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1. Introduction

In thia theaia, ws conaider a mixed finite slament Galerkin method for the

following single-phass linesr Stefan problem in one apace dimsnsion.

Problem (P1): Find Ufy,7) and S(r) such that U7 satisfies

U, — U, =0, (y,7)€q(r)x(0,T) (1.1)

Y

with the initial and boundary conditiona

Ulw,0) =gy}, 0<y<l (1.2)

U, (0,7 =0, T(S(r),m1=0, 0 <r =T (1.3)

and further, on the fres boundary, 5 satiafien

a5
A T(S(n), 1) =0, 0<rET (149
:

with §(0) = 1, whers Q(7) = {(v, )| 0 <y = 8(7), 0 <7 =T}

Fegarding the exatences, unicqueness, and regularity resulta of the aclution
{07, 8}, the reader may refer to Fasanc and Primicerio [2].

Earlier Nitache [7, 8] initiated the study of arror analysis for semidiscrete
finits glament approxdmations to singlephase linessr Stefan problsms by using
the fixing domain method. In [1, 3, 5, 9, 11, 12], the authors constructed
aamidiacrete finits slament approximationa to linsar or gquasilinear Stefan prob-
lema in ons apacs dimension with wsrious types of boundary conditiona. They
proved the local ssdatence or global exdatence of ssmidiacrete approximationa

and proved the optimal crder of convergencs of asmidiscrete approximations
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with reapect to Ly, HY, and H? normas, provided that finite dlement apace con-
alata of plecewise polynomials of degres » with » = 3. And alac they asaums
that the finite slement space S® ia & subepacs of H? N Hi.

Under the similar conditiona on & finite element apacs, the authors in [3, 4,
12, 13] constructed fully discrete approxdmations and proved the optimal order
of converpence of fully discrete approxdmationa with respect to Ly, HY and H®

norma.

Fecently, fora linear Stefan problem (1.1) —(1.4) with & homeogeneous Diriclet
boundary condition at @ = 0 inatead of & homopensous Neumann boundary
condition at @ =0, theauthors in [6, 10] adopted a mixed finite element method
to improve the restrictiona on the order of finite slementa and to relax the
requirement of the amocthness of finits elementa. They constructed ssmidiscrets
finits elamsnt approxdmationa and analyzed the srror sstimates of asmidiscrats
finite elemeant approximations with respect to Iy and ! norma.

In this thesis, we apply the idsas in [6, 10] to conatruct mixed finits element
approximations to the linear Stefan problem (1.1} — (1.4} and to analyize the
arror eatimatea for the mixed finits elament approxmationa with respect to g

and H! norma,

Thia thesia ia organized as follows, In Section 2, a mixed formulation ia
derived and the local exdatencs of semidiscrete approximationa ia proved., Aux-
iliary projectiona and related stimates are given in Section 3. Section 4 ia

related to error sstimates for semidiacrete approxmations with repect to Lo

and H! norma. The global axiatence of semidiscrets approximationa is proved

in Section 5 uaing the Schauder’s fixed point theorem.



2. MMixed formulation and local existence

With the help of the Landau tranaformationa,

_ ¥
@ = 507 (2.1}
and
t=1t(r) = AT SQETI} ar’, (2.2}

the problem (P1) can be tranaformed into a problem (P2).

Problem (P2): Find w(a, ) = Uly, 7), 2(t) = S(7) such that 2 satisfies

U — Uy = WU (L}, (2y2) €T % (0, 7] (2.3)

with the initial and boundary conditiona

ww, 0) = glw), @7 (2.4)
(0,8 =0,2({1,4) =0, 0<¢=T (2.5}
and o satisfics
a
ﬁ = —ay(l)e, 0<t<T (2.6)

with (0) = 1, where ¢+ = T corresponds to v = T, 1 = (0,1}, and 2,(1) =

#i,(1, ). Purther the integal in (2.2) can be rewritten aa

a
i:ﬁt} 0<t=T (2.7)

with 7(0) = 0.



Asaume that all the uniquenesa and regularity propertise for U7 and & can be

carried over to the aclution « and 2, and that

Condition F:

w € WHR 0, T H(), e e WH(0,T) forsomerz2,  (2.8)

where H™1(I) ia the uaual Sobolev apace with the usual Sobolev norm || - || .41,
simply deonted by HrHL, Whee(0 T H*+1([)) is theBanach apacsof functions
v whose essential supremums of v and w with respect to the norm || - ||e41 over
(0, T are bounded and W1 ({0, T) is the Banach space of functions ¢ whoas
cssential supremumsa of ¢ and ¢, with respect to the absolute wlue over (0, T
ars bounded.

Let B denote the bound of the functiona in all the norma of the apaces in
Clondition F and let K dencte the bound for {I7,8} in the normed space
appsaring in Condition K.
Denote H = {v € HY, o(1) =0} and H: = {v € HY, o(0)=0}. Let v =2,
Then the equation (2.3} can be rewritten as a system:

Ty = U (2.9}

2y — 2, = —azu( 1, (2.10}

Multiplying (2.9) by ww, with w € H} and (2.10) by #, with # € H! and

integrating by parts the first term in the left hand side of (2,10}, we obtain

(et 2y) = (v,2,)  for we Hy

and

r-:ﬂ'ﬁm g}+ (ﬁﬁ‘.‘ "gﬁ} :1"(1}(%? "KE} for < Hi

e



The mixed weak formulation of (2.3)-(2.5) is to find & pair (u(t),0(t)) € HI x

HL, ¢ (0,7] such that

[ty ) = (Wt} for w € Hy (2.11)

and

(ey #) + (Vs #2) = v{1) (o0, &) for & € HL, (2.12)
And fort =0

wle,0) = gle) and wle,0)=g' =), z<l

Let S‘_“‘; = H_il_ and §* € HY be two finite dimensicnal subepaces aatiafying

ths following propertisa:

(i} Approxdmation property: for 1 < k < », thers exdata a conatant A such

that for 7 = 0,1 and w € H* N H3,

. fa_i
inf Jo—xl, < Kb ol (2.18)

+

where » 18 & positive conatant,

Nots that for w € B* M H! the infimum ia taken over all v e gk

(1) Inverse property: for x &€ Si (or &%),
Il - < Hoh™ 5 x| (2.14)

Now mixed semidiscrets finite slement approximations for the problem (F2)

are defined aa follows: Find «* € 8%, o7 € S, &% auch that for ¢ € (0, T

(ﬂ};?%} = (&}wﬁ} for w e S“i (2.15)

—5



(of, 8) + (0F, 5 = P (D(e”, &) for ze s (2.16)

%: (1) (2.17)

and for4 =10
o (2,0) = Qnsla)y P(0,0) = Bg'(e)y, (0)=1,

where (y, and B, arsappropriats projections to be defined later. Morsover, the

Galarkin approxdmation 7 of 7 ia defined as followa:

arh
e =[], t=0 (2.18)

with (0} =
In the next thesrem, we prove the local exiatences of 2 and o®,

Theorem 2.1. There exizt of* and " satifying (2.15) and (2.16) respect ively

in & certain interval (0,1%) where #* dependz on g and §' but not on S‘_“‘; or &%,

Frogf. Taking » =4* in (2.16), we obtain
R he
R P G RY,)
< [ 2]

1 2
=3 [+*]° + —t‘z k], (2.19)
Therefore we have

a 2 3 a 2 2 @
o 2 _ Zedyal T < 2t
P+ 2= Sl < 2

—6—



For a sufficiently amall €, thers exiata 5 = 0 auch that
a R 2 2 2 &
e Y ] P

Thus we have

a 2 2 B
L < 2 (2.20)

Now, we put A(t) = [o* (%) ||2 + 1. By (2.20) ws hawe

cAE(4) (2.21)

| =
Py
[

for some conatant ¢ > 0. By integrating both sides of (2.21) one can show that

A2(0)

At = 1 — 2etA2(0)

(2.22)

with A(0) = |v*(0)]® + 1 = | Fag’|® + 1. Thersfore there exiata v® on the time

interval [U’m] and 20 theres exiata «® satisfying (2.15) on the time

interval [0 . Thia completes the proof.

e Es )
* 2e([Fag P41

2. Auxliary projections and related estimates

For w,w, ¥ € HY, ast

Al w) = (24, 20 (8.1)

E(’Ui’b‘_,l} "3} = (’“—"m Eﬁ} _ﬁ(l}(m? "gﬂ} + ’}‘(?"J‘.- "3} (82}

—7—



where A = 0 ia a aufliciently large conastant ac that thers is a constant o = 0

auch that

Blujs#) za|#|], = HL (3.3
It 12 smay to show that
| Al )] = ol |wly, wwe Hy (3.4)
Al ) 2 olul? we H} (8.5)
| B, )] < Kalwlylely we BL, s B2, (3.6)

Now

for some positive constant Kz and o, Hers B depends only on |Ju|.,.

define auxliary projections « € S% and o € &* of w € H and v € H! with

reapect to A and B, repectively as follows:
Alw—tmw) =0, ¥ weSh (3.7)
Blujw—1,2=0, ¥ z&8, (3.8)
Exdatence and uniquenssa for (%, ) follow from the Lax-Milgram theorem. Let

7 =w—wahd & =u — 4, Then the following sstimates can bs derived by the

aimilar methoda in Daa and Pani[l, 11].

Lemme 3.1. For 7 = 0,1 and 1 = m = », There exisls 5 constant Kz =
FL( Ky, Ky, K), independent of b, auch that

loll; < Ezh™ e,

161, < Bah™ 7 o],

[6:0; < E=b™ " |oll,, + lox ]
1801, 8)| < Bah2 Y o]

—&—



hold,

4. Error estimates for semidiscrete approxmations

To analyzethe error satimat es for semidiscrets finits element approxdmationa,

we temporarily assums that thers exiata a poaitise conatant A auch that
[ e iy = B (4.1)

Let =2l —agp=2" — 0 =u—2 =n—0, and s =v—a"* =& —4. In
other to maintain a uniform degres of approxdmation, we defins B, g" = 0, 0)
where U ia the projection of v onto §* defined by (3.8). Using Lemma 3.1 we

will satimates @ and %) in ths following theorem.

Theorem 4.1. Assume that (4.1) and the regularity condition (2.8) hold, Then
there existy pogitive constants 5 and Ky = K (K, Kz, B*, A) sudh that

18] 2=y + N3] zomgzoy + Bl | oy = HaB™ (4.2)

holds for 2 <m < »

Progf. From (2.18}, (3.7}, and (2.11}, it follows that
() = [0 — 0, un) ¥ owe S (4.3)
Setting w0 = & in (4.3}, we havs

161 < 1] + 1<

and

1 1
16217 = S 1617+ = 181° = 18115
2 2

L
2

—5



Therefore we have

1
el < el + 1,

that ia,

161, = V2] + 1. (4.4)

From (2.12}, (2.1}, and (3.8}, wes have

(afer #) + (2o )
= P (1)(w0”, &) —o(1) (@0, 2) + (&, &) — A(E, &)
= (" (1) —o(1)) (e, o) + oL@, 52) + (85, #) — A(£,2) Wee S°. [4.5)

Choosing =20 in (4.5), we obtain

;j||¢llg+ =1 = B (1) = 0(1) —w(L) +B(1)) (%)

[

Therfors we have

d 2 a

1l + 21

<2KN(L) — &) | + 2Kl I + 20 111 + 2A1E 1]

< VIR 1 [ ¥+ 2E718(DIa | + 2Kl 1| + 208 L 0] + 230 L[]
B a

< 1l + 181 + B (K P + (767 +26) [

+K(K1:~ K*?}L?ﬁ}"g{)”? (46}



Zhooaing £ sufficiently amall ao that 2 — (%E% + 2e) = ,63 > 0 and integrating

both sides of (4.6} with respect to 4, we ohtain

II@D|I2+5£ ||¢||ﬁdt’iH(H’*}f[nan“+||f||9+|en:1,f}|g]df

+
T+ KKy K ) / [olat
0

An application of Gronwall’s inequality to the above inequality yielda

gt
[l + & f [ol2a8 < K(Ku, Koy B B,
i]

And therefors taking the supremum over all # € (0,4) gives ua

2 AL -
"@D”L‘m(,{,ﬂ) +.3||'§5’"th1:, < K(H,, Hs, K ,A}hgm}

that ia,

l2b] o 22y + Bl#] 2y = KK, Bay K5 AR,

Thua, by (4.4) and Lemma 3.1, we obtain

||'9||La=».:H1;. 5\’@("5" Le=(L2y T [l | Lm.:z,ﬂ;.]' < H(Hq, Hg H5,O)R™

and

18] Loy T =] Le=pLey T .8"’3.9"59(31:, = Hyh™,

which complstea the proof.



Theorem 4.2. There existz o constent Ky = FEg( Ko, B, K, Ky, B7) such

that

lbell 22 gzoy + 1) 1 gy = EgR™77 (4.7)
holds for 2 <wm < »,

FProgf. Setting ¥ =) in (4.5}, we have

14
e | * + EEH%HE

=" (1) (0, ) — 0 (1) (20, %) + (8 9f) — A(E,2)
= ('Uh(]'} _ﬁ(l}}(m&?@fm} +ﬂ(1}(m¢?@bﬁm} + ('ff??lllz} - ’}‘(‘E?Qﬂ&t}

20 + j;tn% I < 20 (1) —w(D{]2? (Dake (1] + [ Db + e | 1ebel }
+ 20 {[P(L)be (1] + el i | + el e |} + 208 [ e |
+ 27 ]£ ] o
< B Fph~ F b + |8V B Byh™ & [af | + 2% |}
+ 2B { Foh ™ 7 | Kok ™5 el | + ol label + oo ot |}
+ 20 & ok | + 2208 1<
< K(Ko, Ky, K* )b 72 || + K (Ko, K )~ HE(D)

+ KBy )l + (&7 + E(h ) I£1° + el |,

Zhossing € sufficiently amall, integrating the previous inequality with reapect to



t. and applying Lemma 5.1 and Theoram 4.1, wes obtain

k4 + +
f e |28 + [l < KK f s P4t + K (Ko, K)o f [P at
I} I} I}

+
T K(Ky B\ ) / [&l? + 121 + 5Pt

Thersefors ws get
* a a2 * a a 2
/ e 1288 + [ = B (Ko, B\ A) / &2 + 1£1° + |81 P18
u] [}

#
+ F{ Hp, K1 )b~ f |20 a¢’
0

= K[: KD? KE} K*? ’}‘}hgm + K(KD? Kl} K4}hgm_g
< K( Ky, K1, Kz, K4, \)H° (m=1),

. This impliss that

lobell zo gy + 0] e oy < EsB™ 7,

which completes the proot,

From Theorem 4.1, 4.2 and Lemma 3.1, we pet the following theorem.

Theorem 4.2. Let u be the solution of (2.3)-(2.5) astifying the regularity

conditions (2.8). Further sssume that there are positive constants hy and K*
with K* = 2K, such that the approximste solution («f, ™) € S’_“‘; w S of

(2.15) and (2.16) satefring (4.1) exste in I % [0,T] for 0 <L b < kg, Then the

following egiimatez hold: for 2 < < »,

1$0 e groy + Il e 2oy + Bllol 2 sy = Hab™ (4.8)



where Kﬁ = Kﬁ(ﬁ.’u, K]_, Kg, K4, K*]I and ,8 e 0 and
I<] Le=fa1y T l=| L= (g T Bl |l el = o™t (4.9
(£ (£ (L)

where K, = H.(H,, Kz, g, B*). Besides, for s sufficiently amall b and 2 <

moE

"Uh"LmU-fl:, < 2K, = K" (4.10}

and therefore Ky sz well sz K, can be chosen independent of K+,

Frogf. From Lemma 3.1 and Theorem 4.1, wes ohtain

IS0 2ee ¢zy + Il pom gy + Bl ol 22 2oy
N0l g gzoy + 18 2 2oy + 18 e 2oy + 190 e (22
+ B €l zerey + Bl Lo zey
< E( Ky, Koy BN AP+ Ky Egh™ + Ky Hah™ + BEy Kah™

= HR™.
By Lemma 3.1, Theorem 4.1 and 4.2, we get

I<h 2 oy + Mol pe gy + Nl 222
== Ol e pzzry + 18 =l poe oy + & — W a2y
=l e gy + 18 2o 22y + 1l 22 oy + 18] 2o 2y
+ |l g gzay + Il g2 ey
< Hob™ 0



Furthermore from (2.8) and the above inequality, we get
||“Uh|| Le=(EY) = | L=yt | —af | Le= [ H1)
< Er+t ol g amy
< K+ Ko™t
= 2K, < K*,

for a sufficiently small k. Now the proof is completed.

Finally, the Galerkin approximation of the solution Uy, 7), S(7) of the prob-
lem (F1) can be define as

U (g, 7) = o (=, 1) (4.11)
gt () = (4 (4.12)
T ) = ot (413)

where 4 and T ars given as follows .
y =" (e (d.14)

= 7"t (4.15)

Theorem 4.4. Assume that the ascumption of Theorem 4.3, and the regularity
conditions for U and S hold, Then the following estimatez hold for 2 <m < ¥,

|5 — 5| L={0,T) = OR™) (4.16)

|~ — ™ | 2= 0,7 = O(R™) (4.17)
e e — i .

1T =7 L= {0, To; B (2710 = OR") br §=0,1, (4.18)



where Q1) = (0,min(S(0), S*(AN  for v € (0, Th).
FProgf. Subtracting (2.17) from (2.8) and integrating with respect to ¢ yicld
+
|a — & < / lu(1)e —w®(1)e®|d¢
o
4
gf |u(1)e —4({1)e| + [o*(1)e — B(1)a|dt’
0
4
+/ | (1)]]e — &*|a¢
0

< / 1800)] + (L))l el + / P (L)ls — Pat

Applying Gronwall’s inequality, we obtain

o= | < KK, K°) / 100)] + (L) a#

and ao, we get
le — & 1o < E(E1, Fa, By, KNR™ for2 <m < »

The eatimate (4.15) follows immediately from the fact that

15 =8 peomy = I =" | 1= o,y
Moreover, by using (4.16}, the estimate (4.17) can be proved. Finally, we will

show that

e . .
1T = U o o,m i gy = PRT) for 7 =01



For 4 =0, we hawve

1T, 7) = U ) < |0, 7) = U D) + 106 7) - Ul o)
+ |U" ) - TR )
= U0, Ty =)+ U (5 70 = )
+ [, t) — o (2, 1)
< Hale — 2"+ Hafr — 7+ I 1

i K(HI} KE} H‘-h Kﬁ}hm
Similarly, we have
" Uyl:yr T} - Ug(@'h? Th} " = H(Kh Ha, Ky, Kﬁ}hm

Hence by Lemma 3.1 and Theorem 4.1 the sstimate (4.18) ia obtained. Thia

completes the proot

5. Global existence for semidizcrete approximations

In thia asction we conaider the global exiatencs of asmidiacrete approxima-

tions {ed, 17}, Let us recall (4.5) and (3.2) to cbtain
(e, 8) + Blv; <, 2)
= (8 #) +b( L), 1) — (1™, ) + A(sh ) = A(8, 8}, (B.1)
Replacing «® by v — E in (5.1), for any E = E(e, 1) € H, we obtain
(%, 8) + Blujah, #) = (& #) + (1) (w0 — 2B, &,)
— 8@ —2 B, m) + A, #) — ME,5) Ve S (5.2)



Thia ia a linear ordinary differential equation in 2 as a function of 4. Therefors
thers exdata a unique solution 40 in theinterwl [0, T] of (5.2) with 2i(a, 0) = 0.
This equation defines as operator & auch that @0 = G(E) for each E € H,

Since o= & — 2, then
g=§ _—G(E) foresch Bc H! (5.3)
To claim the exatence of a solution «® in (2.17), we nesd to show that the

operator ¥ in equaticn (5.3) has a fixed point.

Theorem 5.1. Aszume that the finite clement epace S ( or S* ) sntisfies the
inverse property (2.15) and w iz the unigue solution of (2.3) - (2.5) satefring
the regularity condition (2.8). For any p > 0, there exizty & solution v* € 5

of (2.18) eatisfying |u — o | pe=cahy = @ for & sufficiently amall k.

FProgf. Setting ¥ =40 in (5.2), we obtain

| £

117 + 2l13 < 18Il + I ol + 12D

B3] =
I+

I

+ W]+ IBD Nl + Al [ + A& N <]

And so we obtaln

a 1 3
EII'%J»II2 + 2091 = 1%)7 + |<1° +2/2(E1 + | Bl <07 b= 2

+ 20K+ | EDIEWIba + 2217 + 221 | [+

= & + 1317+ (a4 | EDPEW)

[v]

18 z
L+ LD+ 20 0 P + Cef 1 D

=



This implies that for aufficiently amall € =0

a

EII’#'JII2 + B3 = 117 + 1817 + (Ea+ | B2 1E(0)F

16 4 a a
+ {1+ (B + | B])7 + 224+ A% <]

ahd a0

2 ? 3 ? 2 3 3

%1 +ﬁ/ II@Dlllde/ (817 + 1617 + (& + [ ZD)2E(1) []8
o o

L]
+ KK B [ e,
0

Ey Gronwall’s inequality

+
[oI? + 8 ] [o1Pat < K(Ky, Koy EY™  for2 <m < n
I}

Therefors we hawve
||’%£’|| Le=[L%) + 5”"@5’" If(EY = H':Klv A, E]'hm for2 =m = »
and by uaing Thecrsm 4.2, we cbtaln
lol i ey = 18 =%l = (o) < BBz, He}t™ ™0 for2 <m < »
Thua for a aufliciently amall &, we have

"g"L“(Hl} =g



Consequently the mapping & defined by (5.3) maps a ball
By={w e I®(HY | |w]ieimy = e}

into itaslf for a sufficiently amall & Thus Schauder’s fized point theorem guar-

antesm the exdetence of an B with o = E. This completes the proct

Rewaark. The global existencs of «6* follows from the global exdetence of o™ and
(2.15).



[1]

[2]

[2]

[4]

[5]

[€]

[7]

[€]

REFERENCES

F. C. Das and A K. Pani, A prior ervor estimates in H and H? novms for
= alerizn approcimetions to a single phase nonlinear Stefan problerm in one
apace dimenaion, IMA J Numer. Anal, Vol. 3(1989), 213-229,

A Pasano and M, Primiceric, Free boundary problema for nonlinear parabolic
equationa weth nonlinesr free bowndary conditiona, J. Math, Anal. Appl., Vol
T2(1979) 247-273.

L. Jones, T. Dosa, A. K. Pani and 3. Padhy, Galerkin method for o Stefan-
type problem #n one apace dimengion, Numer, Mathoda Partial Differential
Equationa, Vol. 13(1997), 393-418.

H %Y. Lezsand J B. Les, Error estimates for o stngle-phase quastlinenr Stefan
problem in one apace dimeengion, Appl. Numer. Math., Vol. 26(1598), 327-
342,

H ¥ Les M E. Ohm and J. Y. Shin, Evwor eatirates for o stngle-phase

nondnear Stefan problem in one apace dimengion, J. Korsan Math, Soc.,
Vol 34(1997), 661-672.

H ¥. Les, M. B. Chm and J. Y. Shin, Brror analysia of H -miwed finite
element approcmation of o lnear Stefan problers, Preprint.

J. A, Nitache, Finste element apprommaitions to the one-dimensional Stefan
prablem, In: Proc. Recent Adv. Numer Anal.(C. de Boor & Q. Golub,
Edsa.}), Academic Press, NY, 1878, 119-142,

J. A, Nitachs, A finite element method for pamibolic free boundary prob-
lemea,In: Fres boundary problems, Vol. 1(E. Magenes, od.), Institute Na-
ticnale di Alta Mathematica, Rome, 1980, 277-318,



	표지
	목차 
	요약 
	1. Introduction 
	2. Mixed formulation and local existence 
	3. Auxiliary projections and related estimates 
	4. Error estimates for semidiscrete approximations 
	5. Global existence for semidiscrete approximations 
	참고문헌 

