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H|-Lipschitz X}7|AIMES| BEEX A

X% X = Al Banach Z7toja K(= @)c Cc X g} 831, 2t z€ K of ojs}o

o (5K):=supll | T'z—~ Tyl | || z—yl| : y€ K}VO

et stxh. & e{El H|-Lipschitz AMeZ T:C—C)} HIHUHME (asymptotically
nonexpansive type. in brief, ANT)O|2} &2 2t z€ Cof O3l ¢, (xC)— 08 PH=8g sEst
Ch 58], ci=sup;ccc,(nK)—0Y o, T ZH2ZNE|HOY (strongly ANT)O|2}3t, |
Aoz g5¢ T-B¥(invariant)?! C2of ZFetol oil FEYE Kt EXste] 2t z€ K of
thstol o (nK)—08 ot=8 0f, EXo2 MUY AlAHmappings of partly ANT)O|2}
stot. A Tr==z9 #f(solution)® FEX(fixed point)2}t &3, st HEo| AYS
F(T)=z m®7|gtct.

Z =22 M 20ME oiNE S5t o] 2HEH o3 JtX| K82l dl-Lipschitz AIMES
435 H|A% 1, O, Banach B2te| J[sl&txol HY NIASS 2A7|stct 3&AM= X C 2t
S YT =({uniform normal structure)® 2'= Banach 27} X 2| R0l H=Q! sl X
gy M PEIoR MIMUHAYY A T:C—-C)} £SHR A=Cs AAE g3ichFe
3.2.2). 199444 Lim-Xu [501E Banmach &7t X2o| ofw 7|3l§¢£1?_I H, & Maulta Al
D(X)<1of ojsto] HIZHNugOAta T: C—Cof disted $ESHs ZE=Jl g1 AR 2,
otok Atat T'ot e C 2lolM AH3 XA T (weakly asymptotic regularity)2t®, ¢ BR= =2
FyHolat= 28 wWRCh 12/ o 2= KinKin [3710] /8t0 2HI2 HIXMu|HOIE A=A}
Heo2 HEEUM 4ToME AFSHFT=(weak uniform normal structure)® 3t= reflexive

Banach &7} WHOIAM SRS HIZHB|HHOFE Atde £5H FHel 4.3.18 Yoot ofx|zt
5EOAME A2H He[ZBZHoIA dHSQ NI Ha(OY Alatol OiEt BtEXQ SEXE FESICH
(¥2] 5.2.5).

1l




Chapter 1

Introduction

For sets K and X with K C X and a mapping 7 : K — X, every solution of
the equation Tz = x is called a fized point of T, and the set of all such points is

denoted by F(T). Fired point theory entails

(i) the study of conditions on K and (or) T which assure that T always has

at least one fixed point, as well as

(ii) the study of methods of approximating fixed points when they do exists

and

(ili) the study of the structure of F(T).

Fixed point theory is a major branch of nonlinear functional analysis because
of its wide applicability. Numerous questions in physical and biological sciences
lead to various nonlinear differential and integral equations which in turn can
often be reduced to a operator equation of the form F(z) = 0 where z is an

element of a Banach space with the additive identity 0. Moreover, finding a




solution to the equation F(x) = 0 reduces to finding a fixed point for the mapping
T defined by

Te=1z-—F(x).
More generally, it suffices to find a fixed point of T where T is defined in any

way such that a fixed point of T is a zero of F, e.g.,
Tr=x—-Xg(F(z)) (A#0; g(u) =0 = u=0).

There are three major branches of fixed point theory in functional analysis,

and each branch has its celebrated theorems as follows:

(i) Set (or order) theoretic fixed point theory; Zemelo [68] (or see p. 5: Dunford-
Schwartz [21]), Bourbaki-Kneser([9, 44]), Tarski [63], Caristi [18], Amann

[3] and so on.

(ii) Topological fixed point theory; Bohl [8], Brouwer [11], Schauder [61], Leray-
Schauder [47], Sadovskii [59] and so on.

(iii) Metric fixed point theory; Banach’s contraction principle [6], Browder-

Gohde-Kirk ({12, 29, 39}), Sadovskii [59], Caristi [18] and so on.

This manuscript is largely related to study some fixed point theorems on
metric fixed point theory. A mapping 7 defined on a metric space (M, d) and

taking values in a metric space (N, d) is said to have Lipschitz constant k. or to

be k-lipschitzian if there exists a real number & > 0 such that
d(Tz,Ty) < kd(z,y)  (z,y € M),

If £ < 1.then T is said to be a contraction mapping. or k-contraction, and if

k =1, then T is said to be nonexpansive.
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The first footstone on metric fixed point theory is a Banach’s achievement in
1922 for contraction mappings, which is well known as Banach’s contraction prin-
ciple (see [6]). that is. if (A, d) is a complete metric space and if T: M — Al isa
contraction mapping with Lipschitz constant £ < 1, then 7" has exactly one fixed

point, say z € M, Moreover. the sequence {x,} of successive approximations
Lyl — 77.1,',,,'. Ty € M (fl, = 0, 1., 2, .. )

converges strongly to z, for an arbitrary choice of an initial point z¢ in M. Very
recently, Kirk introduced a notion of asymptotic contraction on a metric space
(M,d). A mapping T : M — M is said to be an asymptotic contraction [42] if,

for each n € N, there exists a function ¢, : R* := [0,00) — R* such that
d(T"2, T"y) < ¢, (d(z,y)) (z.y € M) (1.1)

and if ¢, — ¢ € ¢ uniformly on the range of d, where ® denotes the collection
of all functions ¢ from R* to R* satisfying the properties:

(i) @ is continuous:

(i) @(0) =0 and ¢(t) <t for all t > 0.

He also proved that if (A1, d) is complete, T': M — M is an asymptotic contrac-
tion for which the mapping ¢, in (1.1) are continuous, and if some orbit of T is
bounded, then T has a unique fixed point z, and moreover the Picard sequence
{T"x} converges to z for each x € M. See also Xu [65] for a simple proof.

The class of nonexpainsive mappings can be viewed as natural extensions of
contraction mappings. However, fixed point theory of nonexpansive mappings
differs sharply from that of contraction mappings in the sense that an addi-
tional structure is needed on the underlying space to assure the existence of fixed

points. The first existence result for nonexpansive mappings is Kirk’s celebrated
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theorem [39] which depends heavily upon a geometrical property, called normal
structure. that is, if (' is a weakly compact convex subset of a Banach space
with normal structure, then every nonexpansive self-mapping T of C has a fixed
point, where a nonempty convex subset C of a norm linear space is said to
have normal structure if each bounded convex subset K of C' consisting of more
than one point contains a nondiametral point, that is, a point z € K such that
sup{|lz — 2|l : € K} < diam(K). Note that if X is uniformly convex and
C C X is closed convex, then C' has normal structure. Also. if X is a Banach

space and if ' C X is compact convex, then C has normal structure.

Let ¢ be a nonempty subset of a Banach space X and let N be the set of
natural numbers. A mapping T : ' — (' is said to be Lipschitzian if for cach

n € N, there exists a real number k, such that
[[T™e = Ty < kyllz — yl| forall z,y € C.

In particular, T is said to be asymptotically nonezpansive (simply AN) [26] if
nh—l}i k, = 1 and it is said to be uniformly Lipschitzian [19] if there exists a real
nuﬁﬂ)nr & such that k, = k for all n € N, and T is said to he nonezpansive (or
contraction) if ky =1 (or ky < 1).

In terms of the existence of fixed points, the achievement on metric fixed
point theory today largely focuses upon the study of nonexpansive mappings and
related classes of mappings, such as asymptotically nonexpansive mappings and
uniformly Lipschitzian mappings in Banach spaces. For an example, in 1972,
Goebel-Kirk [26] proved that if the space X is assumed to be uniformly convex,

then every AN self-mapping T of C has a fixed point. For more detail history

and methods on metric fixed point theory, see Geobel-Kirk [27] or Zeidler [67].




In this paper, we concentrate on a class of non-Lipschitzian self-mappings,
such as mappings of asvmptotically nonexpansive type. We say that a mapping
T ' — (' is of asymptotically nonexpansive type (in brief, ANT) [40] if for each

r e O, lim, o ¢, (2) = 0, where

() = sup{||[T™e = Tyl = [le =yl : y € C} VO,

la—bl+a+b . .
S—5—. T is said to be of strongly asymp-

where « V b = max{a, b} =
totically nonexpanswe type (in brief, strongly ANT) if lim,_ . c, = 0, where
n = SUP e eal2).

The above Geobel-Kirk’s result for AN mappings was immediately extended
to mappings of ANT in a space with its characteristic of convexity, €,(X) < 1,
by Kirk [40] in 1974. More recently these results have been extended to wider
classes of spaces, see for example [15, 19, 25, 38, 50, 51. 64]. In particular, Lim-
Xu [50] and Kim-Xu [38] have demonstrated the existence of fixed points for AN
mappings in Banach spaces with uniform normal structure, see also [19] for some
related results. Very recently, the result due to Kim-Xu [38] was extended to
mappings of ANT by Li-Sims [48] and Kim [34] independently.

In Chapter 2, we first define some kind of non-Lipschitzian mappings, such
as self-mappings of partly (or nearly) ANT (see Definition 2.1.2). Next we shall
present many examples for such non-Lipschitzian self-mappings for our arguments
and also introduce some geometrical properties for Banach spaces.

In Chapter 3, we shall prove some fixed point theorems for mappings of partly

ANT in Banach spaces with uniform normal structure (see Theorem 3.2.2).

On the other hand. fixed point theorems due to Lim-Xu [50] for AN mappings
defined on a weakly compact convex subset C' in a Banach space X with either a

weakly continuous duality mapping or for which D(X) < 1 having an additional




condition, i.e., weak asvmptotic regularity on ' for T', where D{X) is Maluta’s
constant (see [52]), were carried over continuous mappings of ANT by Kim-Kim
137].

In Chapter 4 of this paper, we modify some results in [37] and carry over these
to a class of continuous mappings of partly ANT in a Banach space with weak
uniform normal structure (see Theorem 4.3.1). Some applications for our main

theorem are also added.

In 1955, M. A. Krasnoselskii [45] proved that if K is a compact and convex
subset of a uniformly convex Banach space X and if T : K — K is nonexpansive
then for any zg € K, the sequence {f"(xg)} of iterates of f = 3(/ + T) always
converges to a fixed point of T'. It was quickly noted by Schaefer [58] that one
obtains the same conclusion if the mapping f is replaced with f, = (1—a)l+aT
for some a € (0,1), subsequently Edelstein [22] observed that the assumption
of uniform convexity (in Schaefer’s modification) could be replaced with the as-
sumption that X is strictly convex norm.

Major generalization of the Krasnoselskii process occurred in 1976 and 1978
when. respectively, Ishikawa [31] and Edelstein-OBrien [23] proved, in different
ways, that the uniform convexity hypothesis can be removed completely. Each
proved even more. Ishikawa generalized the iteration scheme while Edelstein-
OBricn proved that the convergence is uniform on K. Later, Kirk [41] carried
over a well-known iteration scheme due to Krasnoselskii [45] for approximation
of fixed points of nonexpansive mappings in Banach spaces to a wider class of
spaces containing convex metric spaces of hyperbolic type.

We suppose that (M,d) is a metric space containing a family L of metric

lines such that distinct points z,y € M lie on exactly one number {(z,y) of L.




This metric line determines a unique metric segment joining x and y. We denote
this segment by S|z,y]. For each a € [0, 1] there is a unique point z in S|z, y]
for which

d(z,2) = ad(x,y) and d(z,y) = (1 — a)d(z, y).

Adopting the notation of [28] or [57], we shall denote this point by (1—a)z & ay.
In [62] Takahashi introduced a notion of convex metric spaces as follows:
A metric space (X.d) is said to be (Takahashi) convex if there is a function

a:[0,1] x X x X — X such that a(0,2,y) = o(1,y,z) = z, and
dla(t, zy,22).y) < (1 = 8)d(2y.y) + td(xa, y).

As an aside, we remark that if it is assumed that for any 7 € X the function

(x,t) — a(t,z,%) is continuous and also that the metric d only satisfies

d(a(t,r1.22),y) < max{d(xy,y),d(z2,7)},

then it is possible to define a c-structure on X so that X becomes a ®-space
in the sense of [30]. Such spaces are rich enough to vield abstract version of a
number of classical fixed-point, minimax results, selection theorems, etc. (cf., 30,
7]). These include an abstract version of Schauder’s theorem.

Spaces which are Takahashi-convex provide examples of spaces which are of
"hyperbolic type’ as introduced in [41]. For more examples, see [57] and [28].

In Chapter 5 of this paper, we first introduce some definitions needed for
our arguments and a crucial result (originally due to Kirk [41] for nonexpansive
mappings) for a non-Lipschitzian self-mapping (see Proposition 5.1.1). We shall
next show that if K is a compact convex subset of a metric space (M, d) of pre-

hyperbolic type, and if T : K — K is a continuous mapping of strongly ANT and

asymptotically regular on K, then T has an iterative fixed point (see Theorem

7




5.2.5). This improves the result due to Kirk [41] for nonexpansive mappings.
Finally, we give that the fixed point set of any mapping of ANT is a 1-local

retract of M under some conditions for M. (see Theorem 5.2.12).




Chapter 2

Non-Lipschitzian self-mappings

and geometrical properties

2.1 Non-Lipschitzian self-mappings

Let ' be a nonempty subset of a Banach space X and let T : C — C be a
mapping. Note first that every nonexpansive mapping is AN. Also every AN
mapping is Lipschitzian (hence uniformly continuous) and, furthermore, a map-
ping of strongly ANT (hence, a mapping of ANT) if C is assumed to be bounded.
However, all mappings of strongly ANT may be non-Lipschitzian. In particular,
if T"z — 0 uniformly on C, then T is of strongly ANT. Also, for all = € K, if

Thz € F(T) = {z} for some n > 1, T is of ANT.

Here are some examples to show the relations between Lipschitzian mappings

and non-Lipschitzian mappings.




Example 2.1.1. (a) Let C = [~1/#x.1/7] C R and |k| < 1. Foreach z € K
we define Tw = kx sin%_ if v # 0, and T0 == 0. Note that T"r — 0 uniformly on

C'. Hence, T': " — (7 is a continnous mapping of ANT which is not Lipschitzian.

(b) Let € =1[0.1] € R and define Tz = § if & = |

i Tz =1forze|0.3]\1,

and Tr = § for € (3,1]. Note that for all x € C, T'z = 1€ F(T) = {}}
for n > 3. Then T : C' — (' is a discontinuous mapping of ANT which is not
nonexpansive.

(¢) Let ¢ =[0,1] € R and let ¢ be the Cantor ternary function. Define
T:C— C by

x/2, 0<zr<1/2
e((1=2)/2), 1/2<x<1.

Ty =

Note that 7"z — 0 uniformly on C'. Therefore, T is a discontinuous mapping
of strongly ANT but not AN because ¢ is not Lipschizian on [O, %] (This is a

slight modification of Example 1.1 due to Miyadera [53]).

For little variation for non-Lipschitzian self-mappings we assume that C is
convex. A Sct satisfying T(K) C K is said to be invariant under T or T -
wnvariant. Let K be a nonempty subset of C' and for each z € K, we then

set

ez K) = sup(|T"x — T"y|| — |z — y[)) v 0.

yeK

Definition 2.1.2. T : C' — C is of partly asymptotically nonexpansive type

(simply, partly ANT) if there exists a nonempty bounded convex and T-invariant

10




subset. ' of (" such that ¢,(z:K') — 0 for each # € KA. We also say that
1" is of nearly asymptotically nonerpansive type (simply, nearly ANT) if there
exists a nonempty bounded convex and 7T-invariant subset A of C such that
() = cu(a; ) — 0 for cach x € K. Obviously mappings of ncarly ANT arc
of partly ANT. Recall that if ¢,(z) := ¢,(2:C) — 0 for each xz € C, then T is

said to be of ANT (see [40]).

Remark 2.1.3. (i) If c,(z: K) — 0 then c,4,(z; K) — 0 for fixed p € N.
(ii) If C' is bounded, then the following implications holds immediately.

(strongly ANT) = (ANT) = (nearly ANT) = (partly ANT).

First, we shall give an example of non-Lipschitzian mappings of nearly ANT
which are not of ANT. inspired by Example 4.4 in [35]. This example also satisfies

all assumptions of our main result (see Theorem 4.3.1 below).

Example 2.1.4. Let X = R, " = (—o00,1]. First consider a continuous

non-Lipschitzian mapping f : [0,1/2] — [0, 1/4] defined by

n@2n+l) 01 1 e .
n+l ('L 2n+1) ' n+l SH S5, n2
e — _ {(n+1){(2n+1) _ 1 L X
f(l") n+2 (T 2n+1) ' 2(n+1) <r< AR n > 1’
0, =0

Note first that for each n € N, the graph of f on each subinterval {WLT) %]
consists of two segments connecting three points (1/2(n + 1),1/2(n + 2)),

(1/2n 4+ 1,0) and (1/2n,1/2(n + 1)). For each z € C', we now define

11




=

T . 1.
1-2x° T S 2

f(x). rel0,1/2];
—f(—x), re[-1/2,0]

2 Lo
T°, ssa< L

)

=3
=
Il

Obviously, |T"z| < m for || < 3. and so 7"z — 0 uniformly on [-1/2,1/2].
Also, since [Tz] < 1/2 for z < -1/2, we have T"z — 0 uniformly on
(-oc,~1/2]. We thus obtain T"z — 0 uniformly on (—o0,1/2]. It is obvi-
ous that 7" is not of ANT because ¢,(1) = 1 for each n. However, if we take
K := [-1/2,0], it is clearly T-invariant. For this closed interval K of C, T is

of nearly ANT, i.e., ¢,(z) — 0 for each x € K. Indeed, since

calz) = sup{|T"x — T"y| — |z — y|] VO
yeC

=  sup [Tz =T"y[—|x—yllv sup [|T"z—T"y|l—|z—y|]]VO0,
y€(~00,1/2] yell/2,1]

and T"z — 0 uniformly on (—o0,1/2], we have

calz) = sup [|T"x = Tyl — |o — y|] V0.
yell/2.1]
Foreach n € N, there exists y,, € {1/2, 1] such that c,(z) = [|[T "2 —T"yn| —|z—ya|]VO.
If y, = 1.since 0 < T < 1/4, we have [Tz — =1-Tw<l-z=|z-1|,

and so [Tz —1|~[z—1| < 0. If y, < 1, since T"2 — 0 uniformly, for sufficiently

large n,
ITn'r - Tnynl - ‘T: - ynl - Tnyn - Tz — (yn e T)
= (Tnyn - yn) -+ (.T — ,TTL.'L') < 0.

12




Therefore, in any case, ¢,(x) — 0 for each z € K, and hence T is of nearly
ANT on €. Finally, note that every sequence {T"z} converges uniformly to

0 F(TYN K for each z € K.

Finally we shall introduce an example of non-Lipschitzian mappings of partly
ANT, but are not of nearly ANT. The following example is a slight modification

of Example 4.3 in [35].

Example 2.1.5. Let X = C' = R and and let |k| < 1. For each z € C, we

define

kxsini, r#0, |z| <1/x;
Tx = 0, x =0
mlx| -1, lv| > 1/7.
Then. clearly ¢, (1) = ¢,(1;C) > T"1 — 1 — oc, and so T is not of ANT. Note
similarly that ¢,(z) = c,(z,C) — oc for all fixed # € C. Therefore T is not of
nearly ANT. But if we take K = [~1/7,1/7], then K is T-invariant and so T'
is of partly ANT. Indeed, it suffices to show that ¢, (x; K) — 0 for cach » € K.

For fixed z € K, set
H(y) =T"z~-T"y| -z -y Vyek

Then H,(+) is also continuous on k', and so it achieves its maximum in K, i.e.,
there exists a y, € I such that ¢,(z; K) = H,(y,) V0. Since 7"z — 0 uniformly

on K, we have ¢,(z; K) — 0 for each z € K.

13




2.2  Geometrical properties

Let X' be a Banach space. Next, let us introduce normal structure coeflicient
of X introduced by Bynum [17]. For A € X, diam(4) and ra(A) denote the

diameter and the self-Chebyshev radius of A | respectively, ic.,

diam(A4) = sup ||z — 9],
2.YyEA
'4(A) = inf T —
ra(A) JEA(j‘e‘E”” yll)

Recall that X has uniform normal structure (simply UNS) if N(X) > 1,
where

diam(A)

————= 1 A C X bounded closed convex with diam (A) > ()} .
‘T‘A(A)

N(X) = inf {

Obviously. if N(X) > 1, then X has normal structure.

Recall that if X is a non-Schur Banach space. then the weakly convergent

scquence cocfficient of X, denoted by WCS(X), is defined by

WCS(X) = sup{M > 0: for each weakly convergent sequence {x,},

3y €eo({z,}) such that A/ -limsup,,_, _|lz, —y| < A({z.})},

where co(K) denotes the closed convex hull of a set K and A({z,}) denotes the

asymptotic diameter of {r,}, i.e.,

Al{an}) = lim sup{fe: = ;] 1, > n}.

14




[t is easy to give a sharp expression WCS(X) as follows;

WCOS(X) =sup{M 2, —u = M limsup|lz, —ul| < D{z.})}.

H—00
where D({x,}) := limsuplimsup ||z, — x,,/| and “—" means the weak conver-

T == H—0oC

gence. For more details, see [17] and [36].

Note that N(X) = BS(X) = A(X) for any Banach space (see Lim [49]),
furthermore, it X is reflexive, then 1 < N(X) < BS(X) < WCS(X) < 2 (cf,

[17]). where BS(X) means the bounded sequence coefficient of X | i.e..

BS(X) = sup{M . for any bounded sequence {z,} in X,

3 y € co({xn}) such that A -limsup [z, —y|| < A{z.})}.

e

While N(X) and BS(X) can be defined in every Banach space, W ('S(X)
is well defined only in infinite dimensional reflexive spaces, where, by Eberlein-
Smulian theorem. we can assure the existence of weakly convergent sequences
which do not converge.

It is well-known [17] that if WCS(X) > 1, then X has weak normal structure.
This means that any weakly compact convex subset C of X with diam (C) > 0
has a nondiametral point. The coefficient WCS(X) plays important roles in
fixed point theory. A space X such that WCS(X) > 1 is said to have weak

uniform normal structure.
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Let X' be a Banach space. Finally recall that Maluta's constant D(X) [52]

of X is defined by

D(X) = sup { msup d(@, 1, co({xy, w0, -+ 2, })) } |

diam({z,})
where the supremum is taken over all bounded nonconstant sequences {z,} in

X.

We remark the following properties for Maluta’s constant given in [52].
Lemma 2.2.1. Let X be a Banach space. Then

(a) D(X) < N(X):=1/N(X).

(b) D(X) =sup{D(Y):Y C X separable} .

(¢) D(X) =0 if and only if X is finite-dimensional.

(d) If X is reflexive, then D(X) < 1/WCS(X).

(e) If D(X) < 1. then the Banach space X is reflexive and has normal struc-

ture.

Remark 2.2.2. (i) The property (a) says that if X has uniform normal
structure, then D(X) < 1. However, the converse does not hold (see Example
5.1 and Corollary 5.2 in [52]).

(ii) In view of (d), Maluta asked whether D(X) = 1/WCS(X) holds true

for every infinite dimensional reflexive Banach space X . In 1985, Amir [4] gave a

16




partial solution for this question as follows; if X satisfies Opial’s condition, then
D(X) > 1/WCS(X). Five vears later. this question was completely solved by
Prus [55].

(iii) The converse of (¢) also does not hold (sce Example 4.1 in [52] as follows;

X = (3_ D {r)2 is reflexive and has normal structure although D(X) = 1).
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Chapter 3

Fixed point theorems for
mappings of partly ANT in
Banach spaces with uniform

normal structure

3.1 Preliminaries

Let us begin with the following lemma duce to Casini and Maluta [19] which is

very crucial for our further arguments.

Lemma 3.1.1 [19]. Let X be a Banach space with N(X) < 1. Then, for
every bounded sequence {z, }, there exists a point z € to({z,}) such that
(i) limsup, o [z, = 2|l < N(X) - A({zn});

(ii) for every y € X, ||z — y|| < limsup,, . ||z, — vl
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Now let (7 be a bounded closed convex subset of a Banach space X and let
T (" — (" beaunformly Lipschitzian mapping; that is, T satisfies the condition

for some constant & > 0.
T e — Tyl < k)|l — y|| Y,y e C.

A deep result of Casini and Maluta [19] applying Lemma 2.1.1 is the following.

Theorem 3.1.2 [19]. If k < \/N(X), then T has a fixed point.

Let 7 : C — C be a mapping of ANT. Suppose TV is continuous for some
integer N > 1. In [40], Kirk proved that if C' is a compact convex subset of X,
T :C — (C has a fixed point.

What happens if C is weakly compact convex?
In 1981, Alspach [2] gave a counter example which shows that the above

question does not holds even if T' is nonexpansive. In fact, set

1
1
L= {fe[,][(),l]: 0<f<, / f:i},
0
then K is weakly compact. If T: K — N is a baker transform such that

QfEO)YAL 0<t<1/2
(2f2t—1) -1 V1, 1/2<t<]1,

TI(1) =

then 7' is an isometry on C but fixed point free. Therefore, we realize some
conditions on X are needed for the existence of fixed points. Here we present well

known fixed point theorems for Lipschitzian or non-Lipschitzian self-mappings.
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Theorem 3.1.3 [39]. Let ' be a weakly compact convex subset of a Banach
space X with normal structure. If T' . ' — (' is nonexpansive, then T has a

fixed point in (.

Theorem 3.1.4 [26]. Let O be a bounded closed convex subset of a uniformly

convex Banach space X . If T': " — C is AN, then T has a fixed point in C.

Question 3.1.5. Does normal structure imply the existence of fized points of

AN mappings?

The above question is still open. However, the following result was recently

obtained by Kim-Xu [38].

Theorem 3.1.6 [38]. Let C' be a bounded closed convex subset of a Banach
space X with uniform normal structure. If T 2 (' — (' is AN then T Las a fixed

point in C.

Theorem 3.1.5 was immediately extended to mappings of ANT by Li-Sims

(48] and Kim [34], independently. Now the following question is naturally raised.

Question 3.1.7. Does uniform normal structure tmply the existence of fired

pownts of mappings of partly ANT?

We shall give a positive answer for this question at the following section.
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3.2 Uniform normal structure and fixed point

theorems
First, we exhibit the following easy result.

Lemma 3.2.1. Let ' be a nonempty closed convex subset of a reflexive
Banach space X. If T : ' — C is a continuous mapping of partly ANT. then
there exists a nonempty weakly compact convex and T-invariant subsct K of C

such that c,(x; K) — 0 for each r € K .

Proof. Since T is of partly ANT, there exists a nonempty bounded convex and
T-invariant subset A4 of C such that ¢,(x; A) — 0 for each x € A, where
cn(x; A) = sup(J|T"x — T"y|| — |l — y|]) V0.
yeA

For each fixed 2 € 4 and n € N. since T" is continuous, we easily get
cola: A) = ¢, (a1 A) and so c,,(;z::]) — 0 for cach » € A. where A denotes
the closure of A. Take K = A. Clearly, K is T-invariant, and by reflexivity
of X, it is weakly compact and convex. Finally we claim that ¢,(z; K) — 0 for
each r € K. To this end, let 2 € K. Then there exists a sequence {z,,} in 4
such that x,, — z. Since the supremum of any collection of lower semicontinuous
mappings is lower scmicontinuous, ¢,(-: K) is lower semicontinuous for fixed n.

Let ¢ > 0 be arbitrarily given. Then there exists a m, € N such that

0 < cplr; K) < liminf e, (2 K) < cp(am; K) + ¢

m—00
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for each n € N. Since ¢,(x,,,; K) — 0 as n — oo, this yields

0 <limsupe,(r; K) <«

n—ad

for arbitrarily given ¢ > 0, and hence ¢,(x: K) — 0 for each r € K. O

Now we are ready to answer our first question by applving for two Lemmas

3.1.1 and 3.2.1.

Theorem 3.2.2. Let X be a Banach space with uniform normal struc-
ture (i.e., N(X) < 1), C a nonempty closed bounded convex subset of X . If

T :C — C is a mapping of partly ANT, then T has a fixed point.

Proof. By Lemma 3.2.1, there exists a nonempty weakly compact convex and
T'-invariant subset K of C' such that ¢, (r; K) — 0 for each x € K. For x5 € K,
consider the bounded sequence {770y} and let 2y € K be the point satisfying
Lemma 3.1.1 for {T™xq}. Repeating this process continuously, we have a sequence

{z,n} In K satisfying the following properties:
limsup [Tz, — 2,0l < N(X) A{T"zn}),
n-—00

ly = Tmuall < limsup [Tz, -yl (y € X).

T-——0C

Note that for 7,7 € N (we may assumce 7 > j)
HT’im — Tj.rmll < cilam; K) + ]]T"*j.l‘m — Tl

< (@ K) + limsup [T Tt — T 2|

n—oo

S C,T(:I:m; K) + C,‘,J(I",; K) + hln sup ”T"Imvl - zm”
n

00
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and so taking sup, ;- at first and next k — oc, we obtain

AT v b) < limsup [|[T"v 1 — 2l := 1o

-

Hence, we get

Fim+1 S Nf(‘X')"m = {1\/(){)]"'{‘]

and clearly r,, — 0 because N(X) < 1. For any k € N, since

”3:7"+1 - ‘,CHL” < H'/rm-}-l - Tk-/rmH + H'Tkmm - Iru”

< H:Em-H - Tkl'm” + lim sup ||Tn§f7n—l - Tkrm“

n—
< ”-Tm+l - Tk-TmH + Ck(l'm; [() + limSUP ”Tnl‘m—l - ~Tm||)

n-—o0

taking limsup,_,., yvields

“l‘m+l - -Tm“ < T+ T'm+1

< (LA N(X ), = (14 NX))NX)™ .

So, {7} is a Cauchy sequence and let r = liny, oo T € K.

On the other hand, note that for any n € N,

IT"z — x|

I

T =Tz, | + 1T 2., - Tonitll + 121 — 2

(N

ety K) 4+ 1o = 2ol + 1T — Tl + |Tmsr — 7.
Taking limsup,, ., on both sides. the fact that ¢, (z: K) — 0 yields
limsup [|[T"z — z|| < ||z — 20|l + 71 + || ZTme1 — 7|

n—00
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Since all terms in the right side converge to 0 as m — oo, we immediately see

lim {|7"r — || = 0.

n—0C

The continuity of T' gives 2 € F(T)N A and the proof is complete. a

Now let us consider some applications. The following notion was introduced
by Lau [46] to study the Chebyshev subset of X . Recall that a Banach space X

is called a U-space [46] if for any € > 0. there exists § > 0 such that

T+ .
vxvyeSX7 ”E_Z—_y >1_O:><fvy>>1_€1 fev:c)

where Sy denotes the unit sphere of X and V, denotes the set of norm 1

supporting functionals f of Sy at z for v € X.

It was known in [46] and [24] that

(a) If X is a U-space, then X is uniformly nonsquare, in particular, X is

superreflexive [20];

(b) X is a U-space if and only if X* is a U-space;
c) Uniformly convex spaces and uniformly smooth spaces are U-spaces;
y P P

(d) If X isa U-space, then X has UNS. Further, if X is a Banach space with

4(3) > 5. then X has uniform normal structure (c.f., [24]).
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As a direct consequence of Theorem 3.2.2. we have the following.

Corollary 3.2.3. Let X be a [/ -space and (O a nonempty convex subset of
a Banach space X. If T : C' — C is a mapping of partly ANT, then T has a

fixed point.

Since uniform smoothness implies uniform normal structure, we have the fol-

lowing result, which was implicitly used in [50].

Corollary 3.2.4. Assume X is a uniformly smooth Banach space and C is a
nonempty convex subset. Then every mapping T : C' — C of partly ANT has a

fixed point.
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Chapter 4

Fixed point theorems for
mappings of partly ANT in
Banach spaces with weak

uniform normal structure

4.1 Preliminaries

First recall that all the Banach spaces with uniforin normal structure (that is,
N(X) < 1) satisfies its Maluta’s contant D(X) < 1, but the converse does

not hold (see (a) of Lemma 1.2.1 and Remark 1.2.1). The following question is

therefore very naturally raised from Theorem 2.2.2.

Question 4.1.1. Is the assumption 1\~"(X) < 1 in Theorem 3.2.2 replaced by
D(X)<17?
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In finite dimensional reflexive Banach spaces, it is well known (see Remark
2.2.1) that D(X) < 1 if and only if WCS(X) > 1. Furthermore, if D(X\') < 1,
X has normal structure and hence the fixed point property for nonexpansive
mappings, that is, for every weakly compact convex subset €' of X, every non-
expansive map T : C — (' has a fixed point. However, it is still open whether
D(X) < 1 implies the fixed point property for AN mappings. In 1994. Lim-Xu

[50] gave a partial answer for this question as follows:

Theorem 4.1.2 [50]. Suppose that X is a Banach space such that D(X) < 1,
and C' is a closed bounded convex subset of X . If a mapping T : C — C is AN,
and weakly asymptotically regular on C. ic., T""'x — Tz — 0 Yz € C, then

T has a fixed point.

Immediately, Theorem 4.1.2 was extended to all mappings of ANT by Kim-
Kim (sce Corollary 3.3 in [37]). In fact. under the assumption of weakly asymp-
totic regularity of T', the conditions for X and 7' can be weakened, in other words,

Theorem 4.1.2 can be extended to mappings of partly ANT with WCS(X') > 1.

4.2 Some properties of ultra filters

We will begin this section by introducing some concepts of ultrafilters and giving
some important results concerning ultrafilters. For more details the reader may
consult [1, 32].
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Recall that a filter F on a nonempty set [ is a nonempty collection of subsets

of I satisfving
(a) if A, B e F then ANDBeF:
(b) if Ae F and AC B then Be F.

Obviously, I € F for any filteron I. If Fisafiltecron I and § € F, then F = 2/
and is called the improper filter. Let ¢ € I be fixed. F; = {ACT:i€ A} is a
filter on I and is called a trivial filter.

Now let P be the family of all proper filters on 1, i.e.,
P={F: Fisafilteron I,F # 2’}

Since P is an inductive set (every increasing chain has an upper bound), it follows
from Zorn’s lemma that P has a maximal element. In other words. there exists
some F & P such that if D € P and F C D, then F = D. Such a maximal

element of P is called an ultrafilter on 1.

Lemma 4.2.1. (i) A filer U on [ is an ultrafilter if and only if for every

A C 1, either A or I\ A belongs to U. (ii) The ultrafilter U on I is trivial if

and only if there exists a finite set A € U.

Let. X be a Hausdorff topological space and let {x;};c; be a collection of
elements of X indexed by a set I, and consider a filter F on I. We then say

that {x,},e; converges to x € X over F if theset {i € I : z; € V} isin F for
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any neighborhood V of x. The limit will be denoted by 131]1__11‘1 or h}n a;. Note
that if F is proper. the limit over F is unique. and if, moreover, C is a closed
subset of X and {r;} € €. then li}n x, € C.
If F;, is the trivial filter generated by 4y € 1, then limz; = z,). Trivial filters
W

give no information on asymptotic behavior of sets, so we will generally avoid

them. Here we give some properties for ultrafilters given by [1].

Lemma 4.2.2. Let U be a nontrivial ultrafilter on N and suppose {x,}
converges to a in the topology of the space X . Then li&n z, =x. If X is a
metric space and “11}1 T, = 1, then there exists a subsequence {x,, } of {r,} such

that lim z,, = .

k—oc

The next result is interesting because it shows how ultrafilters can be used to

characterize compactness of a topological space.

Lemma 4.2.3. Let K be a nonempty subset of a Hausdorff topological space.
Then, K is compact if and only if any set {z;}.e; C K is convergent in K over

any ultrafilter U on 1.

The following result (cf., [1]) is to show how limits over ultrafilters cooperate

well with the linear structure.

Lemma 4.2.4. Let X ba a topological linear space and U an ultrafilter on

a set 1. Suppose that (z;);c; and (y;);e; are two subsets of X and hll{n T, =
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and limy; = y both exists. Then
U
lilln(.tlr,, +y)=a+y and lilxln(aar,») =ax
1

for any scalar o,

4.3 Weak uniform normal structure and fixed

point theorems

Let C' be a nonempty subset of a Banach space X, and let 7 : ' — (' be a
mapping. Suppose there exists a nonempty subset K of C and the weak limit
- “114“ T"r exists in K for cach = € K, where U is a free ultrafilter on N. We

then can define a mapping S: K — K by
St = w- libl{n Tz, Vr e K.

Note first that if /{' is weakly compact and T-invariant, then the weak limit
w- lium T"r always exists in K for each z € K. Also, it is obvious to see that
F(T)n K C F(S). What are conditions on X and 7T for which the converse
inclusion remains true? Our purpose is to find some conditions on X and T to

answer the above question.

Under the same hypotheses as Lemma 2.2.1, the mapping S : K — K de-

fined as above is then well defined and nonexpansive. In fact, for r,y € K,
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Sy = w- ]ibrln T"z and Sy = w- liLI(n T"y. By Lemima 4.2.4,
Sx — Sy = w- liz?l(T”ar —T"y).

Then there exists a subsequence {n;} of {n} such that T"xx—T"*y — Sx— Sy as
k — oo. Since the norm || - || is weakly lower semicontinuous, and ¢, (z; K) — 0

for cach « € K, we have

[Se =Syl < liminf [Tz — Ty
< lixkrlsup{IIT""fv = T™yll —llz = yll} + llo — yl|

= Jlim e (2 K) +lo =yl = [lz -yl

Now we are ready to present a partial answer for the above question, that is,

a sufficient condition for /(S) C F(T)N K.

Theorem 4.3.1. Let C be a nonempty closed convex subset of a reflexive
Banach space X with WCS(X) > 1. If T: C — C is a continuous mapping of

partly ANT and weakly asymptotically regular on C, then there exist a nonempty

weakly compact convex and T-invariant subset K of C and a nonexpansive

mapping S : K — K such that F(TYNK = F(S) £ 0.

Proof. By Lemma 3.2.1, there exists a nonempty weakly compact convex and
T-invariant subset K of C' such that ¢,(z; K) — 0 for each x € K. Then we

can define a nonexpansive mapping S : K — K as above. Now to complete the
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proof, we claim that F'(S) ¢ F(T)nN K. To this end, let x € F(S). that is,

w-hmT"r = v € K. Then there exists a subsequence {T"*x} of the sequence
u

{7} such that 7" ¢ — r as k — o0o. By the well known property of 117C'S(X).

1
IIII\ILZI(IP i T — .'L'H S mb({Trlkl}) (41)

By weakly asymptotic regularity of 7', it follows that T"* 7" —~ ¢ as b — oo
for any m > 0. On the other hand, for each 7,5 € N with i > j, the weak lower

semicontinuity of the norm || - || immediately yields that

W1 x =Tz

< (ITe =TT )| - e = T ™) + fla - T ||

< o (0, K) + jle = T g (™42 — 2 as k — oo, with m = n, — n;)
< o (W) + li/?liogf |7ty — T Mg

<

Cn (2, K) 4 cpyom, (2, ) + limsup ||z — T™z||.
. : s

oo

Taking limsup first and next limsup on both sides, since ¢,(z. K) — 0 for each

1—00 J—oo

z € K, this yields

D(T™z) <limsup ||z — T™z]|,

k—oo

and this together with (4.1) gives

(WCS(X) = 1) limsup ||T™z — z|| <0,
k—o0
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which in turn implies that » = lin 7" 2. By the continuity and the weak

k—ox

asymptotic regularity of 7', we have Tr = z. i.e., x € F(T). O

Remark 4.3.2. If (' is weakly compact and convex, then the reflexivity of X
in Theorem 4.3.1 can be removed and the hypotheses for T' can be inmnediately
replaced by mappings which are of ANT and weakly asymptotically regular on
C'. It is still open whether Theorem 3.3.1 holds true with no condition of weakly

asymptotic regularity of T, or not.

Applying for the similar method of the proof as in Theorem 4.3.1, we can

obscrve the following.

Theorem 4.3.3. Let (" be a nonempty bounded subset of a reflexive Banach
space X. Let T': (" — (' be a continuous mapping of ANT which is weakly
asymptotically regular on (. Suppose there exists a nonempty closed convex
subset K of C with the following property
(w) re K = w,(z)CK,
where wy, () is the weak w-limit set of T at x, i.c.

J

we(r) ={y e X 1y =w- klim T for some ny T oo}

ande &)

Then T has a fixed point in K .
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Proof. Since X is reflexive, K is weakly compact convex and WSC(X) > 1.
Since the sequence {1} belongs to C', and co(C') is weakly compact, the weak
limit w- libl(n T"r always exists in éo((") for each x € K. Define Sz = w-limT"¢
for cach o € K. Then, there exists a subsequence {ng} of {n} such that
T r — Sr as k — oc. By property of (w), it follows that Sr € w,(z) C K.
Therefore, S': ' — K is well defined, and clearly nonexpansive. Repeating the

method of proof in Theorem 4.3.1, we can easily derive the conclusion. o

Corollary 4.3.4. Let (7 be a noncmpty bounded subscet of a reflexive Banach
space X . Let T : C" — C be an AN mapping which is weakly asymptotically
regular on . Suppose there exists a nonempty closed convex subset I of C

with the property (w). Then T has a fixed point in K .

Let (" be a weakly compact convex subset of a Banach space X . Consider
a family F of subsets K of ' which are nonempty, closed, convex, and satisfy
the property (w). The weak compactness of C' now allows one to use Zorn's
lemina to obtain a minimal clement (say) K € F. Here, as a direct consequence
of Theorem 4.3.1 or 4.3.3, we give the following result, which generalizes the one

due to Kim-Kim [37] for continuous mappings of ANT.

Corollary 4.3.5. Let C' be a nonempty weakly compact convex subset of a
Banach space X. If T : C — C is a continuous mapping of ANT. and weakly
asymptotically regular on C, then F(T) is a nonempty nonexpansive retract of
C.
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Proof. Note first that T is of partlv ANT with K = C. Since C is weakly
compact and convex, all assumptions of Theorem 4.3.1 or 4.3.3 are fulfilled, and
hence F'(T) = IF(S) # 0. Since S is nonexpansive, it follows from {14] that F(.S)

1s a nonempty nonexpansive retract of C. O
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Chapter 5

Iterative fixed points for
mappings of strongly ANT in

metric spaces of pre-hyperbolic

type

5.1 Preliminaries and definitions

Recall that a metric space M is said to be of pre-hyperbolic type if for cach
z,y € M there is a specified metric segment S|z,y] joining = and y, which has
the property that if p € M, a € (0,1) and if m is the point of S[r,y] which

satisfies d(r, m) = ad(z,y), then

(A) d{p,m) < ad(p.y) + (1 — a)d(p, z).
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Also. a subset ' of M is convez if S|r,y] C C whenever x,y € C.

As stronger concept, a metric space M is said to be of hyperbolic type if for
each x.y € M there is a specified metric segment Slr,y] joining 2 and y for
which the following property holds: Let p, g, 7 € AL and o € (0,1), and supposc

my and my are points of S[p,r] and S[p. q] respectively, which satisfy
d(my.p) = ad(p,r) and d(my.p) = ad(p.q).

Then

(H) d(my, my) < ad(r, q).

Obviously, (H) implies (A) (cf. [41]). There is an important consequence of
condition (H). If M is of hyperbolic tvpe and if m; = (1 — a)p & ag and
my = (1 —a)s®ar, for p.qr.s € M and o € (0.1), then (H) in fact im-

plies
(H") d(my, mz) < (1 - a)d(p, s) + ad(q, ).
Indeed,

d(my,ma) < d(my, (1 —a)p@ar)+d((1 —a)pe& ar),m)

< (1 —a)d(p,s) + ad(q.7) (using (H)).

We remark that the term 'hyperbolic type’ is used in the above context because

condition (H) with strict inequality is characteristic of hyperbolic geometry (see
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[66]). At the same time, all normed linear spaces are of hyperbolic type. (As
a matter of fact. if equality always holds in (H), then the resulting condition
characterizes normed linear spaces among an appropriate class of metric spaces
([5]).) So are all Hadamard manifolds, that is, all finite-dimensional connected,
simply connected, complete Riemannian manifolds of nonpositive curvature (cf.,
(16, pp. 305]). An infinite-dimensional example is provided by the Hilbert ball
equipped with the hyperbolic metric (see [28, pp, 104]). For other results in this
sctting we refer, for example, to Reich [56] (and citations therein), Shafrir {60
and Reich-Shafrir [57].

Here we shall introduce a metric version of non-Lipschitzian self-mappings
introduced in Chapter 1. Let C' be a nonempty subset of a metric space (M, d)
and let 7 : " — C be a mapping. Then T is said to be of asymptotically
nonezpansive type (in brief. ANT) [41, 43] if for each x € (7, lim,_ c,(2) = 0,
where

calw) = supld(T", T"y) — d(r. )| V 0.

yeC

Also, T is said to be of strongly asymptotically nonezpansive type (in brict,
strongly ANT) if lim,_.c, = 0, where ¢, = sup,ccc,(z). In particular,
T is said to be Lipschitzian if there exisits a positive number L such that
d(Tx,Ty) < Ld(z,y) for all z.y € K. In particular, if L = 1, T is said to
be nonerpansive and it is said to be asymptotically noncepansive (cf., [26]) if cach

iterate T™ is Lipschitzian with Lipschitz constants L, — 1 as n — oo.
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Let (7 be a nonempty closed convex subset of a metric space (M, d) of pre-
hyperbolic type. Suppose T : €' — (7 is a mapping of strongly ANT. Let
€ (0,1). Select 2y € C. Forall k = 0.1,2.---, set ry = xy € C'. For

cach n = 0,1.2--, denote ypx = Tz, and take Tpe1k to be the point of

Slani. yng) for which d(a, i, 2ni10) = ad(@pk,ynr). Since T is of strongly
ANT, we have
i sup d(Yos 1 4 9 x) < lim sup d(zpe g 204) (5.1)
k—o0 k— o0
for n=0,1.---. On the other hand, since

d(yn+1,k» rn+l,k) S d(yn+lAk-, yn.k) + d(y'n.ka ~Tn+l,k)
S Cr + d(‘rrhl—l,k‘ -Tn,k) + d(yn.k: lin-l»l.k)

= ¢+ d(yn.k: In,k):
taking limsup on both sides as ¥ — x yields

lim sup d(yn+l.k7 IvH—l,k) S lim sup d(yn‘ks :L‘n.k) (52)

k—o0 k—oo

forn=0,1,---.

In what follows we shall let M (2q, a) denote the procedure for defining {z, 4}

as described above. Mimicking the proof of [41], we easily have the following.

Proposition 5.1.1. Suppose (' is a nonempty bounded closed convex sub-

sct of a metric space (M. d) of pre-hyperbolic type. Let T : C — C be a
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mapping of strongly ANT and let o € (0,1). Suppose double sequences {r,}
and {y,} in K satisfy (5.1), (5.2) and xny1x is the point of Sltni.ynr] for

which d(, ¢, 2, 14) = ad(z, 4. y,x) for all n,k € N. Then

Lmsup d(Yipn i 2ig) > (1 — o) " [limsup d(Yinp Tionk) (5.3)

k—oc k—oo

— limsup d(yi x, Tix)] + (1 + na) limsup d(y; p, 1)

k—oc k—ne

for all i,n € N. Further, if in addition

Hmsup d(Yny 16, Tayrk) = Hmsup d(ynr, k) (5.4)

k—roc k—oc

for n € N, then for all i,n € N,

limsup d(yiyn i, ©.k) = (1 + ne) limsup d(y, 1, 2, ) (5.5)

k—o0 k—oc

Proof. The proof cmploys the method of [41], which was proved by induction
on n. First observe that (5.3) is trivially true for all 7 if n = 0. We make
the inductive assumption that (5.3) holds for a given integer n and for all 7.

Replacing 7 with 7 + 1 in (5.3), we obtain

Hmsup d(Yiyni1k, Tiv1k) > (1 — a) " limsup d(Yirni1 4 Tipnirn)  (5.6)

k—o0 k—o00

— limsup d(yit14, Tit1,k)] + (1 + na) imsup d(Yii 1k, Tis1x)-

k—oo k—oc
As M is of pre-hyperbolic type, (A) implies
AYisnrik Tigrn) < (1= Qd(Wipns g Tox) + @d(Yignir k- Vi)

n
< (- a)d(Yign+1h Tik) + @ Z A(Yitjr 1.k Yitjik)
j=0
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for k € N. Taking limsup on both sides as & — 0o and using (5.1) vield

i sup d(Y; 1 ng 14, Tig1 k) (5.7)
k—-oc
n

< (I —a)limsupd(Yiingin Tig) + a Z Hsup d(ris gk, Fig k).

Combining (5.6) and (5.7), we have

limsup d(Yisni1.k, Tix)

k—o0

> (1- Q)_(Ml)[limﬁllp d(yz’+,.,+1,k-, Lyyntrk) — limsup (Y1 Cig 1)
k—o0 k—ox

+(1 —a)™H1 + na) lixknsup d(Yip1ds Tit1 k)

—a(l —a)™! Z lim sup d(Tiy i1k, Tivjik)-

=0 k—oc

Since d(¥iy 414, Tivjk) = @d(Yitsn Titjk), this with (5.2) yields

lim sup d(Yipne1k- Tik)
k—oc

Y

(1 - a)‘(”“)[limsup d(Yitni1ks Topnarn) — limsup d(yg1 4, Tipip)]

k—oo k—xx

+(1 - (‘)‘1(1 + na) limsup d(y1+l,L:»$i+1,k)

k—+00

~a*(1~ @) }(n+ 1) limsup d(y, £, 2:)

k—o0

= (1- (x)"(”+1)[lim SUP d(Yitnt1k: Titns1.k) — limsup d{yix, Tiy)]

k—o0 k—x

+[(1 - a)_l(l +na) — (1~ a)"(”H)] limsupd(y,,ﬂﬁ, Tip1k)

k—~

+[(1 = a)™ ™ — a1~ a) ' (n + U] limsup d(y; k. zix)-

k—oc
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Since [(1 — a) Y1+ na) — (1 —a)~"* V] < 0, by (5.2), we obtain

lim sup (l(y7+n+1.k . ‘['.I.k‘)
ks

> (1 - (Y)"(”H)[lim SUP d(Yignt 1 k- Topnt1 k) — Lmsup d(yix, i4)]
ko0 k—oc

F101 = @)L+ na) — (1 — o) " D limsup d(yi g, rik)

k—oc
(1 =)™ 021 - &) Hn + V)] limsup d(y; 4. rix)
k=00

= (1- ﬂ)?(nﬂ)[hm SUP d(Yitnt1,k: Tisnt1k) — limsup d(Yik, Tik)]

k—o00 k—x

+[(L 4 (n + L)o]limsup d(yix, Tix)-

k—o0

This completes the proof of (5.3).

For the proof of (5.5), note at first that (5.4) and (5.3) immediately imply
hm sup d(Yign kg, Tog) > (1 + na) limsup d(y, ., @i )
k-s00 k—oc

for all i, n € N. Next. since (5.4) implies

lhsup d(yizng, k) < Hsup d(Yignk. Tipnk) + Hmnsup d(z;p, Tix)

k—oo k—oo k—o
n—1
< hmsup d(Yivok, Tigng) + Zlim sup d(r i1k, Tisik)
k—oo =0 k—oo ’ ‘
n—1
= limsupd(yix, z:x) + @ Z limsup d(y; ik, Tj414)
k—oc =0 k—oc
= (14 no)limsupd(yix, zix),
k—oc
and the proof of (5.5) is complete. o

Remark 5.1.2. Compare Proposition 5.1.1 with Proposition 1 in [41]. Also

see Lemma 9.4 of [27] for a Banach space version of Proposition 5.1.1.
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5.2 Iterative fixed points

In this section, we first apply Proposition 5.1.1 for the study of the existence
theorem of an iterative fixed point for mappings of strongly ANT in a metric

space of pre-hyperbolic type.

Lemma 5.2.1. Let ' be a nonempty bounded closed convex subset of a
metric space (M, d) of pre-hyperbolic type. Suppose T : C — (' is a mapping of
strongly ANT. Let zy € C. and for o € (0,1). let {z,.4} be the double sequence

defined by the process M(xp, ). Then

lim limsup d(x, . T*2,,) = 0. (5.8)

=00 ’\—*OC

Proof. We employs the routine proofin [41]. Let y,, . = TA‘J.',,‘,‘A, where @y = xy.

Since K is bounded, there is a number p such that

limsup d(yiynn, Lx) < p

k—o0

for all 7, n € N. Suppose

lim msup d(ynx, Trx) =7 > 0.

nOO koo
Choosec an integer N so that N > d/ra and let ¢ > 0 satisfy ¢(1—«)™™ <r. By
(5.2), since the sequence (limsupy_,o d(Ynk, Tnk)) is decreasing to r as n — oc,

there exists 7 € N so that

0 <limsupd(y; . vix) — imsupd(yign k- Tizn k) < €.

k—x k—o0
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Combined with (5.3), these choices of N, e and 4 yield

d+r < (1+ Na)r <(1+ Na)limsupd(y, r, ;1)

k—o0
< limsup d(yiyn g, Tox) + (1 — az)"N[lim sup d(yi g, Tik)
NS k— oo
—limsup d(yiy v, vigne)]  (by (5.3))
k—o00
< d+(l-a)Ve<d+r
This contradiction establishes the theorem. O

Remark 5.2.2. Fix a € (0,1). For each k € N, let S, ; : C — C be defined
by

Saxz = (1 —a)z®aT*z
forall 2 € C. Let ) = S", 2 and y,p = T* o Sg x. Following Lemma. 5.2.1

we can prove that

lim limsupd(Siile, ST, 2) = lim limsup d(S7 . TF o Sprx) =0 (5.9)

(a3
n—o2 k—o00 n-——0oQ k00

for x € K. Note that

limsup d(Saxz, Saxy) < d(z,y).

k— o0

Asymptotic regularity is a fundamentally important concept in metric fixed

point theory. It was formally introduced by Browder-Petryshyn [13].
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Definition 5.2.3. Let (" be a nonempty subset of a metric space (A, d). A
mapping 7" : (' — (7 is said to be asymptotically reqular on C if
lim d(T" 2, T" M2y =0

for each v € .

Remark 5.2.4. Furthermore, if T': (" — (' is nonexpansive, then it is well-
known in [41] that (5.8) can be simply expressed as
lim d(z,, T(z,)) = 0, (5.10)
n-—ox

where for fixed 79 € C, 1,41 = (1 — &)z, ® aTz, for n > 0.

Theorem 5.2.4. Let (" be a nonempty bounded closed convex subset of a
metric space (M. d) of pre-hyperbolic type. Suppose T : C' — C' is nonexpansive.
For a fixed a € (0.1) set S, := (1 — a)l & aT, where I is the identity operator
of M. Then S, is nonexpansive with the same fixed point set of T. Moreover,

Se 1s asymptotically regular on C.

Proof. For ¢ € C, since 2,41 = Sy, = ST 2o, by (5.10), we have
d(S:H:CO,SZIO) =d(Saxn, Tn) = ad(z,.Tz,) — 0.

Hence S, is asymptotic regular on C'. O

The following is an immediate consequence of Lemma 5.2.1.
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Theorem 5.2.5. Let (" be a compact convex subset of a metric space (M, d)
of pre-hyperbolic type. Let T €' — (7 be a continnous mapping of strongly ANT .

If T is asymptotically regular on (. then T has an iterative fixed point in .

Proof. Let 7o € ', and for « € (0,1), let {x, x} be the double sequence defined
by the process M (zg.a). Since ' is compact. for each & = 0,1,2--- there exists
a subsequence {:L‘,LJ.;,.} of the sequence {1} such that lim;_, Zn, k = &p. Then

we first show that

lim limsup d(a4, ¥, 1) = 0. (5.11)

Indeed, given ¢ >0 and k =0,1,2-- -, there is a N > k such that

(
limsupd(ay, 2, 1) < supd(a, ;. 7;) < d(zp N, 2n) + =.
k—00 ’ >k ! - 2

Taking limsup on both sides as j — oo implies

lim lim sup d(xg, T, 1) < e,

J=o0 p s

and so (5.11) is obtained. On the other hand, note that

dlag, T x) < d(2g, Tny k) + A(@n, k. T Tny k) + d(TE 20, 1, TF4)

< o+ 2d(xg, Tny k) + d(-TnJ,k,TkIn,,k)

for all k,j. Taking limsup on both sides as first k — oc and next j — oo, this

combined with (5.8) and (5.10) vields hmsup,_,  d(xx, TFr) = 0 and so

lim d(:rk,Tkxk) =0.

ko
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Taking a subsequence {xy,} of {xx} converging to » € ', we readilv see that

r e F(T). In fact, since

d{x. Tk'.z;) < d(w.wy,) + d(rg, . ']"L".I:k,) + d(T’”.’L‘kH Tk xr)

< ok, + 2d(w ) + d{xy,, Tk‘:r;\.t).

it implies that @ = lim;_.. T*x. Since T is hoth asymptotically regular and
continuous,

d(z,T(z)) = lim d(T*x, T 1z) =0,

100

and so © = Tu. 0

Since all asymptotically nonexpansive mapping are uniformly continuous map-

pings of strongly ANT), as a direct consequence of Theorem 5.2.5, we have

Corollary 5.2.6. Let C be a compact convex subset of a metric space (M, d)
of pre-hyperbolic type. Let T : €' — C be asymptotically nonexpansive. If T is

asymptotically regular on K, then 7" has an iterative fixed point in C'.
As a direct consequence of Theorem 5.2.4 and Corollary 5.2.6, we have

Corollary 5.2.7 [41]. Let € be a compact convex subsct of a metric space
(M. d) of pre-hyperbolic type. If T: C' — C is a nonexpansive mapping, then 7

has an iterative fixed point in C.




Proof. Apply for S, in Theorem 5.2.5 and F(S,) = F(T). ]

Theorem 5.2.8. Let (" be a compact convex subset of a metric space (M. d)
of pre-hyperbolic type. Let 7" : (! — (' be a mapping of strongly ANT. Suppose

zo € K satisfics

limsup d(zo, T*xo) = inf{limsup d(z, T"2) : 2 € K}, (5.12)

k—o00 k—soc

Then if wg # Txe and if a € (0, 1), the sequence {z,;} defined by M (o, a) is

unbounded.

Proof. Since zq # T'zg, note
r = limsup d(xq. T*20) > 0.
k—o0
Let yu = T’“.I:,L,k. As noted at (5.2), we immediately have
lim sup d(zp, &, yn k) < limsup d(z. T"ﬂro)
k—o0 k—o0
for n=0,1.--- . In view of (5.12), this in turn implies

lim sup d(xg, Tkll,'(]) < limsup d(w,, k. Tk.rn‘k)

k—oo h—x

Il

limsup d(2p 4. Yn i)

k—oc
< limsup d(x, Tk.'sz)
k—soc
for n = 0,1.---. This yields (5.4) of Proposition 5.1.1. The conclusion now
follows from (5.5). g

Definition 5.2.9 [62]. Let (X,d) be a metric space and [ = [0,1]. A

mapping W : X x X x [ — X is said to be a convex structure on X if for each
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(r.y, M) e X x X x[and ne X,

AW e,y A ) < Ad(, )+ (1= X)d(u.y).

A metric space (X.d) together with a convex structure W is called a conver
metric space. A nonempty subset ¢ of X is said to be convez if W(x.y,\) € C

for all (r.y. A) e (! x (x|,

Note that metric spaces which are convex in the sense of Takahashi is of
pre-hyvperbolic type. As a direct consequence of Theorem 5.2.5, we obtain the

following,.

Corollary 5.2.10. Let ' be a compact convex subset of a convex metric
space (M.d). Let T : C — C' be a continuous mapping of strongly ANT. If T' is

asymptotically regular on C', then T has an itcrative fixed point in C.

Penot [54] observed that if (A/,d) is a bounded metric space which possesses a
convexity structure which is compact and normal, then every nonexpansive map-
ping 7" : M — A has a fixed point. In extending Penot’s result to commutative
families of nonexpansive mappings, Khainsi [33] introduced the following concept

of one-local retracts.

Definition 5.2.11 [33]. A subset A C A/ is said to be a 1-local retract of
M it every family {3;¢ € 1} of closed balls centered at points of A has the
property

(1B:#0 = ((B)NA#0.

ef ic/
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Khamsi proved in [33] that under Penot’s assumptions the common fixed point.
set of any comnutative family of nonexpansive mappings of M — Af is not only

nonempty. but is in fact a I-local retract of AL

Theorem 5.2.12. Suppose (M,d) be a complete metric space of prehyper-
bolic type, and suppose each closed convex subset H of M has the fixed point
property for mapping of ANT. Then the fixed point set of any mapping of ANT

T : M — M is a (nonempty) 1-local retract of M.

Proof. By assumption F(T) # 0. Suppose «; € F(T) and r; > 0 for i € I, and

suppose So 1= (Mier B(z;:1;)) # 0. For each v € M and i € T, let

r({T"(x)}; ;) = limsupd(T"(z), z;),

n—oe

and let
Sy=A{re M r{T"(x)}. 2;) < ).
It is easy to see that Sy C S : indeed, if » € Sy then

r({T™(x)};z,) = limsupd(T™(x), x;)

n—>oC

= limsup d(T"(x), T"(z;))

n—>osc

< hmsup[cn( )+ d(z,2;)]

= d(z.1;) <1
Thus 57 # . We now show that S| is a closed conver subsct of M. Indecd,
suppose {u,,} € S; with u,, — z as m — oc. Note that for each i

r({T™(uy)}: ;) < i
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Thus for each m,

limsup d(7T™(x). r;)

n—o0
< limsupd(T"(x). 7" (w,,)) + limsup d(T"(1w,,), x7)
< limsup(e, (2) + d(e, wn)] + 7({T" () }; 25)

= d(x, ) + ({77 () };:)

< d(x,u,,) +r;.

Since u,, — x as m — oc, r € S} and hence S is closed. For convexity of S,
suppose .y € S1. let z = (1 — a)a ® ay, where o € [0.1], and let 7 € I. Then,
as in the preceding argument combined with the fact that M is of prehyperbolic

type,

r({T"(2)};2) = lmsupd(T"(z).x,)

=00

< limsuple,(z) + d(z.2,)] = d(z, z;)

[LRde ¥

< (1 o (Y)(](Tv :[“1) + ad(y: :I:i) < Ti-

Therefore = € S; and thus S is convex.
Finally, since T': S} — Sy, it must be the case that Sy N F(T) # . But
S1NF(T) = Son F(T). To see this, note that Sy N F(T) € S; N F(T) since

So € S1. Conversely, suppose x € S; N F(T). Then for each i € I,

dlx,z;) =r({z}:2) = r({T"(2) };zs) < 7y
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