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Chapter 1

Introduction

1.1 Background

In recent years more and more attention has been attracted in the
underwater acoustic (UWA) communications application areas such as
telemetry, remote control or speech or image transmission [1]. Consequently,
high data rate transmission has become an important issue in bandlimited
UWA channel.

Due to the amplitude fluctuations and time varying characteristic of
received signal in underwater acoustic channel the research of noncoherenct
detection such as frequency shift keying (FSK) had been favored in the past.
FSK modulation resorts to the method that guard times inserted between
pulses of the same frequency to ensure all the channel reverberation dies out.
However it is at the cost of sacrificing bandwidth[2-6].

Nowadays research focuses on the coherent detection such as multiple
phase shift keying (MPSK) to achieve bandwidth efficient communication
[5-7]. Multipath propagation which causes intersymbol interference (ISI) is a
challenging task in UWA communication. As a result several techniques are
used to suppress ISI due to multipath. Among them coherent detection such
as PSK method combined with equalization techniques meets the demands of
bandwidth efficiency in bandlimted UWA channel.

To recover the transmitted signals in the presence of ISI several methods
have been proposed. An equalization method, i.e., maximum likelihood
method, though provides the best performance in the data estimation, no
doubt it is at the expense of high computation complexity and unsuitable for
long time spread channel. Spread spectrum technique will sacrifice the
available bandwidth to suppress ISI. Therefore adaptive equalizers are always
realized in the underwater acoustic time-dispersive channel. LMS (least mean



squares) and RLS (recursive least squares) are the most commonly adopted
algorithms in adaptive equalizations [7-8].

Linear filter theory, the method of least squares was first invented by
Gauss in 1795. The first studies of minimum mean-square estimation in
stochastic process were made by Kolmogorov, Krein and Wiener late 1930s
and early 1940s. LMS algorithm which is a simple, effective method, was
adopted in the adaptive transversal filter by Widrow and Hoff in 1959(8].

The RLS algorithm first appeared in the paper of Plackett in 1950. Though
RLS algorithm has fast convergence rate and better tracking capability,
because of its main drawback of high computational complexity, it’s hard to
achieve real-time implementation. Consequently modified algorithm such as
square-root RLS has been developed and used in real-time implementation.

1.2 Adaptive equalization

Until the early 1960s, fixed equalization was employed to combat the
degrading effects of ISI imposed on telephone channels. In 1965 Lucky
proposed a zero-forcing equalizer for automatically adjusting the tap weights
to suppress the ISI. In 1969 Gersho, Proakis and Miller independently used a
mean-square-error criterion to solve the adaptive equalization problem[8-9].

The underwater acoustic channel is always band limited and reverberant,
which poses many obstacles for reliable, high-speed digital communications.
The effects of reflection from the surface and the bottom of the sea give rise
to multipath propagation. The channel impulse response is considered as ray
model and the time dispersion due to multipath is characterized by the
normalized delay spread, i.e., root mean square (RMS) delay spread. The
RMS delay spread is a parameter as defining the time extent of multipath
time spread. Simultaneously coherence bandwidth which directly influences
the system performance could be interpreted using the RMS delay spread.
Some simulation results indicate that coherence bandwidth is not severely
affected by low power signals with long excess delay like RMS delay spread.

Coherence bandwidth is considered to be a more accurate approach to



predicting system performance. Coherence bandwidth is a measure of the
range of frequencies over which the gain and phase are approximately equal,
respectively. There is an approximate relationship between RMS delay spread
and coherence bandwidth [9-13].

In this study to mitigate the distortion caused by ISI due to multipath,
adaptive equalizer based on LMS algorithm is employed in bandwidth
efficiency coherent MPSK communication system. To investigate the
effectiveness of adaptive equalizer overcoming ISI caused by multipath,
numerical experiment is conducted by employing LMS linear equalizer (LE)
and nonlinear decision feedback equalizer (DFE) in shallow water acoustic
channels [14-17].

Linear equalizers with simple structure have been developed and applied
in suppressing ISI, however they can not achieve satisfactory performance for
the channel with spectral nulls. The employment of DFE in the UWA
communication system shows promising results. DFE has a similar
computation complexity as the LE and can give the better performance
without enhancement of noise in the feedback filter [18-24].

When the equalizer is employed in communication system, it should be
kept in mind that the complexity of implementation mainly depends on the
number of tap weighting coefficients of equalizer. In this case multichannel
equalization has been proposed which can meet this demand of using shorter
length equalizers. Stojanovic et al. [7,25,26] described a method which
incorporates spatial diversity and a fractionally spaced decision-feedback
equalization. This method was proved to be effective in countering the effect
of phase variations and ISI by combining joint synchronization and
equalization.

1.3 Diversity technique - passive phase conjugation (PPC)

In communication ISI due to multipath fading is reduced by using diversity
techniques. One of these is to employ multiple transmitters or receivers.
Coates in 1993 and Galvin and Coates in 1994 proposed an approach that
employs transmitter arrays to excite only a single path of propagation.



However, long arrays are required and small errors in positioning can degrade
performance. Consequently this technique was found to be more effective at
shorter ranges [27-31].

Much of the theoretical development on phenomenon of the time reversal
acoustic (TRA) has been presented by Jackson and Dowling in1991 and 1992,
Kuperman et al. in 1998 and Song et al. in 1998. This technique provides an
original and relatively simple algorithm to overcome the ISI problem in a
shallow water channel. This solution is not a sophisticated processing
algorithm. It is equivalent to matched field processing with the filter matched
to the impulse response of the ocean. This technique uses time-reversal
acoustic arrays to generate a spatio-temporal focus of acoustic energy at the
receiver, greatly reducing distortions caused by channel propagation [31-39].

The application of TRA to the underwater communications problem was
previously proposed by Jackson and Dowling in 1992 and Kuperman et al. in
1998. The first known application of TRA which developed a signaling
scheme for communication purposes was introduced by Abrantes et al. in
1999 [33]. Time-reversal signal processing was first prominently
demonstrated in underwater acoustics by Parulescu. Jackson and Dowling
first proposed active phase conjugation for use in the ocean waveguide and
Kuperman et al. subsequently demonstrated it in an experiment in the
Mediterranean. Dowling used reciprocity to show how analogous pulse
compression could be achieved using a receive-only array. He further
suggested that this passive version of phase conjugation could be used for
underwater communication. Silva et al. independently proposed PPC and
tested it in numerical simulations. Athanasiou studied communication using
both active phase conjugation and PPC in laboratory experiments. As part of
the SignalEx experiments, Hursky et al. demonstrated PPC with a single
receiving hydrophone for a low-power low data-rate application. Rouseff et
al. used a 14-element receiving array in a PPC communications experiment in
Puget Sound, WA. In a later theoretical study, Jackson and Dowling
considered a scenario with an active array that was capable of both reception



and transmission. They showed how the time-reversed field backpropagated
from such an array would focus both in time and in space at the location of
the original source. Active time reversal using a vertical source-receiver array
was demonstrated by Kuperman et al. Dowling later showed how analogous
pulse compression could also be achieved using a passive, receive-only array,
i.e., passive phase conjugation. PPC is based on sending a probe pulse and
measuring the response to reduce ISI. Simulation and experimental results
reported in literatures demonstrate its strong ability to reduce ISI [40].



Chapter 2

Linear Equalizer and Nonlinear

Decision Feedback Equalizer

2.1 Channel model and communication system

The impulse response of the equivalent lowpass system corresponding to
band-limited carrier modulation scheme in a multipath underwater acoustic

system is modelled as [9]

h(t)=) a,e* " 5(t-1,) 2.1

where f, is carrier frequency, @, andz, are the normalized amplitude
and the propagation time difference of the signal received along the nth
path to the direct path amplitude and the direct path propagation time.

It is assumed that the channel is invariant for the simplicity of channel
model analysis such that Doppler spread of the channel is not necessary to
consider here. The system configuration utilizing BPSK modulation is
depicted in Figure 2.1.

The transmitted binary data are first shaped to match the channel
bandwidth for the ideal band-limited underwater acoustic system and then
modulated by the carrier [40-43]. The transmitted signal sequence of binary
data with a bit interval 7, is given as

s() =Y s,p(t ~iT}) (22)



10) h(0)

Encoder » Shaping Filter Modulator |—» Multipath

h(n), H,(t)
Matched Filter
Demodulator

Decoder Equalizer

Figure 2.1. Block diagram of communication system

where s,is the ith transmitted symbol which corresponds to bit 1, -1, which
producing a phase change of 0° or 180° in BPSK modulation. The p(¢) isa
pulse whose shape influences the spectrum of the information-bearing
transmitted signal and its duration is one bit interval 7 in binary schemes.

The raised cosine pulse is generally adopted as p(¢r) and given as [9]

() =§{1+cos2T—”(t—%)} 0<¢<T, (2.3)

b

where A is the amplitude of the pulse and its spectrum P(f) is given by

_AL,  sinAgT, ~JfT,
P(f)= 5 ﬂTb(l—sz;,z)e (2.4)

In this case the effective signal bandwidthw is given to be 2/7, and
therefore we need a channel bandwidth w, of 2/7, or larger to transmit

information sequence in ideal channel.

The equivalent low pass response #4,(¢) of the raised pulse p() in

multipath underwater acoustic channel is given by

h, (€)= h (1) * p(t) (2.5)



where (*) denotes convolution operation.

In order to characterize the multipath fading and figure out its effect on the
transmitted signal distortion, root mean square (RMS) delay spread should be
examined, which exhibits the time-extent nature of time-dispersive multipath
channel. The RMS delay spread z, is defined as

7, =y’ - (7) 2.6)
where average delay T s expressed as

3 Z (@,
k

TSy @7

where f(z,)is the power density for the krh path, and 77 s given as

DAL A

i e @9
k

RMS delay spread is interpreted as coherence bandwidth B, in the
frequency domain. Coherence bandwidth corresponds to the range of

frequencies over which the channel may be considered to be flat, is given as
[44]

B =

[4

1 2.9)
z'S

Therefore, if the coherence bandwidth B, is less than the signal bandwidth



W, , then the channel is a frequency selective and the received signal is
distorted. In this case, equalization should be adopted with this ISI problem
encountered in multipath fading.

If Equation (2.3) is applied to Equation (2.1) then the equivalent low pass
channel output of message signal r,(f) is given as

r, (1) = s(O)* B, (D + W (1)

=Y > @, e s plt — 1, ~iT,) + W (1) (2.10)

where W(t) is white Gaussian noise.

Therefore the channel with the multipath and white Gaussian noise W (¢)
distorts the transmitted signal in amplitude and delay so that ISI is induced.
The amount of ISI depends on the multipath nature such as the normalized
amplitude, and the propagation time difference z, to the direct path.

At the receiver, the receiver filter 4, (¢f) is used for limiting the noise
components outside the signal bandwidth. For the ideal transmission channel
with no multipath delay and non-fading, the spectrum of the output of the
receiving filter R(f) is given as

R(f)=P(NHH,(f) (2.11)

where H, (f) is the Fourier transform of the receiver filter impulse
response A, (f).
If we adopt the receiver filter as matched filter, then H, (f) and £,(7)

are represented as
H.(f)=P"(f)e > (2.12)

h.(t)=p(T, -1) (2.13)

where superscript ( ) denotes complex conjugate.



The demodulated output of the raised cosine pulse p(f) is given as

B () = h (1) % (1)
= h,(6)* p(t) * p(T, 1)
=Y a,e 7 p(t —7,) % p(T, 1) (2.14)

=> a, e’ R, (t-7,-T,)

n=1
where R, (1) is the autocorrelation of pulse signal p(¢) .
The demodulated output of the received binary data signal can be

expressed as

Y @) =1, @) *h (1)
=D e s plt -1, ~iT,) + W (O] * p(T, - 1)
=3 > s,a,e "R, (t =t~ + DT, + W () * p(T, ~1)

= s, R, (t —(k+DT)+W, () + ). s,a,e” R, (t—7,—(i+DT,)

izk n#l

(2.15)

where W, (1) =W (1) * p(T, — 1) is the filtered noise by the receiver filter.

The demodulated output r, is integrated and sampled in every symbol
interval 7, and the direct path signal components r,, can be obtained as

(k+1)T;

Fa =5, [R,,(t—(k+DT,)dt (2.16)

KTy

and noise components W, is denoted as

-10 -



(k+1)T,
W, = [ 0d 2.17)

P
kT,

In multipath channel,

=+,

Bo=ty+W, + s,e,e’?? |R (t—t, —(i+DT,)
S Z,;Z,: TI 7 ’ (2.18)

=1yt +Wkp

where r,, is the wanted direct path signal, and 7, is ISI due to the
multipath. As shown in Equation (2.18), the multipath ISI depends on the
normalized amplitude and the propagation time difference of the nth path.

2.2 LMS linear and nonlinear equalizer

In order to compensate for the multipath ISI the equalizer is employed to
the demodulated output. In the selection of an equalizer, Its ability to track
channel characteristics changes and computation complexity are considered.
LMS is one of the most popular algorithms. Therefore LMS linear equalizer
and nonlinear decision feedback equalizer are used to suppress ISI.

It is assumed that there is no sampler delay, the demodulated signals is
sampled in one symbol duration. The basic LMS algorithm in Figure 2.2 is

expressed as the following equations.
The update tap-weight w(k) at time instant k7, is represented as

w(k) = w(k —1) + ue’ (k= r, (2.19)

where uis step-size which controls the convergence rate and excess mean

square error. In other words, the larger step size gives more rapid

211 -



convergence rate, but the larger fluctuation of tap coefficients. Estimation
error e(k) and filter output y(k) are given as

e(k) = d(k) - y(k) (2.20)

y(k)y =w" (k)r, 2.21)

where d(k) and w'(k) are the desired symbol, and the tap weight

coefficient, respectively. The superscript ( )H denotes conjugate transpose,

and r, is the tap input vector, i.e. the received demodulated binary data

signal.

{r.} Transmitter Filter | w"&r-Dr, {0}
w? (kT -T)
7

Adaptive Weight {e,}

Control — & A
ﬁ
{d,}

Figure 2.2. LMS structure

The tap weight coefficients of the equalizer are recursively adjusted to
meet the criterion of minimizing the mean square error (MSE) with respect to

the equalizer taps.

min(Ele(k)|") = min(E|d(k) - y(k)[) (2.22)

-12-



For the linear equalizer in Figure 2.3a, filter output y(k) is expressed as

(k)= iw,rk_, (2.23)

j=—m

where w, is tap weighting coefficients of the equalizer.

For the DFE shown in Figure 2.3b, the estimate is different from that of
linear equalizer and denoted as

YO =Y won =S w, dk- ) (2.24)

J=—my

where Wy and w , are the tap coefficients of feedforward and feedback

filters.

The tap coefficients of feedforward and feedback filters are adjusted
simultaneously, and the feedback filter is used to cancel out the part
previously detected symbols. The input to the feedback filter is quantized
signal in bit interval, thus DFE is a nonlinear equalizer. Compared with linear
equalizer, DFE can not only remove ISI, but also operates on noiseless
quantized levels [45].

As shown in Figures 2.3a and 2.3b, the training sequence which is a given
binary data, is first transmitted to adjust the tap weights initially, then
switched to decision-directed mode in which decision symbols are compared
to the estimate and gives the error signal under the assumption of the
decisions on information are correct.

-13 -
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2.3 Simulation results

The simulation parameters to investigate the feasibility of the equalizer for
use in underwater acoustic data transmission, are given as in Table 2.1. The
modulation format is BPSK. The channel model is characterized as shallow
water channel since multiple reflections from surface and bottom boundaries
should be considered [45-47]. The ranges between the receiver and
transmitter are 10m, 600m, 1000m, respectively and the depths of the
receiver and the transmitter are kept fixed to be 5m and 97m,
respectively. Reflection coefficient r, of the sandy bottom of the sea is
assumed to be 0.41 [48] and reflection coefficient r, of the sea surface with
wave height of 0.05m, is calculated as 0.85. The Doppler spread and other
problems are not addressed, and synchronization is assumed to be perfect.
The paths with the less than -20dB of the normalized amplitude are neglected.
Here ISI caused by multipath is concerned, thus signal to noise ratio (SNR) is
considered as 30dB unless it's specified.

Table 2.1. Parameters for simulation of equalizer performance

Carrier frequency 20kHz

Symbol rate 2Kbps
Water depth (d) 100m
Sound speed 1500m/s

Transmitter depth 5m

Receiver depth 97m
Horizontal range(R)| 10m 600m 1000m

The impulse response tests are performed by transmitting the raised pulse
with the bandwidth of two times bit rate. The obtained impulse response and
corresponding spectra of the equivalent lowpass channel for R=10m whose
range/depth ratio are shown in Figures 2.4a and 2.4b, respectively. For this
channel, the multipath time dispersion extends to 10.6msec and the RMS

delay spread is 3.1ms, which results in the coherence bandwidth of about

-15-



330Hz, in other words, corresponding to approximately 165bps maximum
transmission rate with no equalization [63]. Error free transmission is
possible in the case that the signal bandwidth is less than the coherence
bandwidth. Upper part of Figure 2.5 in which signal bandwidth is about
300Hz (twice the bit rate 150bps), depicts error free transmission, but not in
the lower part while transmission rate is chosen to be 300bps which occupies
bandwidth of 600Hz larger than the coherence bandwidth. It's clear that this
is a selective channel which causes ISI due to multipath if signal bandwidth
is larger than the coherence bandwidth. In our numerical simulations to
achieve error free transmission with high bit rate 2000bps in the presence of
ISI, therefore compensation measure should be taken to remove ISI.

Figure 2.4b illustrates that the ISI caused by multipath is not severe since
the surface reflected path's amplitude attenuates a lot and leads to the
significant multipath arrivals impose less strong ISI effects. At the receiver,
the received signal is demodulated, sampled by 7,, then processed by the
equalizer. First the prior known training sequence 1500 symbols are
transmitted to establish convergence, after which the receiver is switched to
decision-directed mode. Note that “+” in the scatter plots indicates error.
Figure 2.6 exhibits the received demodulated signals before and after
equalization and the obtained MSE with DFE processing. It's obvious that the

raw signals with no equalization representing 'l' or '-1' are not separated,
however, the output of linear equalizer with 25 taps shows the two clusters
representing two binary signals are separated well after 400 iterations, and
there are no errors detected out of 10000bits in data transmission after
training sequence (for the sake of display clearly, the number of bits is
limited to 2000). The linear equalizer can be enough to track the channel
characteristic for R=10m, for comparison we further employ DFE with 2
feedforward taps and 22 feedback taps. The output of linear equalizer is more
scattered than that of DFE and in addition DFE has very small MSE in rapid
convergence time. Consequently DFE outperforms linear equalizer.

Then we consider the channels whose transmission ranges/water depth

-16 -
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Figure 2.4. Channel response to probe signal for R=10m
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Figure 2.5. Output scatter for R=10m

ratio. At the range of 600m, the channel impulse and the spectra with
equivalent lowpass frequency response characteristic are depicted in Figures
2.7a and 2.7b. Figure 2.7a exhibits that the secondary paths delay times
compared to the direct path are larger than one symbol time and separated
clearly. The RMS delay spread is computed as 9.8ms, thus coherence
bandwidth is approximated as 100Hz, namely 50bps maximum
transmission rate with no compensation such as equalization. Figure 2.8.
illustrates the estimate of coherence bandwidth is suited for this
channel, the upper plot exhibits that while data bit rate is 50Hz, the two
clusters which representing '1' and '-1' are separated well and there is no
errors occurred 1, whereas at 100bps twice maximum bit rate we can not

attain error free communication.
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Figure 2.8. Output scatter for R=600m

Figure 2.9 shows the input signals to the equalizer, the results of

demodulated signals and MSE with equalization. Before equalization the
signals can't be detected correctly due to the ISI. With the aid of the linear
equalizer's (90 taps) reducing ISI effects, the received signals after a long

training sequence about 1200 iterations can be separated into two clusters

distinctly. For long time dispersion channel with spectral nulls, the increase

of feedforward filter's coefficients leads to the noise enhancement. DFE (2

feedforward taps and 88 feedback taps) thus became a good choice in

reducing the residual ISI effects. In addition DFE does not cause noise's

increase since the feedback filter works on noiseless quantized levels and the
feedback output is free of channel noise. We see from Figure 2.9c with DFE
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processing the two clusters representing binary signals are separated clearly
and we can obtain ideal transmission after 600 training symbols. It has shown
the superior performance with a DFE.

At R =1000m the channel response and the spectra characteristic are
depicted in Figures 2.10a and 2.10b respectively, and RMS delay spread is
7.2ms, the approximate coherence bandwidth is 130Hz, hence when the
transmission rate is chosen as 50bps, 100bps smaller and larger than half of
coherence bandwidth respectively. In the former case no errors is detected,
whereas in the latter case there are lots of errors occurred and can't obtain
error free transmission as shown in Figure 2.11. Therefore it is proved the
fact that the communication with high transmission rate larger than half of
the coherence bandwidth without compensation method, such as equalizer
and diversity is unachievable.

For the channel R=1000m, the delay times of the first three multipaths
compared to its former path are less than one bit duration of 0.5msec.
Especially compared to the direct path, the first multipath delay time are
less than one symbol duration with negative amplitude, which results in self-
destructive multipath. Comparing Figures 2.7b and 2.10b, it is evidenced that
the channel for R=1000m possesses deeper spectral null, worse spectral
characteristic and more severe ISI than the channel for R=600m. It reflects
the fact that the severity of ISI is largely dependent on the frequency response
of transmission channel [9].

To illustrate the equalizers effects in reducing ISI of the channels at
different transmission ranges, both the nonlinear equalizer DFE and linear
equalizer based on LMS are employed to combat against ISI effects. Due to
DFE's nonlinear characteristics the output of feedback is free of channel
noise [65]. As shown in Figure 2.12, for R=1000m using LMS linear
equalizer with 60 taps tracking the channel characteristic requires 1400
iterations, however DEF with 2 feedforward taps and 58 feedback taps just
needs 800 training symbols. It's obvious that for the three different channels
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Figure 2.11. Output scatter for R=1000m

the equalizers take an important role in removing ISI. Moreover the DFE
possessing nonlinear characteristic can further cancel the residual ISI
completely for the channels with severe ISI such as deep spectral nulls
without increasing the system's noise.

To compare the performance of DFE and linear equalizer at different
values of SNR, test was performed at R=600,1000m. Figure 2.13 illustrates
that for the channel R=600m in the case of employing linear equalizer there
are much more errors than DFE. When SNR is not less than 16dB, the BER
will satisfy the communication requirement: which is on the order of 107,
However for R=1000m when SNR is less than 14dB DFE has similar
performance compared with linear equalizer possibly due to the decision
errors, when SNR larger than 14dB DFE shows superiority. Therefore, DFE
shows better tracking ability than linear equalizer. The advantage is that
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DFE can not only cancel the ISI effects, but also can giverise to SNR

enhancement.

2.4 Conclusions

ISI due to multipath is concentrated on and the responses to the
transmitting signal wave-formed as raised pulse over three multipath
channels are tested to know the channels characteristics, then through the
numerical simulation by employing equalization it is found that linear and
nonlinear LMS equalizer can be applied to combat ISI imposed on modulated
signal over time dispersive channel. For the channel with weak ISI the
adaptive linear equalizer is effective in reduction of ISI, but for the channel
with severe ISI employing adaptive nonlinear equalizer can remove ISI
completely and obtain good performance. Therefore high data rates become
possible in the case where channel variance is sufficiently slow to allow for

channel tracking.

10 T T T 7 - 7 T T — —
E : : o : —+— DFE(600) 3
—-= - linear(600) ]
——+— DFE(1000) | |
- linear(1000)

6 8 10 12 14 16 18 2 2 24 »

SNR (dB)
Figure 2.13. BER vs. SNR for DFE and LE
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Chapter 3

Performance of Adaptive Equalization for QPSK

System over Multipath Channel

3.1 Background

Signal reverberation due to multipath is considered to be most severe in
shallow water channel communication especially with high transmission
rate. As a result the development of adaptive equalizer used to suppress ISI
caused by time dispersion makes the coherent modulation with high
transmission rate possible. For quadrature phase shift keying (QPSK)
modulation the symbol rate is one half the bit rate so that the bandwidth
requires one half the bandwidth occupied by BPSK with the same
transmission symbol rate. Hence in this chapter QPSK modulation combined
with equalization technique is employed to meet the demands of bandwidth
efficiency in bandlimited UWA communication. Here the adaptive
equalization algorithms’ choosing is focused on and the suitable method is
proposed, which can offer good performance for various channels [49-53].

LMS and RLS are the most commonly adopted algorithms in equalization.
To efficiently reduce ISI effects the parameters between computational
complexity, tracking abilities, convergence rate should be involved trade off.
LMS algorithm is always favored because its low computational complexity
and good tracking ability in slow time-varying channels. However for a
channel needs large number of coefficients LMS equalizer becomes
unrealistic because of its convergence time [54-58].

Though RLS algorithm has fast convergence rate and better tracking
capability, due to its main drawback of high computational complexity, it’s
hard to achieve real-time implementation. In this study it is proposed that for
a channel having large eigenvalue spread with severe ISI RLS algorithm can

-31-



be used to estimate the channel characteristics while training sequence is first
sent, LMS equalizer is then employed to remove ISI after transmission being

switched to decision-direct mode.

3.2 Communication system and equalization

The system configuration utilizing QPSK modulation is depicted in Figure
3.1. The binary data is first transmitted into encoder generating four-level
data streams, then passing the I-channel and Q-channel pulse shaping filter to
match the channel bandwidth for the ideal band-limited underwater acoustic
system. After being modulated by QPSK modulator, the transmitted signal is
introduced into multipath and additive white Gaussian noise (AWGN) by
channel. At the receiver the received signal will be demodulated, low-pass
filtered by the receiver filters matched to the transmitter filters, processed by
equalizer to remove the ISI effects and noise, finally detected and decoded
generating the stream of data.

The underwater acoustic model for simulation is characterized as linear

T " Pulse N
7'4 I-data I > Shaping Filter —{(X)— AWGN
cos(2x/ 1) @
Binary | —— QP2 l

%. Encgder ; (\%‘hgbi Channrn;,lﬂ I» >(;-B%
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Figure 3.1. Block diagram of QPSK system
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slow time-varying shallow water channel, thus data transmission will
encounter ISI effects due to the channels time dispersion. The transmitted

baseband signal can be given by

s() =Y s, p(t —kT) (3.1

where s, is the sequence to be modulated by QPSK modulator corresponds

to four levels {1+j,1-j,-14j,-1-j}. 1/T is the symbol rate, i.e., the I-data (Q-
data) bit rate, p(¢) is the raised cosine shaping pulse adopted which had been

mentioned in Chapter 2 leading to the base band signal bandwidth occupying
2/T two times the symbol rate for QPSK modulation[9]

p(t)=§(1—cos27’”) 0<t<T (3.2)

The transmitted signal r, at the equivalent discrete multipath channel end

is represented as
M
r ()= h, Re{s(t —nT)e”* ™"} + W (t) (3.3)
n=0

where W(t) is additive white Guassian noise, f, is the carrier frequency, M

is the number of channel transmission paths including direct path whose
delay time set to zero, and {h,} normalized to be unity are tap gains of

channel having a transfer function H(z) as
M
H(z)=) h,z" (3.4)
n=0

The demodulated signal at the receiver before low-pass filter can be

expressed as [40]

r(ky=r *pT -t (k-DT <t<kT (3.5)
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where r,(k) represents the received signal at instant kT and (*) denotes

convolution operation.
The low-pass filtered signal r(k) will be processed to eliminate ISI by

equalizer. Let RR denote N-by-N autocorrelation matrix of the input signal
vectors r(k) to the linear equalizer with order of N [8]:

RR = E[r(k)r" (k)] (3.6)

where r(k)=[r(k), r(k-1), -, r(k—N+1)] is the N-by-1 tap input

vector and the superscript means transpose conjugate.

rr(0) rr(l) -« rr(N-1)
RR rr:(I) rrfO) rr(]\i -2) 3.7)
rr(N-1) rr(N-2) --- rr(0)

where rr(i) is the components of correlation Hermitian matrix RR.
Let A4, (1<i<N) be the eigenvalues of matrix RR, thus a concept of

eigenvalue spread is defined as

ﬂ‘max
X(RR) = 1 (3.8

‘mim

where A_ A . are the largest and the smallest eigenvalues of RR,

‘max, ¥ “min

respectively.

Among the equalization methods, least mean square (LMS) and RLS are
most popular. RLS algorithm can be formulated as follows.

The N-by-N correlation matrix of input signal r(k)is given by

k-m

k
RR (k)= y r(byr (k) (3.9)
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where ¥ (0<y<1) is a forgetting factor to introduce the exponential
weighting into past data, superscript ( ) denotes complex conjugate and

the cross correlation is given by
a k
Vy(ky=2 7" "rk)d" (k) (3.10)
m=0

where d(k)is the desired signal, and the weighting coefficient vector
C(k) =C(k-1)+ K(k)e" (k) (3.11)

Kalman gain vector is expressed as

K(k) = RR, (k)" r(k) (3.12)

The error between the desired signal and the estimate
e(k)=dk)—w'(k-1) r(k) (3.13)

LMS algorithm (has been introduced in Chapter 2) can be expressed as

follows.
w(k +1) = w(k) + p(k)e’ (k) (3.14)

where u is step size which controls convergence rate.

RLS reaches the goal of minimizing the time-average weighted squared
error by adjusting the tap weight coefficients. Since the Kalman gain vector is
N-dimensional, rapid convergence can be achieved due to one of the
components of K(k) controls each weighting vector w(k), unlike LMS

only one parameter step size controls the convergence rate resulting in slow
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convergence rate.

The major advantage of LMS algorithm is its computational simplicity,
however, its convergence rate depends on the eigenvalue spread and
consequently the convergence rate will be slow when the channel results in
the autocorrelation matrix of the received signal has large eigenvalue spread.
In spite of its computation complexity using RLS algorithm can obtain fast
convergence rate which is invariant to the eigenvalue spread. Thus tracking
ability and computational complexity are important criteria to choose the
update algorithm.

For the purpose of comparison, both LE and nonlinear DFE will be
employed to eliminate ISI caused by multipath time dispersion. Taking one
sample per symbol the tap weight coefficients of the equalizer are recursively
adjusted to meet the criterion of minimizing the mean square error (MSE)
with respect to the equalizer taps [59-63].

For the linear equalizer in Figure 3.2a, filter output y(k) is expressed as

y(k) = f}w,rkﬁ, (3.17)

j=—m

where w, is tap weighting coefficients of the equalizer.

For the DFE shown in Figure 3.2b, the estimate is different from that of

linear equalizer and denoted as

YO = 3 wyr, + S wdk-)) (3.18)

J=—ml

where w, andw, are the tap coefficients of forward and feedback filters,

respectively.

Since the real UWA environment is dynamic, moving source or receiver

can cause the channel variation. Thus the equalizer performance depends on
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multipath structure as well as the channel coherence. The correlation
coefficient p, between the initial channel impulse response 4, and the
changed channel response h,, whose energy have been normalized can be

represented by
Re(p,) = E[h b, ] (3.19)

Hence Fuclidean distance between the signal points can be determine by

d® ={[$, +8y —2+/8,Ex Re(p,,)cosiﬂ)‘—zﬁ

1/2
]} m=0,1,2,3 (3.20)

where m represents the difference between the four possible signals’ phases
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of the carrier, ¢ denotes energy of the transmitted rectangular pulse signal
s(¢) not considering the noise and lowpass filter [9],

£ = ]{Re[s(r)e’z"ff’ Jen, () dr = g]’[h, (O fdr=¢ (3.21)

£, = ]{Re[s(r)e’z”ff’ [ by (o) dz = g][hM @ fdr=¢ (3.22)

£= ]{Re[s(r)e’zw ]}2 dr = —;iﬂs(r)rdr (3.23)
0 0

Thus, Equation 3.21 can be simplified to

1/2
d© = {25[1 —Re(p, )cos ZTM}} (3.24)

The channel coherence parameter determines signal space. When m =0,
h, # h,, causes the same demodulated signals scattered. For m=2 the
channel’s coherence decrease contributes to the Euclidean distances between
different signals points getting smaller. Therefore, the channel’s coherence
decrease may results in errors detected. Consequently the channel coherence
parameter determines signal space and the equalizer can work well when

the correlation coefficient remains high [49].

3.3 Simulation results

In this simulation the parameters are the same as those of the case
mentioned in Chapter 2 except the modulation scheme. Here QPSK scheme
is used leading to twice the bit rate compared to BPSK with the same symbol
rate. The training sequence is selected as 300 symbols in all the cases. The
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SNR is 40dB unless it is noted. We consider three cases while the horizontal
ranges between the source and receiver are 10m, 600m and 1000m,
respectively. For the three channels, the equivalent discrete-time channel

model can be considered as

H,(z)=0.58+0.232z"% - 041" -0.1627" (3.25)

H,(z)=0.7-055z" +02927 —0.2227 —02z™ +0.162 - 0.08z ™"

(3.26)
H.(z)=0.7-054z" +029z7 —0222° =021z +0.17z™% - 0.12z™

(3.27)

Figure 3.3 shows the frequency responses of the three channels while
transmitting raised cosine pulse before QPSK signals for channel probing. It
is evident that the latter two channels has deeper spectral nulls than the first
channel R=10m. For the first channel when we employ a linear equalizer
with 22 taps the eigenvalue spread is 3.75. Figure 3.4 shows the linear
equalizer performance for the first channel. Employing LMS linear equalizer
takes about 250 symbols to reach convergence and obtain an average MSE of
about 18 dB, however, during the training period LMS is replaced by RLS
algorithm, then in decision directed mode still using LMS algorithm to adjust
the tap coefficients only needs 200 symbols to achieve the MSE of about
19dB. For R=10m, the channel does not have deep spectral nulls and small
eigenvalue spread, thus linear equalizer is enough to compensate for ISI
caused by multiple propagation paths. For the purpose of comparison during
training time both LMS and RLS algorithms are adopted in equalization
while DFE is employed. As shown in Figure 3.4, RLS used for training
sequence can achieve more rapid convergence than the case of LMS. In
addition the scatter diagram also shows that since RLS algorithm's employed
in training mode, the equalizer output is tightly separated. While we employ
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the DFE, it can remove ISI effects more completely and does not cause the
noise enhancement due to its nonlinear characteristics. Figure 3.4 shows that
the LMS DFE gives rise to a little degrade in MSE and much slower
convergence than RLS DFE for training sequence. The average mean square
error after DFE can reach 30dB, consequently the SNR of the equalizer
output can be improved.

The second channel model has the eigenvalue spread of 49.17 using a
linear equalizer with 88 taps to compensate for channel distortion. For the
second case, large eigenvalue causes the convergence rate slow while using
LMS linear equalizer. Figure 3.6 exhibits that LMS LE requires 800
iterations to reach convergence with 10dB MSE, much slower and larger
average MSE compared to case 1. Thus the constellation diagram shows that

Channel equivalent lowpass frequency response for R:10m
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the equalizer output is more scattered and some errors detected ("+"
indicates error). However while training sequence was processed using RLS
algorithm, the convergence only requires about 200 symbols, and the
equalizer output constellation shows better performance than that of the case
LMS is first adopted during training time. After RLS equalizer processing
converges within 200 iterations RLS-LMS DFE as shown in Figure 3.7 can
reach much lower residue MSE. Consequently for the channel with larger
eigenvalue spread the RLS equalizer is proposed to train the sequence to
converge to stability, then LMS equalizer is continuously to reduce ISI can be
an effective way to make a tradeoff between convergence and excess mean
square error.

The third channel model for R=1000m corresponds to eigenvalue ratio of
39.85 for the number of equalizer taps is chosen to be 55. Choosing RLS
algorithm for training can obtain faster convergence, and constellation plots
as shown in Figures 3.8 and 3.9 depict that the output of equalizer is more
tightly separated compared with LMS equalizer for training sequence.
Especially for the channel with deep spectral nulls and large eigenvalue
spread, DFE equalizer's employment shows that RLS algorithm adopted for
training can make a balance between MSE and convergence rate and achieve
more ideal performance: much faster convergence and smaller MSE, i.e.,
larger output SNR.

Figures 3.10a and 3.10b plot the MSE and BER as a function of input SNR
for LE. It can be found that for channel R=10m LE performs well and
achieve smaller MSE than the other two channels. For channel R=10m the
higher SNR, the lower MSE. For the other two channels due to their deep
spectral nulls LE can not obtain a big improvement in output SNR even at
high SNR of input or noise free case. From Figure 3.11 it can be seen that
DFE enhances the performance, especially at high SNR. For high SNR the
MSE after DFE equalization is significantly lower than that of the linear
equalizer. At low SNR the DFE performance does not show a big difference
and both linear and nonlinear equalizer DFE don't supply good performance
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scheme always outperforms the LMS algorithm. At low SNR the DFE does
not show its superiority either in convergence or in MSE. This implies that
when SNR is higher than 15dB a good way for removing ISI caused by
channel time dispersion is to use adaptive equalization technique.

In order to investigate the performance of equalization in slow time-
varying channel, we varied the channel by changing the horizontal range
between the source and receiver and plot the correlation coefficient with
respect to the source's drifting distance. Figure 3.12 exhibits that the larger
the drifting distance, the lower the correlation coefficient. For the channel
R=10m when the distance is larger than 3.5m, the coherence between the
original channel and newly obtained channel due to source moving decreases
to 0.67. For the second channel R=600m due to the range between the source
and receiver is relatively larger than the first channel, the coherence dropped
to 0.53 while the moving distance reaches 15m. To study how the
horizontal drifting distance influences the equalizer performance the moving
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Distances are selected as 3.5m and 5m, respectively for the first channel.
During the training period (300 symbols) the source is assumed to be at the
initial position and being switched to direct decision mode the source moves
extended to 3.5m and 5m, respectively. Figure 3.13 demonstrates that while
the moving distance is 3.5m whose coherence is above 0.5 the equalizer can
still reach convergence and achieve error free transmission after 600 symbols
transmitted. However when the drifting distance is 5m whose channel
coherence decreased to 0.233, the equalizer after training will diverge, many
errors are detected and can not achieve reliable communication. The same
results will be obtained for the second channel, when drifting distance is 15m
(coherence: 0.53), the equalizer performs well, drifting distance reaches 21m
(coherence: 0.28) the equalizer does not provide satisfactory performance as
shown in Figure 3.13. This result is in agreement with the experimental
finding that when the channel coherence remains high channel equalizer can

adapt to the variation achieving error free transmission [40].

3.4 Conclusions

Aiming at choosing appropriate equalization method to achieve ideal
transmission effects, it is proposed that using RLS algorithm during the
training period, then LMS algorithm is employed during the decision direct
mode for the channels having large eigenvalue spread of the received signal
autocorrelation matrix. The simulation results prove that it's an effective
scheme to improve the equalizer performance not improving the computation
complexity largely. For the channel with deep spectral nulls, it especially
shows this scheme's superiority while RLS DFE is employed for training
period leading to fast convergence. Equalizer performance due to drifting
distance has also been analyzed and it was found that the source moving
induces degrade of channel coherence resulting in smaller Euclidean
distance's in signal space and more errors occurred if correlation coefficient

decreases to small value.
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Chapter 4

Performance Comparison of Passive Phase

Conjugation and Decision Feedback Equalizer

4.1 Background

Coherent modulation schemes such as PSK offer bandwidth efficiency and
power efficiency, but face the problem of multipath which causes ISI in UWA
communications. Several methods deal with this problem. In Chapter 2 and
Chapter 3 adaptive equalization performance has been studied. In this chapter
spatial diversity will be paid attention. Building a receiver array, i.e.,
multichannel equalization has proved to be an efficient way of dealing with
time spread UWA channels. Recently PPC was proposed, which resorts to the
use of time reversal probe signal received earlier to achieve the knowledge of
channel and thereby reduce the ISI. According to PPC theory multichannel
matched filter can be evaluated justified for use as an equalizer in the
shallow-water channel. In this chapter, the evaluations use simulated
channels based on reflection functions derived from two shallow water
acoustic channels. MSE is shown as a criterion for assessing the
performance of the PPC and multichannel equalizers [64-68].

Adaptive channel equalization is an integral part of many digital
communication receivers to combat ISI caused by multipath. Conventional
adaptive equalizer design is based on the recurring transmission of known
data to settle the filter coefficients. If the communication signal is received at
more than one sensor, this spatial diversity can be utilized in a multichannel
equalizer. The joint space-time processing usually leads to an improved
performance compared to the output of signal channel receiver [69-70].

In order to account for amplitude fluctuations of the UWA channel,

synchronization is assumed to be perfect and the problem of multichannel
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adaptive channel equalization is concerned. Spatial diversity estimation
procedures are known to yield better results than single channel estimation.
In this chapter PPC and adaptive multichannel equalization is focused on and
these two methods’ performance efficiency is compared in the case of the
time-invariant channel since PPC assumes time invariance. The simulation
results of their application to shallow water channels have demonstrated the

feasibility of achieving coherent communications over these channels [71-73].

4.2 System structure and equalization algorithm
4.2.1. Multichannel equalizer

In this section the problem of extracting the transmitted data sequence
from the signal received over a number of propagation paths and observed
across an array of sensors will be addressed. Adaptive multichannel
equalization techniques can be used to first extract the channel response from
a training sequence and then compensate the channel distortion during the
period of the data symbols transmission.

It is assumed that the most general channel model in which each of the
array sensors observes the transmitted signal passed through a different
channel with some noise added. The transmitted signal is a data sequence
linearly modulated onto a carrier, and it is represented in its equivalent

complex baseband form as

s(t) = ZS,-P(t—iT) .1

where s, is the sequence of binary data symbols corresponds to bit 1,-1, p(¢) isthe
basic transmitter pulse having adopted in Chapters 2 and 3, and 7 the signaling
interval. The channel, as seen by one of the M sensors, is described by its
impulse response 4, (f), which includes any transmit filtering. Both the

effects of time delay and phase deviations are included in this response, and
for the moment 4, (¢) is treated as constant in which the received signals

taking one sample per symbol in the mth channel at time k7 are given by
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Foi = O s, (k—i)+1, (k) * p(T 1) (k-DT <t<kT (42

Assuming the constant channel impulse response in some interval, let the
mth channel feedforward filter tap weight vector of multichannel equalizer
whose structure is depicted in Figure 4.1 be

Wog =[Wh k1 Wyol (4.3)

The feedback filter coefficients are denoted as
W Z[W/bl "'W_/bkz] 4.4)

The nonlinear equalizer output has the form

M0 K2 -
y(k) = Z Z W itmie; T Zwﬂ,jdk_j (4.5)
Jj=l

m=1 j=—K1

In order to reduce computation complexity, multichannel equalizer is a
suboptimal method applicable to long range channels. It improves the
limited signal-to-noise ratio at the receiver through coherent combining. In
such a way, it benefits from the implicit time diversity present in the
multipath propagation, as well as from the explicit, spatial diversity [74-77].

4.2.2. PPC algorithm

The block diagram for PPC is illustrated in Figure 4.2. It is clear that it is a
special form of a linear equalizer where the tap coefficients are the time-
reversed impulse response function. Considering only discrete multipath, the
channel impulse response of m th receiver element is given as

N
h,0) =) a, -1, (4.6)
n=1
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where «,, is the amplitude of the received signal of the nth path
normalized by the amplitude of the direct path signal(#»=1) and 7, is the
difference in time of arrival between the direct path signal and reflected path
signal. Therefore, the probe response signal r, (kT) at mth receiver
element is given as

N
r, (kT) = p(k[) *h,(kT) =) a,,p(kT ~1,,) (4.7)

n=1

Output of probe signal PPC process or autocorrelation of probe response
signal is given as

N N N
ym (kT) = Z] (amn )2 Rpp (kT) + Z Z amnl amnz Rpp (kT + Tmnl - Tmn; )

m=1 n,=1
n#ny

(4.8)

where R, (kT) is autocorrelation of the probe signal. The first term of

bracket is the sum of the multipath amplitude squares defined as main lobe
amplitude and the second term is a group of cross product of two different
multipath amplitudes defined as side lobe.

The sum of all M-array elements PPC processes is given by

M N M N N
YD) =>>(a,,) 'R, D)+ D> > a,, Xy, R, (kT +7,, =7, )
m=1 n=1 m=1n=1 n,=1

1y #hHy

(4.9)

The PPC method by convolving the received signal (k7)) with the time-
reversed impulse response function (the probe signal) can be evaluated and

obtained

ihm*rm ZZ Z(a,,,,,) R, (kT —iT)

m=l

ZZ Z Zafmn,amnZ Rpp(kT+T "’l'm"2 —ZT) (4'10)

m=1 i m=1l nmy=
n #n,
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Figure 4.2. Block diagram for PPC equalizer

PPC for multiple channels uses the properties of the channel waveguide to
suppress the side lobes of the channel response autocorrelation. Note that the
cross-correlation of the data with the probe signal (the impulse response
function) is a matched-filter process, a common procedure in digital
communications. The probe signal is a linear transversal filter of a finite
length. The deficiency of a linear transversal filter of a finite length in
removing ISI is well known. When a small number of receivers are used, the
channel response autocorrelation function has non-negligible side lobes, and
PPC will generally have significant bit errors.

It is noted that multichannel DFE outperforms PPC. However, DFE is very
sensitive to the choice of parameters. Error propagation sometimes causes the

equalization diverge and can not track channel characteristics.
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4.3 Performance comparison of PPC and DFE

The simulation was performed in the water with a constant sound speed of
1500m/s profile. It has a water depth of 100m. The source was placed at a
depth of 35m. The vertical receiver array with 13 elements was equally
spaced over a depth of from 87 to 99m. The source are placed at the ranges of
700m and 1000m, respectively.

The PPC signal is obtained by convolving multipath arrivals with a cosine
weighted pulse filter, allowing a small out of band energy. Seven multipath
arrivals are observed with different delay times and magnitudes. Received
data are created by convolving the impulse-response functions with a
sequence of binary PSK signals. Random Gaussian noise is added to the
received data with a SNR of 20dB.

For the channel R=700m, first the signals are shaped using a cosine filter.
Figure 4.3 shows three channels receiver performance obtained at the same
range and rate with PPC and DFE. When the three-channel equalizer (near
the bottom of vertical array) is employed, DFE can eliminate ISI and achieve
small MSE of -14dB. For PPC algorithm, three elements array can not reduce
the ISI completely, thus MSE is close to zero and the demodulated signals
can not be separated clearly which results in more errors occurred. Using
three channels in a multichannel equalizer algorithm, a relatively satisfactory
performance was obtained as shown by the DFE output plot, whereas using
PPC algorithm can not reach the goal of error free communication. Thirteen
channels are also taken as an example depicted in Figure 4.4. It is observed
that the DFE output has less MSE and demodulated signals are tightly
clustered than PPC. Thirteen channels DFE’s MSE is approximately 4 dB
lower than the previous case, i.e., three channel DFE. Hence, the symbols in
Figure 4.3 are more scattered as compared with Figure 4.4. In the thirteen
channel case, no errors are detected in a data block of length 3000 either for
PPC or DFE.

For channel R=1000m, Figures 4.5 and 4.6 summarize performance results.
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for the two cases: using 3 and 13 channels in DFE and PPC algorithm with
the aid of multichannel DFE we can obtain more ideal results: small MSE
and low bit errors detected. Comparing the PPC performance achieved with 3
and 13 elements demonstrates the fact that more element size can achieve
better performance. Thus it is confirmd that PPC is much sensitive to the
array size than multichannel DFE.

Figures 4.7a and 4.7b plot the MSE with respect to the number of array
elements. It is observed that before the number of channels reaches 6 the
DFE performance shows fast improvement with increase of elements, and
slow increment thereafter. Increasing the number of array elements beyond 6
such as 13 offers 2 dB decrease in MSE. However in the case of PPC,
performance can steadily improve. It should be noted that SNR at either
20dB or 30dB PPC provides similar performance, whereas multichannel DFE
can achieve about 7dB improvement.

The MSE is plotted as a function of the number of array elements for the
transmission rate of 1000 bps as shown in Figure 4.8. There are no errors
detected either using PPC or multichannel equalizer after training. The
demodulated sample variance is reduced evidently compared to the case of
2000 bps as shown in Figure 4.7a with the aid of PPC processing. Thus the
decrease of transmission symbols bandwidth causes performance
enhancement with PPC. It is observed that doubling the number of array
elements can achieve approximate 3 dB improvement in performance.
Multichannel equalizer’s employment does give a rise to a little improvement
in performance for 1000 bps. This implies one should choose a suitable
method to make a trade off between computation complexity and
transmission rate.
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4.4 Conclusions

PPC and DFE performance was investigated in this simulation. In the former
case, the filter coefficients are matched to time-reversed impulse response
function for each receiver channel. In the latter case, the filter coefficients are
determined by the MMSE criterion. PPC solution minimizes ISI by taking a
coherent sum over many receivers over a large aperture vertical array. It is
observed that, for a small number of receivers, PPC could not remove all the
ISI. DFE can eliminate ISI completely. The advantage of DFE is its ability to
reduce the MSE and BER compared with PPC. It yields a higher output SNR.
In general, DFE outperforms PPC in terms of MSE. The difference in
performance between PPC and DFE is due to the residual ISI [56-60] caused
by the sidelobes of the function. PPC is less sensitive to SNR and more
sensitive to the number of array elements and transmitted signal bandwidth
compared with multichannel DFE [70].
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Chapter 5
Conclusions

In this thesis the ISI caused by multipath in underwater acoustic
communications is concerned on and several equalizers for reducing ISI have
been discussed and simulation results demonstrate their effectiveness.

Firstly, it is found that linear and nonlinear LMS equalizer can be applied
to combat ISI imposed on modulated signal over time dispersive channel.
For the channel with weak ISI adaptive linear equalizer is effective in
reduction of ISI, but for the channel with severe ISI employing adaptive
nonlinear equalizer can remove ISI completely and obtain good performance.
High data rates become possible in the case where channel variance is
sufficiently slow to allow for channel tracking, the combination of adaptive
equalization with more rapid convergence rate and synchronization
techniques will be the subject of further study.

Secondly, how to choose the equalization algorithm suitable for multipath
channel is discussed. In order to choose appropriate equalization method to
achieve ideal transmission effects it is proposed that using RLS algorithm
during the training period especially for the channel whose characteristics
causes the received signal autocorrelation matrix large eigenvalue spread,
LMS algorithm is employed during the decision direct mode. The
simulation results prove that it's an effective scheme to improve the equalizer
performance not improving the computation complexity largely. For the
channel with deep spectral nulls, it especially shows this scheme's superiority
while RLS DFE is employed for training period leading to fast convergence.
Equalizer performance due to drifting distance is also analyzed and it is
found that the source moving induces degrade of channel coherence resulting
in smaller Euclidean distance's in signal space and more errors occurred if
correlation coefficient decreases to small value.
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Thirdly, diversity technique - PPC and multichannel DFE have been
discussed and compared. PPC could be regarded as a special form of a linear
transversal filter. The filter coefficients are matched to time-reversed impulse
response function for each receiver channel. Although the PPC solution does
not yield the minimum MSE, by summing over many receivers over a large
aperture vertical array, ISI is reduced by the physics of waveguide
propagation. The advantage of DFE is its ability to reduce the MSE and BER
compared with PPC when the number of receivers is small. It yields a higher
output SNR. The difference in performance is due to the residual ISL
However, DFE has its own problems, such as numerical sensitivities to the
number of taps used. Adaptation of the DFE is also limited by error-
propagation problem in real communication systems. The combination of
adaptive equalization with more rapid convergence rate and synchronization
techniques will be the subject of further study.
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