment of the main engine
represent 5.51, 5.28 and 4.28 for the original MoNASTRAN optimization
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module and OPTSHIP, respectively. According to tesults, the variation of
objective function of OPTSHIP is much improved 9.& % than that of the
original one.

We compared the variation of final design variablesnsidering the
excitation force asH-moment of the main engine between OPTSHIP and
NASTRAN optimization module as shown in Table 3A¢écording to the results,
the results of NASTRAN are convergent to the lowerupper limit of design
variables which have been already defined. In #s® ©f the OPTSHIP, however,
design variables are distributed throughout thesttamts ranges. This is assumed
that the optimization by NASTRAN module convergestte local optima while
the OPTSHIP does to the global optima.

Table 3.5 Interesting frequency range for four &tmn components

Excitation components Frequency range (Hz)
H-moment 6th 5.19-10.38
Propeller force 1st 4.32 - 8.65
X-moment 4th 3.46 - 6.92
X-moment 3rd 2.60-5.19
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Fig. 3.7 Optimized results of rms value f&fimoment of main engine

Table 3.6 Comparison of objective function betwegginal and optimized

model

Original NASTRAN optimum module OPTSHIP
Exciting force

model Value Variation Value Variation
X-moment 3rd  7.83<10° 2.04x10° -73.9% 1.5810° -79.8%
X-moment 4th  2.3210° 2.1810° -6.3% 2.1210° -8.9%
Propeller 1st 7.4010° 4.81x10* -35.0% 5.1810* -31.1%
H-moment 6th 5.51x10° 5.28<10° -4.3% 4.2810° -22.3%
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Table 3.7 Comparison of optimization restitfhoment 6th, rms value)

Original Variation of design variabli Original Variation of design variabl

SHELL “ lue (%) SHELL ™ olue (%)
ID No. ID No.
(mm)  NASTRAN OPTSHIP (mm)  NASTRAN  OPTSHIP

1019  8.00 138 127 1201 17.00 140 112
1020 12.22 118 130 1203 30.00 140 130
1021  8.10 140 137 1204 22.33 90 137
1022  8.10 140 125 1205 15.78 90 94
1024  8.10 119 94 1206 10.80 90 106
1025 8.10 90 95 1208 10.90 114 139
1058  9.80 140 131 1220 30.00 90 116
1059  8.10 109 138 1222 14.00 90 112
1060  8.10 97 138 1248 13.00 90 133
1063  8.10 104 123 1262 62.00 90 121
1093 12.22 90 140 1266 77.00 90 93
1094 1222 94 138 1272 62.00 90 105
1095  9.80 92 128 1280 62.00 90 99
1096  8.10 95 135 1284 1578 90 126
1097  8.10 90 134 1287 12.00 90 100
1101 12.22 101 136 1289 13.00 90 135
1102  9.80 124 130 1290 15.78 90 123
1103  9.10 104 108 1291 2356 140 120
1104  9.80 90 99 1295 12.00 98 125
1105  9.10 90 114 1297 14.00 90 137
1106  9.10 90 100 1305 11.67 139 125
1107  9.10 90 90 1318 19.00 90 127
1151 13.56 126 120 1321 16.56 90 126
1156 28.00 134 97 1322 16.56 90 136
1160 12.56 139 138 1324 22.00 90 129
1165 11.67 101 108 1325 17.78 90 102
1188 17.33 90 99 1333 18.00 90 107
1189 11.67 90 106 1334 18.00 90 112
1191  11.22 90 111 1335 19.00 90 107
1198 17.78 140 131 1336 21.00 90 110
1199 19.00 90 104 1342 17.78 90 134
1200 17.00 90 140 1343 11.22 93 111
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3.4 Case 2To verify the utility of the global algorithm @PTSHIP

The second optimization was conducted to verify uhity of the global
algorithm which is not only R-tabu method but adsmther optimization method.
The optimization with R-tabu and GA method wereriedr out, and the results
were compared with each other. In this case, thee @der component of
X-moment of the main engine was applied as the atimit force. The procedure
of selecting a design variable is the same asathtite first optimization method.
However, the areas of all design variables weradjasted as close as possible in
the FE model. Because the sensitivity changes dicapto the areas of the design
variables. In the first stage, therefore the nunabetesign variables was 279 shell
elements while it was 319 elements in Case 1. Amdhs reduced from 279 to 51
elements in the second stage. Table 3.8 shows d@hation of the number of
design variable in the first and second optimizatioThe objective function in
this optimization is considered as the peak vallms is the maximum vibration
velocity amplitudeV, which was taken within frequency range at thesehr
directions as follows.

f (X) = max|V (frequency, direction)] (3.7)

The range of interest frequency and weighting fiaate different. The upper
and lower limits of interest frequencies are defias follows:

MCR x1.07
f =Rx ———— (Hz
upper 60 ( ) (38)
flower = R X NCR _10 (HZ)
60

whereNCRIis the normal continuous rating speed (rpm).
The lower limit frequency applied is the speed CR — 10) rpm which is
used to avoid the resonance of the structure. Tighting factor is 1.0 within the
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interest frequency, 0.5 for the others

W( ) =1.0:if fioe < T < fioner

o =0.5: elsla "’ (3.9)

Fig. 3.8 shows the comparison of the original madel optimization results
of longitudinal, transverse and vertical directi@igort side of navigation deck.
In this figure, the horizontal axis represents riegé frequency range (83~104
rpm) and vertical axis represents vibration velpait a specific point. The values
of objective function are reduced further about58% for GA and 6.7 % for
R-tabu than that of the original one as shown ibl@a3.9. Their vibration
responses on the navigation deck in the longituditieection (4.59 Hz) are
0.1214 mm/s, 0.1133 mm/s and 0.1109 mm/s for algiR-tabu and GA,
respectively. As a result, GA method gets bettsults than R-tabu one. However
considering the evaluation number, it is not easgidcide which method is better
than the others. We reached a conclusion that bigbrithms can be easily

applied to the complex system.

Table 3.8 The reduction of the number of designades

The number of design variables

Optimization
Candidate Final
Case 1l 319 64
Case 2 279 51
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Table 3.9 Comparison of objective function betwegginal and optimized model

Exciting Original R-tabu GA

force model Value Variation  Value Variation
X-moment 4 4 A

3rd 1.214x10 1.13%10" -6.7% 1.10810 - 8.65%

Navi.Deck(Port, Longi.), Mag

; | |
— SGA | |
] P e S
—— Original | ‘

Velocity [mm/s]

|
|
005 -~ ------J/--==
|
|

90 100
Navi.Deck(Port, Trans.), Mag

Velocity [mm/s]

o

100

o
[N
13

g
o
a

Velocity [mm/s]

Main Engine R.P.M.

Fig. 3.8 Comparison of optimization results of pgalue forX-moment (3rd) of

main engine
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4. Conclusions

This paper proposed a new optimization framewotledaPTSHIP which employs
NASTRAN as external analyzer for optimization metho obtain a global optimum
solution of a large ship structure. The algorittmmapplied to search the optimum design
of an actual containership model for verificatiomdavalidation purpose of the proposed
algorithm. Moreoverfo save running time, we carried out sensitivitalgsis for
design variables by NASTRAN. According to the asayof results, we found
out that the OPTSHIP have searched better solthi@mthe NASTRAN optimum
module. Furthermore, the optimization using R-tahd GA optimization method
was carried out to verify the performance of OPTSHIs an optimizer. We
confirmed that both algorithms get good resultthis example. Finally, it can be
concluded that the proposed optimization algoriihnthis study can serve and
contribute to solve the vibration problems on thip structure.
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IV. Nonlinear Integer Programming Based on GA

Parameter Optimization

1. Introduction

Optimization is utilized to determine the size be tgeometric shape of the
structure to obtain the maximum performance usingmal material with safety
and availability of the target structure [1]. Frenmathematical point of view, the
optimization is a process to obtain the designaldeis which are the maximizing
or minimizing a desired objective function whiletistying the prevailing
constraints. Usually, optimization needs a lotiofet to get desired information
due to the repetitive process. Recently, optimiratias been widely applied for
decreasing the weight of structure in various imdisfields such as aerospace,
civil, mechanical engineering, etc., through in&gg methodology of
engineering design with the technology of compaided engineering (CAE) and
increased computer speed.

In shipbuilding, optimum design has been used inyraeas. However, the
applications are limited and most researches havghasized on static
optimization which does not consider dynamic fast@2-5]. Also, optimum
design for ship vibration has rarely been studiédng et al. [6] worked on
optimization of ship stiffened panel, and Kitamwt al. [7] carried out the
optimal structural design of a ship’s engine roorhey did the optimization
considering static and dynamic constraints, andptedba simplified analysis
model to enhance computing efficiency during optation process. Also, Yang
et al. [8] and Kong et al. [9] proposed a new optation tool called OPTSHIP
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(OPTimization for SHIP) which combines NASTRAN thated as a solver with
global optimization algorithm, namely random talmargh method (R-tabu) to
enhance optimum design for vibration reduction lip sstructure. In OPTSHIP,
NASTRAN is called externally and used for calcuwatof the objective function.
They applied it to the vibration optimal designgdbal and local containership
using continuous variables, respectively.

In general, the final design variables that havenbehosen are bigger in size
than optimized results to consider thefety margin in an actual application. Of
course, this choice enables the structure strotinger the optimized model. But
the natural frequency of the structure may be clésdts resonance and more
dangerous than optimized design in the vibratigreets. [10, 11].

However, theses optimization results are not slgtédr actual application
since the selections of web and girder sizes angeld in standard shaped steel
members that commercially available. Therefore, rém values programming
need to be extended to non-linear integer prograamr{NIP) in order to apply
directly the optimized result to an actual desigiP? was suggested by Reiter and
Rice for solving a general quadratic programmingbpgm in 1966, where both
the objective and constraint function are quadraficey applied a modified
gradient-type method, very similar to the methodsedu in the continuous
nonlinear programming field, to solve the problediP is an intrinsically hard
problem. There are rich literatures on the NIP f@ois [12, 13]. However, many
of the NIP problems are computationally intractabiel their solutions are NP
complete. Thus, the optimal solutions can not daiobd in a reasonable amount
of time and memory [14]. Heuristic algorithms wedeveloped to find
approximations to the optimum. Current research ois the effective
approximation methods such as genetic algorithm)(&8], simulated annealing
(SA) [16] and tabu search (TS) [17]. These methadds mainly used to solve
combinatorial optimization problems. Recently,gtremarkable to apply GA to
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effectively solve a combinatorial problem as onehef solution methods. GA is a
very powerful tool for solving a NIP problem likegpttimal design of system
reliability and can handle any kind of objectiveétions and constraints.

In this thesis, we present a method for solving e problem to get the
best compromise solution easily while holding alm&ar property by using the
genetic algorithm for an actual design. GA is usedbtain global solutions in the
proposed method. As we know, there are many paembave to be set for GA,
such as the population size, mutation probabititpssover probability, selection
methods and crossover methods that greatly affectatcuracy and calculation
time of optimum solution. The setting process iedHar users, and there are no
rules to decide these parameters. In order to owscthese demerits, the
optimization for these parameters has been alsdumed using GA itself. The
reliability of the proposed method has been denmatest for solving the vibration
problem on compass deck of a ship.

2. Nonlinear Integer Programming (NIP)

As with most domains of engineering, nonlinear pgots are often solved
by generating a sequence of solution to linear Iprob which in some sense
approximate the original nonlinear problem. The Nfoblem can be
mathematically expressed as follows:

Maximize (or minimize) f(x)

Subject to the constraints x"<x<x", x0O2z",

where, x =(x, x, I x)" is a vector of variables or unknown in the NIP feof
Z" is a set ofn-dimensional integer vectorx" =(x", x5, OIJ )" 0Z" and
x’ =(x’, x , M X ) 0Z" aren-dimensional constant vectors, and < x" .
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Let S:{x x"<x<xY,x0 Z“} denote a solution space, thus:S - Ris a
cost function. Some of the NIP problems can alsoviesved as integer and
combinatorial optimization problem [18].

3.  The Optimization for GA Parameters

As mentioned before, initial parameters setting>éf is hard for users and
influences the optimization results. For examplgraper mutation probability
can increase the probability for a getting a globgtimum solution due to the
diversity of solutions, but high mutation probatyilhas effect on the convergent
speed. Also, population size is critical to getracgse solution. If population size
is too small, it may fail to reach the optimal d@un, on the contrary if not, it
brings out falling-off in efficiency.

In this study, the optimization for GA parametessarried out based on GA
itself using trial function. The flowchart for optization is shown in Fig. 4.1,
where,Ne, Nea andA,e mean the number of evaluation, all evaluation avetage
evaluation, respectively. GAF represents GA forction optimization, while
GAP does GA parameter optimization. GAP consistslegign variables with
GAF’s parameters, namely, population size, crossquebability, mutation
probability, selection method and crossover meth@den the GAF is terminated,
the individual fitness of GAP is determined on thenber of average evaluations
of objective function in GAF. GAF will be terminatéf the condition of Eq. (4.7)
is satisfied. Since GA is probability search, tlaene processes are repeakéd
times M = 5) using the same parameters, and the numtzereohge evaluation is
obtained. The objective function of GAF is defireithe trial function Eq. (4.4).
Design variables and constraints are expressedjas(£5) and (4.6). This trial
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function has a global solutiof(X = 0) = 0) and 27 local solutions. There are 10
design variables that are the same as the numbeesign variables for the

applied structure, which is shown in Eq. (4.5).
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Fig. 4.1 Flowchart of GA for parameter optimization
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3.1 Formulation for Optimization

In this study, five GA parameters are consideredfimization: population
size, crossover probability, mutation probabiligglection method and crossover
method which have effect on genetic calculatiorstesvn in Eq. (4.2).

3.1.1 Formulation for GAP
Minimize
f(X) = Ane (= Nea/ M) 4.2)
whereM means the number of evaluation of GAF for idehti6A parameters,

hereM = 5.
Design variables

X = {Ps Pc P Ms Mg} ' (4.2)
Subiject to:
Ps = {10, 20, 30, 180, 190} (4.3)

P.={0.1, 0.2, 0.8, 0.9}

Pmn ={0.005, 0.01;-, 0.065, 0.9, 0.95}

Ms = {Roulette wheel selection, Ranking based sela¢ti

M. = {Simple crossover, Multi-point crossover, Unifiocrossover}

where, Ps, P and P, are population size, crossover probability and atiom
probability of GAF, respectivelyMs and M. represent selection method and
crossover method, respectively.
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3.1.2 Formulation for GAF

Minimize

100 =20 -acosC 72 )+ar] (4.4)
Design variables:

x={x % % %% % % % % g (4.5)
subject to

-10<x<100,i =1, ...,N (4.6)

where, a, =1, B =4, N=10.

The termination condition of GAF is as follows:
1N ‘K(beso — x (o)
£ = - L& 4.7
error N Z A)g ( )

where, ¢ is predefined value, here 0.0%®*is the best solution at each
generation, x®is the optimum solution of ith design variablax represents
the interval of design variables. The optimizatiesults are shown in Table 4.1.

Table 4.1 Comparison of GA parameters before ated aptimization

Parameter Original Optimum
Population size 100 10
Crossover probability 0.8 0.1
Mutation probability 0.1 0.065
Selection method Roulette Ranking
Crossover method Uniform Simple
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In order to confirm the validity of optimizations@lts, the objective function
is evaluated using other parameters and optimurmanpeters. The compared
results are shown in Table 4.2 and Figs. 4.2 —Adgording to the results, the
optimum parameters are good for the accuracy agedspf convergence in GA.

Based on the above demonstration, the optimum Ganpeters can be used
for the integer optimum design of a compass deck.

I
1'07__ """""""""""""""" —o— Pop_size =10 |
1.06 -t oo --0-- Pop_size =20 |
_ ---%--- Pop_size = 30
1.05 -z = mm o mmmmmm e fe e m e e
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0 c e )
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Fig. 4.2 Comparison of population size
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Fig. 4.4 Comparison of mutation probability

94



Objective Function

Objective Function

T i T T T T T T T
0 200 400 600 800 1000
Evaluation

Fig. 4.5 Comparison of selection method

1.06 . . . .
| | | —O— Cm:SCM
1.054---------- boommo- Ao EREEEEEE RS T Cm: MCM|-
! ! ! ~—*- Cm:UCM
104 - woooeoe T B oo
1.034 | | | i

T i T T T T T T T 1
0 200 400 600 800 1000
Evaluation
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Table 4.2 Comparison of the optimization resultoading to GA parameters

Parameters Function value No. of evaluation
10 0.98304 242
Population Size 20 0.98304 758
30 0.99246 1000
0.1 0.98304 242
Crossover
B 0.2 0.99469 1000
Probability
0.6 0.99524 1000
0.02 0.98304 392
Mutation 0.04 0.99159 1000
Probability 0.065 0.98304 242
0.08 0.99410 1000
Roulette Wheel
_ _ 0.99004 1000
Selection Selection
Method Ranking Based
. 0.98304 242
Selection
Simple Crossover 0.98304 242
Corssover Multi-point
0.99004 1000
Method Crossover
Uniform Crossover 0.99004 1000
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4. Vibration Analysis of Compass Deck

The vibration analysis of a compass deck is cawigtcdby using NASTRAN
which is a commercial finite element program andeky used for big structures
like a ship. Fig. 4.7 shows the model of compasskdand radar mast. In
particular, the girder and web of a compass dedksiglayed as three dimensions,
which are design variables in this study. Fig. gh®ws the design variables and
boundary conditions of a compass deck. The mairedgions of subject ship are
shown in Table 4.3 and the main data of modelingashpass deck are listed in
Table 4.4.

Considering the precision of analysis and time aoneg modeling process,
the range of modeling of a compass deck is coms&tdaio the its deck only based
on experience of analysis and impact test at thpyatd. The boundary
conditions for the model are specified: the simplgports are used to the
bulkheads shown as solid lines and two pillarscarected between the compass
deck and the navigation deck. Fixed supports assl g the cross-points of
bulkheads. We modeled the arbitrary box at thetiocaof radar mast and
considered the weight by adjusting the mass dens#tyause the weight of radar
mast on compass deck has considerable effect omilbh&tion behavior of the
compass deck. Table 4.5 shows the specificationaoh excitation sources.

In general, the design for avoiding local structwesonance of a ship
requires that natural frequency of a structure niestwo times higher than the
blade passing frequency of propeller under the mari rpm of main engine. In
this study, design target frequency is set abov87181z which is considered
safety margin and twice blade passing frequendhiepropeller (16.33Hz).

Fig. 4.9 shows the first three modes and natiwegjuencies of a compass
deck structure by NASTRAN. The 1st mode (16.78 Hahich frequently
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occurred on the compass deck during the voyageheivertical mode on front
area of the radar mast as shown in Fig. 4.9(a).|dWwer part of compass deck
could not be installed the bulkhead because oflenad securing the workspace
compared to the other cabins. Therefore, the qooreting weak stiffness of the
structure results in low natural frequency whickclgse to the main excitation
source of ship. In this model, the 1st natural desgcy of structure is also within
the resonance region where twice blade passingidrexy of propeller is 16.33
Hz. The safety margin is only 2.8 %, which is ugudl0 %. The 2nd and 3rd
modes occurred on the sides of the compass dedr fatural frequencies are
higher than the main excitation frequency of thép séind the possibility of
resonance is rare. So, in order to design a safetste, the 1st vertical mode of a

compass deck is specified as the concerned matiesiatudy.

Fig. 4.7 Model of compass deck and radar mast
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Fig. 4.8 Design variables and boundary conditionfs ao

compass deck

Table 4.3 Principal dimensions

Length overall 208 m
Length between perpendiculars 196 m
Breadth moulded 29.8m
Depth moulded 16.4m
Draft design 10.2m
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Table 4.4 Main data of modeling

Geometry data Material data
Plate thickness 8.0m Elastic modul296 GN/nf
Web & girder size 250%90 x10/15/R0isson ratio 0.3

Frame/ longitudinal space 800 mm Mass density 7850 kg/m

Table 4.5 Specification of main excitation sources

. Excitation
Excitation MCR
source Order  Frequency

3rd 4.90 Hz

Main engine
(6RTA72U) 4th 6.53 Hz
98 rpm  6th 9.80 Hz
(Blade: 5EA) 2nd 16.33 Hz

(a) 1st mode (16.78 Hz)

Fig. 4.9 Mode shapes of compass deChritinued
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(b) 2nd mode (30.09 Hz)

(c) 3rd mode (34.28 Bz
Fig. 4.9 Mode shapes of compass deck

5.  Optimum Design of Compass Deck

5.1 Formulation for Optimum Design

5.1.1 Design variables
The main vibration mode on the compass deck i®bagimode of girder and
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web in vertical direction. One of the most impottéactors is the stiffness of
girder and web. In this study, the size of girded aveb on the compass deck in
Fig. 4.8 are defined as design variables in E&)(4.

X = {Wy Wo W5 G1 G, G3 G, Gs Gg G7} (4.8)
whereW andG mean the size of girder and web, respectively.

5.1.2 Constraints

The web length of stiffendr, is restricted as Eq. (4.9) due to ceiling height,
namely the distance from navigation deck to complas&, which is based on the
building specification. The stiffener is also reged to available standard sizes in
the fields as shown in Table 4.6.

200 < Ly £ 550 mm (4.9)

Also, the basic concept of local vibration desigrthie minimization of the
response at each point. However, it is difficult égaluate how much the
excitation force influences on local structure. Bothis study, natural frequency
of the structure is restricted as Eq. (4.10) wh&chonsidered safety margin with
twice blade passing frequency of the propeller.

wn> 18.87Hz (4.10)

Fig. 4.10 shows section of stiffener and plate
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Table 4.6 Corresponding cross section of steel neesnb

Stiffener size Ly xLs XxTW/ T;
200A 200 x 90 x 9/14
250A 250 x 90 x 10/15
300A 300 x 90 x 11/16
350A 350 x 100 x 12/17
400A 400 x 100 x 12/18
450A 450 x 125 x 11.5/18
500A 500 x 150 x 11.5/18
550A 550 x 150 x 12/21

e Ly +

¥
Y | T |

k.
Ty Ty
LW — —

y T
x 1

+
e

Ls

Fig. 4.10 Section of stiffener and plate.

5.1.3 Objective function

In general, the main target of the optimum desggto idecrease the weight of
structure or to reduce the vibration level on thec#ic point with avoiding the
resonance between excitation source and the nédtegalency of subject structure.
In this thesis, we considered the objective funcas two cases as follows:
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1) Case 1
The objective function combines linearly the weigttcompass deckW,
with maximum vibration velocity responsdy, at an interest range (below MCR
rpm) like Eq. (4.11).
Minimize f(x) = a(W,/W,) + S(R/R;) (4.11)
where,a andp are weighting factors. In this study,= 1, 5 = 0 [9]. Wo means
initial weight (including the weight of radar mad®, is a basis vibration velocity

response (vertical direction, the maximum amplitatieenter).

2) Case 2
The objective function combines linearly the weigttcompass deckW,
with natural frequency of structure is expressedhy(4.12). The objective is to
get an economic and sound structure to reduce #ightvof stiffener and to
increase the natural frequency.

Minimize f(x) = a(%) + ,8(%) (4.12)

where, w@and w mean target and current natural frequency, reseéet

a andg are weighting factors. In this study= 0.5, = 0.5.

5.2 Optimization Results and Discussion

The optimum design was carried out to obtain ammggtsize of web and
girder on the compass deck to maintain the antiatibn design of it. Nonlinear
integer algorithm by GA is used as @gtimal algorithm in order to apply directly
the optimized result to an actual desigs stated above in section 3, the optimum
GA parameters are applied to this problem.
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Tables 4.7 and 4.8 show the results of the desigiables before and after
optimization for casel and case2, respectivelghtiws that the center girder of
structureGs is increased 80% and the others are reduced 2@¥#si 1. In case 2,
the center girder of structuf@, is increased 120 % and the others are similar to
case 1. These results indicate that the most reAfmodification method is to
increase the stiffness of a member where the mawinamplitude exists in
vibration mode. To get a higher natural frequentgtaucture, it is required to
increase the stiffness @4 which is located in a wider area than thatGaf The
role of G7 in case 2 supports the stiffness@fdue to limit stiffener size. Tables
4.9 and 4.10 show the natural frequency, vibratesponse at a MCR in a unit
excitation force and the weight of compass deckieefind after optimization for
case 1 and case 2, respectively. According to rdselts, the 1st natural
frequency increased 12.69% and 38.74% from 16.48H8.91Hz and 23.28Hz,
and the safety margin with twice passing frequeoicgropeller correspondingly
changed from 2.80% to 15.80% and 42.60% for caaedlcase 2, respectively.
Therefore, the structure is free from the resonaMmreover, the amplitude of
vibration velocity response for case 1 and casediged 61.24% and 93.40%,
respectively. The weights of stiffeners which appleed to design variables also
decreased in spite of higher natural frequencyraddced the vibration response.
In summary, the local vibration problems have bseccessfully solved by the
proposed optimization method, which moves the aafuequency to a higher one
without any additional weightFig. 4.11 shows the 1st vibration mode after
optimization. Although there is a little changetbe 1st vibration mode shape due
to the mode of the global compass deck, the natregliency increased based on
the calculation result. And we confirmed that thieration response at the MCR
rpm has been significantly reduced as shown in &itR for case 1 and Fig. 4.13

for case 2, respectively.
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Table 4.7 Comparison of original and optimal des¥gniables for case 1

Design variable  Original Optimum Remarks
Wy 250 200 -20%
W, 250 200 -20%
Ws 250 200 -20%
G 250 200 -20%
G, 250 200 -20%
Gs 250 450 80%
Gy 250 200 -20%
Gs 250 200 -20%
Gs 250 200 -20%
Gy 250 200 -20%

Table 4.8 Comparison of original and optimal desvgniables for case 2

Design variable  Original Optimum Remarks
Wy 250 200 -20%
W, 250 200 -20%
Ws 250 200 -20%
G 250 200 -20%
G, 250 200 -20%
Gs 250 200 -20%
Gy 250 550 120%
Gs 250 200 -20%
Gs 250 200 -20%
Gs 250 250 0%
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Table 4.9 Comparison of results for case 1

Item Original Optimum Remarks

Natural frequency 16.78Hz 18.91Hz 12.69%

Response at MCR 10.50mm/s 4.07mm/s -61.24%
Weight 2760kg 2537kg -8.08%

Table 4.10 Comparison of results for case 2

Item Original Optimum Remarks

Natural frequency 16.78Hz 23.28Hz 38.74%

Response at MCR 20.17mml/s 0.69mm/s -93.48%
Weight 2760kg 2757kg -0.11%

Fig. 4.11Mode shape of compass deck after optimization
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6. Conclusions

In this study, we proposed non-linear integer paogningto apply directly
the optimized result to an actual design. GA iduseobtain global solutions in
the proposed method. In order to get proper GArmpaters, the optimization of
GA parameters is also carried out through the fraakttion by GA itself. The
reliability of the proposed method has been denmatest for solving the vibration
problem on compass deck of a ship. After optimargtiocal vibration problem
has been successfully solved: the structure isffoe®a resonance, safety margins
increased, and the amplitude of vibration velodigponse reduced without
additional weight. The results indicated that theppsed method can be used as
an optimum design tool in other structure optima@adesigns.
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V. RSM-based Hybrid Evolutionary Algorithm

1. Introduction

The focus of many dynamic analyses is to find thaximum response
and avoid the resonance in a given structure ualliexcitation forces. Usually,
these features provide the basis of a design land are thus employed to
determine the dynamic characteristics of a strectund its weight. For this reason,
weight minimization for reducing the response anai@ing resonance has always
been a major concern of design engineers. Mangiclaptimization methods and
practical software have been developing and moghem are very effective,
especially to solve the practical problems. Howdhey are a hard task to find a
global optimum solution for the system. To overcothis disadvantage, many
search algorithms have been developed for searcfunga global optimum
solution. One of the most popular methods is theete algorithm (GA) [1, 2].
The GA is a technique in the field of evolutionasgmputation and it is a
powerful and general global optimization method,ichhdoes not require the
strict continuity of classical search techniquestead it allows non-linearity and
discontinuity to appear in the solution space. Duwe the evolutionary
characteristics, the GA can handle all kinds okobye functions and constraints
defined on discrete, continuous, or mixed searcices However, the global
access of the GA requires a computationally randearch. So, the convergent
speed to the exact solution is slow. Furthermdre,doding of the chromosome
for a large dimensional problem will be very lomgorder to get a more accurate
solution. This results in a large search spacehag® memory requirements for
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the computation. To overcome these demerits, masgarchers have studied to
develop many hybrid genetic algorithms which coreldigenetic algorithm with
other ones [3, 4]. These can save computation d@ingefind the global solution as
far as it goes. However, new algorithms are reqae$dr better accuracy and
faster convergent speed to get an optimum solutioine complicated and big
structures like ship.

In this thesis, to search for the optimum solutad multi-peak function in
high accuracy and high speed, a new hybrid evaiatiyp algorithm is suggested,
which combines the merits of the popular programshsas GA, tabu search
method, response surface methodology (RSM) and lsimmethod. This
algorithm, in order to improve the convergent spéwmat is thought to be the
demerit of GA, uses RSM and simplex method. Thoongltation of GA offers
random variety, systematic variety can be secunesgh the use of tabu list of
tabu search method. Especially, in the initial s&@>A's convergent speed can be
improved by usindRSM which is using the information on the objectiuaction
acquired through GA process and then making regpsnsface (approximate
function) and optimizing this. The optimum solutizras calculated without the
evaluation of an additional actual objective fuantiand the GA’s convergent
speed could be improved. This method has been privée the efficiency by
applying traditional test functions and comparirgg tresults to GA. It also
confirmed that the global optimum solution is beiggarched efficiently by
applying the proposed algorithm to weight minimiaat where avoiding
resonance of the fresh water tank located on #weafethe ship was considered.
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2. Response Surface Methodology (RSM)

2.1 Introduction

RSM [5] is an optimization tool that was introduced in #egly 1950's by
Box and Wilson [6]. It is a collection of statisticand mathematical techniques
that is useful for developing, improving, and op#img processes. These
techniques are employed in order to estimate thien@ation function and to find
search directions to sub-regions of the domain \mtiproved and hopefully
optimal solutions.

The most extensive applications of RSM are in paldir situations where
several input variables potentially influence sqmeeformance measure or quality
characteristic of the process. Thus performancesureaor quality characteristic
is called the response. The input variables areetioms called independent
variables, and they are subject to the controhefdcientist or engineer. The RMS
usually contains three stages: 1) design of exmmris) 2) response surface
modeling through regression, and 3) optimizatidme Tain advantage of RSM is
the reduced number of experimental trial needeglviduate multiple parameters
and their interactions. The experimental data wédized to build mathematical
models using regression methods. Once an apprepgiroximating model is
obtained, this model can then be analyzed usingwsoptimization techniques
to determine the optimum conditions for the procéssgyeneral, the engineer is
concerned with a product, process, or system invgla responsg that depends
on the controllable input variableg, &,, ] &, . The relationship is

y= (&, &, &) +e (5.1)

where the form of the true response functiénis unknown and perhaps very

complicated, anct: is a term that represents other sources of véitialriot
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accounted for inf . Usuallye includes effects such as measurement error on the
response, background noise, the effect of otheablas, and so on. Usuallyis
treated as a statistical error, often assuming have a normal distribution with
mean zero and variance?. If the mean of is zero, then

E(y) == E[ 1(&, &, IDE )]+ EE€)= f(&, &, MNE,) (5.2)

The variables &, ¢,, )¢, in Eq. (5.2) are usually called the natural
variables, because they are expressed in the hanita of measurement, such as
degrees Celsiu%{), pounds per square inch(psi), etc. In much RSMkwibis
convenient to transform the natural variables tdecb variables,, x,, ] x,
which are usually defined to be dimensionless withan zero and the same
standard deviation. In terms of the coded varigltles response function (5.2)
will be written as

=104, %, M x) (5.3)

Because the form of the true response funcfias unknown, we must
approximate it. In fact, successful use of RSMritically dependent upon the
experimenter’'s ability to develop a suitable appration for f. Usually, a
low-order polynomial in some relatively small regiof the independent variable
space is appropriate. In many cases, either adids&r or a second order model is
used.

The first-order model is likely to be appropriatbem the experimenter is
interested in approximating the true response serfaver a relatively small
region of the independent variable space in a imcatvhere there is little
curvature irf.

For the case of two independent variables, thé-dider model in terms of

the coded variables is

n=p6,+Bx+pB,X, (5.4)
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The form of the first-order model in Eq. (5.4) isnsetimes called a main
effects model, because it includes only the mafaced of the two variablesq
and x,. If there is an interaction between these varmhilecan be added to the

model easily as follows:

N =06, + BX + B X,+ B XX, (5.5)

This is the first-order model with interaction. Adgd the interaction term
introduces curvature into the response function.

Often the curvature in the true response surfacgrag enough that the
first-order model (even with the interaction termcluded) is inadequate. A
second-order model will likely be required in theg®ations. For the case of two

variables, the second-order model is

1= By + B+ BoXo* BuXs + 8,5+ B XX (5.6)

This model would likely be useful as an approximatto the true response

surface in a relatively small region.

The second-order model is widely used in respoodgace methodology for

several reasons:

1) The second-order model is very flexible. It ¢ake on a wide variety of
functional forms, so it will often work well as approximation to the
true response surface.

2) It is easy to estimate the parametgfsin the second-order model. The
method of least squares can be used for this perpos

3) There is considerable practical experience atdig that second-order
models work well in solving real response surfaabems.

In general, the first-order model is

n =By + B+ L%+ I B %, (5.7)

and the second-order model is
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’7::30"’2'81)(1"’2'811)52"’224 XX (5.8)

i=1j=2

In some infrequent situations, approximating poiwreds of order greater

than two are used. The general motivation for gmpahial approximation for the
true response functiohis based on the Taylor series expansion aroungdire
X0 %00, 1) % ,. FOr example, the first-order model is developedmf the

first-order Taylor series expansion
fOf( m x )+
X101 X0 X0 ax, e

+0f +|:|]]]}af

- — 5.9
ox, % ox * 5:9)

wherex refers to the vector of independent variables>and that vector of
variables at the specific point,, X,,, (I} % ,. In Eq. (5.9) we have only included
the first—order terms in the expansion, thus immythe first-order approximating
model in Eq. (5.7). If we were to include secondesrterms in Eq. (5.9), this
would lead to the second-order approximating modélg. (5.8).

Finally, let's note that there is a close connetti®@tween RSM and linear

regression analysis. For example, consider the mode

Y=L6t BX+ Byx+ I B X +& (5.10)

Thef'’s are a set of unknown parameters. To estimatevéihees of these
parameters, we must collect data on the system revestadying. Because, in
general, polynomial models are linear functionghaf unknowri’s, we refer to
the technique as linear regression analysis.

Optimization theory consists of a body of numeritathods for finding and
identifying the best candidate from a collectionatternatives without having to
explicitly evaluate all possible alternatives [lf].the context of RSM, empirical
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(mathematical) models are built using regressiahrgues on the results of a
selected set of experiments. A well fitted modgiresents, approximately, all
possible experiments with their experimental fextaithin the preset bounds.
Through the use of optimization techniques, theinmpin of the model
corresponding to the experiment with conditiong thi#l presumably produce the
best result can thus be found. The final step ispé&sform experimental
verification based on the optimal, experimental dibons. Among the
optimization techniques, the steepest ascent (scem¢) is commonly used, but
the method is relatively inefficient and is a locgitimization technique capable
of finding only local optima. Global optimizatioeahniques such as GA, tabu
search method, etc., although even less efficlean the steepest ascent from the
viewpoint of convergent speed, are consideredhigthesis, tabu search method

is used as global schemes.

2.2 Sequential Nature of the Response Surface Metimogy

Most applications of RSM are sequential in natwédows:

Phase 0 At first some ideas are generated concerning hwviéctors or
variables are likely to be important in the resgossrface study. It is usually
called a screening experiment. The objective of tactor screening is to reduce
the list of candidate variables to a relatively feavthat subsequent experiments
will be more efficient and require fewer runs ostte The purpose of this phase is
the identification of the important independentiables.

Phase 1 The experimenter’'s objective is to determinehd turrent settings
of the independent variables result in a valuehaf tesponse that is near the
optimum. If the current settings or levels of timelependent variables are not
consistent with optimum performance, then the arpanter must determine a set
of adjustments to the process variables that widventhe process toward the
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optimum. This phase of RSM makes considerable fifeedirst-order model and
an optimization technique called the method ofsteeascent (descent).

Phase 2Phase 2 begins when the process is near the wptivt this point
the user usually wants a model that will accuragglgroximate the true response
function within a relatively small region aroundetioptimum. Because the true
response surface usually exhibits curvature nearogptimum, a second-order
model (or perhaps some higher-order polynomial)ukhde used. Once an
appropriate approximating model has been obtaitinesl model may be analyzed
to determine the optimum conditions for the process

This sequential experimental process is usuallyfopmed within some
region of the independent variable space called dperability region or
experimentation region or region of interest.

3. Radial Basis Function Networks

Radial basis function (RBF) networks are feed-fadvaetworks trained
using a supervised training algorithm. They areciy configured with a single
hidden layer of units whose activation function sslected from a class of
functions called basis functions. While similar back propagation in many
respects, radial basis function networks have séwavantages. They usually
train much faster than back propagation networkseyTare less susceptible to
problems with non-stationary inputs because ofliblavior of the radial basis
function hidden units.

Radial basis functions were first introduced by Blbwo solve the real
multivariate interpolation problem [8]. This probieis currently one of the
principal fields of research in numerical analy$msthe field of neural networks,
radial basis functions were first used by Broomhaad Lowe [9]. Other major
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contributions to the theory, design, and appliceti@f RBF networks can be

found in papers by Moody and Darken [10], RBF neksohave proven to be

useful neural network architecture. The design BB& network in its most basic

form consists of three separate layers. The ingyerlis the set of source nodes
(sensory units). The second layer is a hidden laf@igh dimension. The output

layer gives the response of the network to thevatitin patterns applied to the

input layer. The transformation from the input spac the hidden-unit space is
nonlinear. On the other hand, the transformati@mfithe hidden space to the
output space is linear. A mathematical justificatiof this can be found in the

paper by Cover [11]. Cover states that a pattemssdication problem cast in a

high-dimensional space is more likely to be lingadeparable than in a

low-dimensional space. This statement is callede€evheorem on separability

of patterns. It is also the reason for making timeethsion of the hidden-unit space
high in an RBF network.

The major difference between RBF networks and Ipgopagation networks
(that is, multilayer perceptron trained by back gagation algorithm) is the
behavior of the single hidden layer. Rather thangughe sigmoidal or S-shaped
activation function as in back propagation, thedeia units in RBF networks use a
Gaussian or some other basis kernel function. Babtken unit acts as a locally
tuned processor that computes a score for the nbateeen the input vector and
its connection weights or centers. In effect, thsi® units are highly specialized
pattern detectors. The weights connecting the hamis to the outputs are used to
take linear combinations of the hidden units todpie the final classification or
output.

3.1 Cover’'s Theorem on the Separability of Patterns

Before we talk about the radial basis function meks, we need to introduce
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the term “separability of patterns.” The Cover'sedhem gives a detailed
description of the separability of patterns. THiedrem explains how a radial
basis function network can perform a complex pattetassification task.
Considering the Cover’s theorem, Haykin declarest th radial basis function
network performs a complex pattern-classificati@skt by transforming the
problem into a high-dimensional space in a nonlimeanner [12]. He gives a
detailed definition of Cover’s theorem as follows:

Consider a family of surfaces, each of which ndlyidivides an input space
into two regions. LetX denote a set ofN patterns (points)x;, x,, I X,
each of which is assigned to one of two clas®€s andX ™. This dichotomy
(binary partition) of the points is said to be sa¢e with respect to the family of
surfaces if there exists a surface in the famiat geparates the points in the class
X* from those in the clas$™. For each pattem[ X , define a vector made up
of a set of real-valued functiofy (x)|i =1, MM}, as shown by

B(x) =[4,(X), $,(x), I @, (x)]' (5.11)

Suppose that the patterr is a vector in ap -dimensional input space. The
vector ¢(x) then maps points inp -dimensional input space into corresponding
points in a new space of dimenshn We refer to ¢.(x) as a hidden function,
because it plays a role similar to that of a hiddeit in a feed forward neural
network. A dichotomy{X*, X‘} of X is said to beg -separable if there
exists an M -dimensional vectorw such that we may write [11]

W @(x) =0, xOX*

and

W@(x)<0, xOX~ (5.12)

The hyperplane defined by the equation
W' g(x) =0 (5.13)
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describes the separating surface in thepace. The inverse image of this

hyperplane, that is,
{x:w'p(x)=0} (5.14)

defines the separating surface in the input space.

After giving the definition of the Cover’s theoremn separability of patterns,
Haykin gives a mathematical explanation for theslaf mapping explained
above. The separating surfaces corresponding to reappings are referred to as
rth-order rational varieties. A rational variety @fderr in a space of dimension
pis defined by theth-degree homogenous equation in the coordinatefeof

input vectorx, as illustrated by

2. &g XX Ok =0 (5.15)

0<i, <i ,<[MR&i, <p

where x is the i th component of input vectar, and X, is set equal to unity in
order to express the equation in a homogenous f8ome examples of this type
of separating surfaces are hyperplanes (first-ordéonal varieties), quadrics
(second-order rational varieties), and hypersphégaadrics with certain linear
constraints on the coefficients). Fig. 5.1 illugtsa the examples for a

configuration of five points in two dimensions

(a) Linearly separable dichotomy
Fig. 5.1 Three examples ap -separable dichotomies of different sets of five

points in two dimensiongJontinued
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X
(b) Spherically separable dichotomy

O

> O

oG
(c) Quadrically separable dichotomy

Fig. 5.1 Three examples ap -separable dichotomies of different sets of five

points in two dimensions

Polynomial separability, as defined here, can besiciered as a natural
generalization of linear separability. Haykin pme$ an important point, which
states that given a set of pattexns an input space of random dimenspna
non-linear mappingg(x) of high enough dimensioM can be found so that
linear separability in the space is obtained. Tleet rsection talks about the
interpolation problem which has great importancesolving the nonlinearly

separable pattern classification problem.
3.2 Interpolation Problem

This section talks about the interpolation probkiat allows us to solve the
nonlinearly separable pattern classification probl@he interpolation plays the
final role in solving the problem since it findsettinear weight vector of the
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network.

In solving a nonlinearly separable pattern clasation problem, there is
generally a practical benefit in mapping the ingpace into a new space of
sufficiently high dimension. This is an importariqt that comes forth from
Cover’s theorem on the separability of patternd. s consider a feed forward
network with an input layer, a single hidden layand an output layer having a
single unit. The network can be designed to perfamonlinear mapping from the
input space to the hidden space, and a linear mggmm the hidden space to the
output space.

The network represents a map fropr-dimensional input space to the single
dimensional output space, expressed as

s:RR - R (5.16)
The theory of multivariable interpolation in higiwtensional space has a

long history starting with Davis [13]. The interptibn problem, in its strict sense
can be stated as follows:

Given a set of N different points {)gDRp|i:1, 2,0 N} and a
corresponding set of N real numberd OR|i=1 2,00 N} , find a

functionf :R" - R that satisfies the interpolation condition [12]:
f(x)=d i=1,2,0ON (5.17)

The interpolating surface (i.e. functién has to pass through all the training
data points. The radial basis function techniquesists of choosing a function
that has the following form given by Powell [8].

(9= we( - x) (5.18)

where {#(|x-x|)]i=1 2,@MN} is a set of N random (usually nonlinear)
functions, known as radial basis functions, and|||represents a norm that is
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generally Euclidean.

The known data pointsx OR®, i =1, 2, [N are the centers of radial basis
functions [8].

If the interpolation conditions Eq. (5.17) are ined in Eq. (5.18), the
following set of simultaneous linear equations &&nobtained for the unknown

coefficients (weights) of the expansion :

¢11 tee ¢1N Vvl dl

A I (5.19)
ay o Auw [ W] [ dy
where ¢; =g(x - x/) j,i =1, 2, [N (5.20)
Let
d=[d, d,, md,]’ (5.21)
w=[w;, v, (v, ] (5.22)

The vectorsd and w represent the desired response vector and lineghtv
vector, respectively. Lep denote anN -by-N matrix with elementsg, :

¢={9,]i.i =1 2,mmN} (5.23)

The matrix ¢ is called the interpolation matrix. Eq. (5.19) dawritten in the
compact form:

PW = X (5.24)
Assuming thatg is nonsingular and therefore that the inverseimar™ exists,
we may go on to solve Eq.(5.24) for the weight gestas shown by

w=¢"x (5.25)

Micchelli [14] gives a remarkable property foclass of radial basis functions

which obtains a positive definite interpolation mat ¢ . This remarkable

property can be expressed as follows:
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Let x, %, I x, be distinct inR”. Then the N -by- N interpolation
matrix ¢ whose jith elementisg, :¢(ij —x”), IS nonsingular.
The common examples of this specific class of tduhais functions are given as
follows:

1) Multiquadrics:
@(r)=(r?+c?"* forsomec>0 and rOR (5.26)

2) Inverse multiquadrics:

1
¢(I’) :m forsomec>0 and rdOR (527)
3) Gaussion Functions:

I,2

207

#(r) =exp ) forsome >0 and rdR (5.28)

The multiquadrics and inverse multiquadrics arénlzhte to Hardy [15]. For
the radial-basis function listed in Eq. (5.26) tq. £5.27) to be nonsingular, the
points X, x,, Ix, must all be different (i.e., distinct). This isl @hat is
required for nonsingularity of the interpolation tnvag , whatever the values of
size N of the data points or dimensionalitp of the vectors (points) .

The inverse multiquadrics of Eq. (5.27) and the $S@n function of Eq.
(5.28) share a common property: They are both iloealfunctions, in the sense
that ¢(r) -~ 0 as r - «. In both of these cases the interpolation mawixis
positive definite. By contrast, the multiquadridskm. (5.26) are nonlocal in that
@(r) becomes unbounded as- « ; and the corresponding interpolation matrix
¢ has N -1 negative eigenvalues and only one positive eigemy&owever, is
that an interpolation matrixp based on Hardy’s multiquadrics is nonsingular,
and therefore suitable for use in the design of RB##works.

In this thesis, Gaussian function which is most ocanly used. It can be

used to approximate a smooth input-output mappiitg greater accuracy than
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those that yield a positive-definite interpolatimatrix

4. Concept of RSM-based Hybrid Evolutionary Algorithm (RHEA)

The main idea is to reduce the evaluation humbehefobjective function
by using RSM which is one among the designed ewparis to reduce the
repetitive number, since it is one of the demasfteptimum design. The RHEA
consists of four main categories: GA for governimg general algorithm; tabu-list
for systematic variety of solution; RSM for impragi convergent speed for
getting a candidate solution; modified simplex noeftior local search. Fig. 5.2
represents the flowchart of the RHEA. The left safléhe flow chart shows global
search region that is similar to the flowchart ¢dnslard genetic algorithm,
excluding the function assurance criterion (FAQ), (Bart A), tabu-list (part B),
and RSM (part C). These parts offer candidate mwisf which are considered as
initial search points in the local search regiohe Tight side represents the local
search region. This part finds out the optimum sofuby the modified simplex
method, which use the final solution by resultglaibal search as initial search
point.

4.1 Sh (a set of History)

Part A in Fig. 5.2 shows the Sh region which prevtte well distributed
points to make a response surface (refer to FR). $he Sh is constructed the
following procedures:

Stepl: Read individuals from the current population
Step2: NSh = NSh + pop_size
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where NSh and pop_size mean size of a set of hisiod size of
population, respectively
Step3: if NSh < Nsh,__,, then go to Step 7
where Nsh,,, means maximum size in Sh.
Step4: Evaluate the dense grade (DG) for each individual
DG =max (d, )+ mean( ¢)
where d, is Euclidian distance between and k;

Hx“) - x‘k)H, i =1, MM NSh; i#k

Step5: Rank the individuals for DG
Step6: Select the higher ranked firddsh,,, individuals.
Step7: Store the solutions in Sh and go out.

4.2 Tabu List

Part B in Fig. 5.2 shows that the tabu list is &eelcto have a diversity of
solution (refer to Fig. 5.4). The one individual ialh is selected in GA’s
individuals after crossover is reviewed to secure diversity of solution. If
diversity of solution is secured, we select thevidial and if not, we repeat the
crossover process. That is, individual is selegthdn it is located far away from
the dense area. So, a dense grade criterion di@oland acceptance criteria of
individual are made as follows:

1) Definition
DOR" : Normalized domain, wheit is number of design variables
V OR" : Adomain having the equally divided bysh _ from D.

Let |V | is size ofV, then
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I N

V= = (5.29)

| : One side length dd

OR : One side Euclidian length of hyper-polygorMias follows:
I

NS (5.30)

2) To decide the acceptance of individual, an asipim function for a given
target design vector is represented as follows:

d=\NV|=

Nsh Nsh
f,=1-> h(r) = 1-) h(r)=e"> (5.31)
k=1 k=1

Leth(r) = €, wherer = |X, - X[, X, istargetindividual position
3) To set they, it is assumed that the following ideal conditioase
satisfied.

1 Shis full

1 All members of Sh are placed in the center of teh, , sub-domains
which are supposed to have same hyper-volume ahdonbave any
cross set of each other and to fit the donambsolutely. That is,

VOV, =¢ %], V,UV,UIUV,, =D (5.32)

Then, set a§ = £, where f means acceptance probability criterion.
4) Find y from the following equation.

Nsh

fi=f=1-Y 6" = 1-[2Ne”+R] (5.33)

The first term on the right side corresponds todlusest member of Sh to
the target individual. The second terR, is the residuals. The nature laff),

which is exponentially decreasing along with dis&s) make® be much smaller
than the first term, nameR can be neglected.
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f =p=1-2N¢e” (5.34)

In [ﬁ:e“’"} (5.35)

y=-2in5) (5.36)

In the case of considering first and second temwasgan write as follows:

Nsh

f,=f=1- Y " =1-| 2N & + 2N(N-1) &*7 + R] (5.37)
k=1

5) Aspiration criteria
1 Ifrand > f. then accept, where rand = [0 1]
1 If trial number > maximum trial number (where, 56)
If target individual is not satisfied with above paation criteria, one
crossover is generated again. And the procespéated.

Example: This example is to get
Set Nsh_,=9,N=2, I=1and 8 =0.5.

From Eq. (5.30) and Eq. (5.36),

_ _ | _1

J= /|v|__N = = 0.3333
—_— —_— = —_1 —_— =

y= 5| (ZﬁN 1/3In( ,) =62383

Fig. 5.5 shows the graph of aspiration functiomgsibove results.

The procedure is summarized as follows:

Stepl: Read N-1) individuals from selection process.
Step2: Crossoverl-2) individuals according to the crossover proligbil
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and go to step 5.
Step3: One individual selected for tabu-list.
Step4: If rand >f,, then go to step 5, otherwise return to step 3
Step5: Add generated individuals.

4.3 RSM (Response Surface Methodology)

Part C in Fig. 5.2 represents an RSM region. langely divided by 3 parts.

Firstly, considering the boundary condition in thesponse surface for
optimization, the upper and lower values of designables can be considered in
this calculation process. However, the merits & thethod are diminished when
addition constraints like natural frequency are sidered, because it has to
evaluate the objective function to get the resfriisn external calculations. To
overcome this problem, this thesis used Sh asinigidata and inferred the
satisfaction of constraint condition using RBF nmtkv [16]. In this way,
calculation of actual problems could be avoided.

Secondly, it makes a response surface from Sh mgubke least square
method (LSM) as shown in Fig. 5.6 C2

Finally, the optimum solution of the response stefé calculated by using
tabu search method as shown in Fig. 5.6 C3. Tceas& optimization speed,
gradient based algorithm can be used. Howevedhgions satisfying constraint
condition cannot be guaranteed since the constraimdition is difficult to define
precisely. Also we adopt tabu search method whiae An excellent initial
convergent speed, because the implementation ake#ponse surface concept is
to search for the approximate candidate solution.

The generated optimum solution in Fig. 5.6 C3ddeal with other existing

GA's individuals according to the sequence of FH@ and fitness calculation is
performed.
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4 .4 Final Global Candidate Solution

Each candidate for optimum solutions is decidedhgFAC [17]. TheFAC

defined by Eg. (5.38) is a standard value to egdérttae convergence of the initial
candidate.

€7, £
FAC= — -
(f, f)(f )

(5.38)

where f, is the row vector, formed by the fitness valueshefindividuals at the
i th generation andf " is the transpose off .

The row size depends on the number of optimum isoisitaccording to a
designer’s requirement. Theoretically the rangBAC is from 0 to 1.0. When the
value is equal to 1, the convergence of optimirai® completed. The value,
however, is difficult to converge to 1.0 considgrihe many candidate solution to
evaluate thé&AC. Therefore, in this thesis, tlFAC is set to 0.9999.

5. Procedures of RSM-based Hybrid Evolutionary Algorihm (RHEA)

RSM-based hybrid evolutionary algorithm (RHEA)nsroduced as follows:
Step 1.The parameters are set up as follows:

Pop_sizepopulation size

P.: cross probability

P,: mutation probability

M,: selection method

M. : crossover method
Step 2:Generate the initial chromosome (k=1, 2,[Il] pop_ sizg
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randomly with n elements.
Vi = [Xq X, [X]

When generating the chromosomes, following conaigtishould be satisfied:
The element value range of each chromosome idisdtas below,

L ]
S X < X.
J_Xl_)&l

Each chromosome satisfies all constraints as fallow
g (%) =0, i

When a chromosome does not satisfy the conditithres) the chromosome

has the lowest fitness. So it has a low possibiityselection to the next

generation after all.

Step3: Generate the initial solutions, and estimate trairg and set up a

parameter range

Step4: Evaluate the fitness of individuals

Step5: Evaluate thd=AC, if it is satisfied, go to step 13 otherwise gastep
6

Stepé: Update Sh :Sh={ (,,,F)X,0R', FO §

where Xy =[x, %, L) X, (0 X]

Step7: Selection
Step8: Crossover and check tabu list
Step9: Construct RS ( Response Surface) from Sh:

m=%+im%+i%%+i a xx (5.39)

where a,, a,

a; are coefficients calculated by LSM
Step10: Train RBF network by Sh to construct the constraonditions

approximately.
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Step 11: Calculate the optimum design on the responseaceirby tabu
search method and generate one individual baséd.on

Step 12:Mutate and go to step 4

Step 13 Search the optimum solutions by the local corregioin search
(modified simplex method) for best candidate.

6. Numerical Examples of Several Function Optimizatios

Three test functions are used to verify the efficieof the proposed hybrid
algorithm: the first one is the four-peak functiovhich has one global optimum
with three local optima; and the second one is Rose’s function which is
known as banana function and has just one glokdaham; and the last one is the

Rastrigin function which has one global minimumha220 local minima.

6.1 Four-Peak Function[18]

% -0.1)2

o) x ook 5%  (5.40)

logy, (o.zsy(Lo'z

f(x, x)=e o) xcos (1.87% ) +
(04 < x,%x < 1]

This test function has a global optimum solutidi{x) = 1.954342 atx, =0,
X, = 0, and three local optima solutionis(x) = 1.807849, 1.705973, 1.559480
as shown in Fig. 5.7. Conventional gradient baskalimbing algorithms can be
easily stuck to local optimum because of their delpacy on start point, while

global search algorithm finds global optimum in ge.

logy (0.25){
e
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Fig. 5.7 Four-peak function

6.2 Rosenbrock Function19]

f(x, %)=100(x - %Y+ (- xF, €20< x,x< 2C (5.41)

This function is called banana function whose shapbe one like Fig. 5.8.
The objective of this function is to find the vdi@ x, which minimizes the
objective function. This function has only one apiim solution f(x) =0 at x,
= 1.0 and x, =1.0. Itis difficult to find an optimum solutiamecause of a valley
phenomenon [20].
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Fig. 5.8 Rosenbrock function

6.3 Rastrigin Function [21]

This function is often used to evaluate the gla@arch ability because there
are many local minima around the global minimunslaswn in Fig. 5.9. It is not
easy to find a global minimum within a limited fuimn call. The objective of this
example is to minimize a function defined by Eg48&. This function has 220
local minima and one global minimunfi(x) =0 at (0, 0).

2
f(x) =2x10+> {x*-10cos(2ri )} (-5.0 £ X, X, < 5.0) (5.42)

i=1
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Fig. 5.9 Rastrigin function

Figs. 5.10-5.12 represent the convergent trerabjgfctive function for each
test function. According to the results, GRSM (G/AMNR) and GRSMT
(GA+RSM+Tabu list) algorithms which are based orivR&ve faster convergent
speed and more accurate solutions than GA, whitldated the efficiency of
RSM on the calculation. Also tabu list enables @gence to solutions quickly
on the multi-peak function due to the systematiediity of solution. The setting
parameters for each algorithm are listed in Tahle Fable 5.2 shows the
comparison of optimization results for the abowatest three test functions. The
evaluation number means total evaluation numbehefobjective function used
in optimization procedure, and it is directly profan to the total calculation time.
Fig. 5.13 shows the contour for optimum solutiobtamed by RHEA. According
to the results, for all test functions, RHEA camegbetter solutions than GA on
accuracy and convergent speed. For the Rastrigictiin, which is very useful to
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evaluate the global search ability because therenany local minima around the
global minimum, RHEA found global minimum with highaccuracy and less
elapsed time compared to GA. According to theseltgesthe proposed new
hybrid algorithm is a powerful global optimizati@igorithm from the view of

convergent speed and global search ability.
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Fig. 5.10 Convergent trend of objective functionFpeak function)
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Table 5.1 Set parameters for GA and RHEA

Parameters Value Remarks
No. of generation 100
Population size 100
Crossover probability GA & RHEA
Mutation probability 0.1
Size of Sh for RSM (Nshy 1000
Step size for R-tabu 10 RHEA only
Count number for R-tabu 3

Table 5.2 Comparison of optimization results

Test Exact Results No. of
function solutions Methods evaluation
f(x) (%,%)
2.403 e-3
GA 1.927 2787 e-3 2353

Four-peak f(x) = 1.9543

function X =X,=0 2.736 e-3

RHEA 1927  ,7/35¢.3 459

9.960 e-1
GA 1.640 e-5 1046
Banana f(x) =0 9.960 e-1
i =x,= 1.0
function =x =1
R RHEA 0.0 419
1.0
1.408 e-4
GA 1.586 e-4 2109
Rastrigin ~ f(x) =0 8.15e-4
function X, =X,=0 -3.076 e-9
RHEA 0.0 7.747 e-10 514
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Fig. 5.13 Optimum solution obtained by RHEA

7. Application for Optimum Design of Fresh Water Tankof Ship

In the engine room and the rear of the ship, thegeso many tank structures
contacting with fresh water, sea water or oil. Ateese possibly subject to the
excessive vibration during voyage because theyaar@nged around the main
excitation sources of ship such as the main engire propeller. If problems
occur, it takes a lot of cost, time and effort taprove the situation because the
reinforcement work for empting the fluid out of ttenks, additional welding and
special painting and so on is required. It is tfareevery important to predict the
precise vibration characteristics of the tank dtmes at the design stage.
Optimum design needs to be applied. Especially whenstructure is in contact
with fluid much analysis time is taken. So, a nedrid optimization algorithm is
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required for getting a short analysis time and eateusolution. In this thesis,
optimum design of a fresh water tank in an acthg s carried out to verify the
validity of the proposed optimization algorithm (EKW) and the results are
compared to that of GA.

7.1 Vibration Analysis of Fresh Water Tank

It is difficult to predict the vibration responsé @ local structure due to the
complicated transfer mechanism of excitation fand the difficulty of assuming
the damping ratio. Traditionally, therefore, thération analysis considering the
design of avoiding resonance is conducted to ptethenocal vibration.

In this thesis, the vibration analysis of the lfregater tank is carried out
using NASTRAN which is a commercial finite elem@mbgram and widely used
for big structures like ships. Fig. 5.14 shows thedel and arrangement of the
fresh water tank. Fig. 5.15 shows the design vlesabnd boundary condition of
the fresh water tank. Considering the precisioramdlysis and time consuming
modeling process, the range of modeling of frestem@nk is constrained to one
side of the tank. The boundary conditions for theel are specified: the simple
supports are used to the tank boundary area wisiatomnected to the other
bulkhead and deck. Table 5.3 shows the specificationain excitation sources.

In general, the design for avoiding local structtegonance in ships requires
that the natural frequency of the structure mudinmetimes higher than the blade
passing frequency of the propeller under the marimpm of the main engine. In
this thesis, design target frequency is set as eld@02 Hz which considers
safety margins and twice blade passing frequentlyeopropeller (12.13Hz).

Fig. 5.16 shows the first three modes and natuegjuencies of the fresh
water tank by NASTRAN. These three modes frequeodgurred on the fresh

water tank during voyage. Especially, the 1st m@8€0 Hz) is a stiffener
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(stringer) mode which generates a strong vibratoma much effect on the
structure. In this model, the 1st natural frequesicthe structure is also within the
resonance region where twice blade passing frequehpropeller is 12.13 Hz.
Therefore, the natural frequency of structure isdeel to be increased up to the
target frequency under the condition that the tenKully filled. The natural
frequency of structure which is contacting withidlican be changed according to
the water line of the tank. So, in order to desagsafe structure, the three modes

of the fresh water tank are concerned in this study

LR ELEV (P}
TL — TW' T_mm.u
I ) il [ #ee
SERCTANN
Side shell N % ;" A
AR=R q
Bottom _E/ Hj_ﬂ 7B
FR5 FR13

FR5 FR13

Fig. 5.14 Model and arrangement of fresh water tank
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P1
[~ S4 Stiffener 4
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1 — S
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3 —] S6 Stiffener 6
IS S7 Stiffener 7
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N~——1
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v v Bottom
P2 Plate 2
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Fig. 5.15 Design variables and boundary conditiohfresh water tank

Table 5.3 Specification of main excitation sources

itati Excitation
Excitation MCR
source Order  Freguency
3rd 455 Hz
Main engine
(6S 70MC-C) 4th 6.07 Hz
91rpm  6th 9.10 Hz
Propeller 1st 6.07 Hz
(Blade: 4EA) 2nd 12.13 Hz
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(a) 1st mode (8.60 Hz)

(b) 2nd mode (18.82 Hz)

(c) 3rd mode (19.17 Bz
Fig. 5.16 Mode shapes of fresh water tank
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7.2 Optimum Design of Fresh Water Tank

7.2.1 Formulation for Optimum Design
a) Design variables

The main vibration modes on the fresh water tar&k siffener modes in
transverse direction. One of the most importaniofads the stiffness of stiffeners.
In this study, the stiffener size and plate thidsef fresh water tank in Fig. 5.15
are defined as design variables in Eq. (5.43).

X={SSSSSSS PP}’ (5.43)
whereSandP mean stiffener sizand plate thickness, respectively.

b) Constraints

The web length of stiffenek,, is restricted as two categories such as Eq.
(5.44) and (5.45) according to the shipyard’s pecact

150 £ Ly < 450 mm for stiffenersy-S,) (5.44)

500 < Lw

IN

1000 mm for stringer) (5.45)

Also, the basic concept of local vibration desigrtie minimization of the
response at each point. However, it is difficult égaluate how much the
excitation force influences on local structure. Bothis study, natural frequency
of the structure is restricted as Eq. (5.46) whichsiders a safety margin of twice
blade passing frequency of the propeller.

on>14.02 Hz (5.46)

c) Objective function

The objective function combines linearly the weightfresh water tank with
natural frequency of structure like Eq. (5.47). Tigective is to get an economic
and sound structure to reduce the weight of s&ffeand to increase the natural

frequency.
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Minimize f(x) :a(ﬂjﬁﬁ(ﬂj (5.47)
W W,

where, @ and wo mean target and current natural frequency, resedgto and
S are weighting factorsu(= 0.5, = 0.5).

7.3 Optimization Results and Discussion

The optimum design was carried out to get an optsize of stiffener and
plate thickness on the fresh water tank to maintananti-vibration design of it.
Table 5.4 shows the results of the design variatbdgsre and after optimization.
It shows that the stringer S8 is increased by 78#bthe others by 4.0-52%. This
result indicates that the most reasonable modificatnethod is to increase the
stringer which has an effect on the decreasingpiaa of the vertical stiffeners. In
this case, however, the plate thickness does neg¢ hay effect on the natural
frequency of the structure. Table 5.5 shows thé&tian of natural frequency and
weight of structure before and after optimizatiéuocording to the results, the 1st
natural frequency increased by 163 % from 8.6HA4d2Hz, and the safety
margin with twice passing frequency of the progetlerrespondingly changed
from -29.1% to 11.56%. Therefore, the structurieae from resonance. Moreover,
the weights of stiffeners which are applied to design variables also decreased
in spite of higher natural frequency. In summahg tocal vibration problems
which require avoidance of structure resonanceutitrahe movement of natural
frequency without additional weight has been susfodly solved by the proposed
optimization method. Table 5.6 and Fig. 5.17 shdwe tcomparison of
optimization results between GA and RHEA. The ea@fuin number means a
total evaluation number of the objective functiosed in the optimization
procedure, and is directly proportional to the tetculation time. According to
the results, RHEA can give better solutions than dafaccuracy and convergent
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speed. These results lead us to draw the concltisairthe proposed new hybrid
algorithm is a more powerful global optimizatiorg@lithm from the view of

convergent speed and global search ability.

Table 5.4 Comparison of original and optimal desigmiables

Optimum Remarks

GA RHEA (RHEA)

Design variable  Original

S 200 214 207 4.0 %

S 200 320 223 12.0 %
S 200 253 285 43.0 %
S 200 325 283 42.0 %
S 200 328 303 52.0 %
S 200 277 251 26.0 %
S 200 281 230 15.0 %
S 550 893 947 72.0%
P1 11.0 10.7 10.3 -6.36 %
P> 11.0 10.6 10.0 -9.09 %
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Table 5.5 Comparison of results

Item Original Optimum Remarks
Natural frequency 8.60 Hz 14.02Hz 163 %
Weight 4883kg 4652 kg -4.73 %

Table 5.6 Comparison of optimization results

Natural , Obijective No. of

ltem Weight ) .
frequency function evaluation

GA 14.04 Hz 5001 kg  0.5547 1846

RHEA 14.02Hz  4652kg 0.5167 1638

Obijective function

" i " i " i "
0 500 1000 1500 2000
Number of function evaluation

Fig. 5.17 Convergent trend of objective function
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8. Conclusions

This chapter introduces an RSM-based hybrid ewataty algorithm, as a
new kind of a hybrid optimization algorithm thatnsbined the merits of the
popular programs such as genetic algorithm, tabtchenethod, response surface
methodology. This algorithm, in order to improves tbonvergent speed that is
thought to be the demerit of genetic algorithm sussponse surface methodology
and simplex method. Though mutation of GA offemsd@m variety, systematic
variety can be secured through the use of tabuHispecially, in initial stages,
GA's convergent speed can be improved by using R&%hod which use the
information on objective function acquired throu@i process and then making
response surface (approximate function) and opingizhis. An optimized
solution was calculated without the evaluation dffiional actual objective
function, and the GA’s convergent speed could bprawed. Efficiency of this
method has been proven by applying traditional figsttions and comparing the
results to GA. It also proved that the newly sugggslgorithm can effectively
find the global optimum solution by applying it ¥eeight minimization of fresh
water tank that is placed in the rear of ship desiigto avoid resonance. Finally it
is concluded that the proposed new hybrid algorif(RHEA) is a very powerful
global optimization algorithm from the view poinft@nvergent speed and global

search ability.
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VI. Conclusions

The objective of this paper is to propose algorghamd a framework for
optimum design in order to reduce the vibratiorlayge structures like ships. For
this purpose, two algorithms and a framework reldate optimization have been
developed in this study. They have been appliekriown test functions to
ascertain their usefulness, and their excellence ywoven. To prove the
practicality of the algorithms and a framework, @ggtimization work for global
and local vibration of ships constructed in shipding was executed.

Firstly, in order to optimize large structures,gptimization framework was
developed. This framework is able to choose frormynglobal optimization
methods and use NASTRAN as a solver. This framewag called OPTSHIP
and the merits of OPTSHIP are as follows.

 Large structures like ships can be easily optimized

* General-purpose analysis program, NASTRAN is used solver.
 Various optimization algorithms can be diverseljize¢d as an optimizer.
» Implementation of new optimization method creatgdh® user is easy.
* Objective functions can be diversely selected.

 Various design variables can be selected.

* Global optimum solution can be obtained.

To verify the reliability and performance of OPT$HlIthis algorithm is
applied to minimize the vibration level of the dheokise in the 2400 TEU
containership. The excellence of the result is enoby comparing it with the
optimization result of the existing NASTRAN optimizon module which is
widely used for general-purpose program.

Secondly, a non-linear integer programming (NIRjoathm based on GA
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was developed. This method enables the optimizadtrdirectly applicable in the
design of the stiffeners and steel plates whictd irse¢he shipbuilding. Especially,
taking the difference of the accuracy of optimurtuson and convergent speed
according to the initial parameters due to the attaristics of GA into account,
this thesis executed optimization of GA paramesamultaneously. Then, the
optimized GA parameters were applied to the olgecicture and it is proven that
parameters were an optimized value. The NIP algoritvas used to perform
optimum design of the compass deck structure dfiawith potential vibrations,

thus solving the vibration problems proved theogficy of the proposed method.

Thirdly, a new hybrid evolution algorithm (RHEA: RBbased hybrid
evolutionary algorithm) was developed. This metleagploys the GA as its base
in order to ensure tabu list of tabu search metthad provides a systematic
variety of solutions and to secure response sunfaethodology (RSM) which
provides a quick convergent speed. Mutation of Géviges random diversity,
but by implementing tabu list of tabu search metlaosgystematic variety could be
obtained. By using the information of objective dtion obtained in the process
of GA while implementing RSM, response surface (appnation function) was
created. By optimizing this, optimized solution waalculated without the
evaluation of additional actual objective functiamd the GA’s convergent speed
could be improved. The efficiency of this method lieeen proven by applying
traditional test functions and comparing the resuti GA. Finally, we can
conclude that the proposed new hybrid algorithm ERHis a very powerful
global optimization algorithm from the view poinft@nvergent speed and global
search ability.

Additionally, the outcome of this thesis is operafiplications on ships as well
as other complex structures. The optimization s a ship can be applied not
only to structures but also other various fieldd @ns useful to attain a dominant
position in the competition of future shipbuildingurthermore, an expanded
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application as well as a perennial development onoege efficient optimization
algorithm is necessary. Finally, by undergoing ntous experiences, | hope that

the enhanced version of the algorithm mentionadimthesis being developed.
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