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1 Introduction

Duality for multiobjective variational problems has been of much interest in recent
years, and contributions have been made to its development. Their optimum, i.e.,
proper efficiency, efficiency and weak efficiency etc., are the concept of solutions
that appears to be the natural extension of the optimization to a single objective to
one of multiobjectives. Hanson ([5]) extended the duality results of mathematical
programming to a class of functions subsequently called invex. Since that time, it
has been shown [12, 14] that many results in mathematical programming previously
established for convex functions actually hold for the wider class of invex functions.
Mond et al. ([12]) extended the concept of invexity to the continuous case and used

1t to generalize earlier duality results for a class of variational problems.

Mond and Smart ([13]) extended the duality theorems for a class of static non-
differentiable problems with Wolfe type and Mond-Weir type duals, and further
extended these for the continuous analogies. Mishra and Mukherjee ([10]) extended
the work of Mond et al. ([12]) for multiobjective variational problems which in
particular extended and earlier work of Bector and Husain ([5)) for invex functions.
Jeyakumar and Mond ([6]) introduced a wider class than that of invex functions
subsequently known as V-invex functions, which preserves the sufficient optimality
and duality results in the scalar case, and avoids the major difficulty of verifying that
the inequality holds for the same function. Mukherjee and Mishra ([10]) extended

the work of [6] to variational problems with the concept of weak minima.

Recently, Kim and Kim ([7]) established duality relations for nondifferentiable

multiobjective variational problems with inequality constraints assumptions by em-



ploy a characterization of efficient solution due to Chankong and Haimes ([3]). The
purpose of this thesis, Wolfe and Mond-Weir type duals for a class of nondifferen-
tiable multiobjective variational problems with equality constraints are formulated.
Under convexity assumptions on the objective and constraint functions involved,
weak and strong duality theorems are proved to related properly efficient solutions

for primal and dual problems.

This thesis is organized as follows: Section 2 gives notations, definitions of con-
vexity and necessary optimality conditions for single objective variational problems.
In Section 3, we establish duality theorem of Wolfe type under the conditions of
convex functions. Using the concept of proper efficiency. In Section 4, in the same
way of Section 3, we establish duality theorem of Mond-Weir type for a nondifferen-
tiable multiobjective variational problem. In Section 5, some problems concerning

to these variational problems are introduced.

2 Preliminaries and Notations

The following convention for vectors z and y in R* will be used:

T>y<=ux; >y foralli=1,.-- n,
r2y<=zr; 2y foralli=1,--- n,

T2y 2y foralli=1,--- n, butz#y,

x #y is the negation of z > y.

Throughout this paper, we will use the following notations.
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Let I = [a,b] be a real interval, let f := (f!,---, f?) : Ix R* x R* — RP, g :=
(@ ,g™) : IXxR*"xR* > R™ and h := (h!,--- h%) : I x R" x R* — RY
be continuously differentiable functions. In order to consider f(t,x(t),#(t)), where
x : I — R is differentiable with derivative &, denote the partial derivatives of f by

G P .

fo=

Let C'(1,R™) denote the space of continuous functions ¢ : I — R™, with the uniform
norm; C1(I,R™) is the cone of nonnegative functions in C(J,R™). Denote by X
the space of piecewise smooth functions  : I — R", with the norm ||z|| = ||z(|oc +

| Dz||oo, where the differentiation operator D is given by
t
u=Dr < z(t) =« +/ u(s)ds,

where o is a given boundary value: thus D = d/dt except at discontinuities. For
each t € I, let B;(t) be a positive semidefinite n x n matrix with B;(-) continuous

on/, 1=1,2,---,pand the symbol T denotes the transposition.

Our problem is the multiobjective variational problem (VP) defined as follows;
t1 1
(VP) Minimize (/ [f‘ (t,z(t), 2(t)) + (z(t)T B, (t)m(t))i]dt, s
to
131 1
[ 720,200 + w0500 )
to

subject to z(to) = zo, z(t1) = x4, (1)
9(t, z(t), z(t)) 2 0, h(t,z(t),2(t)) = 0,t € I. (2)

Let Xy be the set of feasible solutions for (VP), that is,

Xo:={z € X | z(to) = 0o, z(t1) = z3, g(t,z(t), z(t)) 2 0, h(t, z(t),z(t)) = 0,
Vitel}.



By using the generalized Schwarz inequality, we derive the following lemma in

order to prove the weak duality theorems for multiobjective variational problem

(VP).

Lemma 2.1 Let A(t) be an n x n positive semidefinite (symmetric) matriz, with

A(:) continuous on I, and w(t)T A(t)w(t) £ 1. Then

/ tl(az(t)TA(t)x(t))%dt > / ; ()T A(t)w(t)dt.

to

Proof. With the generalized Schwarz inequality, we obtain

/t (@O A2 ()T Altw(e) bt 2 / 2(t)T At w(t)dt

Since w(t)T A(t)w(t) £ 1,

| eraweniaz [ apua

to

Definition 2.1 (1) A point 2* € X, is said to be an efficient solution of (VP) if

there exists no other feasible point x € Xo such that

Jeo [f"(t, z(t), &(t)) + (a:(t)TBi(t)x(t))%]dt
< J [fi(t’xt(t)’i*(t» +‘”*(t)TBi(t)$*(t))%dt] dt forall i€ {l,---,p}

= Jtp
and

tf)l [fj(t, z(t), z(t)) + (x(t)TBj(t)J)(t))%:' dt
< ti’l [fj(t’z*m’i*(t)) + z*(t)TBj(t):C*(t))%dt] dt for some je{l,---,p}.



(2) A point x* € Xy is said to be a properly efficient solution of (VP) if it is an
efficient for (VP) and if there exists a scalar M > 0 such that for alli € {1,--- ,p},

o [f"(t, z*(t), &%(t)) + (x*(t)TB,(t);c*(t))%]dt
e [f (t2(t), &(2) + (CC(t)TBi(t)z(t))%]dt
=M { o [f"(t,x( ), 2(t)) + (ﬂf(t)TBj(t)z(t))%] dt
- fpp @, w) + (2 ()7 By (t)a(£))2 | at}

for some j such that

o[ 2(0).50)) + @O By )2()? ]t
= Jto [f (t’x*(t)?i*(t))+(37*(t)TBj(t)m*(t))%}dt

whenever T € Xy and

S [f"(t, z(t), 2(t)) + (x(t)TBi(t)x(t))%] dt
< Juo [f "tz (1), (1) + (x*(t)TBi(t)z*(t))%} dt.

Let A* be
={reR|7>0, 7Te=1,e=(1,1,--- ,1)T € R?}

then for 7 € AT, the related single objective problem

(VP) Minimize 3" [ ’[fi(t,x(t),jc(t))+(z(t)TB,-(t)x(t))%]dt

subject to  x(t9) = zo, z(t1) = 1,

g(t, (), &(t)) 2 0, h(t, z(t),2(t)) = 0,t € I.

Problem (VP) and (VP,) are equivalent in the sense of Geoffrion’s ([4]) Theorem

1 and 2, which are valid when R" is replaced by some normed space of functions as

6



the proofs of these theorems do not depend on the dimensionality of the space in
which the feasible set of (VP) lies, where for each t € I, B(t) = 0. For our variational
problems the feasible set X, lies in the normed space C(I,R"). For completeness
we shall merely state these theorems characterizing proper vector minima of (VP)

in terms of solutions of (VP,).

Theorem 2.1 Let 7 € At be any fired. If z* is optimal for (VP,), then z* is
properly efficient for (VP).

Proof. We can easily prove this theorem. O

Theorem 2.2 Let 7 € A" be any fized. If z* is a properly efficient for (VP), then
z* is optimal for (VP,) for some T € A™.

Proof. Assume that =* is not optimal for (VP,). Then there exists Z € X, such
that

Zn/t 1 [f"(t,i(t),i(t)) + (f(t)TBi(t)f(t))%] dt
- Op ty (3)
<3on [ [ o.50) + @ OB )

This implies that there exists a subset P’ of {1,2,--- ,p} such that P’ # @ and for
i€ P

/ 1 [fi(t, z(t), z(t)) + (i(t)TBi(t)f(t))%] dt

to

< / ; [ Filt, (1), & () + (x*(t)TBz-(t)a:*(t))%} dt

to



and for j € {1,2,--- ,p} \ P’

> [ A .8 0) + @07 B0 @)}

From (3), there exists i € {1,2, --- ,p} such that for all j € {1,2,--- | p} \ P’

t) ) ) B N
- / [fl(t,:i(t),a?(t)) + (:r:(t)TBi(t)x(t))z}dt} :
to
where |P’| denotes the element number of P".

Let M = 7;/(|P'|7:). For all 7 € A*, M may be sufficiently large, and
[ Trea .56 + @ oo o]
- [ [Feat.s0) + Gora@z?]a
> M { /t § [fj(t, (1), 7()) + (:z(t)TB,-(t)z(t))%]dt
- [ Pesoso s @orsoeo?a).

which contradicts that z* is properly efficient for (VP). ]

Before presenting two distinct duals to (VP) we start the following Kuhn-Tucker
type necessary optimality conditions for (VP.) and point out that they can be easily

derived by invoking the results of [2].



Proposition 2.1 If z is optimal for (VP,) and is normal, there exists a piecewise

smoothy : I = R}, p: I - R and w: I — R™ satistying for all t € 1,
p
Do [£i(ta, )+ wO)T Bi(t)] ~ y(0) a1, 2(0), (1)) — u(®)Tha (2, 2(8), ()

i=1

- %[Z Tifa(t,z, &) — y(t) T ga(t, 2(t), 2(t)) — p(t)Tha(t, z(2), :'v(t))}

i=1

3 Wolfe Type Duality

Now we formulate the following Wolfe type dual to (VP) is
(WD) Maximize
([ [ eu0).509) + )" B0 — yte) 7t ute) 0)) — ) h(e, (0, 0

[ it i00) + w7 By(0r(0) — w(e) (e, (). t)) = w(e) ht, u(e), )] )
subject to

u(to) = xo, u(t1) = 1,

> 7| falt,u(e), wlt)) + w(t)TBf(t)] = y(t)"g=(t, u(t), a(t)) — u(6)ha(t, u(t), ()

i=]1

= gd,; {Z Tifa(tu(t), (t)) — y(t)Tgs (t, u(t), u(t)) — p(t)Tha(t, u(t), u(t))} o

w(t)" B(tyw(t) £ 1,

y(t) 20, y(t) e RT, u(t) eR®, w(t)eR™, tel, 7€ At

9



Theorem 3.1 (Weak Duality) Assume that x is feasible for problem (VP), and
(w, y, p, w) is feasible for problem (WD). Let f(t,-,-), —g(t,-, -) be convez and h(t, -, -)
be affine, for each t € I. Then the following cannot hold:

/t ) [f (b2 (t), &(t) + (»’C(t)TBi(t)x(t))%] it
<

< [ [0, 600) + 00 Bo0) ~ v o(t ), 4(0) - () (e ), 1(0)]

(7)
forallie {1,2,--- ,p} and

/t ) [fj(t,a:(t), @(t)) + (x(t)TBj(t)x(t))%J W
< /t ' [fj(t,u(t), u(t)) + u(t) B;(t)w(t) — y(t) g(t, u(t), w(t)) — w(t)Th(t, u(t), u(t))]dt

(8)
for some j € {1,2,--- | p}.

Proof. Suppose that (7) and (8) hold. Then (7) and (8) imply that
Zn/t 1 [fi(t, z(t), z(t)) + (x(t)TBi(t)x(t))%]dt

<3 [ [ ) + e B 0w -y ottt i) O

— p(®)Th(t, u(t), u(t))] dt.

Using Lemma 2.1, we have

10



Zﬁ[l[f (8, 2(t), £(8)) + (z(8)" Bi(t)z(t))? ]dt

=1

_ Z«ri/t 1 [fi(t, u(t), i(t)) + w(t)" Bi()w(t) — y()Tg(t, u(t), u(t))
e >Th<t,u<t),a<t>>] dt
> Z / [7(6,2(0), 2(0)) + 2(0)7 Bu(ew(t)] as

P t

S [ [F (), u(t) + w7 Bi(tyw(t) — ) olt, u(t), a(t))

— u(®)Tht, u(t),u(t))] dt.

Since f, —g is convex and h is affine,

P

Zﬁ[l £t 20, 2(0) + =) Bi(tyw (t)|dt

i=1

— Zn /t 1 [fi(t, u(t), u(t)) + u(t)T Bi(t)w(t) — y(t)Tg(t, u(t), u(t))
= e) (. u(), i) de
2 >0 [ {00~ w0 720,000, 200) + 0l BE) ~ y10) 7. 0, u(e), 1)

—lt) a8, (), i) = (2(8) = a(e)T [ it u(t), i)
~(0)7 g, u(t), 4(t)) = (&) ha (8, u(t), 4(1))] } at

+/tly(t)Tg(t,x(t),x(t))dH/t1u(t)Th(t,a:(t),a':(t))dt

11



= /t 1 {(x(t) - u(t))T% [Z Tif;é(t, u(t), w(t)) — y(t)Tgi(t,U(t),'d(t))

=1

—t) ha(t, u(t), u()] - (& [foz(t u(t), (1))
=y ()7 g: (8, u(t), a(1)) - u(t)ha(t, ult), a(1))] } dt
+ /t ly(t)Tg(t,x(t),:b(t))dtJr /t lu(t)Th(t,x(t),d:(t))dt.

Using integration by parts and boundary conditions (1),(5), we obtain

p

Zﬂ / t), #(¢)) (t)TBi(t)w(t)]dt

- Z / (7t u(t), w(8)) + u(®) Bi(epw(t) — y()7 g(t, u(t), ilt))

to

— w(®)Th(t, u(t), u(t))] dt

v
o

Hence

S [ [Fta),10) + (207 Bty ()] ar

=W / [ ult). 5(0) + uOTBOw) -y gt ue), i) (10
— u(®) h(t, u(t), u(m] dt,

which contradicts (9). Hence the result follows. O

Theorem 3.2 (Strong Duality) Let f(t,-,-), —g(t,-,:) be convez and h(t,-,")

be affine, for each t € I. Let z* be a normal and properly efficient solution for

(VP). Then there exist T € A* and a piecewise smooth y* : I — R™ such that

12



(z*,y*, u*, w*) is a properly efficient solution of (WD) and

/[fz(”() ®) + (z* @) Bi(t)x ())%]dt

to

= [ ! [fi(t, x*(t), .’L‘*(t)) + St?*(t)TBi(t)w*(t) _ y* (t)Tg(t, x*(t)’ 4 (t))
_u*(t)Th(t,m*(t),;'E*(t))]dt, i=1,2--p

Proof. Since z* is a properly efficient solution of (VP), by Theorem 2.2, there
exists 7 € At such that z* is optimal for (P;). Now we will use this 7. Therefore,

by Proposition 2.1, there exists a piecewise smooth y* : I — R™ such that for t € J
P

Don | felti (1), (1) + w (OTBO)] - v (0 galt, 2" (1), 5" (1)

i ()T ha(t, (1), 5 (1))

= C%[Z T fe(t, (), 2° () + w* ()TB(t) — y*(t) g (t, z*(2), E*(t))
1t (07 ha(t, 2" (1), 3 (1))] (11)
y* () g(t, 2*(8), 2*(t)) = O, (12)
w' )T Bi(t)w (t) <1, i=1,---,p, (13)
()T Bi(t)w* (t) = (z* ()T Bi(t)2"(1))%, i =1,-- ,p. (14)

This implies that (z*,y*, u*, w*) is a feasible solution of (WD). Suppose that

(z*,y*, u*, w*) is not an efficient solution of (WD). Then there exists a feasible

solution (Z, ¢, 1, w) of (WD) such that for all ¢ € {1,2,--- , p}
A [fi(t,w),fe(t)) SO Bu(tya(e) — 5(6)Ta(t, 30), (0)) ~ AEYTA(L 2(0), £(0)] e

> [ ©,80) + 2 0 BOw O - v Oz 0,5°(0)
— w0, (), a‘:*(t))] dt

13



and for some j € {1,2,--- ,p}

[ 600,20 + 267 B0 50 7ote 50,20) - 70, 20, 3000
> [ [P 0.6 + 07 B Ow 0 - v 07,0, 50)

- (O h(t, 2 (8), (1) ] at.

Using (12) and (13), for all i € {1,2,--- ,p}

[ 20,50) + 207 B0 — 510ote 700, 20 ~ 6T 2. (0
> [ C[Fa@).20) + @O Bl 0)]

and for some j € {1,2,--- ,p}

[ [tat). 200+ 207 B0 - 50700201, 30) - A0 300,200t
> [ [Per0a e + @ 07w

which contradicts Theorem 3.1. Hence (z*, y*, u*, w*) is efficient.

Now we assume that (z*,y*, u*, w*) is not properly efficient for (WD); i.e., there

exists a feasible solution (Z, 7, iz, w) such that for some ¢ and some M > 0
| [e.50.50) + 50T BB - 57070, 50), 50)) - eThE 50, 50)] e

> /t | [7(t,2"(©),"(0) + 2 (O Bt (1) — " () g(t, 2" (1), & (1))

— 1 (OTh(t, 2 (), 8" () | dt
(15)

and

14



[ [e.30, 500 + 207 B0yt - 67 ate 50, 50) ~ 707 he. 50, 5000

- [ [Fes 0.5 0) + e 07 BOw 0 - v 07tz 0,50)

— @ (OTh(t, 2*(2), i*(t))] dt

> o { [* [Pt 0,560 + 207 B 0w O -y 270, 0)
— i (OTh(t, z*(¢), i:*(t)] dt
- [ Tre.z0.26) + 507 B 0@ - 5ot 50 e

— TRt Z(t), 5(t) )] dt}

and Vj € {1,2,--- ,p} such that

[ [0 500 + 507 5,08 - 5670t 50,50 - OTA 30,30

< [ [Pes 086 + 207 B 0w O -y @76 20, 0)
— 1 (OTh(t, 2 (t), :i:*(t))] dt.

(16)
Since y*(t)Tg(t,z*(t),&*(t)) = 0, h(t,z*(¢),2*(t)) = 0 and z*(t)TBi(t)w*(t)
(z*(¢)T Bs(t)2*(t))7, (15), (16) become

/t 30, 50) + 07 B00) - 7070l 5(6), 50) — AT (e, 500), (2))) at
- [ [P .8 0) + @ 0T B ) d
()

15



and
[ [P0 + 367 B, - 507t 50, 56) - 707Th 50). 50)
< /t [P @) + (@ ()7 Bi(t)e" (1))t

(18)

Note that = € A*, (17), (18) contradict (10). Thus (z*(t), y*(¢), u*(t), w*(t)) is a
properly efficient solution for (WD). Furthermore, from (12) and (14),

| [reee.e o)+ @ ar oo
o /t\ 1 [f’(t, x*(t),x*(t)) + l'*(t)TBz(t)’lU*(t) . y*(t)Tg(t’ x*(t), x*(t))

— ur(O)Th(t, (), i:*(t))J dt.

16



4 Mond-Weir Type Duality

Now we formulate the following Mond-Weir type dual to (VP) is
(MD) Maximize
t1
(/ [fl(t,u(t),u(t)) + u(t)TBl(t)w(t)]dt, sl
t.

/t:l [fP(t, u(t), u(t)) + U(t)TBp(t)w(t)] dt)

subject to
u(to) = zo, u(ts) = 1, (19)
in [f’ (2, u(t), u(t)) + w(t)TBz-(t)] —y()7ga(t, u(t), a(t)) — p(t) ke (2, u(t), i(2))
= % {i i fi(t u(t), w(t)) — y(t) g5 (¢, u(t), w(t)) — p(t)Tha(t, u(t), u(t))] ,(20)
y(t) g(t, uz(lt) Wt)) £ 0, u(t)Th(t, u(t),ut)) =0, (21)
w(t)"B(tyw(t) £ 1, (22)

y(t) 20, y(t) e R, p(t) R, w(t) eR™, tel, 7€ At

Weak and strong duality results between (VP) and (MD) are similar to those

contained in the above section. Here, we state the following duality results.

Theorem 4.1 (Weak Duality) Assume that = is feasible for problem (VP), and
(u, y, u, w) is feasible for problem (MD). Let f(t,-,-), —g(t, -, -) be convezr and h(t,-,-)
be affine, for each t € I. Then the following cannot hold:

/t ) [f H(t,2(t), 2(2) + (iv(t)TBi(t)x(t))%]dt
< /ttl [fi(t»u(t),u(t)) + u(t)TB,-(t)w(t)]dt

17



forallie {1,2,--- p} and

/to ) [fj (¢, (1), £(t)) + (m(t)TBj(t)z(t))%] dt

< /t § [fj(t,u(t),u(t)) +u(t)TBj(t)w(t)]dt o
for some j € {1,2,--- | p}.
Proof. Suppose that (23) and (24) hold. Then (23) and (24) imply that
Z /t {(t.2(0), 5(0) + (2(t)7 Bi(t)a(0)]
(25)
< ;Ti /t [t u(e), ) + u()” Byt at
Using Lemma 2.1, we have
S [0 000,80 + el Bir0(0) 2
- Z - /t :l [ Fit, u(t), alt)) + u(t)TBi(t)w(t)]dt
> o [ e n0,500) + 2B uto]
- z_p; Ti /: [fi(t, u(t), u(t)) + u(t)TBi(t)w(t)} dt
> o [ [ o(0,50) + 207 B0
- Z [t i) + )7 B0 w070, ), 50)

— u(O)Th(t, u(t), u(t))] dt.

18



Since f, —g is convex and h is affine,

> [ [t + 207 Bt

= [, ) + w0 B
—y(®)7g(t, u(t), W(t) — (&) h(t, u(t), i(t)) | de
S [ {@®) - ) [72 ), 50) + w07 BE) — y (0 . t,ut) (0

1AV

= (t) ha(t,u(t), 0(2)) ] dt = (5(8) — 5(0))" [ £ (8, (), i(t))
~y(0)7ge(, u(t), i0)) — ) s (1, u(t), (2]
+ /t N gt 2(0), #()d + /t () Th(t, 2(0), B(t)dt

A {(I“) — ()7 S [ S ), ilt)) — (6 gt u(t), 1)

P

()T ha(t u(t), w(8) | — (2(6) — (@) [ D mfile,ult), u(t))

—y(6)ga (b, u(t), 4lt) — u(6) ha (8, u(t), 0(0))| } dt
+/t1y(t)Tg(t,:c(t),:'c(t))dt+/tlu(t)Th(t,a:(t),a’c(t))dt.

Using integration by parts and boundary conditions (1) and (19), we obtain

p

Z / it z(t), 2(t) + ()T Bi(t)w(t ]dt ZT/ t), u(t))
Fu(t)" Bi(thw(t) = y(©)7 g(t, u(t), a(t)) — u(t)h(t, u(t), ilt >>]dt

v
o

19



Hence

> [ [#e0)20) + G0 Bt ]

(26)
_ Zﬂ' / [t u0) 5(6)) + ()" Bu(tuw() e 2 0,
i=1 to
which contradiction (25). Hence the result follows. O

Theorem 4.2 (Strong Duality) Let f(t,-,-), —g(t,-,-) be conver and h(t,-,-) be
affine, for each t € I. Let z* be a normal and a properly efficient solution for
(VP). Then for some T € A*, there exits a piecewise smooth y* : I — R™ such that
(z*, y*, pu*, w*) is a properly efficient solution of (WD) and

/ [reaams (=" (7 B(t)z" (1)} | at
- /t“ [f (t,z*(t), 2*(t)) + z*(¢ )TBi(t)w*(t))]dt, =12

Proof. Since z* is a properly efficient solution of (VP), by Theorem 2.2, z* is
optimal for (P;) for some 7 € A*. Therefore, by Proposition 2.1, there exists a

plecewise smooth y* : I — R™ such that for t € I
p

Z - [ folt, 2*(8), 5°(8)) + w*(t)TB(t)] — ()T gu(t, 2°(t), £°(1))
— () T ha (t, ¥ (t), £*(¢))

= d% [Z Tifa(t, 2 (8),2° (1) + w ()T B(t) — v* () g (t, z*(t), 2% (¢))

(O et 7 (8), 3° (1)) (27)
y" () gt 2*(t), 2'(t) = O, (28)
w )T Bit)w(t) <1, i=1,--- ,p, (29)
2 () Bit)w (1) = (2 (O Bit)a" (), i =1, ,p. (30)
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This implies that (z”, y*, u*, w*) is a feasible solution of (MD). Suppose that (z*, y*, 1i*, w*)
is not an efficient solution of (MD). Then there exists a feasible solution (Z, 9, fi, @)

of (MD) such that for all ¢ € {1,2,--- ,p}

[ [rest.sopsoracomle [ oo o osowe)e
and for some j € {1,2,--- ,p}

[ [Peat.sopsoraoo]e > [ [P om0 oo
U;ng (30), 0

[ [rese.sopisermono]a [*[res .o oo m

and for some j € {1,2,--- ,p}

| [Ptawaaa0 s,wa0)a > [M[pea w500 0B 0 )}
which contradicts Theorem 4.1. Hence (z*, y*, u*, w*) is efficient.

Now we assume that (z*,y*, u*, w*) is not properly efficient for (MD); i.e., there

exists a feasible solution (7,7, i, @) such that for some i and some M > 0
[ Ireaesoraersoan)a> [0 om0 bew o)
and
[ T, 50) + 507 B0
- [T t.a +o 07 s o)
>t { [ [ 0.50) + 207 B w0 a
- [ s, 50 + w07 w0
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and V5 € {1,2,--- ,p} such that

/t [PF0, 504307 B ) < / [0 27 By 00 e
Since o* (1)T Bi(t)u"(¢) = (=" ()7 Bu(t)2*(1))},
/, | [f (b, Z(t), (1) + 5(t)TB¢(t)&7(t)} dt

> /:1 [fi(t,m*(t),:i:*(t)) + (x*(t)TBi(t)SC*(t))%]dt (31)

and

/t :l [ F,E(1), Z(t) + E(t)TBj(t)G(t)] dt

< /t 1 [Pt e).5°0) + (o (1) Bu(t)a" (1)1 ] at. (32)

Note that 7 € A*, (31), (32) contradict (26). Thus (z*,y*, u*,w*) is a properly
efficient solution for (WD). Furthermore, from (30),

/: [fi(t, z*(t), 2*(t)) + (m*(t)TBi(t)x*(t))%]dt
:/ttl [fi(t’x*(t)’i?*(t))+:c*(t)TB,-(t)w*(t)}dt_

9 Related Problems

As in [1], the above duality results can be reduced to the corresponding problems

given below by omitting h and the boundary conditions (1) for (VP) and (WD) and
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(MD) with “natural boundary conditions” (and omitting h and p). That is,

(VP1)

(WD1)

Minimize
( /: [ FHt (1), (t)) + (2(t)" By (t)m(t))%] dt - |
/t:l [fp(t, z(t), z(t)) + (x(t)TBp(t)xa))%] dt)

subject to g(t,z(t),z(t)) 2 0, t € 1.

Maximize
([ . [fl(t,u(t),it(t)) + u(t)TBi(t)w(t) — y(t)g(t, u(t), u(t))]dt, .
/t 1 (76, u(t), 1)) + w7 By(t)wlt) — y(D)g(t, u(e), u(t))]dt)

subject to

D m | £t u(t), (t)) + w(t)" Bu(t)] ~ (07 0u(t,u(), 5(1))

- % [Z T fL(t,u(t), u(t)) — y(t)Tgi(t,U(t),ﬁ(t))} )

Fit,u(t), 4(t)) — y(£)Tgs (¢, u(t), u(t)) = 0 when t = to, t = ¢,
w(t)' B(t)w(t) £ 1,

y(t) 20, y(t) e RY, w(t) eR®, tel, 7€ AT
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and

(MD1)

Maximize

( /t‘ [fl(t,u(t),u(t)) +u(t)TBl(t)w(t)] dt, . |

to

/tt |77t (), () + u(t)T B (t)w(t)]dt>

0

subject to

Zn[ (8, 0(6), 4(6)) + w(t) Bi(0)] = y(t)T g (t, u(t), i)

T dt {Zﬂf (£, u(t), wl(t)) — y(t) ga (¢, u(t), (t))},

1

Falt u(t), ut) — y()Tgs(t, u(t), (t)) = O when t = to, t =1,
y(t) g(t, u(t), i) 0,

w(t) " B(t)w(t) £ 1,

y(t) 20, y(t) e RY, u(t) eR™, w(t) eR™ tel, 7€ At

In particular if (VP1), (WD1) and (MD1) are independent of ¢, thus if f;, B;(t)(for

i=1,2,

,P), and g do not depend explicitly on ¢, then these problems essentially

reduce to the static cases of nondifferentiable programming studied by Mond([11])

, namely

(VP2) Minimize (fl(x) +(&TBiz)z, -, fP(z) + (xTBp:c)%)

subject to ¢g(z) 2 0.
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The Wolfe type dual to (P) is

(WD2)  Maximize  (f(u) +u"Biw —y"g(u),- -, fP(u) + uT Byw — y" g(u))
p

subject to ZT i [f;(u) + ’LUTBi] =y g.(u)

i=1
wTB{w é 1, 1= 1y2;"' » D,
y=20, weR.

and

(MD2)  Maximize  (f'(u) + v Biw,--- , fP(u) + u’ B,w)
P

subject to Z T [ f; (u) + wTBi] = Z'Jng (u)

i=1
yTg(u) £0,
’I.UTB{U) § 1, 1= 1,2"" » Py
y20, weR
Lal, Nath and Kumar ([8]) have given the weak dual theorems for (VP2) under

invexity type of assumptions. Some results in [2, 7, 8, 12, 13| are included in our

conclusions.
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