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1 Introduction

Let € be a nonempty subset of a Banach space X and let N be the set of
natural numbers. Let T 0 € — (7 be a mapping. Sets satisfying T(K) < K
are said to be smvariant uwnder T or T-imvarent. T is said 1o be Lipschilzian

if for each n € N, there exists a real miunber &, such that

[T — Tyl < Kt = ol for all v,y e C.

2

In particular, T is said to be asymptotically nonerpansive (simply a.n.) (8]
if lim &, = 1 and it is said to be nonerpansive il k, = 1 for all n € N.
We say that T is of asymptlotically nonerpansive type (simply a.n.t.) [15] if

o) = e (2 C) — 0 for each x € €, where
en(z: C) = sup(|T"x = Tyl — ||x —»]|) v O.
ye

Note first that il o,(x) — 0 then ¢,y ,(x) — 0 for fixed p € N.

[n 1965, Kirk{14 proved that if C' is a weakly compact convex subset of a
Banach space with normal structure, then every nonexpansive self-mapping 7’
of (" has a fixed point, where a nonempty convex subset € of a norm linear
space is sald to have normal strueture if each bounded convex snbset A ol
conststing of more than one point contains o nondiametral point, that is. a
point = € A such that sup{||z — 2] : v € A} < diam{A’). Seven years later, in

1972, Goebel-Kirk {81 proved that if the space X is assumed to be uniformly

3}



convex, then every an. sell-mapping T of € has a fixed point. This was
immediately extended to mappings of a.nt. in a space with its characteristic
of convexity, ¢,(X) < 1, by Kirk [15 in 1974, More recently these results
have been extended to wider classes of spaces, see for example |1, 6, 7, 13,
18, 19, 22}, [n particular, Lim-Xu [18] and Kim-Xu [13] have demonstrated
the existence of fixed points for a.n. mappings in Banach spaces with uniform
normal structure, see also [6] for some related results. Very recently, the result

due to Kim-Xu [13] was extended to mappings of a.n.t. by Li-Sims [17].

On the other hand, in 1994, Lim-Xu [18] asked whether the Maluta’s con-

stant D{X) < 1 (cf., [20]) implies the fixed point property for a.n. mappings.
they gave hxed point theorems for a.n. mappings defined on a weakly compact.
convex subset ' in a Banach space for which D{X) < 1 having an additional
condition, i.e., weak asymptotic regularity on ¢ for T, and this was imme-
diately carried over continuous mappings of a.n.t. by Kim-Kim [12]. In this
paper, we first. provide important properties concerning ultrafilters and some
seometrical coeflicients of a Banach space X, and next review some results
given in [12] relating to an above open question raised by Lim-Xu [18] and
prove the following result (see Theorem 3.3): Let ' be a nonempty bounded
closed convex subset of a Banach space X with (X)) < Pandlet T O —
he o continions mapping of ant. which is weakly asymptotically regular on

C". Then, if there exists a nonempty weakly compact convex and T-invariant.



sihset A of (7, there exist a nonexpansive mapping S @ K — K such that

FITYN K = F(9) # 0. Also. some applications of this theorem are also given.
2 Preliminaries

We will begin this section by introducing some concepts of ultrafilters and
giving some important results concerning ultrafilters. For more details the
reacder may consult {1, 10].

Recall that a filter 7 on a nonempty set [ is a nonempty collection of

subsets of 7 satisfying
(a) if A, B & F then AN B e F;
(by if Ae Fand AC B then B ¢ F.

Obviously, I € F for any filter on /. If Fis a filteron [ and ) € F, then F = 2/
and is called the improper filter. Let i € [ be fixed. F;={AC[:i€ A} isa
filter on I and is called a frivial filter.

Now let P be the family of all proper filters on 7, i.c.,

P={F:Fisaflteron I,F#2"}

Since Pois an mduchive set (every increasing chain has an npper bound), it
[ollows from Zorn's lemma that 7 has a maximal element.  In other words,
there exists some F € P such that if D e Pand F C D then F =D, Such a

maximal element of P is called an wltrafilter on 1.



Lemma 2.1. (i) A filer & on [ is an ultrafilter it and only if for every A C [
cither A or T\ A belongs to Y. (ii) The ultrafilter & on 7 is trivial if and only

il there exists a finite set A € Y.

Let X be a Hausdorfl topological space and let (23}, be a collection of
elements of X indexed by a set I, and consider a filter F on /. We then say
that (x,)c; converges to € X over F if theset {1 € [, € V}isin F for
any neighborhood V' of . The limit will be denoted by lii‘l}l € or lij{p ;. Note
that if F is proper, the limit over F is unique, and if, moreover, C' is a closed
subset of X and {x;} C C, then li}n:ri eC.

If F,, is the trivial filter generated by iy € [. then limx; = u,. Trivial

0
filters give no information on asymptotic behavior of sets, so we will generally

avoid them. Here we give some properties for ultrafilters given by [1]. For the

convenience of our argument. we shall provide the detailed proof.

Lemma 2.2. Let U be a nontrivial ultrafilter on N and suppose (2,,) converges
to = in the topeology of the space X. Then Iilgn T, = x. Il X is a metric
space and limz, =, then there exists a subsequence (i,,,) of {,,) such that

lim .y, = .
ko

Proof. Let V' be any neighborhood of r. Since the set 4 = {4 a0, & V}
is a finite subsel of N oand ¢ is nontrivial, A @ U. By (i) of Lemma 2.1,

Ny A={i:x, e Vel andso U‘!IJU Ty = X

I



Now suppose that { X, d) is a metric space and “lI‘Il.I.'" = 7. Then for each
ke N, Ay =, € Uy} € U where Un(a) i= {y € X o d(y o) < r},
the open ball centered at . with its radins +. Since U is nontrivial. by (ii)
of Lemma 2.1, A4 is infinite for every & After choosing a vy € N snuch that
', € Ay, we can take ny > ny and oy, € Ay becanse Ay is infinite. Repeating
this process we casily get a subsequence {1, ) of (i) such that d(r,, o) < 1/k

for each & € IN. ]

The next result is interesting because it shows how ultrafilters can be used

to characterize compactness of a topological space.

Lemma 2.3. Let A be a nonempty subsetl of a Hansdorft topological space.
Then, K is compact if and only if any set (ir;),c; C K is convergent in K over

any ultrahlter U on [I.

The following result (cf., [1]) is to show how limits over ultrafilters cooperate
well with the linear structure. For the convenience’s sake, we shall give the

detailed proof.

Lemma 2.4. Let X ba a topological linear space and U an nitrafilter on a set
[. Suppose that (r;);e; and (y);; are two subsets of X and li&n,rl = . and
limy, = y both exists. Then
14

D + ) = o +y and  lm(or) = ax

14 7

)



for any scalar o,

Proof. Let V' be a neighborhood of & 4 y. Since the space X is linear and
addition “+7 is continuous, there exists neighborhoods V, and V,, of & and g,
respectively, such that v +y € V., +V, C V. Since liLr(n:I:l- = and liL[{n i =Y

both exists, we have [, :={ie [z e V.} € U for z = x or y. Then,
fiel:mi+ypeVe+Vi=0LNI,elU.

Since {i e I, +y, e VD {iel :ur+uy e Ve+V,} and hence in Y.

Therefore lig{n(.l‘i + 1) = = +y. The proof of Ii&n(a:z:,-) = vz 18 similar. n

3 Some geometrical coefficients and open ques-
tions

Let X be a Banach space. First, let us infroduce normal structure coeflicient
of X introduced by Bynum [5]. For A C X, diam(A) and r,(A) denote the

diameter and the self-Chebyshev radius of A, respectively, i.e.,
diam{A) = sup |l =y,
z,ycA

ralA) = ;22(5”5’||J?‘UH)
aoyLd

Recall that X has uniform normal structure (simply UNS) if N(X) > 1,
where

diam(A)

) : A C X bounded closed convex with diam(A) > U} .
T als

N(X) =inl {

7



Obviously. if N(X) > 1, then X has normal structnre.

Recalt that if X is a non-Schur Banach space, then the weakly convergent

sequence coellicient of X, denoted by WCS(X). is delined by

WCS(X) = sup{M > 0:for each weakly convergent sequence (.x,,)

b

7y € to(x,) such that M - limsup ||, — y|| < A(x)},

n

where c6(K) denotes the closed convex hull of a set A and A(x,) denotes the

asymptotic diameter of (z,), i.e.,
Afy) = lim sup{[le; — 2,[ : 4,5 > n}.
It is easy to give a sharp expression WCS(X) as follows;

WCS(X) =sup{M : 2, = u = M limsup |z, — ul| < D(x,)},

~rOC

where D(x,) ;= limsuplimsup ||z, — x,|| and “—" means the weak conver-
N — X

gence. For more details, see [5i and [11].
Note that if X is reflexive, then 1 < N(X) < BS(X) < WCS(X) <2 (cf.,

5), where BS(X) means the bounded sequence coefficient of X, ie.,

BS(X) = sup{ﬂl . for any bounded sequence {x,} in X,

= yeco({r,}) such that M -lmsup e, —yl] < A({.’L‘n}}}.

LT



While N(X) and BS(X) can be defined in every Banach space. WCS(X)
is well defined only in infinite dimensional reflexive spaces, where. by Eherlein-
Simlian theorem. we can assure the existence of weakly convergent sequences
which do not converge.

It is well-known (see [51) that it WCS(X) > 1, then X has weak normal
structure. This means that any weakly compact convex subset O of X with
diam(C) > 0 has a nondiametral point. The coeflicients WCS(X) play im-
portant roles in fixed point theory. A space X such that WCS(X) > 1 is said

to have weak uniform normal structure.

Let X be a Banach space. Recall that Maluta’s constant D(X) [20] of X

is defined by

D(X) = sup {limsup d(xp 1, c0(21, T2, - Tn)) } ,

diam(zx,,)

where the supremum is taken over all bounded nonconstant sequences (x,,) in

X.

We remark the following propetties for Maluta’s constant given in [20)].

Lemma 3.1. Let X be a Banach space. Then

() DIX) < V(X)) = 1/N(X).

(by D(X) =sup{D(Y): Y < X separable}.

Y



{¢) D(X) =00l and only it X is finite-dimensional.
() I X is reflexive. then DX <1/WCS(X).

(e) It D(X) < 1. then the Banach space X is reflexive and has normal

structure.

Remark 3.1. (i} The property (a) says that if X has uniform normal
structure, then D(X) < 1. However, the converse does not hold (see Ex-
ample 5.1 and Corollary 5.2 in [20]). (ii) In view of (d), Maluta asked if
D(X) = 1/WCS(X) for every infinite dimensional reflexive space X. In 1985,
Amir [2] gave a partial solution for this question, that is, if X satisfies Opial’s

condition, t.e., for any sequence (x,) in X converging weakly to &y,
liminf ||z, — 2g}| < liminf |z, — z|] Ya # xg
T T—OG

(see [9]), then D(X) > 1/WCS(X). Five years later, this question was com-
pletely solved by Prus [21]. (i) The converse of (e} also does not hold (see
Example 4.1 in [20], X = (3 @¢,), is reflexive and has normal structure

although D(X) =1).

Note that, by (e} of Lemima 3.1, if D(X) < 1, X has normal structure and
hence the fixed point property for nonexpansive mappings, that is, for every

weakly compact convex subset C of X, every nonexpansive map T : (' —

10



has a fixed point. However, it is still open whether D{X) < 1 implies the fixed
yoint property for a.n. mappings. In 1994, Lim-Xu [18° gave a partial answer
A piig -8

for this question under an additional assumption as follows:

Theorem LX. [18] Suppose that X is a Banach space such that D{X) < 1,
that C'is a closed bounded convex subset of X. If a mapping T : C — C is
a.n. and weakly asymptotically regular on (' ie., T" Ve — T — 0 Ve € O,

then T has a fixed point.

[mmediately, Theorem LX was extended to all mappings of a.n.t. by Kim-

Kim (see Corollary 3.3 in [12]).

Let ' be a nonempty subset of a Banach space X, and let 7 : C — C be a
mapping. Suppose there exists a nonempty subset K of ¢ and the weak limit
w- liLI(IlTn.’L‘ exists in K for each © € K, where U is a free ultrafilter on N. We

then can define a mapping §: K — K by
Sy = w- Hblln Tz, vr e K.

Note first that if K is weakly compact and T-invariant, then the weak limit
- Ii[Ln T always exists in K for each @ € K by Lemma 2.3, We can next
see that F(T)N K C F(S). What are conditions on X and T for which the
converse inclision remains true? Our purpose is to find some conditions on X

and T to answer the above question.

11



First. we exhibit the following easy result:

Lemma 3.2. Let € be a nonempty subset of a Banach space X and let K be
a nonempty weakly compact convex subset of O IFT 0 € — € is a continnons

mapping of ant.. and S is defined as in above, then S is nonexpansive.

Proof. Let 0.y € K, Sz = w_“zlxn T'r and Sy = w- 1i[£‘n T"y. By Lemma
2.1, we have Se — Sy = w- liLI(IJ(T".I,‘ — T"y). By Lemma 2.2, there exists a
subsequence (ny) of (n) such that T™ap — T™y = Sx — Sy as k — 50. Since
the norm || - || is weakly lower semicontinuous and ¢, (x) — 0 for each x € C,

we have

[|Sx — Syl < li;ilj.ilc}f | T2 — Ty}

< limsup[||T™az — T"*y|| — ||z — yll] + llz — ¥||
k—no
< Jim cn () + e =yl =z = .

Note that if X has weak normal structure, by the classical fixed point
theorem of Kirk [14], FI(S) # @ and. furthermore. it is a nonexpansive retract

of K (see Bruck |30).

Now we will present a partial answer of the above question, that is, a

sufficient condition for F(S) C F(T), with a slight modification of the proof



in Lemma 3.1 of [12). Here, we shall give the detailed proot for convenience

sake.

Theorem 3.3. Let (7 bhe a nonempty bounded subset of a Banach space
X with D(X) < 1. Let T € — (' be a continuous mapping of a.n.t. and
weakly asymptotically regular on €', and suppose there exists a weakly compact
convex and T-invariant subset of (. Then there exists a nonexpansive mapping

S — K osuch that F(T)YNK = F(S5) # .

Proof. By Lemma 3.2, 5 : K — K is nonexpansive. Now it suflices to show
that Fixz(S) C Fia(T)N K. Let v € F(S), that is, w- liLr(nT”:r: =z € K. By
Lemma 2.2, there exists a subsequence (T"*x) of the sequence (T™2) such that
T r — 1 as k — oc. Note that X is reflexive by (e) by Lemma 3.1. By
(ii) of Remark 3.1, D(X) = }/WCS(X) and so we can apply the well known

property of W{CS(X),

|
WCS(X)

limsup [T — x| <
L

D(T™ ). (1)

By weakly asymptotic regularity of T, it follows that TPy 2 as k — 20
for anv m > 0. On the other hand, for each i,j € N with 7 > 4, the weak
fower semicontinuity of the norm |- || and o, () for each & € C immediately

vield thal

[T — T

13



A

(ITa =T (T )| = o = T ol = oc) 4 Jle = T |

< e, () e =T |l (T e = as b ocs with me =y — ny)

/

Cay ) i nf |77 T v

S, ) oy, () + !irmn sup || — T xf).

kK oox

Taking limsup first and next liimsup on both sides, this implies that
[ PR
D(T™x) < limsup {lx — T"* x|
k—nc

and this together with (1) yields

(WCS(X) — Diimsup |72 — 2| <0,

ke
which in turn implies that r = Alim T7 2. By the continuity and the weak
bl
asymptotic regularity of T, we have Ta = x, l.e., 2 € Fia(T). "

Remark 3.2. (i) Note that il 7 is weakly compact convex, the reflexivity of
X can also be removed in Theorem 3.3. (ii) As a direct consequence of the
proof of Theorem 3.3, we notice that. under the same assumptions of 7, X
and T, if (T™x) is a subsequence of (T"x) converging weakly to x € K, then
Alim Trex = r. However, if the whole sequence (T™r) converges weakly, the
S
weakly asymptotic regularity on €' for T is abundant.

As a slight modification of the prool of Theorem 3.3, we can prove the

following resnlt.

|



Lemma 3.4. Let (' be a nonempty bounded closed convex subset ol a reflexive
Banach space X with WCOS(X) > 10 T 2 O - (7 is o contimions mapping

of an.t.. then “"nl,i,”,'( T'r=ure RN = lim The=u0¢ K(T).
4 Some applications

In this section, we first observe the following result by using the similar method

of the proof as in Theorem 3.3,

Theorem 4.1. Let ¢ be a nonempty bounded subset of a Banach space X
with D(X) < 1. Let T : " — ( be a continuous mapping of a.n.t. which is
weakly asyvimptotically regular on (. Suppose there exists a nonempty closed
convex subset K of O with the following property

(w), re A == wy(r)CA.

where w, (7) is the weak w-limit set of T at &, i.e..

why () ={y € X g == w- lim T™x for some n; [ co}.
k-

Then there exists a nonexpansive mapping S : K — K such that F(T)N K =

F(S) # 0.

Proof. By (i) of Remark 3.1, A is weakly compact convex and WSC(X) > 1.
Since the sequence {T7r) belongs to ) and #0(C') is weakly compact. the

weak [unit ae-lim T always exists in @o(C) for each v € K by Lemma 2.3,
7 ‘



Define Sa: = - lill{n T for cach v € K. Then. by Lemima 2.2, there exists a
[

subsequence (ng) of (n) such that T™ e — Saas b — oc. By property of {(w).

it follows that Sr € w, () C A. Therefore, &+ &' — A is well defined. and

also nonexpansive. Repeating the method of prool in Theoremn 3.3, we can

casily obtain the conclusion. ]

It is clear that il (" is a nonempty bounded subset of a Banach space X,
and if T : C' — (' is a.n. with its Lipschitz constant of T™, &k, > 1. then T is

an uniformly Lipschitzian mapping of a.n.t. Indeed, for each z € C.

culr) = sup(IT"e = Ty = =yl V0
ye

< (k, — D)diam(C) — 0.
Therefore, we have the following easy result.

Corollary 4.1. Let ' be a nonempty bounded subset of a Banach space
X with D{X) < 1. Let T : ¢ — ' be an an. mapping which is weakly
asymptotically regular on (', Suppose there exists a nonempty closed convex
subset K of ¢ with the following property (w). Then T has a fixed poini. in
i

Let ¢ be a weakly compact convex subset of a Banach space X Consider
a family F of subsets Kol 7 which are nonempty, closed, convex. and satisfy
the following property (w). The weak compactness of (' now allows one to

16



nse Zorn's lemma to obtain a minimal element (say) K € F. Therefore. as a
direct consequence of Theorem 3.3 or 4.1, we have the following result due to

Kim-Kim [12].

Corollary 4.2. Let ' be a nonempty bonnded closed convex subset of a
Banach space X with D(X) > 1. If T : ' — ' is a continuous mapping
of ant. and weakly asymptotically regular on €', then F(T) is a nonempty

nonexpansive retract of C'.

Proof. Since C' is weakly compact and convex, we can easily apply for The-
oremi 3.3 or 4.1, and hence F(T) = F(S) # 0. Since S is nonexpansive, it

follows from [3] that #(S) is a nonempty nonexpansive retract of C. [

Recall that a Banach space X is said to be uniformly conver in every
direction (9] if 0.(¢) > 0 for all ¢ > 0 and all z € X with ||z|| = 1, where 3,(-)

means the modulus od converity of X in the direction z, that is,

Sl) = (1~ et yll/2: el < 1l < 1,y = ez},

Zizler [23] has shown that a space X may be uniformly convex in every direction
while failing to be uniformly convex. Obviously, such spaces are always strictly

CONVEX,



Corollary 4.3. Suppose that X is a reflexive Banach space which is nniforily
convex in every direction and for which WCS{X) > 1 and that (' is a closed
bonnded convex suhset of X Then  if T2 (7 — (' is a continuons mapping of

an.t.. T has a fixed point.

Proof. Use the same argnment presented in the proof of Theorem 5 in [18

and Lemma 3.4, -
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