Ferroelectric Random Access Memory

Pb[(Zr,Sn)Ti]NbO₃

2002 8

Ferroelectric Random Access Memory

Pb[(Zr,Sn)Ti]NbO₃

2002 8

•

Abstract

			1
			4
1.			4
2.			8
3.			11
4.			16
. PNZST			
1.			
2. PNZS	Т		24
3. PNZS	Т		
4.			
1.	PNZST		
2.		PNZST	XRD
3.	PNZST		
4.			
5.			
			78

Figure	2-1. A cubic ABO ₃ perovskite structure
Figure	2-2. Hysteresis loop of a ferroelectric thin film
Figure	2-3. The basis of (a) the two-layer capacitor model, and (b) the electrical representation of a ferroelectric capacitor with an interface layer between the electrode
Figure	2-4. Diagram of oxygen and titanium diffusion and subsequent reactions for a Pt/Ti electrode stack
Figure	2-5. Schematic diagram of a possible domain configuration in which trapped charge pins domains
Figure	2-6. Double hysteresis loop of a anti-ferroelectric thin films15
Figure	3-1. Fabrication steps of the PNZST capacitors 19
Figure	3-2. Fabrication steps of the target
Figure	3-3. Schematic diagram of RF magnetron sputtering system25
Figure	3-4. Photograph of Rapid Thermal Process(RTP) system26
Figure	3-5. Lift-off process. 28
Figure	3-6. Photograph of mask aligner28
Figure	3-7. Photograph of analysis instruments. (a) 4-point probe, (b) metallurgical microscope, (c) surface profiler
Figure	4-1. Resistivity of Pt/Ti electrode as a function of (a) RF power, (b) substrate temperature
Figure	4-2. Plot of dielectric constant and dissipation factor of PNZST thin film deposited on Pt/Ti/SiO ₂ /Si32
Figure	4-3. Plot of hysteresis curve of PNZST thin film deposited on Pt/Ti/SiO ₂ /Si. \cdot 33
Figure	4-4. Fatigue characteristics of PNZST thin film deposited on Pt/Ti/SiO ₂ /Si. \cdots 34
Figure	4-5. E-J characteristics of the PNZST thin film deposited on Pt/Ti/SiO ₂ /Si
Figure	4-6. Resistivity of RuO ₂ electrode as a function of (a) RF power, (b) substrate temperature
Figure	4-7. Plot of dielectric constant and dissipation factor of PNZST thin film deposited on RuO ₂ /SiO ₂ /Si

Figure 4-8. Plot of hysteresis curve of PNZST thin film deposited on RuO ₂ /SiO ₂ /S
Figure 4-9. Fatigue characteristics of PNZST thin film deposited on $RuO_2/SiO_2/Si$. · · · 39
Figure 4-10. E-J characteristics of the PNZST thin film deposited on $RuO_2/SiO_2/Si$. · · 40
Figure 4-11. Resistivity of RuO ₂ /Pt/Ti electrode as a function of (a) RF power, (b) substrate temperature
Figure 4-12. Plot of dielectric constant and dissipation factor of PNZST thin film deposited on RuO ₂ /Pt/Ti/SiO ₂ /Si42
Figure 4-13. Plot of hysteresis curve of PNZST thin film deposited on RuO ₂ /Pt/Ti/ SiO ₂ /Si43
Figure 4-14. Fatigue characteristics of PNZST thin film deposited on RuO ₂ /Pt/Ti/ SiO ₂ /Si44
Figure 4-15. E-J characteristics of the PNZST thin film deposited on RuO ₂ /Pt/Ti/ SiO ₂ /Si
Figure 4-16. Resistivity of LSCO electrode as a function of (a) RF power, (b) substrate temperature. 46
Figure 4-17. Plot of dielectric constant and dissipation factor of PNZST thin film deposited on LSCO/SiO ₂ /Si
Figure 4-18. Plot of hysteresis curve of PNZST thin film deposited on LSCO/ SiO ₂ /Si
Figure 4-19. Fatigue characteristics of PNZST thin film deposited on LSCO/SiO ₂ /Si. $\cdot \cdot 49$
Figure 4-20. E-J characteristics of the PNZST thin film deposited on LSCO/SiO ₂ /Si. \cdot -50
Figure 4-21. Resistivity of LSCO/Pt/Ti electrode as a function of (a) RF power, (b) substrate temperature. 51
Figure 4-22. Plot of dielectric constant and dissipation factor of PNZST thin film deposited on LSCO/Pt/Ti/SiO ₂ /Si52
Figure 4-23. Plot of hysteresis curve of PNZST thin film deposited on LSCO/Pt/Ti/ SiO ₂ /Si53
Figure 4-24. Fatigue characteristics of PNZST thin film deposited on LSCO/Pt/Ti/ SiO ₂ /Si54
Figure 4-25. E-J characteristics of the PNZST thin film deposited on LSCO/Pt/Ti/ SiO ₂ /Si55
Figure 4-26. XRD patterns of the PNZST thin films deposited at substrate temperature of 500 ℃ as a function of RF power

Figure 4-27. XRD patterns of the PNZST thin films deposited at RF power of 80 W
as a function of substrate temperature.
Figure 4-28. XRD patterns of the PNZST thin films annealed for 10 seconds as a
function of annealing temperature61
Figure 4-29, XRD patterns of the PNZST thin films annealed at 650 as a
function of annealing time
Figure 4-30, AFM images of the PNZST thin films annealed for 10 seconds as a
function of annealing temperature
Figure 4-31 AFM images of the PNZST thin films annealed at 650 as a
function of annealing time
Eisure 4.22 Mass suchass of the DNZCT this films as a function of (a) annealing
Figure 4-52. Mean roughness of the PNZ/S1 thin films as a function of (a) annealing
temperature, (b) annealing time
Figure 4-33. Plot of dielectric constant and dissipation factor of PNZST thin films
(a) as-deposited, (b) annealed for 5 sec., (c) annealed for 10 sec., (d)
annealed for 15 sec. at 650 $^{\circ}$ C
Figure 4.34 Plot of dialoctric constant and dissinction factor of PNZST thin films
Figure 4-34. Flot of the ectric constant and dissipation factor of FIVZS1 tinn finns appealed for 10 sec. at (a) room temperature (b) 600 $\%$ (c) 650 $\%$
annealed for sec. at (a) form temperature, (b) 000° C, (c) 030° C
(a) /00 C. ·····/0
Figure 4-35. Plot of hysteresis curve of PNZST thin films annealed at 650 °C for
various annealing time73
Figure 4-36. Plot of hysteresis curve of PNZST thin films annealed for 10 sec. at
various annealing temperature74
Figure 4-37 Fatigue characteristics of the PNZST thin films annealed at various
temperature for 10 seconds
Figure 4-38. E-J characteristics of the PNZST thin films annealed at various
temperature for 10 seconds. ······76

Table	3-1. Sputtering	conditions	of th	he Pt and Ti thin films22
Table	3-2. Sputtering	conditions	of th	he RuO_2 and $(La_{0.5}Sr_{0.5})CoO_3$ thin films. $\cdots \cdot 22$
Table	3-3. Annealing	conditions	of th	he electrodes and buffer layers23
Table	3-4. Sputtering	conditions	of th	he PNZST ferroelectric thin films25
Table	3-5. Annealing	conditions	of th	he PNZST ferroelectric thn films26
Table	3-6. Sputtering	conditions	of th	he Pt and SiO ₂ thin films. $\dots 27$

A Study on Preparation and Characteristics of Pb[(Zr,Sn)Ti]NbO: Thin Films for Ferroelectric Random Access Memory

Choi, Woo-Chang

Department of Electronic Engineering, Graduate School,

Pukyong National University

Abstract

Characteristics of the $Pb_{0.99}[(Zr_{0.6}Sn_{0.4})_{1-x}Ti_x]_{0.98}Nb_{0.02}O(PNZST)$ thin film capacitor for ferroelectric random access memory(FRAM) were investigated. To enhance the microstructural and electrical properties, the PNZST thin films with different dopants and composition ratios were deposited under various gas atmospheres and at different substrate temperature by RF magnetron sputtering method. To improve the crystallinity of thin films, the thin films were annealed at different temperature, time, and atmosphere by rapid thermal process(RIP). The buffer layer that placed under the ferroelectric layer was deposited on Pt/Ti/SiO/Si to serve as a tolerable barrier against diffusion of oxygen. The Pt top electrode with the area of 0.25 mm² was deposited by a RF magnetron sputtering method and patterned by the lift-off process.

Pb_{0.99} [$(Zr_{0.6}Sn_{0.4})_{0.9}Ti_{0.1}]_{0.98}Nb_{0.02}O$ ferroelectric thin film deposited on (La_{0.5}Sr_{0.5})CoO/Pt/Ti/SiO/Si showed the better properties than the others. When the thin films were deposited at the RF power of 80 W substrate temperature of 500 , atmosphere of Ar: O = 9:0.5, gas pressure of 10 mTorr and then were annealed at 650 for 10 seconds in oxygen, these films had a good crystallinity and ferroelectric properties. Leakage current characteristic of the thin films was also found to be strongly dependent on the type of the buffer layers and their microstructures. The remanent polarization and coercive field of the PNZST capacitor were about 20 μ C/cm² and 50 kV/cm, respectively. The reduction of the polarization after 2.2 ×10⁹ switching cycles was less than 8 %

keyword : FRAM ferroelectric, PNZST, RTA, buffer layer, thin film, RF magnetron sputtering

٠

- 1 -

	ROM			7	የት
				,	
					•
,		가			on
		가 ,			
		, 3 V			가 ,
	100 ns	,	가		(1Gbit
)가 가	[14-16]				
	FRAM				,
		,			가
[5-9]	, FRAM				
		,			
	. RuO ₂	Layered-SB	ST(Y 1)		
	,	,	가		[1,2]
	가	Lead zirconate tita	nate(PZT)		
breakdown	strength		가	1 Gbit	
FRAM		가			[17-24]
	FRAM	[가	lead zirconat	e titanate
(PZT)	,		가		
			,	가	
		,			,
			RF magn	etron sputterin	g
PNZ				RTA(Rapid	Thermal

- 2 -

Annealing)

Pb가

,

. PZT

,

PZT Sn Nb 7

•

 $Pb_{0.99}Nb_{0.02}\left[(Zr_{0.6}Sn_{0.4})_{0.9} \ Ti_{0.1}\right]_{0.98}O_3(PNZST)$

- 3 -

(spontaneous polarization)

٠

- 4 -

(remanant polarization) .

가

(coercive field) [1,2,14-16].

가 53:47 , Zr rhombohedral, Ti가	
tetragonal 기,	
, cubic ^[1,2] .	PZT
Zr:Ti 7 53:47 , ,	
가 .	
tetragonal rhombohedral ,	
PbTiO ₃ 2 mol% 15 mol%	
7 ¹⁰⁻¹³ .	

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E} + \mathbf{P} = \boldsymbol{\varepsilon}_r \mathbf{E} \tag{1}$$

$$\mathbf{P} = (\mathbf{\varepsilon}_r - \mathbf{\varepsilon}_0)\mathbf{E} = \mathbf{\varepsilon}_0(\mathbf{k} - 1)\mathbf{E}$$
(2)

,
$$\epsilon_r = \epsilon_0$$
 permitivity($\epsilon_0 = 8.854 \times 10^{-14}$ F/cm)
, k . $\epsilon_0 E = P$

•

$$\mathbf{D} = \mathbf{P} = \boldsymbol{\varepsilon} \mathbf{E} = \boldsymbol{\varepsilon}_0 \mathbf{k} \mathbf{E} \tag{3}$$

,

(3)
$$\varepsilon_0 k^{7} P vs. E$$
 , 2-2

,

Curie-Weiss

. C Curie ,
$$T_c$$
 Curie $^{[1-4]}$.

$$k = C/(T - T_c)$$
(4)

,

,

Fig. 2-3. The basis of (a) the two-layer capacitor model, and (b) the electrical representation of a ferroelectric capacitor with an interface layer between the electrode.

2-3 ,
$$d_{f}$$
 7 (ε_{i}^{*}) ε_{i}^{-} $i\varepsilon_{f}^{''}$, d_{i}
7 (ε_{i}^{*}) $\varepsilon_{i}^{'}$ $i\varepsilon_{i}^{''}$. ,
 (ε_{m}^{*}) $\varepsilon_{m}^{'}$ $i\varepsilon_{m}^{''}$, (d_{i}) d_{i} $+$ d_{f} 7 (ε_{m}^{*}) .

$$\varepsilon_{\rm m}^{'} = \frac{R}{R^2 + I^2} \qquad \varepsilon_{\rm m}^{''} = \frac{I}{R^2 + I^2} \qquad (5)$$

where,
$$R = \frac{d_{i}}{d_{t}} \left(\frac{\varepsilon_{i}}{\varepsilon_{i}^{'2} + \varepsilon_{i}^{''2}} - \frac{\varepsilon_{f}}{\varepsilon_{f}^{'2} + \varepsilon_{f}^{''2}} \right) + \frac{\varepsilon_{f}}{\varepsilon_{f}^{'2} + \varepsilon_{f}^{''2}}$$
(6)

$$I = \frac{d_i}{d_t} \left(\frac{\varepsilon_i^{''}}{\varepsilon_i^{'2} + \varepsilon_i^{''2}} - \frac{\varepsilon_f^{''}}{\varepsilon_f^{'2} + \varepsilon_f^{''2}} \right) + \frac{\varepsilon_f^{''}}{\varepsilon_f^{'2} + \varepsilon_f^{''2}}$$
(7)

$$, \quad \varepsilon_{i}^{''} = \varepsilon_{f}^{''} = 0 \qquad , \qquad (5)$$

(8) . (8)
$$(d_t)7$$
,

$$(d_i)$$
7 \downarrow (ε_m^*)

$$(\varepsilon_{\rm f}^*)$$
 7 · .

and

,

[1,2]

$$\mathbf{E}_{f} = (\boldsymbol{\varepsilon}_{i}^{'} / \boldsymbol{\varepsilon}_{f}^{'}) \mathbf{E}_{i}$$
(9)

$$E_{c} = E_{c0}\sqrt{\varepsilon_{f}^{2} + \varepsilon_{f}^{2}}\sqrt{R^{2} + I^{2}}$$
 (10)

$$E_{C} = E_{C0}\varepsilon_{f}^{'} \begin{bmatrix} \frac{d_{i}}{d_{t}} & \left(\frac{1}{\varepsilon_{i}^{'}} - \frac{1}{\varepsilon_{f}^{'}}\right) + \frac{1}{\varepsilon_{f}^{'}} \end{bmatrix}$$
(11)

platinum(Pt), iridium(Ir), gold(Au)

ruthenium	oxide(RuO ₂),	iridium	oxide(IrO ₂)	, indium	tin	oxide(ITO),	(La,Sr)CoO ₃
(LSCO)			가			[33-50]	가
			Pt, Rı	IO ₂ L	SCO		
Pt		, I	PZT BS	Т		가	

- 11 -

			I		Pt	5.2 -	5.5 eV
			PZ	T PL	ZT		shottky
barrier he	eight	[35-38]	FR	AM			
			가			Pt	Si
adhesion		, (compressive	stress	Pt	hillock	
			,	patterning	5		
		가	,				
			[38,39]	Pt adh	esion		Si
Pt	Ti, TiN	I, Ta	adhesion		가		,
adhes	ion	silicide					가
	2-4	Pt/Ti			Ti	out-diffusi	on
					2-4	Pt	
		가			, Ti		
	PZT						
	, Ti	out-diffus	ion	PZT	Ti	가	
가	-						
RuO ₂	LSCO		Pt	가			
[44-50]			Pt			,	
		가	, Pt		PZT, PLZT	schottk	y barrier
height가							

RuO₂^[29], IrO₂^[30,41], CeO₂^[27,28,39], LSCO^[31,46] layered-SBT(Y 1) ${}^{[51,52]}$, La 7, ,

2-6. Fig. 2-6. Double hysteresis loop of a anti-ferroelectric thin films.

PZT	sol-gel, s	sputtering	MOCVD(metal	organic o	chemical vapor
deposition)		가		[51-62]	Sol-gel
			100 r	ım	
,		가			
		^[3 1,53,57] . Sputt	ering		
			가		
^[54,56-61] . MOCVD	ste	ep coverage			가
,		metal orgar	nic source가		
			가	[52,55,61]	
RF sputtering	ion b	eam sputterin	g 7	ł	
sputterin	ng	magnet	ron sputtering	가	
[60-70]	magne	etron sputterir	ıg		
가 3	mTorr		sputtering	가	
			가 . PZT		
				RF	
sputtering			DC		reactive
sputtering			,	magne	etron sputtering
reactive s	puttering				[65-70]
	sputtering	가 Ar	, read	ctive gas	O ₂

- 16 -

, sputtering 가	sputtering	atom
----------------	------------	------

. DC sputtering

,

가 sputtering ,

[66-71]

. PNZST

Pt/T1,	RuO ₂ /Pt

,

(La,Sr)CoO ₃ /Pt	[23,24]	, PZT	
		PZT	Sn Nb
가 RF magnetron sputte	ring]	$Pb_{0.99}Nb_{0.02}[(Zr_{0.6}$
$Sn_{0.4})_{0.9}Ti_{0.1}]_{0.98}O_3(PNZST)$. ,		
		, XRD	AFM
		,	
(0.25 mm^2)			
, , fatigue, ,	,		
^[23,24,72-74] . 3-1	PNZST		
(a) (100) p-type Si			
(b) p-type Si			
(c)			
(d) RuO ₂ , LSCO			
(e) PNZST			

(f) Pt

- (g) passivation (SiO₂)
- (h) contact hall silver wire

Fig. 3-1. Fabrication steps of the PNZST capacitors.

1.1.

- 19 -

charging . , FRAM Pt 가 Pt/Ti, RuO₂/Pt/Ti, LSCO/Pt/Ti 가 , · , . RuO_2 $(La_{0.5}Sr_{0.5})CoO_3(LSCO)$ RuO_2 , La_2O_3 , Sr_2O_3 , CoO_3 [23,24,72-74] , Pt Ti 2 , 750 ℃ 3 2 , $1,000 \text{ kg/cm}^2$ 3 , 5 . 1050 °C [23,24,72-74] 가 6 mm 2 , 1.2. 3-1 3-2 • Sputtering chamber (on 10 cm axis) 4 , 가 PBN . CA(chromel-alumel) , . , furnace 3-3

가 PNZST

가

[23,24,72-74]

		Pt	Ti
RF power	:	45 150 W	80 W
Substrate	:	Ti/SiO ₂ /Si	SiO ₂ /Si
Substrate temp.	:	350 550 °C	500
Base Pressure	:	1×10 ⁻⁶ Torr	1 × 10 ⁻⁶ Torr
Gas Pressure	:	10 mTorr	10 mTorr
Gas atmospheric	:	Ar	Ar
Thickness	:	150 nm	50 nm
Cooling	:	natural cooling	natural cooling

3-1. Pt Ti Table 3-1. Sputtering conditions of Pt and Ti thin films.

:	30 80 W	45 150 W
:	30 80 W	45 150 W
:		
	Pt/Ti/SiO ₂ /Si, SiO ₂ /Si	Pt/Ti/SiO ₂ /Si, SiO ₂ /Si
:	300 500 °C	300 500
:	1×10 ⁻⁶ Torr	1×10^{-6} Torr
:	10 mTorr	10 mTorr
:	$Ar:O_2 = 1:1, 0:1$	$Ar:O_2 = 1:0, 0:1$
:	100, 150 nm	100, 150 nm
:	natural cooling	natural cooling
	: : :	 1×10⁻⁶ Torr 10 mTorr Ar:O₂ = 1:1, 0:1 100, 150 nm natural cooling

	Atmospheric gas	Temperature	Time
Pt/Ti	\mathbf{N}_2	950	60 min.
RuO ₂	O_2	650, 700	60 min.
(La,Sr)CoO ₃	O_2	700	30 min.

Table 3-3. Annealing conditions of electrodes and buffer layers.

3-3.

]	Pb0.99[(Zro	0.6 Sn 0.4) 0.9	[i0.1]0.98Nb0.02	2 O 3
PbO	가			[23,24,72-74]	. 10 mole%	, D
						Pb
,		PZT			PbO7	ŀ
				,		
2]						
O_2 , ZrO_2 , TiO_2				가	90 g	가
			3			, 750
4		,	2			, 1000
				950 °C		3
2	,	가 6	mm			
Г				,		
ttering		3-3			3-3	,
	Ar					,
re-sputtering						
			[23,24,72-74]		PNZST	
3-5		,			3-4	
	PbO , , 2 ²¹ . O ₂ , ZrO ₂ , TiO ₂ 4 2 T ttering re-sputtering 3-5	РЬО 7 , , , , , , , , , , , , , , , , , , ,	PbO 7 , PZT , PZT , PZT , PZT , 7 , 6 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7	PbO 7 PbO 7 PDO 7 PZT PZT PZT 2 2 2 2 3 4 2 7 6 mm T ttering 3-3 Ar re-sputtering 3-5	$Pb_{0.99} [(Zr_{0.6} Sn_{0.4})_{0.5}]$ $PbO 7 \qquad (23,24,72.74)$ $, \qquad PZT \qquad , \qquad $	$Pb_{0.99}[(Zr_{0.4}Sn_{0.4})_{0.9}Ti_{0.1}]_{0.98}Nb_{0.27}$ $PbO 7! \qquad ^{[23,24,72-74]}. 10 mole %$ $, PZT \qquad PbO7$ $, PZT \qquad PbO7$ $, PZT \qquad 7! 90 g$ $3 4 \qquad , 2 \qquad 3$ $4 \qquad , 2 \qquad 3$ $4 \qquad , 2 \qquad 950 °C$ $2 \qquad , 7! 6 mm$ $T \qquad , 1$ $tering \qquad 3-3 \qquad . 3-3$ $Ar \qquad . 7e-sputtering \qquad 3-3 \qquad . 3-4$

3-4. PNZST Table 3-4. Sputtering conditions of PNZST ferroelectric thin films.

RF power Substrate	:	PNZST Target - 60, 70, 80, 90, 100 W Pt/Ti/SiO ₂ /Si, RuO ₂ /SiO ₂ /Si, RuO ₂ /Pt/Ti/SiO ₂ /Si (La _{0.5} Sr _{0.5})CoO ₃ /SiO ₂ /Si, (La _{0.5} Sr _{0.5})CoO ₃ /Pt/Ti/SiO ₂ /Si
Substrate temp.	:	350, 400, 450, 500, 550 °C
Base vacuum	:	1×10^{-6} Torr
Gas Pressure	:	10 m Torr
		Ar : O_2 (9 : 0.5)
Deposition rate	:	8 10 Å/min
Film thickness	:	200 nm
Cooling	:	natural cooling

3-3. RF magnetron sputtering Fig. 3-3. Schematic diagram of RF magnetron sputtering system.

3-5. PNZST

	Conditions		
Atmospheric gas	O2		
Temperature	550, 600, 650, 700		
Time	5, 10, 15, 20, 30 sec.		

Table 3-5. Annealing conditions of PNZST ferroelectric thin films.

3-4. Fig. 3-4. Photograph of Rapid Thermal Process(RTP) system.

3. PNZST

PNZST	Pt	RF mag	netron sputter	ing
, 50 W 100 nm				lift-off
mask aligner	0.2	25 mm^2		
[23,24,72-74] . ,	pa	ssivation	SiO ₂	,
SiO ₂	, silver wire	contact	. 3-6	Pt
SiO ₂		, 3-5	3-6	lift-off

mask aligner

•

		Pt	SiO ₂
RF power	:	80 W	150 W
Substrate	:	PNZST/buffer layer/	Pt/PNZST/buffer layer/
	:	electrode/SiO ₂ /Si	electrode/SiO ₂ /Si
Substrate temp.	:	room temperature	350
Base Pressure	:	1×10 ⁻⁶ Torr	1 × 10 ⁻⁶ Torr
Gas Pressure	:	10 mTorr	10 mTorr
Gas atmospheric	:	Ar	Ar
Thickness	:	100 nm	1 µm
Cooling	:	natural cooling	natural cooling

3-5. Lift-off Fig. 3-5. Lift-off process.

Fig. 3-6. Photograph of mask aligner.
X-Ray Diffractometer(XRD)

	. X	Cu-Ka l	2	$2\theta = 20$) 50°	° 2°/min		scanning
	, tube			45kV	V	25mA		• • •
			Atomic Fore	ce Micr	roscop	e(AFM)		
						impedance	analyzer	
	,		fatigue		Sawe	r-Tower		ferroelect-
ric	tester		• • •	3-7				
	,		,				[23,24	,72-74]

3-7(a) four-point probe , (b) , (c) surface profiler

- 3-7. . (a) four-point probe, (b) metallurgical microscope, (c) surface profiler.
- Fig. 3-7. Photograph of analysis instruments. (a) four-point probe, (b) metallurgical microscope, (c) surface profiler.

1.	PNZST						
1.1. Pt/PNZST/Pt/Ti/Si	iO ₂ /Si						
1.1.1. Pt/Ti							
Pt 3.9231±0.005	,	, 20 μΩ	•cm	,	5.4 e	V	가
		フ	ŀ			[35]	SiO_2
	,						
		Ti		,			
			[^{35]} . Pt	Ti		2
Ar			RF	power			
		•	4-1(a)		가		RF power
		,	,	950 ℃		1	
Pt/Ti			. RF po	wer가	가		
, 80 W	power		-	ጉ			. power가
7 sputtering					가	가	
フト	,		가				
가	가						[25,29]
, power가							가
							가
가		[54,	^{56]} .	4-1(b)			

•

- 30 -

1.1.2. Pt/PNZST/Pt/Ti/SiO₂/Si

[1,2]

1.1.3. Pt/PNZST/Pt/Ti/SiO₂/Si

. Pt/Ti/SiO₂/Si PNZST

.

1.1.5. Pt/PNZST/Pt/Ti/SiO₂/Si

	4-5	Pt/Ti/SiO ₂ /Si	80 W	RF power	r, 500	°C	, Ar:O ₂
= 9:0.5	5		6	550 °C,		10	
PNZST						4-5	100
kV/cm		10-7			, 150	kV/cm	
				PNZST	•		

가 가 [1,2].

PNZST

Fig. 4-5. E-J characteristics of the PNZST thin film deposited on Pt/Ti/SiO₂/Si.

1.2. $Pt/PNZST/RuO_2/SiO_2/Si$

.

Fig. 4-6. Resistivity of RuO_2 electrode as a function of (a) RF power, (b) substrate temperature.

1.2.2. Pt/PNZST/RuO₂/SiO₂/Si

- 37 -

1.2.3. Pt/PNZST/RuO₂/SiO₂/Si

,

4-8 Pt/PNZST/RuO₂/SiO₂/Si

5 V

4-8 $3.1 \ \mu\text{C/cm}^2$, $53 \ \text{kV/cm}$

•

,

,

 $2P_r$. Pt/PNZST/RuO₂/SiO₂/Si , 10^8

.

1.2.5. Pt/PNZST/RuO₂/SiO₂/Si

가

[29]

- 40 -

1.3. Pt/PNZST/RuO₂/Pt/Ti/SiO₂/Si

1.3.1. RuO₂/Pt/Ti

フト 110 µΩ ⋅cm

4-12. RuO₂/Pt/Ti/SiO₂/Si

PNZST

Fig. 4-12. Plot of dielectric constant and dissipation factor of PNZST thin film deposited on $RuO_2/Pt/Ti/SiO_2/Si$.

1.3.3. Pt/PNZST/RuO₂/Pt/Ti/SiO₂/Si

4-13 Pt/PNZST/RuO₂/Pt/Ti/SiO₂/Si

1.3.4. Pt/PNZST/RuO₂/Pt/Ti/SiO₂/Si

Fig. 4-14. Fatigue characteristics of PNZST thin film deposited on $RuO_2/Pt/Ti/SiO_2/Si.$

4-15	RuO ₂ /Pt/Ti/SiO ₂ /Si	80 W RF	power, 500	$^{\circ}\mathrm{C}$,
$Ar:O_2 = 9:0.5$		650 °C	Ξ,	10	
PNZ	ZST			,	4-10

1.4. Pt/PNZST/LSCO/SiO₂/Si

Fig. 4-16. Resistivity of LSCO electrode as a function of (a) RF power, (b) substrate temperature.

1.4.2. Pt/PNZST/LSCO/SiO₂/Si

4-	17 I	LSCO/Si	O ₂ /Si	80 V	V	RF 1	power,	500	$^{\circ}\mathrm{C}$	
$Ar:O_2 = 9:$:0.5				65	50 °C	· ,		10)
I	PNZST	•				((£r)		(tanδ)	
		4-17		1 kHz						5 16
,			0.05							
	가				,		PNZST	Γ	LSC	0

, Pt/PNZST/LSCO/SiO₂/Si

PNZST

,

PNZST

- 47 -

1.4.3. Pt/PNZST/LSCO/SiO₂/Si

LSCO/SiO₂/Si.

1.4.4. Pt/PNZST/LSCO/SiO₂/Si

	4-19	Pt/PNZST/LSCO/SiO ₂ /Si	2.2×10^{9}	
$2P_{\rm r}$. Pt/PNZST/LSCO/SiO ₂ /Si		, 10 ⁷
				PNZST

LSCO PNZST LSCO

, PNZST

[23,24,29]

•

, FRAM

1.5 Pt/PNZST/LSCO/Pt/Ti/SiO₂/Si

1.5.1. LSCO/Pt/Ti

100 μΩ •cm

Fig. 4-21. Resistivity of LSCO/Pt/Ti electrode as a function of (a) RF power, (b) substrate temperature.

1.5.2. Pt/PNZST/LSCO/Pt/Ti/SiO₂/Si

	4-22	Pt/Pt/Ti/SiO ₂ /Si	80 W	RF power, 500	°C
Ar:O ₂	= 9:0.5			650 °C,	10
	PNZ	ST		(&r)	(tanδ)
		4-22	1kHz		861,
0	.05		PNZST		
[20-22]		가 가			

,

PNZST

4-22. LSCO/Pt/Ti/SiO₂/Si

Fig. 4-22. Plot of dielectric constant and dissipation factor of PNZST thin film deposited on LSCO/Pt/Ti/SiO₂/Si.

PNZST

1.5.3. Pt/PNZST/LSCO/Pt/Ti/SiO₂/Si

1.5.4. Pt/PNZST/LSCO/Pt/Ti/SiO₂/Si

•

가

- 54 -

1.5.5. Pt/PNZST/LSCO/Pt/Ti/SiO₂/Si

2.1. RF po	ower	PNZS	Г	XRD		
PZT	RF				,	
RF power,		,	,			[51-71]
4-26 LSC	CO/Pt/Ti/Si	O ₂ /Si	500 °C	,	$Ar:O_2 = 9:0.5$	
RF	power			PNZST	XRD	
	. 60 W	power		PNZST	,	40°
(111)	Pt	가 가		, 29°		
		PbO	•		[51-53]	60
RF power		PbO	sp	outtering		
[53,54]	4-26(c))	RF pov	werフト 80 W	7 가	29°
			, 30.9°	(110)	orthoro	mbic
PNZST					, 90 W	powe
	PNZST					
		[4-26(d),(e)].	RF power	가 가
			가	가	가 가	
				, 80 W	power	
	가				기	
		powe	r가 가			
-	7L 7L			71		٦L

PNZST

XRD

2.

- 56 -

.

2.2.	PNZST	XRD pattern	
4-27	LSCO/Pt/Ti/SiO ₂ /S	Si $Ar:O_2 = 9:0.5$, 80 W
RF power		PNZST	
. 350 °C	400 °C	PNZST	, 38.1°
(111)	rhombohedral	PNZST	
	. ,	4-27(b) (111)	
	가 ,		
가 450	0,500 ℃ 7	(111)	
	가	, (110)	
	, 가 5	550 °C	
	sputter		
. 4-2	.7		

- 57 -

.

Fig. 4-26. XRD patterns of the PNZST thin films deposited at substrate temperature of 500 $^\circ$ C as a function of RF power.

Fig. 4-27. XRD patterns of the PNZST thin films deposited at RF power of 80 W as a function of substrate temperature.

2.3.		PNZ	ST XI	RD		
	4-28 LS	SCO/Pt/Ti/SiO ₂ /S	Si 80 W	RF power, A	$Ar:O_2 = 9:0.5$	
	, 500 °C					
	10			PNZST	Х	
		(110)	PNZST			
	,	Pt				
					,	(110)
						4-28
	550	650 °C		30.9°		
		가 ,	650 °C		가 가	
	4-28(e)	, 700 °C	PN	ZST	
(110)			, (111)		가	,

2.4.	PNZST	XRD pattern	
4-29	PNZST 650) °C	
		. 10	
	, PNZST (110) 7		
		, RF	
	가 P	PNZST ,	
650 °C		,	
FRAM	가		

- 60 -

Fig. 4-28. XRD patterns of the PNZST thin films annealed for 10 seconds as a function of annealing temperature.

XRD

3.		PNZST			
				chargin	g
,				가	[1-2]
4-30 I	LSCO/Pt/Ti/SiO ₂ /Si		PNZST		
	10	PNZS	Т		
,	4-31	PNZST		650 °C	
				. 4-3	0
, 550			,		
	, 600			Pbフト	
	가			. 650	
;	가	,		가 Pb가	,
	가	,			
[70,71]	, 700				•
4-31	650	5		, Pb가	
	,	10		가	
, 10)			,	
2	4-32(a) (b)				
		4-32		650 10	
	, 9.3 nm			, 가	

(a) as-deposited

(d) 650 °C

(b) 550 °C

(e) 700 °C

(c) 600 °C

4-30.		10	PNZST
	AFM		

Fig. 4-30. AFM images of the PNZST thin films annealed for 10 seconds as a function of annealing temperature.

PNZST

Fig. 4-32. Mean roughness of the PNZST thin films as a function of (a) annealing temperature, (b) annealing time.

P	NZST		
LSCO/Pt/Ti/SiO ₂ /	/Si 80 W	RF power, 500	°C ,
	65	о°С	
	PNZST		
(tanδ)	. 4-	-33(a)	
. 1	kHz		116 ,
	,		
,			[54,55]
°C 5			
	556,	0.045	. 4-33(c)
10			. 1kHz
861,	0.05		PNZST
	,	가 가	
	PNZST		
	Į	4-33(d)	650 °C, 15
		. lkHz	
0.067		PN	JZST
0.067	•	11	
0.067	, 가	11	
	P LSCO/Pt/Ti/SiO ₂ / (tanδ) . 1	PNZ.ST 80 W LSCO/Pt/Ti/SiO₂/Si 80 W 65 PNZ.ST (tanδ) . 4 . 1 kHz . , , , , , , , , , , , , , ,	PNZ ST LSCO/Pt/Ti/SiO ₂ /Si 80 W RF power, 500 650 °C PNZ ST (tanð) 4-33(a) . 1 kHz , 1 kHz , , , , , , , , , , , , , , , , , , ,

- 67 -

Fig. 4-33. Plot of dielectric constant and dissipation factor of PNZST thin films (a) as-deposited, (b) annealed for 5 sec., (c) annealed for 10 sec., (d) annealed for 15 sec. at 650 °C.

Fig. 4-33. Plot of dielectric constant and dissipation factor of PNZST thin films (a) as-deposited, (b) annealed for 5 sec., (c) annealed for 10 sec., (d) annealed for 15 sec. at 650 °C (continue).

- 4.2. PNZST
- 4.2.1. PNZST 4-35 LSCO/Pt/Ti/SiO₂/Si 80 W RF power, 500 °C

 $Ar:O_2 = 9:0.5$

182 kV/cm

. 5

PNZST

(Pr) 1 20 μ C/cm², (Ec) 50

, 5 V

가

 $17 \ \mu C/cm^2$, 57 kV/cm

650 °C

- 72 -

Fig. 4-35. Plot of hysteresis curve of PNZST thin films annealed at 650 $^\circ\!\mathrm{C}$ for various annealing time.

10

PNZST

Fig. 4-36. Plot of hysteresis curve of PNZST thin films annealed for 10 sec. at various annealing temperature.

4.3. PNZST

4-37.

•

PNZST

Fig. 4-37. Fatigue characteristics of the PNZST thin films annealed at various temperature for 10 seconds.

4.4. PNZST

가

가

Fig. 4-38. E-J characteristics of the PNZST thin films annealed at various temperature for 10 seconds.

가	PNZST		
. LSCO	,	フト,	
	. PNZST		
가 LSCO가 PNZST			
RF magnetron sputtering	PNZST	, 70 W	
RF power PbO가			
, 400	sputtering	Pb	
РЬО			
PbO7	가	. 450	
PbO	PNZST		
, Pb7}	400		
	. Sputtering		
	, 650		
PNZST			
	PNZST Pb PNZST	, 650	

5.

	RF magnetron sputt	ering		
가 lead zirconate titanate(PZT) ,				
가		sputtering	Rapid	
Thermal Annea	ling(RTA)		,	
PZT				
RF magnetron	sputtering			
, 7	ŀ			
	. , PZT	Pb		
	Pb			
. ,				
MFM(metal-fer	roelectric-metal)	PZT		
(1) Pt/Ti		, LSCO		
PNZST		가 .		
(2) 50 W	RF power, 350	, $Ar:O_2 = 0:1$, 10 mTorr	
가	sputtering	, 700		
30	LSCO	FRAM		
	100 µ •cm			

•

(3) PNZS'	Г	magnetron		
	, S	puttering		
(4) PNZS	T L	SOC/Pt/Ti/SiO ₂ /Si	RF magnetre	on sputtering
	, Ti	10 mole9	6 , 80 W	RF power, $Ar:O_2 =$
9:0.5	, 50	00	, 10 mTorr 가	
	가			
(5) 10 m	ole% Ti	가 LSOC/F	rt/Ti/SiO ₂ /Si	PNZST

, 650 10

7 k . 861, 0.05 , $20 \ \mu\text{C/cm}^2$, $50 \ \text{kV/cm}$, 10^9

cycle 8 % 10⁻⁹

PNZST

,

가

, FRAM 가 . ,

DRAM

- 79 -

.

.

- [1] R. Ramesh, "Thin film Ferroelectric Materials and Devices", Kluwer Academic Publishers, 1997.
- [2] J. F. Scott, "Ferroelectric Thin Films: Synthesis and Basic Properties", Gordon and Breach Publishers, 1996.
- [3] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, "Vacancy defects in (Pb,La)(Zr,Ti)O₃ capacitors observed by positron annihilation", Appl. Phys. Lett., Vol. 73 No. 3, pp. 318 320, 1998.
- [4] S. L. Miller and P. J. McWhorter, "C-axis oriented ferroelectric thin films of Si-substituted PbTiO₃ on Si(100) by pulsed laser deposition: Boost for nonvolatile memory application", Appl. Phys. Lett. Vol. 72 No. 10, pp. 1179 1181, 1998.
- [5] Y. Watanabe, "Theoretical stability of the polarization in insulation ferroelectric/semiconductor structure", J. Appl. Phys., Vol. 83 No. 7, pp. 2179 2193, 1998.
- [6] A. Sheikholeslami and P. C. Gulak, "Transient modeling of ferroelectric capacitors for nonvolatile memories", IEEE Trans. on ultrasonics, ferroelectrics, and frequency control, Vol. 43 No. 3, pp. 450 456, 1996.
- [7] C. H. Seager, D. C. McIntyre, W. L. Warren, and B. A. Tuttle, "Charge trapping and device behavior in ferroelectric memories", Appl. Phys. Lett., Vol. 68 No. 19, pp. 30 33, 1989.
- [8] F. Y. Chen, Y. K. Fang, and M. J. Sun, "Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics", Appl. Phys. Lett., Vol. 69 No. 6, pp. 812 814, 1996.
- [9] M. W. J. Prins, K. O. Grosse, and R. M. Wolf, "A ferroelectric transparent thin-film transistor", Appl. Phys. Lett., Vol. 68 No. 25, 365 0 3653, 1996.

- [10] T. Sumi, "Ferroelectric nonvolatile memory technology", IETCE Trans. Electron, Vol. E79 C No. 6, 812 818, 1996.
- [11] J. D. Cuchiaro, M. C. Scott, and J. F. Scott, "Fatigue-free ferroelectric capacitors with platinum electrodes", Nature, Vol. 374 No. 13, pp. 627 629, 1995.
- [12] O. Musseau and J. L. Leray, "A study of radiation vulnerability of ferroelectric material and devices", IEEE trans. on nuclear sci., Vol. 41 No. 3, pp. 495 502, 1994.
- [13] S. L. Miller and P. J. McWhorter, "Physics of the ferroelectric nonvolatile memory field effect transistor", J. Appl. Phys. Vol. 72 No. 12, pp. 5999 6010, 1994.
- [14] W. A. Geideman, "Progress in ferroelectric memory technology", IEEE trans. on ultrasonics, ferroelectrics, and frequency control, Vol. 38 No. 6, pp. 704 711, 1991.
- [15] J. F. Scott and C. A. P de Araujo, "Ferroelectric memories", Science, Vol. 246 No. 15, pp. 1400 1405, 1989.
- [16] D. Bondurant and F. Gnadinger, "Ferroelectrics for nonvolatile RAMs", IEEE spectrum, pp. 30 33, 1989.
- T. Hirai, K. Teramoto, K. Nagashima, H. Koike, and Y. Tarui, "Effect of Cd-substitution site on PbO evaporation in Pb(Ni_{1/3},Nb_{2/3})O₃-PbZrO₃-PbTiO₃ ceramics", Jpn. J. Appl. Phys., Vol. 37 No. 3, pp. 2548 2553, 1998.
- W. Zhang, K. Sasaki, and T. Hata, "Analysis of fatigue characteristics in Fe-doped Pb(Zr_{0.52}Ti_{0.48})O₃ thin films by switching currents", Jpn. J. Appl. Phys., Vol. 36 No. 12A, pp. 7275 7281, 1997.
- [19] H. Adachi, T. Mitsuyu, O. Yamazaki, and K. Wasa, "Ferroelectricity and electric conduction characteristics of Sr-modified lead zirconate titanate thin film capacitors", Jpn. J. Appl. Phys., Vol. 36 No. 2, pp. 74 9 753, 1997.

- [20] A. Masuda, Y. Yamanaka, M. Tazoe, and Y. Yonezawa, "Pt/PZT/n-SrTiO₃ ferroelectric memory diode", Jpn. J. Appl. Phys., Vol. 35 No. 1A, pp. 3 9 43, 1996.
- [21] W. Zhu, W. Vest, M. S. Tse, M. K. Rao, and Z. Q. Liu, "Effect of Nb doping on the microstructure of sol-gel-derived PZT thin film", J. Am. ceram. soc., Vol. 78 No. 6, pp. 1513 1520, 1995.
- [22] J. G. Zhu and M. M. Al-Jassim, "Ferroelectric (Pb,La)(Zr,Ti)O₃ epitaxial thin films on sapphire grown by rf-planar magnetron sputtering", J. Appl. Phys., Vol 60 No. 2, pp. 736 741, 1986.
- [23] , , , , , " Pb[(Zr,Sn)Ti]NbO₃ ", , , 11 1 , pp. 25 32, 2002. [24] , , , , , " Pb[(Zr,Sn)Ti]NbO₃ ", , , , , " Pb[(Zr,Sn)Ti]NbO₃ 2001.
- [25] T. Nakamura, Y. Fujimori, N. Izumi, and A. Kamisawa, "Characterization of Pb(Zr,Ti)O₃ thin film on Si substrates using MgO intermediate layer for Metal/Ferroelectric/Insulator/Semiconductor field effect transistor devices", Jpn. J. Appl. Phys., Vol. 37 No. 9B, pp. 5150 5153, 1998.
- Y. Shimamoto, K. Kushida-Abdelghafar, H. Miki, and Y. Fujisaki, "Fabrication of PbZr_xTi_{1-x}O₃ films on Si structures using Y₂O₃ buffer layer", Jpn. J. Appl. Phys., Vol. 37 No. 9B, pp. 5145 5149, 1998.
- [27] T. Hirai, K. Nagashima, H. Koike, S. Matsuno, and Y. Tarui, "Dielectric properties of PbTiO₃ thin film on CeO₂/Si(100) and Y₂O₃/Si(100)", Jpn. J. Appl. Phys., Vol. 37 No. 10, pp. 5645 5650, 1998.
- [28] C. H. Seager, D. C. McIntyre, W. L. Warren, and B. A. Tuttle, "Growth of PbTiO₃ thin film on Si(100) with Y₂O₃ and CeO₂ buffer layer", Jpn. J. Appl. Phys., Vol. 37 No. 9B, pp. 4943 4948, 1998.
- [29] K. Gotoh, H. Tamura, H. Takauchi, and A. Yoshida, "Electrical characterization of ferroelectric Pb(Zr,Ti)O₃ thin films deposited on Pt-coated RuO₂ electrodes", Jpn. J. Appl. Phys., Vol. 37 No. 6, pp. 339 1 3395, 1998.

- [30] A. I. Kingon, "Recovery of the ferroelectric properties of hydrogendamaged Ir/Pb(Zr,Ti)O₃/Ir capacitors by post annealing", Jpn. J. Appl. Phys., Vol. 37 No. 3, pp. 2565 2566, 1998.
- [31] J. F. Scott and C. A. P. de Araujo, "Evaluation of imprint in fully integrated (La,Sr)CoO₃/Pb(Nb,Zr,Ti)O₃/(La,Sr)CoO₃ ferroelectric capacitors", J. Appl. Phys., Vol. 83 No. 4, pp. 2165 2171, 1998.
- [32] Y. Fukuda and K. Aoki, "Characterization of Pb_{1-x}La_xTiO₃ thin films by the radio frequency magnetron sputtering technique", Jpn. J. Appl. Phys., Vol. 37 No. 4A, pp. 1955 1959, 1998.
- [33] K. Suu, A. Osawa, Y. Nishioka, and N. Tami, "Effects of excess Pb and substrate on crystallization processes of amorphous Pb(Zr,Ti)O₃ thin films prepared by RF magnetron sputtering", Jpn. J. Appl. Phys., Vol. 36 No. 9B, pp. 5793 5798, 1997.
- [34] D. J. Wouters, G. Willems, and H. E. Maes, "Structure of control of Pb(Zr,Ti)O₃ films using PbTiO₃ buffer layer produced by magnetron sputtering", Appl. Phys. Lett., Vol. 70 No. 13, pp. 1718 1720, 1997.
- [35] H. Miki, K. Kushida-Abdelghafar, K. Torii, and Y. Fujisaki, "Investigation of Pt/Ti bottom electrodes for Pb(Zr,Ti)O₃ films", Jpn. J. Appl. Phys., Vol. 36 No. 1, pp. 294 300, 1997.
- [36] A. I. Kingon, "Conducting Sr_{0.7}NbO₃ thin film electrodes for ferroelectric capacitors", Appl. Phys. Lett., Vol. 70 No. 19, pp. 2622 2624, 1997.
- [37] K. Amanuma, T. Hase, and Y. Miyasaka, "Fabrication of c-axis oriented Pb(Zr,Ti)O₃ thin films on Si(100) substrates using MgO intermediate layer", Jpn. J. Appl. Phys., Vol. 35, No. 8, pp. 4195 4198, 1996.
- [38] T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, "Hydrogen-related degradation and recovery phenomena in Pb(Zr,Ti)O₃ capacitors with a platinum electode", Jpn. J. Appl. Phys., Vol. 36 No. 3A, pp. 1132 1135, 1997.

- [39] S. Yokoyama, Y. Ito, K. Ishihara, K. Hamada, S. Ohnishi, J. Kudo, and K. Sakiyama, "Crystal and electrical characterizations of epitaxial Ce_xZr_{1-x}O₂ buffer layer for the metal/ferroelectric/insulator/semiconductor field effect transistor", Jpn. J. Appl. Phys., Vol. 35 No. 9B, pp. 5150 5153, 1996.
- [40] F. Y. Chen, Y. K. Fang, and M. J. Sun, "A new high temperature electrode-barrier technology on high density ferroelectric capacitor structure", Proceeding of international electron device meeting, 1996.
- [41] M. W. J. Prins, K. O. Grosse-Holz, G. Mùller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, "Electrode materials for ferroelectric capacitors: Properties of reactive DC sputtered IrO₂ thin films", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 139 144, 1996.
- [42] K. Takata, "Microstructure of pulsed-laser deposited PZT on polished and annealed MgO substrate", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 15
 7 162, 1996.
- [43] W. Zhang, K. Sasaki, and T. Hata, "Effects of sputter-deposited LaNiO₃ electrode on the deposition and properties of ferroelectric thin films", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 169 174, 1996.
- [44] Y. Nakao, T. Nakamura, A. Kamisawa, H. Takasu, N. Soyama, T. Atsuki, and K. Ogi, "Effect of morphology of NiCr-bottom electrode on preparation of ferroelectric PZT thin film capacitor", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 181–186, 1996.
- [45] E. Tokumitsu, N. Tanisake, and H. Ishiwara, "Multilayer lead zirconate titanate and barium titanate ferroelectric capacitors", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 231 236, 1996.
- [46] S. B. Krupanidhi, N. Maffei, M. Sayer, and K. El-Assal, "RF magnetron sputter-deposition of La_{0.5}Sr_{0.5}CoO₃/Pt composite electrodes for Pb(Zr,Ti)O₃ thin film capacitors", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 145 150, 1996.
- [47] W. A. Geideman, "Influence of PbTiO₃ buffer layers on microstructural properties of Pb(Zr,Ti)O₃ films deposited by sputtering", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 291 296, 1996.

- 84 -

- [48] G. Shirane, E. Sawaguchi, and Y. Takagi, "Structure, composition and properties of (Pb,La)TiO₃ thin films by RF magnetron sputtering" Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 389–394, 1996.
- [49] S. Sadashivan, S. Aggarwal, T. K. Song, and R. Ramesh, "Characterization of Metal/Ferroelectric/Insulator/Semiconductor structure with CeO₂ buffer layer", Jpn. J. Appl. Phys., Vol. 34, No. 8, pp. 4163 4166, 1995.
- [50] F. P. Gnadinger and D. W. Bondurant, "Preparation of Pb(Zr,Ti)O₃ thin films on Ir and IrO₂ electrodes", IEEE Spectrum, pp. 30 33, 1989.
- [51] J. F. Scott, "Properties of ferroelectric memory with Ir system materials as electrodes", IETCE Trans. Electron, Vol. E81 C No. 4, 513 517, 1998.
- [52] Y. Watanabe, "Ferroelectric properties of SrBi₂Ta₂O₉ thin films deposited on various bottom electrodes by a modified Radio-Frequency magnetron sputtering technique" Jpn. J. Appl. Phys., Vol. 37 No. 10, pp. 5549 5553, 1998.
- [53] D. X. Lu, Y. B. Pun, E. M. Wong, P. S. Chung, and Z. Y. Lee, "Electric fatigue in antiferroelectric and ferroelectric Pb(Zr,Sn,Ti)NbO₃ thin film prepared by sol-gel process", Jpn. J. Appl. Phys., Vol. 37 No. 9B, pp. 5162 5165, 1998.
- [54] A. Sheikholeslami and P. G. Gulak, "Growth and characterization of radio-frequency magnetron sputtered lead zirconate titanate thin films deposited on <111> Pt electrodes", J. Vac. Sci. Technol. A, Vol. 16 No. 5, pp. 2876 2884, 1998.
- [55] T. Sumi, "Electrical properties of Pt/SrBi₂Ta₂O₉/CeO₂/SiO₂/Si structure for nondestructive readout memory", Jpn. J. Appl. Phys., Vol. 37 No. 10, pp. 5549 5553, 1998.
- [56] T. Sumi, "Electron trapping process in ferroelectric lead-zirconate-titanate thin film capacitor" Appl. Phys. Lett., Vol. 73 No. 3, pp. 309 311, 1998.

- [57] Y. M. Coic, O. Musseau, and J. K. Leray, "MFMIS structure for nonvolatile ferroelectric memory using PZT thin film", IETCE TRANS Electron, Vol. E81 C No. 4, 1998.
- [58] S. Sadashivan, S. Aggarwal, T. K. Song, and R. Ramesh, "The effect of interfacial state on electrical properties of PZT-electrode system for applying to nonvolatile memory devices", Surface and Coatings Technology, Vol. 101, pp. 229 233, 1998.
- [59] H. Fan, L. Kong, L. Zhang, and Xi Yao, "SrBi₂Ta₂O₉ memory capacitor on Si with a silicon nitride buffer", Appl. Phys. Lett., Vol. 72 No. 10, pp. 1185 1186, 1998.
- [60] C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, and R. Jammy, "Ferroelectric properties of PZT thin films prepared by sputtering with stoichiometric single oxide target: comparison between conventional and rapid thermal annealing", Journal of European ceramic society, Vol. 17, pp. 1749 1755, 1997.
- [61] D. A. Barrow, T. E. Petroff, R. P. Tandon, and M. Sayer, "RF sputtered PLZT thin film on Pt/Ti electrodes", IEEE Trans. on ultrasonics, ferroelectrics, and frequency control, Vol. 44 No. 3 May, pp. 675-679, 1997.
- [62] B. Güttler, U. Bismayer, P. Groves, and E. Salje, "Preparation and ferroelectric properties of lead zirconate titanate thin films by RF magnetron sputtering", INT. J. Electronics, Vol. 83 No. 6, pp. 805 815, 1997.
- [63] E. Nieto, J. F. Fernandez, C. Mouse, and P. Duran, "H₂ damage of ferroelectric Pb(Zr,Ti)O₃ thin-film capacitor - The role of catalytic and adsorptive activity of the top electrode", Appl. Phys. Lett., Vol. 70 No. 23, pp. 3096 3097, 1997.
- [64] K. Amanuma, T. Hase, and Y. Miyasaka, "Stability control of composition of RF-sputtered Pb(Zr,Ti)O₃ ferroelectric thin film", Jpn. J. Appl. Phys., Vol. 36 No. 9B, pp. 5789 5792, 1997.

- [65] W. A. Geideman, "Influence of Zr/Ti ratios on the deformation in the hysteresis loop of Pb(Zr,Ti)O₃ thin film capacitor", Appl. Phys. Lett., Vol. 70 No. 18, pp. 2404 2406, 1997.
- [66] W. Zhang, K. Sasaki, and T. Hata, "Electrical properties of low-temperature(450) Pb(Zr,Ti)O₃ films prepared in quasi-metallic mode by RF reactive sputtering", Jpn. J. Appl. Phys., Vol. 35 No. 9B, pp. 5084 5088, 1996.
- [67] K. Gotoh, H. Tamura, H. Takauchi, and A. Yoshida, "Microstructural characterization of Pt/Ti and RuO₂ electrodes on SiO₂/Si annealed in the oxygen ambient", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 175 180, 1996.
- [68] Z. Surowiak, D. Czekaj, V. P. Dudkevich, A. A. Bakirov, I. M. Sem, and E. V. Sviridov, "Low temperature growth of PZT(52/48) thin films using RF magnetron sputtering method", Mat. Res. Soc. Symp. Proc., Vol. 433, pp. 243 247, 1996.
- [69] M. Huffman, J. P. Goral, M. M. Al-Jassim, A. R. Mason, and K. M. Jones, "Crystallization of Pb(Zr,Ti)O₃ films prepared by radio frequency magnetron sputtering with a stoichiometric oxide target", J. Vac. Sci. Technol., A Vol. 13 No. 4, pp. 2214 2220, 1995.
- [70] D. X. Lu, Y. B. Pun, E. M. Wong, P. S. Chung, and Z. Y. Lee, "rf planar magnetron sputtering and characterization of ferroelectric Pb(Zr,Ti)O₃ films", J. Appl. Phys., Vol. 54 No. 11, pp. 6601 6609, 1983.
- [71] K. Amanuma, T. Hase, and Y. Miyasaka, "Study on Pb-based ferroelectric thin films prepared by sol-gel method for memory application", Jpn. J. Appl. phys., Vol. 78 No. 9B, pp. 5265 5267, 1994.

",

, , , , , , , "RF

,

[72]

Pb[(Zr,Sn)Ti]NbO₃

9 3 , pp. 90 95, 2000.

[73]	,	,	,	, "RF			
	Pb[(Zr,Sn)Ti]NbO ₃				",		
		,	22	2 , pp. 199	201,	1999.	
[74]	,	,	,	, "		Pb[(Zr,Sn)Ti]Nb	O 3
		",				,	23
	1 , pp.	24 31, 20	000.				