4149 1149 12

Fixed Point Theorems for Involution Maps in 2-Banach Spaces

2-바나흐공간내에서 대합사상에 대한 부동점 정리

Advisor: Tae Hwa Kim

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in the Department of Applied Mathematics, Graduate School,
Pukyong National University

February 2003

李花貞의 理學碩士 學位論文을 認准함

2002年 12月 26日

主 審 理學博士 曺 洛 殷

委員 理學博士 趙 聖 鎭

委員 理學博士 金泰和

CONTENTS

ABSTRACT (KOREAN)	1
1. Introduction	2
2. Preliminaries and Examples	4
3. Some Properties of 1-local Retract in 2-Normed Spaces	8
4. Fixed Point Theorems for Involutions	18
REFERENCES	28

2-바나흐공간내에서 대합사상에 대한 부동점 정리

이 화 정

부경대학교 대학원 응용수학과

요 약

분 논문은 바나흐공간내에서 Khamsi의 1-local retract을 이용하여 Kim-Kirk에 의하여 연구된 어떤 부동점 정리를 2-바나흐공간으로 일반 화시킨 것이다. 2절에서는 Gähler에 의하여 소개된 2-노름의 개념, 정의 및 에제를 소개한다. 3절에서는 먼저 Khamsi에 의하여 소개된 1-local retract의 개념을 소개한다. 유사한 방법으로 2-노름공간에서 1-local retract의 개념을 정의한 후 2-노름과 관련된 몇몇 성질들을 밝힌다. 마지막 4절에서는Assad-Sessa에 의하여 소개된 어떤 축약조건을 적용하여 2-바나흐공간내에서 대합사상(involution maps)에 대한 부동점정리를 증명한다. 이것은 Khan-Khan에 의하여 얻어진 결과를 곧바로 확장하는 것이다. 또한 본 연구의 주 정리에 대한 여러 가지 응용을 다루며, 우리의 정리를 뒷받침하는 유클리드 2-바나흐공간에서한 에를 소개한다.

1. Introduction

Let K be a nonempty subset of a Banach space X. A mapping $T: K \to X$ is called k-lipschitzian if $||Tx - Ty|| \le k ||x - y||$ for all $x, y \in K$. It is called nonexpansive if the same condition with k = 1 holds. A mapping $T: K \to K$ is called an involution if $T^2 = I$, where I denotes the identity map. Recall that the modulus of convexity of X is the function $\delta_X: [0,2] \to [0,1]$ defined by

$$\delta_X(arepsilon) = \inf\{1 - rac{\|x+y\|}{2} : \|x\|, \ \|y\| \le 1, \|x-y\| \ge arepsilon\}.$$

Goebel [4] and Geobel-Złotkiewicz [6] investigated that if K is a closed convex subset of a Banach space and if a mapping $T:K\to K$ is k-lipschitzian involution where k satisfies

$$\frac{k}{2}\Big(1-\delta\Big(\frac{2}{k}\Big)\Big)<1,$$

(called as Goebel's Lipschitz condition in [12]), then T have a fixed point in K. The proofs of these facts are straightforward verifications that starting from any $x \in K$, the sequence of iterates $\{G^n(x)\}$ for $G = \frac{1}{2}(I+T)$ always converges to a fixed point of T. Later on, Assad-Sessa [1] extended a fixed point theorem of Goebel-Złotkiewicz [6] to an involution mapping satisfying the contractive condition introduced by Delbosco [2]. Also, Górniki [7] revisited the theorem due to [6] to establish some fixed point theorems of k-lipschitzian involutions. Gähler[3] introduced the concept of 2-metric spaces and studied

some examples and topological properties for such spaces. Khan-Khan [11] established an analogue of a fixed point theorem due to Assad-Sessa [1] on such 2-Banach spaces. In section 2 of this paper, we will give some definitions and an example relating to 2-normed spaces. In section 3, we introduce the well-known concept originally Khamsi [10], called a 1-local retract, and shall construct the 2-norms' version and present some properties related with 1-local retract and 2-norms. Finally, in section 4, we shall prove a fixed point theorem (see Theorem 4.2) for an involution map in 2-Banach spaces which is an extension of one proved earlier by Khan-Khan [11]. Next we shall give some applications of this theorem in 2-Banach spaces and a sharper example to support our main theorem 4.2.

2. Preliminaries and examples

In this section, we introduce some concepts and properties of 2-normed spaces. The following notions are essentially due to Gähler [3].

DEFINITION 2.1. Let X be a linear space, and $\|\cdot,\cdot\|$ be a real-valued function defined on X. Then the pair $(X,\|\cdot,\cdot\|)$ is called a 2-normed space if, for $a,b,c\in X$,

- (i) ||a, b|| = 0 if and only if a and b are linearly dependent,
- (ii) ||a, b|| = ||b, a||,
- (iii) $||a, \beta b|| = |\beta| ||a, b||$ $(\beta \in \mathbb{R}),$
- (iv) $||a, b + c|| \le ||a, b|| + ||a, c||$.

Here $\|\cdot,\cdot\|$ is called a 2-norm and is a non-negative function.

Let X be a 2-normed space. For all real r > 0, the set

$$U_r(a,b) = \{x \in X : ||x - a, b - a|| < r\}$$

will be called a r-neighborhood of two points $a, b \in X$. Obviously, $U_0(a, b) = \emptyset$ and $U_r(a, b)$ always contains the line joining a and b. Note also that $U_r(a, b) = X$ for r > 0 in a case that a = b. For more detailed topological properties, see [3].

First, consider an example for 2-norms in the n-dimensional Euclidean space.

EXAMPLE 2.1. Let $X := \mathbb{R}^n$ be a $n \geq 2$ -dimensional Euclidean space. Let k > 0 be fixed. For $a = (a_1, a_2, \ldots, a_n)$ and $b = (b_1, b_2, \ldots, b_n)$ in \mathbb{R}^n , define

$$||a,b||_k = k \left\{ \sum_{i < j} \begin{vmatrix} a_i & a_j \\ b_i & b_j \end{vmatrix}^2 \right\}^{1/2}.$$

Then the function $\|\cdot,\cdot\|_k$ is just a 2-norm on X.

REMARK 2.1. Since the usual norm on \mathbb{R}^n is given by

$$||a-b|| = \left(\sum_{i=1}^{n} (a_i - b_i)^2\right)^{1/2}$$

the following relation between a 2-norm $\|\cdot,\cdot\|_1$ (k=1) and the usual norm on \mathbb{R}^n is easily observed:

$$||a-b|| = \left(\frac{1}{n-1} \sum_{i=1}^{n} ||e_i, a-b||_1^2\right)^{1/2}$$

where the unit vectors $e_i = (0, 0, \dots, \stackrel{i}{1}, 0, \dots, 0)$ $(i = 1, 2, \dots, n)$ form a normalized basis of \mathbb{R}^n . Also, we note that for r > 0 and k > 0, r-neighborhood of a and b in \mathbb{R}^n

$$U_r(a,b) = \{x \in X : ||x - a, b - a||_k < r\}$$

denotes an (infinitely long) open cylinder, formed with the axis going through a and b, and radius $\rho = \frac{r}{k\|a-b\|}$. This shows the relation between the usual distance $\|a-b\|$ and the cylinder's size, which means the cylinder approaches to the whole space as $\|a-b\| \to 0$, while the cylinder contracts near the axis going through a and b as $\|a-b\| \to \infty$.

DEFINITION 2.2. A sequence $\{x_n\}$ in a 2-normed space X is called a convergent sequence if there is an element $x \in X$ such that the $\lim_{n\to\infty} \|x_n - x, a\| = 0$ for all $a \in X$. If $\{x_n\}$ converges to x, we write $x_n \to x$ and call x the limit of $\{x_n\}$. Of course, here $\dim X \geq 2$ otherwise every sequence of points in such a space would converge to every point of the space.

DEFINITION 2.3. A sequence $\{x_n\}$ in a 2-normed space X is called a Cauchy sequence if $\lim_{n,m\to\infty} ||x_m-x_n,a||=0$ for every $a\in X$. A 2-normed space in which every Cauchy sequence is a convergent sequence is called a 2-Banach space.

We also need the following notion from Assad-Sessa [1]. Let \mathbb{R}_+ be the set of nonnegative real numbers, i.e., $\mathbb{R}_+ = [0, \infty)$ and let Φ be the family of continuous functions $\phi : \mathbb{R}^3_+ \to \mathbb{R}_+$ satisfying the following properties:

- (i) $\phi(1,1,1) := c < 2$.
- (ii) for $s \ge 0$, $t \ge 0$, the inequality $s \le \phi(t, 2t, s)$ implies that $s \le ht$ for some $h \in [c, 2)$.

Here we give some examples of functions belonging in Φ .

Example 2.2. For $p, q, r \in \mathbb{R}_+$ define

$$\phi_1(p,q,r) = \alpha \max\{2p,q,r\}$$

with $0 \le \alpha < 1$, or

(2.2)
$$\phi_2(p,q,r) = \alpha p + \beta q + \gamma r$$

where $\alpha, \beta \geq 0, 0 \leq \gamma < 1, 1 \leq \alpha + \beta + \gamma$ and $\alpha + 2(\beta + \gamma) < 2$. Then $\phi_i \in \Phi$ (i = 1, 2) is obvious. Indeed, take $c = h = 2\alpha < 2$ in (2.1), while we note $c = \alpha + \beta + \gamma \leq \alpha + 2(\beta + \gamma) < 2$ and $h = \frac{\alpha + 2\beta}{1 - \gamma} \in [c, 2)$ in (2.2).

Assad-Sessa [1] developed the above notion to prove the following fixed theorem for involution self-maps in Banach spaces: Let C be a closed convex subset of a Banach space X and $T:C\to C$ be an involution and assume that there exists a $\phi\in\Phi$ such that

$$||Tx - Ty|| \le \phi(||x - y||, ||x - Tx||, ||y - Ty||)$$

for all $x,y \in C$. Then T has a fixed point in C. In particular, taking $\phi(p,q,r)=(\frac{\alpha}{2}+2\beta)\max\{2p,q,r\}$ for all $(p,q,r)\in\mathbb{R}^3_+$ and applying the above theorem due to Assad-Sessa [1] with this $\phi\in\Phi$ and $h=k=\alpha+4\beta<2$, we easily obtain the fixed point theorem for involution self-maps originally due to Iseki [8]: Let C be a closed convex subset of a Banach space X and $T:C\to C$ be an involution such that

$$d(Tx, Ty) \le \alpha d(x, y) + \beta [d(x, Tx) + d(y, Ty)]$$

for all $x, y \in C$, where $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + 4\beta < 2$, then T has a fixed point in C.

3. Some properties of 1-local retract in 2-normed spaces

In this section we introduce the well-known concept originally due to Khamsi [10], called a 1-local retract, and shall construct the 2-norm version in 2-normed spaces. Next, we shall give some properties of such a concept in 2-normed spaces.

Let X be a normed space and $F \subset K \subset X$. Then recall that F is said to be a 1-local retract of K if every family $\{B_i; i \in I\}$ of closed balls centered at point of F has the property: $(\cap_{i \in I} B_i) \cap K \neq \emptyset \Rightarrow (\cap_{i \in I} B_i) \cap F \neq \emptyset$. This concept is due to Khamsi ([9],[10]), who used it to prove the existence of common fixed points for commuting families of nonexpansive mappings in a more general context. It is easy to see that a 1-local retract of a convex set is metrically convex, and a 1-local retract of a closed set must itself be closed. It is easy to check [10] that nonexpansive retracts are always 1-local retracts (but not conversely).

Now let us consider the 2-norm version of the concept and properties introduced above. Let X be a 2-normed space. Recall from [3] that the family

$$\{W_{\scriptscriptstyle{\Sigma}}(a) := \bigcap_{i=1}^n U_{r_i}(a,b_i) \, | \, \Sigma = \{(b_i,r_i) : i=1,2,\ldots,n\}, n \in \mathbb{N}\}$$

forms the neighborhood system of $a \in X$, where $U_{r_i}(a, b_i) = \{x \in X : ||x - a, b_i - a|| < r_i\}$ (i = 1, 2, ..., n) for a finitely many points $b_1, b_2, ..., b_n \in X$.

Denote by K' the set of all accumulation points of $K(\neq \emptyset) \subset X$. Then note that

$$(3.2) \quad a \in K' \quad \text{iff} \quad \forall \ \Sigma = \{(b_i, r_i) : i = 1, 2, \dots, n\}, \ W_{\Sigma}(a) \cap K \setminus \{a\} \neq \emptyset.$$

This is immediately equivalent to the following fact: For every finitely many points $b_1, \ldots, b_n \in X$, there exists a sequence $\{x_j\}, x_j \neq a \in K$, such that

$$\lim_{j \to \infty} ||x_j - a, b_i - a|| = 0$$

for all $i=1,2,\ldots,n$. Now consider the *closure* of K, that is, $\overline{K}=K'\cup K$. Also, we similarly note that

$$(3.3) a \in \overline{K} iff \forall \Sigma = \{(b_i, r_i) : i = 1, 2, \dots, n\}, W_{\Sigma}(a) \cap K \neq \emptyset.$$

Now we introduce the following characterization of \overline{K} , the closure of K, which is originally due to Gähler [3]. Here, we shall give a modified proof in 2-normed spaces for the sake of convenience.

Proposition 3.1 ([3]). Let K be a nonempty subset of a 2-normed space X. Then

$$\overline{K} = \bigcap_{\Sigma} W_{\Sigma}(K),$$

where $W_{\Sigma}(K) = \bigcup_{a \in K} W_{\Sigma}(a)$.

Proof. Let $x \in K$. From (3.3), for every $\Sigma = \{(b_i, r_i) : i = 1, 2, \dots, n\}$ there exists a $x_{\Sigma} \in K$ such that

$$x_{\scriptscriptstyle \Sigma} \in W_{\scriptscriptstyle \Sigma}(x) = \bigcap_{i=1}^n U_{r_i}(x, b_i).$$

For all $i = 1, 2, \ldots, n$, since

(3.4)
$$x_{\Sigma} \in U_{r_i}(x, b_i) \quad \text{iff} \quad x \in U_{r_i}(x_{\Sigma}, b_i)$$

from (iii) of Definition 2.1, this immediately yields $x \in W_{\Sigma}(x_{\Sigma})$ and hence $x \in W_{\Sigma}(K)$ for the Σ . This gives $\overline{K} \subset \cap_{\Sigma} W_{\Sigma}(K)$. On the other hand, for the converse inclusion, let $x \in \cap_{\Sigma} W_{\Sigma}(K)$. Then for every Σ there exists $x_{\Sigma} \in K$ such that $x \in W_{\Sigma}(x_{\Sigma})$. Immediately, it follows from (3.4) that $x_{\Sigma} \in W_{\Sigma}(x)$. Hence $x \in \overline{K}$ and the proof is complete. \square

We say that a subset K of X is closed if $\overline{K} = K$. As the usual notation, different from the r-neighborhood $U_r(a,b)$ of $a,b \in X$, we set

$$B_r(a,b) = \{x \in X : ||x-a,b-a|| < r\}.$$

Is the set $B_r(a, b)$ closed? Here we present a positive answer for this question.

PROPOSITION 3.2. Let X be a 2-normed space. For $r \geq 0$ and $a_0, b_0 \in X$, $B_r(a_0, b_0)$ is a closed set in X.

Proof. If r=0, it is obvious. Now let r>0 and $K:=B_r(a_0,b_0)$. We claim that

$$x \in \overline{K} = \bigcap_{\Sigma} W_{\Sigma}(K) \quad \Rightarrow \quad x \in K.$$

Let $\Sigma_n := \{(a_0, 1/n), (b_0, 1/n)\}$ for each $n \in \mathbb{N}$ and $x \in \overline{K}$. By above property, it must be $x \in W_{\Sigma}(K) = \bigcup_{a \in K} W_{\Sigma}(a)$. That is, there exists $a \in K$ such that $x \in W_{\Sigma}(a) = U_{1/n}(a, a_0) \cap U_{1/n}(a, b_0)$. This implies

(3.5)
$$||x-a, a_0-a|| < 1/n$$
 and $||x-a, b_0-a|| < 1/n$.

Since $a \in K = B_r(a_0, b_0)$, we have

$$||a-a_0,b_0-a_0|| \leq r.$$

This combined with (3.5) and properties of Definition 2.1 yield

$$||x - a_0, b_0 - a_0|| = ||(x - a) + (a - a_0), b_0 - a_0||$$

$$\leq ||x - a, b_0 - a_0|| + ||a - a_0, b_0 - a_0||$$

$$= ||x - a, (b_0 - a) + (a - a_0)|| + ||a - a_0, b_0 - a_0||$$

$$\leq ||x - a, b_0 - a|| + ||x - a, a - a_0|| + ||a - a_0, b_0 - a_0||$$

$$< 1/n + 1/n + r = r + 2/n$$

for all Σ_n . Since n is arbitrarily given, it follows that $||x - a_0, b_0 - a_0|| \le r$ and so $x \in K$, which completes the proof. \square

Now consider the analogous concept of 1-local retract in a 2-normed space. How can we explain the closed balls in such a 2-Banach space? Let X be a 2-normed space. For a fixed $a \in X$, set

$$B_{r_a}(a) = \bigcap_{\Sigma} B_{\Sigma}(a),$$

where

$$B_{\scriptscriptstyle \Sigma}(a) = \bigcap_{i=1}^n B_{r_{\scriptscriptstyle (\Sigma,a)}}(a,b_i)$$

for every finite set $\Sigma = \{b_1, b_2, \dots, b_n\}$ in X and $r_a = \inf_{\Sigma} r_{(\Sigma, a)} \geq 0$. From now on, the set $B_{r_a}(a)$ in X will called the closed ball centered at $a \in X$ with radius r(a). Note especially that if $r_{(\Sigma, a)} = r$ for all Σ , then $r_a = r$ and so $B_r(a) = \bigcap_{b \in X} B_r(a, b)$.

As before, if $F \subset K \subset X$, then F is said to be a 1-local retract of K if every family $\{B_i; i \in I\}$ of closed balls centered at point of F has the property: $(\cap_{i \in I} B_i) \cap K \neq \emptyset \Rightarrow (\cap_{i \in I} B_i) \cap F \neq \emptyset$.

As an analogous version, we say that $T: K \to K$ is k-lipschtzian if $||Tx - Ty, a|| \le k ||x - y, a||$ for all $x, y \in K$ and $a \in X$. It is called *nonexpansive* it the same condition with k = 1 holds. Also K is said to be a *retract* of X if there exists a *retraction* r of X onto K, that is, a continuous mapping $r: X \to K$ such that

$$r(x) = x \quad (x \in K).$$

If r is nonexpansive, then K is said to be a nonexpansive retract of X. Then we have the following easy result.

PROPOSITION 3.3. Let X be a 2-normed space. Each nonexpansive retract A of X is a 1-local retract of X.

Proof. Let $\{B_{r_{\alpha}}(x_{\alpha})\}$ be a family of closed balls $B_{r_{\alpha}}(x_{\alpha})$, each of radius $r_{\alpha} = \inf_{\Sigma} r_{(\Sigma, x_{\alpha})}$, centered at $x_{\alpha} \in A$ for every α . Suppose that

$$\bigcap_{\alpha} B_{r_{\alpha}}(x_{\alpha}) \neq \emptyset$$

and let r be a nonexpansive retract of X onto A. Then it is obvious that for $z \in \cap_{\alpha} B_{r_{\alpha}}(x_{\alpha}), r(z) \in A \cap [\cap_{\alpha} B_{r_{\alpha}}(x_{\alpha})]$. Indeed, clearly $r(a) \in A$. For every α and $\Sigma = \{b_1, b_2, \ldots, b_n\}$,

$$||r(z) - x_{\alpha}, b_{i} - a|| = ||r(z) - r(x_{\alpha}), b_{i} - a||$$

 $\leq ||z - x_{\alpha}, b_{i} - a|| \leq r_{(\Sigma, x_{\alpha})}$

for every $i = 1, 2, \ldots, n$ and so

$$r(z) \in \cap_{i=1}^n B_{r_{(\Sigma, x_\alpha)}}(x_\alpha, b_i) = B_{\Sigma}(x_\alpha)$$

for $\Sigma = \{b_1, b_2, \ldots, b_n\}$. Since Σ is arbitrarily given and $r_{\alpha} = \inf_{\Sigma} r_{(\Sigma, x_{\alpha})}$,

$$r(z)\inigcap_\Sigma B_\Sigma(x_lpha)=B_{r_lpha}(x_lpha)$$

for every α . Therefore, $r(z) \in \cap_{\alpha} B_{r_{\alpha}}(x_{\alpha})$. \square

In normed space, every 1-local retract of a closed set must itself be closed. Is it possible in 2-normed spaces? First Gähler [3] introduced the following property,

PROPERTY (K). Let $\{x_n\}$ be a sequence in a 2-normed space X and $x \in X$. If there exists two points b and c in X such that

$$\|c-x,b-x\| \neq 0$$
, $\lim_{i \to \infty} \|x_i-x,b-x\| = 0$ and $\lim_{i \to \infty} \|x_i-x,c-x\| = 0$, then $\lim_{i \to \infty} \|x_i-x,a-x\| = 0$ for all $a \in X$.

PROPOSITION 3.4. Let K be a closed subset of a 2-normed space X, and suppose $A(\subset K)$ is a 1-local retract of K. Then A is closed in X.

Proof. We claim: $x \in \overline{A} \Rightarrow x \in A$. Let $x \in \overline{A}$. Using the easy equivalent form of (3.3), for every finitely many points $b_1, b_2, \ldots, b_n \in X$ there exists a sequence $\{x_n\}$ in A such that $\lim_{j\to\infty} ||x_j-x,b_i-x|| = 0$ for all $i=1,\ldots,n$. Let $b \in X$. Taking $b_i = b + x$ for all i yields

$$\lim_{j \to \infty} ||x_j - x, b|| = 0$$

for every $b \in X$. That means, for any $k \in \mathbb{N}$, there is $N_k \in \mathbb{N}$ such that $||x_j - x, b|| < 1/k$ for all $j \ge N_k$ and $b \in X$. In particular,

$$\|x_{_{N_k}}-x,a-x_{_{N_k}}\|<1/k\leq 1/k$$

and so $x \in B_{1/k}(x_{N_k}, a)$ for every $a \in X$. For each $k \in \mathbb{N}$, setting $\Sigma = \{(a, 1/k)\}, \ r_{(\Sigma, x_{N_k})} = 1/k$ and $r_k = \inf_{\Sigma} r_{(\Sigma, x_{N_k})} = 1/k$, we have $x \in B_{\Sigma}(x_{N_k})$ for every $\Sigma = \{(a, 1/k)\}$. Therefore $x \in B_{r_k}(x_{N_k}) = B_{1/k}(x_{N_k})$ for $k \in \mathbb{N}$. Since K is closed, $x \in K$ naturally. This implies

$$x \in K \cap \bigcap_{k=1}^{\infty} B_{1/k}(x_{N_k}).$$

Since A is 1-local retract of K, it must be

$$A \cap \bigcap_{k=1}^{\infty} B_{1/k}(x_{N_k}) \neq \emptyset.$$

On choosing $z \in A \cap \bigcap_{k=1}^{\infty} B_{1/k}(x_{N_k})$, we can prove x=z. For this end, from $z \in B_{1/k}(x_{N_k}) = \bigcap_{a \in X} B_{1/k}(x_{N_k}, a)$, it follows that

$$||z - x_{N_k}, a - x_{N_k}|| \le 1/k$$

for every $a \in X$. This combined with (3.6) yields

$$\|z-x,a-x_{_{N_k}}\| \leq \|z-x_{_{N_k}},a-x_{_{N_k}}\| + \|x_{_{N_k}}-x,a-x_{_{N_k}}\| \leq 2/k$$

for all $a \in X$. In particular, we have $||z - x, c|| \le 2/k$ for every $c \in X$ and $k \in \mathbb{N}$. Letting $k \to \infty$ gives ||z - x, c|| = 0 for every $c \in X$. Since $dim X \ge 2$, the only way z - x can be linearly dependent with all $a \in X$, that is, z - x = 0. Since $z \in A$, this yields $x \in A$ and completes the proof. \square

By looking over the proof of Lemma 2.2 in [11] in Banach spaces we can similarly prove the following result.

PROPOSITION 3.5. Let K be a nonempty subset of a 2-normed space X. Suppose K is a nonempty 1-local retract of $\overline{conv}(K)$, where $\overline{conv}(K)$ means the closed convex hull of K. Let $T:K\to K$ be a mapping. Then there exists a mapping $G:K\to K$ such that for each $x\in K$

(3.7)
$$||x - Gx, a|| = ||Gx - Tx, a|| = \frac{1}{2}||x - Tx, a||,$$

and

$$(3.8) ||z - Gx, a|| \le \max\{||z - x, a||, ||z - Tx, a||\}$$

for all $z \in K$ and $a \in X$.

Proof. Let $x \in K$. If Tx = x, then take Gx = x. Now assume that $Tx \neq x$. For every $z \in K$ and $\Sigma = \{b_1, b_2, \ldots, b_n\}$, we set

$$\begin{split} r_{(\Sigma,z)} &= \max\{\|x-z,b_i-z\|, \|Tx-z,b_i-z\|: b_i \in \Sigma\} \\ r_{(\Sigma,x)} &= \max\{\|x-Tx,b_i-x\|/2: b_i \in \Sigma\} \\ r_{(\Sigma,Tx)} &= \max\{\|x-Tx,b_i-Tx\|/2: b_i \in \Sigma\} \end{split}$$

and $r_a = \inf_{\Sigma} r_{(\Sigma,a)}$ for a = z, x and Tx. First we can observe that for a = z, x and Tx respectively,

$$||(x+Tx)/2-a,b_i-a|| \le r_{(\Sigma,a)}$$

and so $(x+Tx)/2\in B_{r_{(\Sigma,a)}}(a)$. Since Σ is arbitrarily given and $r_a=\inf_\Sigma r_{(\Sigma,a)},$

$$(x+Tx)/2\in\bigcap_{\Sigma}B_{r_{(\Sigma,a)}}(a)=B_{r_a}(a)$$

for a = z, x and Tx respectively. This immediately implies

$$(x+Tx)/2 \in \bigcap_{z \in K} B_{r_z}(z) \cap B_{r_x}(x) \cap B_{r_{T_x}}(Tx).$$

Since K is a 1-local retract of $\overline{conv}(K)$, it must be

$$\bigcap_{z \in K} B_{r_z}(z) \cap B_{r_x}(x) \cap B_{r_{T_x}}(Tx) \cap K \neq \emptyset$$

Defining an element in the above nonempty set by Gx, we obtain the required mapping $G: K \to K$, which (3.7) and (3.8) are satisfied by taking $\Sigma = \{a\}$ specially for each $a \in X$. \square

Following the convention of [5], we shall use $\frac{1}{2}x \oplus \frac{1}{2}Tx$ to denote the point Gx for each $x \in K$.

4. Fixed Point Theorems for involutions

Let K be a nonempty subset of a 2-Banach space X and let $T: K \to K$ be a mapping. We say that a sequence $\{x_n\}$ satisfying $||x_n - Tx_n, a|| \to 0$ for all $a \in X$ as $n \to \infty$ is called approximate fixed point (in short, a.f.p.) with respect to T. Further, it is called an a.f.p. Cauchy with respect to T if it is both Cauchy and a.f.p. with respect to T.

First we begin with the following easy lemma for our argument.

LEMMA 4.1. Let K be a nonempty closed subset of a 2-Banach space X with $dim X \geq 2$. Let $T: K \to K$ be a mapping. Assume that there exists a $\phi \in \Phi$ such that

$$(4.1) ||Tx - Ty, a|| \le \phi(||x - y, a||, ||x - Tx, a||, ||y - Ty, a||)$$

for every $x, y \in K$ and $a \in X$. If there exists an a.f.p. Cauchy sequence in K with respect to T, then T has a fixed point in K.

Proof. Let $\{x_n\}$ be an a.f.p. Cauchy sequence in K with respect to T and let $x_n \to x^* \in K$. Since $||Tx_n - x_n, a|| \to 0$ for every $a \in X$ as $n \to \infty$, we have

$$||x_n - Tx^*, a|| \le ||x_n - Tx_n, a|| + ||Tx_n - Tx^*, a||$$

$$\le ||x_n - Tx_n, a|| + \phi(||x_n - x^*, a||, ||x_n - Tx_n, a||, ||x^* - Tx^*, a||),$$

for every $a \in X$ and each $n \in \mathbb{N}$. Since ϕ is continuous, it follows as $n \to \infty$ that for all $a \in X$

$$||x^* - Tx^*, a|| \le \phi(0, 0, ||x^* - Tx^*, a||),$$

which in turn implies that $||x^* - Tx^*, a|| = 0$ for every $a \in X$ by the property (ii) above. Since $dim X \geq 2$, the only way $(x^* - Tx^*)$ can be linearly dependent with all $a \in X$, that is, $x^* - Tx^* = 0$. Hence $x^* = Tx^*$ as required. This completes the proof. \square

THEOREM 4.1. Let K be a nonempty closed subset of a 2-Banach space X with $dim X \geq 2$. Let $T: K \to K$ be a mapping. Assume that there exists a $\phi \in \Phi$ such that

$$||Tx - Ty, a|| \le \phi(||x - y, a||, ||x - Tx, a||, ||y - Ty, a||)$$

for all $x, y \in K$ and $a \in X$. If there exists a mapping $G : K \to K$ satisfying the following properties;

(a)
$$||TGx - Gx, a|| \le \alpha ||Tx - x, a||$$
,

(b)
$$||Gx - x, a|| \le \beta ||Tx - x, a||$$

for all $x \in K$ and $a \in X$, where $0 \le \alpha < 1$, $\beta > 0$, then T has a fixed point in K and Fix(T) = Fix(G), where Fix(T) denotes the set of all fixed points of T.

Proof. Let $x \in K$ be an arbitrary point and assume $x \neq Tx$. By using conditions (a) and (b), a simple calculation implies that $||G^{n+1}x - G^nx, a|| \leq \beta \cdot \alpha^n ||Tx - x, a||$ for every $a \in X$, and this immediately yields that $\{G^nx\}$ is a Cauchy sequence. By (a) it is obvious that $\{G^nx\}$ is an a.f.p. sequence in K with respect to T. Hence it is an a.f.p. Cauchy sequence in K with respect to T, as required in Lemma 4.1, and so T has a fixed point in K. By using (a) and (b) again we readily see that Fix(G) = Fix(T). \square

REMARK 4.1. Note that T is not continuous. By looking over the proofs of Lemma 4.1 and Theorem 4.1, we readily see that if $T:K\to K$ is a continuous mapping and if there exists a continuous mapping $G:K\to K$ satisfying the conditions (a) and (b) as in Theorem 4.1, then Fix(T) is in fact a nonempty retract of K, that is, there exists a retraction $R:K\to Fix(T)$ such that $Rx=\lim_{n\to\infty}G^nx$ for each $x\in K$ and TR=R=GR.

Using Proposition 3.5, we can prove a fixed point theorem for involution maps in 2-Banach spaces.

THEOREM 4.2. Let X be a 2-Banach space, let K be a nonempty 1-local retract of $\overline{conv}(K)$. If $T:K\to K$ is an involution map satisfying the following property;

$$||Tx - Ty, a|| \le \phi(||x - y, a||, ||x - Tx, a||, ||y - Ty, a||)$$

for all $x, y \in K$ and $a \in X$ and some $\phi \in \Phi$, then T has a fixed point in K.

Proof. Let $G: K \to K$ be defined by $Gx = \frac{1}{2}x \oplus \frac{1}{2}Tx$ for each $x \in K$ as in Proposition 3.5. To this end, it suffices to show that the mapping G satisfies two conditions (a) and (b) of Theorem 4.1 Let $x \in K$ and $a \in X$ be given. By (3.7) and $T^2 = I$, we have

$$||x - TGx, a|| = ||T^{2}x - TGx, a||$$

$$\leq \phi(||Tx - Gx, a||, ||Tx - x, a||, ||Gx - TGx, a||)$$

$$= \phi(||x - Gx, a||, 2||x - Gx, a||, ||Gx - TGx, a||)$$

and similarly,

$$||Tx - TGx, a|| \le \phi(||x - Gx, a||, 2||x - Gx, a||, ||Gx - TGx, a||).$$

By replacing z by TGx in (3.8), we get

$$||TGx - Gx, a|| \le \max\{||TGx - x, a||, ||TGx - Tx, a||\}$$

 $\le \phi(||x - Gx, a||, 2||x - Gx, a||, ||TGx - Gx, a||).$

Combined with the property (ii), this immediately implies that

$$||TGx - Gx, a|| \le h||x - Gx, a||$$
$$= \frac{h}{2}||x - Tx, a||$$

for all $x \in K$ and $a \in X$, where $h \in [k, 2)$. Since all assumptions of Theorem 4.1 with a = h/2 < 1 and b = 1/2 are fulfilled, T has a fixed point in K. \square

From now on, we will give some applications of Theorem 4.2. As the first direct consequence of Theorem 4.2, we shall give the following result, which reduces to a fixed point theorem of Khan and Khan [11] in only case K = X.

COROLLARY 4.1. Let K be a nonempty closed convex subset of a linear 2-Banach space X. If $T: K \to K$ is an involution map satisfying the following property;

$$||Tx - Ty, a|| \le \phi(||x - y, a||, ||x - Tx, a||, ||y - Ty, a||)$$

for all $x, y \in K$ and $a \in X$ and some $\phi \in \Phi$, then T has a fixed point in K.

Proof. Since K is closed and convex, $\overline{conv}(K) = K$. Obviously, K is itself 1-local retract of K, and so the consequence immediately follows from Theorem 4.2. \square

Now we shall give an analogous 2-norm version of the result due to Assad and Sessa [1] which is a generalization of a fixed point theorem of Geobel and Złotkiewicz [6] in Banach spaces.

COROLLARY 4.2. Let X be a 2-Banach space, let K be a nonempty 1-local retract of $\overline{conv}(K)$. If $T:K\to K$ is an involution map satisfying the following property;

$$(4.2) ||Tx - Ty, a|| \le \alpha ||x - y, a|| + \beta (||x - Tx, a|| + ||y - Ty, a||)$$

for all $x, y \in K$ and $a \in X$, where $\alpha, \beta \geq 0$ and $\alpha + 4\beta < 2$, then T has a fixed point in K.

Proof. Define $\phi(p,q,r)=(\frac{\alpha}{2}+2\beta)\max\{2p,q,r\}$ for all $(p,q,r)\in\mathbb{R}^3_+$. Obviously, $\phi\in\Phi$ with $h=c=\alpha+4\beta<2$. By applying Theorem 4.2, T has a fixed point in K. \square

REMARK 4.1. We note that if K is the whole Banach space X, Corollary 4.2 reduces to a 2-norm version of the result due to Iśeki [8].

COROLLARY 4.3. Let X be a 2-Banach space, let K be a nonempty 1-local retract of $\overline{conv}(K)$. Let $T:K\to K$ be a k-lipschitzian involution. If $0\leq k<2$, then T has a fixed point in K.

Proof. Apply Corollary 4.2 with $\alpha = k$ and $\beta = 0$.

REMARK 4.2. Note that Corollary 4.3 is just the 2-Banach spaces' version of the result obtained by Kim-Kirk [11] in Banach spaces, where they say T satisfies Goebel's Lipschitz condition if $0 \le k < 2$. In particular, if K is convex, it reduces to the well-known results of [4] and [5] in Banach spaces.

Finally we give an example of mappings in 2-Banach spaces which is a k-lipschitzian involution and satisfies the property (4.1) but not (4.2). This means the condition (4.1) in Theorem 4.2 is more general than (4.2).

EXAMPLE 4.1. Let $X := \mathbb{R}^2$ be a 2-dimensional Euclidean 2-Banach space with 2-norm $\|\cdot,\cdot\|_1$ as in Example 2.1. Let $1 < k \le 3$ and $K := \mathbb{R} \times \{0\}$. From Proposition 3.2, note that K is closed and convex in $(X,\|\cdot,\cdot\|_1)$. For any $x = (x_1,0) \in K$, we define a mapping $T: K \to K$ by

$$Tx := \begin{cases} -kx & \text{if } 0 \le x_1; \\ -x/k & \text{if } x_1 < 0. \end{cases}$$

Then T is obviously a k-lipschitzian involution on K and $Fix(T) = \{0\}$. First, we claim that T satisfies (4.1). Define

$$\phi(p, q, r) = \frac{k^2 + 1}{k^2 + k} \max\{2p, q, r\}$$

for every $(p,q,r) \in \mathbb{R}_+$. Then, $\phi : \mathbb{R}^3_+ \to \mathbb{R}_+$ is obviously continuous on \mathbb{R}^3_+ . Also, $\phi(1,1,1) = \frac{k^2+1}{k^2+k} \cdot 2 \, (:=c) < 2$ because k > 1. Now let $s \ge 0$, $t \ge 0$ and

$$s \le \phi(t, 2t, s) = \frac{k^2 + 1}{k^2 + k} \max\{2t, 2t, s\}.$$

Then it should be $\max\{2t, 2t, s\} = 2t$. Otherwise we should obtain $s \le \frac{k^2+1}{k^2+k}s < s$, which is a contradiction. This immediately yields $s \le ht$ with $h = \frac{k^2+1}{k^2+k} \cdot 2 = c < 2$. Thus $\phi \in \Phi$. Next let us show that T is k-lipschizian and satisfies (4.1). Let $x = (x_1, 0), y = (y_1, 0) \in K$. From now on, consider the following three cases: Let $a = (a_1, a_2) \in X$. (i) If $x_1, y_1 \ge 0$,

$$(4.3) ||Tx - Ty, a||_1 = ||-k(x-y), a||_1 = k||x-y, a||_1.$$

Clearly, T is k-lipschtzian by (4.3). Now let us see 2-norm of the right side in (4.3), i.e.,

$$||x - y, a||_1 = \left\{ \begin{vmatrix} x_1 - y_1 & 0 \\ a_1 & a_2 \end{vmatrix}^2 \right\}^{1/2}$$
$$= |a_2| \cdot |x_1 - y_1|.$$

If $x_1 \geq y_1$ at first, then $|x_1 - y_1| = x_1 - y_1 \leq x_1$ because $y_1 \geq 0$. Then (4.3) yields

$$\begin{aligned} \|Tx - Ty, a\|_{1} &\leq k|a_{2}|x_{1} = \frac{k}{1+k} \big((1+k)|a_{2}|x_{1} \big) = \frac{k}{1+k} \|x - Tx, a\|_{1} \\ &\leq \frac{k^{2}+1}{k^{2}+k} \max\{2\|x - y, a\|_{1}, \|x - Tx, a\|_{1}, \|y - Ty, a\|_{1}\} \\ &= \phi(\|x - y, a\|_{1}, \|x - Tx, a\|_{1}, \|y - Ty, a\|_{1}). \end{aligned}$$

Next, if $x_1 < y_1$, then (4.3) similarly becomes

$$||Tx - Ty, a||_1 \le k|a_2|y_1 = \frac{k}{1+k}||y - Ty, a||_1$$

$$\le \phi(||x - y, a||_1, ||x - Tx, a||_1, ||y - Ty, a||_1).$$

In other words, (4.1) is satisfied in any case. (ii) if $x_1, y_1 < 0$, we have

$$||Tx - Ty, a||_1 = (1/k)||x - y, a||_1$$

for every $a \in X$. That is, T is 1/k-lipschitzian (hence k-lipschitzian because $1 < k \le 3$). Also,

$$||Tx - Ty, a||_1 = (1/k)||x - y, a||_1 \le \frac{k^2 + 1}{k^2 + k} \cdot 2||x - y, a||_1$$
$$\le \phi(||x - y, a||_1, ||x - Tx, a||_1, ||y - Ty, a||_1)$$

and so (4.1) is satisfied. Finally, (iii) if either $0 \le x_1$, $y_1 < 0$ or $x_1 < 0$, $y_1 \ge 0$ (for the latter, may be exchange x_1 and y_1), since

(4.4)
$$||Tx - Ty, a||_{1} = ||-kx - (-y/k), a||_{1}$$

$$= \begin{cases} \begin{vmatrix} -kx_{1} - (-y_{1}/k) & 0 \\ a_{1} & a_{2} \end{vmatrix}^{2} \end{cases}^{1/2}$$

$$= |a_{2}|(kx_{1} - y_{1}/k)$$

and $(-y_1)/k \le k(-y_1)$, we have

$$||Tx - Ty, a||_1 \le k|a_2|(x_1 - y_1) = k||x - y, a||_1$$

for every $a \in X$, i.e., T is k-lipschitzian. On the other hand, First, if $x \ge -y$, (4.4) yields

$$||Tx - Ty, a||_1 = |a_2|(kx_1 - y_1/k) \le |a_2|(k+1/k)x_1 = \frac{k^2 + 1}{k}|a_2|x_1$$

$$= \frac{k^2 + 1}{k(k+1)} \cdot (k+1)|a_2|x_1 = \frac{k^2 + 1}{k^2 + k}||x - Tx, a||_1$$

$$\le \phi(||x - y, a||_1, ||x - Tx, a||_1, ||y - Ty, a||_1).$$

Next, if x < -y, since $1 < k \le 3$, a simple calculation gives

$$||Tx - Ty, a||_1 = |a_2|(kx_1 - y_1/k) \le \frac{k^2 + 1}{k^2 + k} \cdot 2||x - y, a||_1$$
$$\le \phi(||x - y, a||_1, ||x - Tx, a||_1, ||y - Ty, a||_1).$$

Hence T always satisfies (4.1) in all cases. At last, we claim that T does not satisfy (4.2). Otherwise for some $k \in [2,3], x = (0,0)$ and y = (1,0), the

condition (4.2) implies

$$||Tx - Ty, a||_1 = ||(-k, 0), a||_1 = k|a_2|$$

$$\leq \alpha ||x - y, a|| + \beta (||x - Tx, a|| + ||y - Ty, a||)$$

$$= \alpha |a_2| + \beta (1 + k)|a_2| \leq (\alpha + 4\beta)|a_2|$$

$$< 2|a_2| \leq k|a_2|$$

for every $a=(a_1,a_2)\in X$, which gives a contradiction. This contradiction means T does not satisfy (4.2) for all $k\in[2,3]$.

REMARK 4.2. The above example with k=2 in \mathbb{R} with the usual norm is originally due to Assad-Sessa [1].

References

- N.A. Assad and S. Sessa, Involution maps and fixed points in Banach spaces, Math. J. Toyama Univ., 14 (1991), 141–146.
- D. Delbosco, A unified approach for all contractive mappings, Jñãnābha,
 16 (1986), 1–11.
- 3. S. Gähler, 2-metrische Räume und ihre topologische Struckur, "Math. Nachr. 26 (1963), 115–148.
- 4. K. Goebel, Convexity of balls and fixed point theorems for mappings with nonexpansive square, Compositio Math. 22 (1970), 269-274.
- K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
- K. Goebel and E. Złotkiewicz, Some fixed point theorems in Banach spaces,
 Coll. Math. 23 (1971), 103–106.
- 7. J. Górnick, Fixed points of involutions, Math. Japonica, 43(1) (1996), 151–155.
- 8. K. Iśeki, Fixed point theorem in Banach spaces, Math. Sem. Notes Kobe Univ., 2 (1974), 11–13.
- 9. M.A. Khamsi, Etude de la propriété du point fixe dans les espaces de Banach et les espaces métriques, Thése de Doctorat de L'Université Paris VI, 1987.

- 10. M.A. Khamsi, One-local retract and common fixed point for commuting mappings in metric spaces, Nolinear Analysis-TMA, 27 (1996), 1307–1313.
- M.S. Khan and M.D. Khan, Involutions with fixed points in 2-Banach spaces, Internat. J. Math. & Math. Sci. 16 (1993), 429-434.
- 12. T.H. Kim and W.A. Kirk, Fixed point theorems for lipschitzian mappings in Banach spaces, to appear Nonlinear Analysis, TMA.
- H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal.,
 TMA 16 (1991), 1127-1138.
- 14. C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344–374.