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1. INTRODUCTION

Let K be a nonempty subset of a Banach space X. A mapping T : K — X
is called k-lipschitzian if |[Tx — Ty|| < k ||z — y|| for all 2,y € K. Tt is called
nonezrpansive if the same condition with & = 1 holds. A mapping T : K - K
is called an involution if T? = I, where T denotes the identity map. Recall
that the modulus of convesity of X is the function &, : [0,2] — [0,1] defined
by

ue) = int (1 LU o g <1 =yl 2 ).

Goebel [4] and Geobel-Zlotkiewicz [6] investigated that if K is a closed convex
subset of a Banach space and if a mapping T : K — K is k-lipschitzian

involution where k satisfies

Saa(2) <1

(called as Goebel’s Lipschitz condition in [12]), then T have a fixed point in K.
The proofs of these facts are straightforward verifications that starting from
any ¢ € K, the sequence of iterates {G™(x)} for G = L(I + T) always con-
verges to a fixed point of T'. Later on, Assad-Sessa [1] extended a fixed point
theorem of Goebel-Zlotkiewicz [6] to an involution mapping satisfying the
contractive condition introduced by Delbosco [2]. Also, Gérniki [7] revisited
the theorem due to [6] to establish some fixed point theorems of k-lipschitzian

mvolutions. Gahler(3] introduced the concept of 2-metric spaces and studied
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some examples and topological properties for such spaces. Khan-Khan [11]
established an analogue of a fixed point theorem due to Assad-Sessa [1] on
such 2-Banach spaces. In section 2 of this paper, we will give some definitions
and an example relating to 2-normed spaces. In section 3, we introduce the
well-known concept originally Khamsi [10], called a 1-local retract, and shall
construct the 2-norms’ version and present some properties related with 1-
local retract and 2-norms. Finally, in section 4, we shall prove a fixed point
theorem (see Theorem 4.2) for an involution map in 2-Banach spaces which
is an extension of one proved earlier by Khan-Khan [11]. Next we shall give
some applications of this theorem in 2-Banach spaces and a sharper example

to support our main theorem 4.2.



2. PRELIMINARIES AND EXAMPLES

In this section, we introduce some concepts and properties of 2-normed

spaces. The following notions are essentially due to Gihler [3].

DEFINITION 2.1. Let X be a linear space, and ||-,-|| be a real-valued
function defined on X. Then the pair (X, |-,-|]} is called a 2-normed space
if, for a,b,c € X,

(i) lla, || = 0 if and only if @ and b are linearly dependent,

(ii) [la, 8l = 1|b, al],

(iii) [la, Bb]] = |Bllla. b (8 € R),

(iv) fla. b+ cll < [la, bl] + [la, ).

Here ||-,-|| is called a 2-norm and is a non-negative function.

Let X be a 2-normed space. For all real r > 0, the set

Uab)={zeX:|lz—ab—-al <r)

will be called a r-neighborhood of two points a, b € X. Obviously, Upla,b) =0
and Uy (a, b) always contains the line joining @ and b. Note also that U, (a, b) =

X for r > 0 in a case that a = b. For more detailed topological properties,

see [3].

First, consider an example for 2-norms in the n-dimensional Euclidean

space.



EXAMPLE 2.1. Let X := R be a n(> 2)-dimensional Euclidean space.

Let k > 0 be fixed. For a = (a1,a3,...,0,) and & = (by, ba,... ,b,) in R™,

define
) 12
_ a;  aj
la.blle = k9 D155y
1<
Then the function ||, -||x is just a 2-norm on X.

REMARK 2.1. Since the usual norm on R" is given by

. 1/2
lla bl = (Z(ai - bi)z)

i=1
the following relation between a 2-norm ||-,-|l; (k = 1) and the usual norm

on R™ is easily observed:

1 n 1/2
Ha—mr:(gfgggmma—bm)

i

where the unit vectors e; = (0,0,...,1,0,--- ,0) (i =1,2,... ,n) form a nor-
malized basis of R™. Also, we note that for r > 0 and k > 0, r-neighborhood

of @ and b in R

Ulab) ={z e X :|lz—a,b—al <7}
denotes an (infinitely long) open cylinder, formed with the axis going through
a and b, and radius p = E”JTb”' This shows the relation between the usual

distance |ja —b|| and the cylinder’s size, which means the cylinder approaches
to the whole space as ||a — b|| — 0, while the cylinder contracts near the axis

going through a and b as [ja — b|| — oc.



DEFINITION 2.2. A sequence {z,} in a 2-normed space X is called a
convergent sequence if there is an element z € X such that the lim,, o ||, —
z.all = 0 for all a € X. If {z,} converges to z, we write z,, — z and call
x the limit of {x,}. Of course, here dimX > 2 otherwise every sequence of

points in such a space would converge to every point of the space.

DEFINITION 2.3. A sequence {zn} in a 2-normed space X is called a
Cauchy sequence it imy, o ||Zm — Tn, al| = 0 for every a € X. A 2-normed
space in which every Cauchy sequence is a convergent sequence is called a

2-Banach space.

We also need the following notion from Assad-Sessa [1]. Let Ry be the
set of nonnegative real numbers, i.e., Ry = [0,00) and let ® be the family of
continuous functions ¢ : R — Ry satisfying the following properties:

(1) $(1,1,1) := ¢ < 2.

(ii) for s > 0, ¢ > 0, the inequality s < ¢(,2¢, s) implies that s < At for

some h € [c, 2).
Here we give some examples of functions belonging in ®.
EXAMPLE 2.2. For p,q,r € R, define

(2.1) $1(p,¢,7) = c max{2p, q,7}
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with 0 < a <1, or

(2.2) ¢2(p,q,r) =ap+Bg+yr

where o, # > 0,0 <y < 1,1 < o+ B+~ and o +2(8 +~) < 2. Then
¢i € ® (¢ = 1,2) is obvious. Indeed, take ¢ = = 2o < 2 in (2.1), while we

notec=a+f+y<a+2(8+v)<2and h = O‘ltzf € [¢,2) in (2.2).

Assad-Sessa [1] developed the above notion to prove the following fixed
theorem for involution self-maps in Banach spaces: Let C be a closed convex
subset of a Banach space X and T : € — C be an involution and assume

that there exists a ¢ ¢ ® such that
1T =Tyl < gl — il | - Tall |y — Ty

for all #,4 € C. Then T has a fixed point in €. In particular, taking
#(p,q,7) = (5 +28) max{2p, q,r} for all (p,q, ) € Ri and applying the above
theorem due to Assad-Sessa [1] with this ¢ € ® and h = k = o + 48 < 2,
we easily obtain the fixed point theorem for involution self-maps originally
due to Iseki [8]: Let C be a closed convex subset of a Banach space X and

T : C — C be an involution such that
(T, Ty) < ad(z,y) + Bld(z, Tx) + d(v, Ty)]

forall z,y € C, where @ > 0, 3> 0 and a+43 < 2, then T has a fixed point

in C.



3. SOME PROPERTIES OF 1-LOCAL RETRACT IN 2-NORMED SPACES

In this section we introduce the well-known concept, originally due to
Khamsi {10], called a 1-local retract, and shall construct the 2-norm version
in 2-normed spaces. Next, we shall give some properties of such a concept in

2-normed spaces.

Let X be a normed space and F C K ¢ X. Then recall that F is said to
be a 1-local retract of K if every family {B;;i € I} of closed balls centered
at point of F' has the property: (Mie/Bi)NK # 0 = (MierB;) N F £ (.
This concept is due to Khamsi ([9],[10]), who used it to prove the existence
of common fixed points for commuting families of nonexpansive mappings in
a more general context. It is easy to see that a 1-local retract of a convex
set 1s metrically convex, and a 1-local retract of a closed set must itself be
closed. It is easy to check [10] that nonexpanisve retracts are always 1-local

retracts (but not conversely).

Now let us consider the 2-norm version of the concept and properties
introduced above. Let X be a 2-normed space. Recall from [3] that the

family

{(Wela) := (U (@,b) 1S = {(bsyrs) :i=1,2,... ,n},ne N)

i=1
forms the neighborhood system of a € X, where U, (a,b;) = {z € X : ||z —

a, b, —al <r;} (i =1,2,... ,n) for a finitely many points bq,bs,... b, € X.



Denote by K’ the set of all accumulation points of K(# @) C X. Then note

that
(32) ae K’ f YEX={(bir):i=12,....,n}, W (a)NK\ {a} #0.

This is immediately equivalent to the following fact: For every finitely many

points by, ..., b, € X, there exists a sequence {z;}, x;(# a) € K, such that
_liHl H.’EJ — a, b,, - a|| =0
J—roa

for all 2 = 1,2,... ,n. Now consider the closure of K, that is, K = K'UK.

Also, we similarly note that

(33)  e€K f YE={(byr):i=12..,n}, W,la)n K £0.

Now we introduce the following characterization of K, the closure of K,
which is originally due to Géhler [3]. Here, we shall give a modified proof in

2-normed spaces for the sake of convenience.

PROPOSITION 3.1 ([3]). Let K be a nonempty subset of a 2-normed space

X. Then

where W_(K) = Uge k W (a).



Proof. Let € K. From (3.3), for every ¥ = {(b;,r;) : ¢ =1,2,... ,n}
there exists a «,, € K such that

k)

Ty, € Wo{z) = ﬂ Ur (2, b;).
=]
Foralli=1,2,... n, since
(3.4) zy, € Up(z,b;) f z el (zg,b)

from (iii) of Definition 2.1, this immediately yields z ¢ W, (zy) and hence
z € Wy (K) for the &. This gives K ¢ N W, (K). On the other hand, for the
converse inclusion, let x € Ny W (K). Then for every T there exists z, € K
such that r € W (z,). Immediately, it follows from (3.4) that z, € W(x).

Hence z € K and the proof is complete. [

We say that a subset K of X is closed if K = K. As the usual notation,

different from the r-neighborhood U, (a,b) of a,b € X, we set

Bi(a,b) ={zc X ||z —a,b—al <r}.

Is the set, By (a,b) closed” Here we present a positive answer for this question.

PROPOSITION 3.2. Let X be a 2-normed space. Forr > 0and ag, by € X,

By(ag, by) is a closed set in X .
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Proof. If r = 0, it is obvious. Now let r > 0 and K := B, (ap,bp). We
claim that

rc K==W, (K) = zeck
%

Let 2, := {(ap,1/n), (bo,1/n)} for each n € N and = € K. By above
property, it must be z € W (K) = Uye k Wx(a). That is, there exists a € K

such that z € W (a) = Uy yn(a, ap) N Uy /n(a, bo). This implies
(3.5) Iz —a,a0—all <1/n and |z -a,by—al < 1/n.
Since a € K = B,(ag, by), we have

fla — ag, by — aol| < r.
This combined with (3.5) and properties of Definition 2.1 yield

[l = a0, b0 ~ aoll = ll(z = a) + (a — ao), by — ay|
<z —a, by — aol| + |la — aq, bo — ag|
=iz —a,(bo — a) + (a—ao)|| + lla — ao, by — ao|
<z —aby—al+llz —a,a-— aol| + {la — aq, bo — aql|

<l/n+l/n+r=r+2/n

for all 3,,. Since n is arbitrarily given, it follows that |z — ag, by — aol| < r

and so z € K, which completes the proof. [
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Now consider the analogous concept of 1-local retract in a 2-normed space.
How can we explain the closed balls in such a 2-Banach space? Let X be a

2-normed space. For a fixed a € X, set

= mBz(a)
%

where

™
-"3(0’ :ﬂ ():a) ’1

for every finite set ¥ = {b1,b2,... by} in X and r, = inf, Tga = 0. From
now on, the set B, (a) in X will called the closed ball centered at a € X
with radius r(a). Note especially that if Ty — 7 forall ¥, then r, = r and

s0 Br(a) = Mpex B, (e, b).

As before, if F ¢ K C X, then F'is said to be a 1-local retract of K if every

family {B;;4 € T} of closed balls centered at point of F has the property:

(MierBi) N K #£ 0= (M Bi) N F # 0.

As an analogous version, we say that 7 : K — K is k-lipschtzian if Tz —
Ty,af| < kllx —y,al forall 2,y € K and a € X. It is called nonezpansive
it the same condition with & = 1 holds. Also K is said to be a retract of

X if there exists a retraction r of X onto K, that is, a continuous mapping

r: X — K such that



If 7 is nonexpansive, then K is said to be a nonezpansive retract of X. Then

we have the following easy result.

PROPOSITION 3.3. Let X be a 2-normed space. Each nonexpansive re-

tract A of X is a 1-local retract of X.

Proof. Let {B,_(z4)} be a family of closed balls B,_(z4), each of radius

Ta = fpr(p .., centered at z, € A for every . Suppose that

() Br.(za) # 0

and let r be a nonexpansive retract of X onto A. Then it is obvious that for
z € Na By, (24), 7(2) € AN[NG B, (z,)]. Indeed, clearly r(a) € A. For every
a and ¥ = {by,bs,... ,b,},

I7(2) = xa, b = afl = |Ir(2) = r(za), bs — al)

<z = 2o bi —a|| < g
for every ¢ = 1,2,... ,n and so

r(z) € NP B, (Ta,b;) = B, (z,)

(211())

for ¥ = {b1,b2,... ,b,}. Since ¥ is arbitrarily given and r, = inf Tinen)s

r(2) € () Be(za) = By, (za)
b

for every «. Therefore, r(z) ¢ NaBr, (zq). O

13



In normed space, every 1-local retract of a closed set must itself be closed.

Is it possible in 2-normed spaces? First Gahler [3] introduced the following

property,
PROPERTY (K). Let {x,} be a sequence in a 2-normed space X and
r € X. If there exists two points b and ¢ in X such that

le—z,b—z|| #0, lim i —z,b—x|| =0 and lim ||lz; —z,c—z| = 0,
11— 00 T— 00

then lim;_, o ||z; — z,a —z|| =0 for all a € X.

PROPOSITION 3.4. Let K be a closed subset of a 2-normed space X, and

suppose A(C K) is a 1-local retract of K. Then A is closed in X.

Proof. We claim: x € A = z € A. Let z € A. Using the easy equivalent
form of (3.3), for every finitely many points by, by, ... ,b, € X there exists a
sequence {xn} in A such that lim; o ||lz; ~ 2, b, — x|} = 0 foralli = 1,... ,n.

Let b € X. Taking b; = b+ z for all i yields
lim |lz; — z,b]| =0
—00

for every b € X. That means, for any & € N, there is N, € N such that

lzj —x,b]| < 1/k for all j > Ny and b € X. In particular,

(3.6) izy, —za—m, | <1/k<1/k

14



and so x € By(zy, ,a) for every a € X. For each k € N, setting ¥ =

{(a, 1/K)}, rze. y = 1/k and 1} = mfy 7z, )y = 1/k, we have z €
Ny Np

By(z,,) for every X = {(a,1/k)}. Therefore z ¢ By (zy,) = Bijk(zy, )

for k € N. Since K is closed, z € K naturally. This implies

re KN ﬂ Bl/k(‘(ENk)'
k=1

Since A is 1-local retract of K, it must be
AN () Bz, ) # 0.
k=1

On choosing z € AN {7, Byk(z,, ), we can prove z = z. For this end,

from z € Blfk(me) = Naex Byyr(ey, s a), it follows that
Iz =0~y | < 1/k
for every a € X. This combined with (3.6) yields
|z — ra—x, || <|lz- Ty 0= Ty ff+ 2y, —x0- Ty || <2/k

for all & € X. In particular, we have lz — =,¢|l < 2/k for every ¢ € X
and k € N. Letting k — oo gives ||z — z,¢[| = 0 for every ¢ € X. Since
dim X > 2, the only way z —z can be linearly dependent with all ¢ & X, that

18, 2 —z = 0. Since z € A, this yields z € A and completes the proof. O

By looking over the proof of Lemma 2.2 in [11] in Banach spaces we can

similarly prove the following result.
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PROPOSITION 3.5. Let K be a nonempty subset of a 2-normed space X.
Suppose K is a nonempty 1-local retract of conv(K'), where conv(K) means
the closed convex hull of K. Let T : K — K be a mapping. Then there

exists a mapping G : K — K such that for each r € K

(3.7) |z — Gz, a|| = |Gz ~ Tz, 0| = %Hx —Tz,al,
and
(3.8) Iz = Gz, a|| < max{}jz — z,al, ||z - Tz, a|}

forall z€e K anda ¢ X.

Proof. Let x € K. If Tx = =z, then take Gr = z. Now assume that

Tx#x Forevery z€ K and & = {by,bs, ... b}, we set

T,z = max{||c ~ 2,b; - 2||, || Tz — 2, b; — z|| i b € B}
rx,e) = max{|lx — Tz, b; — zl|/2:b;, € T}

TE,Tz) = max{”x —Tr b, — T{L‘”/Q S Z}
and r, = infy T, for @ = z,x and Tz. First we can observe that for

a = z,x and Tx respectively,

H(.’L‘ + T.’B)/2 —a, bi — a” S T(Z},a)

16



and so (x + Tr)/2 € B, (a). Since T is arbitrarily given and r, =

inf;; T(%,a)

(¢ +T2)/2 € [} Bry,,(a) = Br,(a)
2

for a = 2z, 2 and Tz respectively. This immediately implies
(z+Tx)/2 € () Br,(2) N B, (z) N By, (Txz).
2eK

Since K is a 1-local retract of conw(K), it must be

() Br.(2) N Br (z) " By (Tx) N K # 0
ZEK

Defining an element in the above nonempty set by Gz, we obtain the required
mapping G : K — K, which (3.7) and (3.8) are satisfied by taking & = {a}

specially for each a € X. [J

Following the convention of [5], we shall use %a: &) %Tm to denote the point

Ga for each 7 € K.
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4. FIXED POINT THEOREMS FOR INVOLUTIONS

Let K be a nonempty subset of a 2-Banach space X and let T: K — K
be a mapping. We say that a sequence {z,} satisfying [z, — Tz,,a| — 0
for all @ € X as n — oo is called approzimate fired point (in short, a.f.p.)
with respect to T'. Further, it is called an a.f.p. Cauchy with respect to T if

it is both Cauchy and a.f.p. with respect to 7.
First we begin with the following easy lemma for our argument.

LEMMA 4.1. Let K be a nonempty closed subset of a 2-Banach space X
with dimX > 2. Let T : K — K be a mapping. Assume that there exists a

¢ < & such that

(4.1) 1Tz =Ty, all < ¢(|l= — y,all o — Tz, al,, ly ~ Ty, al))

for every z,y € K and a € X. If there exists an a.f.p. Cauchy sequence in

K with respect to T, then T has a fixed point in K.

Proof. Let {x,} be an a.f.p. Cauchy sequence in K with respect to T and
let ¢n — * € K. Since ||Tz, — z,,a]] — 0 for every a € X as n — oo, we

have

lan — Tz*, al| < ||z, — Ty, a|l| + [Tz, — Tz*, al|
S l#n = Ton, el + ¢(||zn — 27, all, [lzn — Tz, all, ||z* — Tx*,al)),

18



for every a € X and each n € N. Since ¢ is continuous, it follows as n — co

that forall a € X

lz* — Tz, ol < $(0,0,]z* ~ Tz* al]),

which in turn implies that |[z* — Tz*, a|] = 0 for every @ € X by the property
(i) above. Since dimX > 2, the only way (z* — T'z*) can be linearly depen-
dent with all o € X, that is, z* — Tz* = 0. Hence z* = Tz* as required.

This completes the proof. O

THEOREM 4.1. Let K be a nonempty closed subset of a 2-Banach space
X withdimX > 2. Let T : K — K be a mapping. Assume that there exists

a ¢ € ® such that

1Tz =Ty, all < d(llz - y,all, llz — Tz, all, lly — Ty, o))

for all z,y € K and a € X. If there exists a mapping G+ K — K satisfying
the following properties;

(@) | TGz — Gz,al| < o [Tz — =, 4],

(b) |Gz ~ x,a|| < B ||Tz - 2,4l
forallz € K anda € X, where 0 < a < 1, 8 > 0, then T has a fixed point
in K and Fiz(1') = Fiz(G), where Fiz(T) denotes the set of all fixed points

of T.

19



Proof. Let z € K be an arbitrary point and assume x # Tz. By using
conditions (a) and (b), a simple calculation implies that |Gz — G™z, o] <
B-a"|Tz — x,af for every a € X, and this immediately yields that {G™z}
is a Cauchy sequence. By (a) it is obvious that {G™z} is an a.f.p. sequence
in K with respect to 7. Hence it is an a.f.p. Cauchy sequence in K with
respect to T', as required in Lemma 4.1, and so 7" has a fixed point in K. By

using (a) and (b) again we readily see that Fiz(G) = Fiz(T). O

REMARK 4.1. Note that T' is not continuous. By looking over the proofs
of Lemma 4.1 and Theorem 4.1, we readily see that if T : K — K is a
continuous mapping and if there exists a continuous mapping G : K - K
satisfying the conditions (a) and (b) as in Theorem 4.1, then Fiz(T) is in fact
a nonempty retract of K, that is, there exists a retraction R : K — Fix(T)

such that Rz = litn G"z for each 2z € K and TR = R = GR.

N=—>00

Using Proposition 3.5, we can prove a fixed point theorem for involution

maps in 2 -Banach spaces.

THEOREM 4.2. Let X be a 2-Banach space, let K be a nonempty 1-local
retract of Zonii(K). If T : K — K is an involution map satisfying the

following property;

|7z ~ Ty, al} < (lle — y.all, |z - Tz, all, |}y — Ty, al)

20



forall z,y € K and a € X and some ¢ € ®, then T has a fixed point in K.

Proof. Let G : K — K be defined by Gr = %r ) %T:I: for each z € K
as in Proposition 3.5. To this end, it suffices to show that the mapping G
satisfies two conditions (a) and (b) of Theorem 4.1 Let z € K and @ € X be

given. By (3.7) and T2 = [, we have
lz = TGz, al| = ||z — TGz, al
< ¢(IITe = Gz, ||, |T2 - 2.4, |Gz — TGz, al))
= ¢(llz - Gz,al|,2l|lx — Gz, qa||, |Gz — TGz, al|)

and similarly,
172 — TGz, al| < ¢(jlx ~ Gz, al|, 2|z — Gu, al|, |Gz — TGz, al|).
By replacing z by TGz in (3.8), we get

TGz ~ Gz, all < max{||TGx — z,a|, ||TGx — Tz, all}

< dlllz — Gz, all, 2)|lz — Gz, al|, ||TGx — G, all).

Combined with the property (i), this immediately implies that

TGz - Gz, al| < Rz — Gz, a

forallz € K and a € X, where h € [k, 2). Since all assumptions of Theorem

4.1 with a = h/2 < 1 and b = 1/2 are fulfilled, T has a fixed point in K. O
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From now on, we will give some applications of Theorem 4.2. As the first
direct consequence of Theorem 4.2, we shall give the following result, which

reduces to a fixed point theorem of Khan and Khan [11] in only case K = X.

COROLLARY 4.1. Let K be a nonempty closed convex subset of a linear 2-

Banach space X. If T': K — K is an involution map satisfying the following

property;

1Te ~ Ty, all < $(llz - y,al, lix — Tz, al, |y - Ty, al|)

forall z,y € K and o € X and some ¢ € ®, then T has a fixed point in K.

Proof. Since K is closed and convex, zono(K) = K. Obviously, K is
itself 1-local retract of K, and so the consequence immediately follows from

Theorem 4.2. O

Now we shall give an analogous 2-norm version of the result due to Assad
and Sessa [1] which is a generalization of a fixed point theorem of Geobel

and Zlotkiewicz [6] in Banach spaces.

COROLLARY 4.2. Let X be a 2-Banach space, let K be a nonempty 1-
local retract of eonw(K). If T : K — K is an involution map satisfying the

following property;

(4.2) T2 =Ty, all <allz —y,all + 8 (|lz — Tz, a| + ly — Ty, af)
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for all z,y € K and a € X, where o, 8 > 0 and oo + 48 < 2, then T has a

fixed point in K.

Proof. Detine ¢(p,q,7) = (3 + 28) max{2p,q,r} for all (p,q,r) € Ri.
Obviously, ¢ € & with h = ¢ = a +-48 < 2. By applying Theorem 4.2, T has

a fixed point in K. O

REMARK 4.1. We note that if K is the whole Banach space X, Corollary

4.2 reduces to a 2-norm version of the result due to ISeki [8].

COROLLARY 4.3. Let X be a 2-Banach space, let K be a nonempty 1-
local retract of conu(K). Let T : K — K be a k-lipschitzian involution. If

0 <k <2, then T has a fixed point in K.

Proof. Apply Corollary 4.2 with o =k and 8 =0. O

REMARK 4.2. Note that Corollary 4.3 is just the 2-Banach spaces’ version
of the result obtained by Kim-Kirk [11] in Banach spaces, where they say
T satisfies Goebel’s Lipschitz condition if 0 < k < 2. In particular, if K is

convex, it reduces to the well-known results of [4] and [5] in Banach spaces.

Finally we give an example of mappings in 2-Banach spaces which is a
k-lipschitzian involution and satisfies the property (4.1) but not (4.2). This

means the condition (4.1) in Theorem 4.2 is more general than (4.2).
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EXAMPLE 4.1. Let X := R? be a 2-dimensional Euclidean 2-Banach space
with 2-norm ||-,-]|; as in Example 2.1. Let 1 < k£ < 3 and K = R x {0}.
From Proposition 3.2, note that K is closed and convex in (X, lI,-Il1). For

any z = (z1,0) € K, we define a mapping T : K — K by

) —kx if 0 <z
Tx"‘{-ﬂyk if o <0,

Then T is obviously a k-lipschitzian involution on K and Fiz(T) = {0}.

First, we claim that T satisfies (4.1). Define

.2

k< +1
¢(pJQ7T) - k2+k

for every (p,q,7) € Ry. Then, ¢ : Ri — R4 is obviously continuous on R:Q;_.

Also, ¢(1,1,1) = ’;—z—% 2 (:=¢) < 2 because k > 1. Now let s > 0, ¢ > 0 and

k*+1
5 < P(t, 2, 8) = kT—% max{2¢, 2¢t, s}.

Then it should be max{2¢,2¢ s} = 2t. Otherwise we should obtain s <

fjii 5§ < s, which is a contradiction. This immediately yields s < ht with

h = le:[—i 2= ¢ <2 Thus ¢ € ®. Next let us show that 7T is k-lipschizian
and satisties (4.1). Let « = (21,0),y = (y1,0) € K. From now on, consider

the following three cases: Let a = (ay,a2) € X. (i) If 1, y, > 0,

(4.3) 1Tz ~Ty,ally = || = k(z - y),al = kl|z — y,al|;.

24



Clearly, T is k-lipschtzian by (4.3). Now let us see 2-norm of the right side

9y 1/2
HI‘ - y?a”l = { }

= |az] - [x1 — y1].
If 1 > 41 at first, then |z, — y1| = 27 — ¥1 < @1 because y; > 0. Then (4.3)

in (4.3), i.e.,

-1 0
aq a2

vields

k k
1Tz — Ty, ally < klag|z; = m((l + k)lazlml) = 1+ k”T — Tz, aly

2
<k + 1
T kPt k

= ¢z - y,all, lz = Tz, ally, fly — Ty, allh).

max{2||z - y,all, |z — Tz, alj, ly — Ty, all1}

Next, if z; < y;, then (4.3) similarly becomes

"

1+ k
s ¢z =y, ally, |z — Tz, allh, ly — Ty, all1).

1Tz — Ty, ally < klas|ys = ly — Ty, all;

In other words, (4.1) is satisfied in any case. (ii) if z1,y; < 0, we have
ITx = Ty,aly = (1/k)|lz — y, a|ly

for every a € X. That is, T is 1/k-lipschitzian (hence k-lipschtzian because

1 <k <3). Also,

k241
Tz — Ty, ally = (1/k) ||z — y,a|, <

S (Zf'(“l‘ - y,aHl, “'I: - TCL‘, a‘”l’ ”y - Tya alll)
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and so (4.1) is satisfied. Finally, (iii) if either 0 < 1, 11 <0 orz; < 0, y1 >

0 (for the latter, may be exchange x; and ), since

(4.4) [Tz =Ty, ally = [l = kz — (~y/k). allx

|

= las|(ka1 — y1/k)

—kxy — (-yl/k) 0
ay a3

2}1/2

and (~y1)/k < k(—y1), we have
1Tz — Ty, ally < klas|(z1 —y1) = kl|lz — y,al;

for every a € X, i.e., T is k-lipschitzian. On the other hand, First, if z > -y,

(4.4) vields

k2 + 1
Tz — Ty, alli = laz|(kz1 — y1/k) < |aa)(k + 1/k)z, = k az]x,
k241 k2 +1
= m . (k + 1)|a2|x1 - m”&?* Tm,a“l

< ¢(’Ij — Y, (1.”1, ”‘T - TI:? a”lu Hy -1 va'Hl)'

Next, if z < —y, since 1 < £ < 3, a simple calculation gives

k2 +1
k2 +k

[Tz — Ty, al1 = |az|(kz1 — y1/k) < 2fjz —y,alhy

< ¢(llx =y, alli, lle = Tz, all1, [ly - Ty, all1).

Hence T always satisfies (4.1) in all cases. At last, we claim that T does not

satisfy (4.2). Otherwise for some & € [2,3], z = (0,0) and y = (1,0), the
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condition (4.2) implies

[Tz —Ty,ally = ||(=k,0),all; = klaa|
<allz —y,all+ 8|z — Tz, a| + |y — Ty, al))
= alaz| + B (1 + k)|az| < (@ + 48)|as|

< 2 }a2| S k lagl

for every a = (a1,as) € X, which gives a contradiction. This contradiction

means T does not satisfy (4.2) for all &k € [2, 3].

REMARK 4.2. The above example with ¥ = 2 in R with the usual norm

is originally due to Assad-Sessa [1].
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