GENERALIZED *b*-CLOSED SETS IN TOPOLOGICAL SPACES

위상공간상의 일반화된 b-폐집합

Advisor: Jin Han Park

by Young-Ju Ha

Graduate School of Education Pukyong National University

August 2003

GENERALIZED b-CLOSED SETS IN TOPOLOGICAL SPACES

A Dissertation

by Youg-Ju Ha

Approved as to style and content by:

(sign) Kry Krey Chairman Hyun-Jong Song, Ph. D.

(sign)

Member Jin Han Park, Ph. D.

CONTENTS

	Abstract(Korean) 1
1.	Introduction 2
2.	Preliminaries 4
3.	Generalized b-closed sets 9
4.	Generalized b-continuous functions
5.	GBO-connectedness
	References

위상공간상의 일반화된 ৮폐집합

하 영 주

부경대학교 교육대학원 수학교육전공

요 약

본 논문에서는 g-폐집합을 기초로 gs-폐집합과 gp-폐집합보다 약한 gb-폐집합을 정의하여, 그 기본적인 성질을 조사하고, semi-pre- $T_{1/2}$ -공간상에서 모든 gb-폐집합이 b-폐집합이 된 보였다. 또한, gb-폐집합을 이용하여 b-연속함수보다 약한 gb-연속함수를 정의하여 gb-폐포를 이용한 이 함수의 특성을 찾고, gb-irresolute함수와의 관계를 조사하였다.

그리고 gb-개집합을 이용하여 위상공간상에서의 GBO-연결성을 정의하고 이들과의 동치조건을 조사하였으며, 전사인 gb-연속함수에 의한 GBO-연결공간의 상이 연결공간임을 보였다. 또한, 두 개의 gb-개집합들의 적이 gb-개집합이 된다는 결과를 이용하여 두 개의 적공간이 GBO-연결이면, 각각의 상공간 역시 GBO-연결이 됨을 보였다.

1. Introduction

The initiation of the study of generalized closed sets was done by Levine [25] in 1970 as he considered sets whose closure belongs to every open supersets. He called them generalized closed (briefly g-closed) and studied their most fundamental properties. The spaces in which the concept of g-closed sets and closed sets coincide are called $T_{1/2}$ -spaces. In 1977, Dunham [20] showed that $T_{1/2}$ -spaces are precisely the spaces in which singletons are open or closed. In 1990, Balachandran et al. [10] introduced the concept of a new class of maps, namely g-continuous maps, which includes the class of continuous maps, and a class of gc-irresolute maps defined as an analogy of irresolute maps. Moreover they introduce the concept of GO-connectedness of topological spaces and prove product theorem for GO-connected spaces, i.e. if the product space of two non-empty spaces is GO-connected, then each factor space is GO-connected.

The generalization of generalized closed sets and generalized continuity was intensively studied in recent years by Balachandran, Devi, Maki, Arya, Nour, Arokiarani and Sundaram, et al.

Bhattacharya and Lahiri [14] introduced the notion of semi-generalized closed sets by replacing the closure operator in the original Levin's definition with semi-closure operator and by replacing openness of the superset with semi-openness. Arya and Nour [9] defined the notion of generalized semi-closed sets (briefly gs-closed sets). Although g-closed and sg-closed sets are independent notions, they both imply gs-closedness and the reverse implications fails to be always true. Maki et al. [27, 31] defined and investigated the concept of gp-closed sets and used this notion to obtain a characterization of p-normal spaces. This notion is generalization of preclosed sets which were further studied by Dontchev and Maki [17], Arokiarani et al. [8] Noiri et al. [31] and Park et al. [33]. In 1995, Dontchev [18] defined the concepts of generalized semi-preclosed sets and semi-pre- $T_{1/2}$ -spaces. He showed that the notions of sp-closed sets and gs-

closed sets are independent from each other. Moreover, he investigated the characterizations of semi-pre- $T_{1/2}$, semi- $T_{1/2}$ and $T_{1/2}$ -spaces.

The aim of this paper is to continue the study of the above mentioned classes of sets by introducing the notion of generalized b-closed sets (briefly, gb-closed sets) via the concept of b-open sets due to Andrijević [6]. The class of gb-closed sets contains properly the classes of g-closed, gs-closed, gg-closed and gp-closed sets and is contained in the class of gg-closed sets. And generalized b-continuous functions are defined and investigated. Moreover, we introduce the concept of GBO-connectedness of topological spaces and prove product theorem for GBO-connected spaces as follows:

Theorem 5.8. If the product space of two non-empty spaces is GBO-connected, then each factor space is GBO-connected.

2. Preliminaries

In recent years a number of generalization of open sets have been considered.

Definition 2.1. A subset A of a space (X, τ) is called:

- (1) α -set [30] if $A \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)),$
- (2) semi-open [24] if $A \subset \operatorname{cl}(\operatorname{int}(A))$,
- (3) preopen [28] if $A \subset \operatorname{int}(\operatorname{cl}(A))$,
- (4) semi-preopen [3] if $A \subset cl(int(cl(A)))$,
- (5) b-open [3] if $A \subset \operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(\operatorname{cl}(A))$.

We denote the classes of these sets in a space (X, τ) by τ_{α} , SO(X), PO(X), SPO(X) and BO(X), respectively. All of them are larger then τ and closed under forming arbitrary unions. Njaståd [28] showed that τ_{α} is a topology on X. In general, SO(X) need not be a topology on X, but the intersection of a semi-open set and an open set is semi-open. The same result holds for PO(X), SPO(X) and BO(X). The complement of a semi-open set is called semi-closed. Thus A is semi-closed if and only if $int(cl(A)) \subset A$. The notions of preclosed, semi-preclosed and b-open sets are similarly defined. For a subset A of a space X the semi-closure (resp. preclosure, semi-preclosure, b-closure) of A, denoted by scl(A) (resp. pcl(A), spcl(A), bcl(A)) is the intersection of all semi-closed (resp. preclosed, semi-preclosed, b-closed) subsets of X containing Dually, the semi-interior (resp. preinterior, semi-preinterior, b-interior) of A, (resp. pint(A), spint(A), bint(A)) is the union of all semi-open(resp. preopen, semi-preopen, b-open) subsets of X contained in A. It is obvious that $PO(X) \cup SO(X) \subset BO(X) \subset SPO(X)$ and we shall show that the inclusions cannot be replaced with equalities.

Example 2.2 [6]. Consider the set R of real numbers with the usual topology, and let $A = [0,1] \cup ((1,2) \cap Q)$ where Q stands for the set of rational numbers. Then A is b-open but neither semi-open nor preopen. On the other hand, let $T = [0,1) \cap Q$. Then T is semi-preopen but not b-open.

Theorem 2.3 [6]. For a subsets A of a space (X, τ) , the following are equivalent:

- (a) A is b-open.
- (b) $A = pint(A) \cup sint(A)$.
- (c) $A \subset pcl(pint(A))$.

Theorem 2.4 [6]. Let A be a subset of a space (X, τ) . Then:

- (a) $bcl(A) = scl(A) \cap pcl(A)$.
- (b) $bint(A) = sint(A) \cup pint(A)$.

Definition 2.5. A subset A of a space (X, τ) is called:

- (a) generalized closed (briefly, g-closed) [25] if $\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and U is open in X,
- (b) semi-generalized closed (briefly, sg-closed) [14] if $\mathrm{scl}(A) \subset U$ whenever $A \subset U$ and U is semi-open in X,
- (c) generalized semi-closed (briefly, gs-closed) [9] if $\mathrm{scl}(A) \subset U$ whenever $A \subset U$ and U is open in X,
- (d) generalized preclosed (briefly, gp-closed) [13] if $pcl(A) \subset U$ whenever $A \subset U$ and U is open in X,
- (e) generalized semi-preclosed (briefly, gsp-closed) [16] if $spcl(A) \subset U$ whenever $A \subset U$ and U is open in X.

Definition 2.6 [16]. A space (X, τ) is called:

- (a) $T_{1/2}$ if every generalized closed is closed,
- (b) semi- $T_{1/2}$ if every sg-closed is semi-closed,
- (c) semi-pre- $T_{1/2}$ if every gsp-closed is semi-pre-closed.

Theorem 2.7 [16]. For a space (X, τ) , the following implications hold:

$$T_1 \Rightarrow T_{1/2} \Rightarrow T_0$$

Theorem 2.8 [16]. A space (X, τ) is semi- $T_{1/2}$ if and only if every singleton is (semi)-open or semi-closed.

Remark 2.9 [16]. Every $T_{1/2}$ space is semi- $T_{1/2}$. Then the reverse is not usually true. The following example shows this: let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$, then X is semi- $T_{1/2}$ but not $T_{1/2}$.

Theorem 2.10 [16]. For a space (X, τ) , the following conditions are equivalent:

- (a) X is semi-pre- $T_{1/2}$.
- (b) Every singleton of X is closed or semi-preopen.
- (c) Every singleton of X is closed or preopen.
- (b) Every nowhere dense singleton of X is closed.
- (c) Every non-preopen singleton is closed.

Remark 2.11 [16]. Every $T_{1/2}$ space is semi-pre- $T_{1/2}$. But a semi-pre- $T_{1/2}$ space need not be $T_{1/2}$. The following example shows this: For the real line with the indiscrete topology, none of the singletons in this space is either semi-open or semi-closed. Thus it is not even semi- $T_{1/2}$.

In remark 2.9, X need not semi-pre- $T_{1/2}$. Hence the concepts of semi-pre- $T_{1/2}$ and semi- $T_{1/2}$ spaces are independent from each other.

Theorem 2.12 [16]. For a space (X, τ) , the following conditions are equivalent:

- (a) X is $T_{1/2}$.
- (b) X is semi- $T_{1/2}$ and semi-pre- $T_{1/2}$.

Definition 2.13 [16]. A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- (a) precontinuous [28] (resp. β -continuous [1], gp-continuous [8], gsp-continuous [16]) if $f^{-1}(V)$ is preclosed (resp. β -closed, gp-closed, gsp-closed) in (X, τ) for every closed set V of (Y, σ) ,
- (b) β -irresolute [26](resp. gp-irresolute [8], gsp-irresolute [16]) if $f^{-1}(V)$ is β -closed, (resp. gp-closed, gsp-closed) in (X, τ) for every β -closed (resp. gp-closed) set V of (Y, σ) ,
- (c) pre- β -closed [26] if f(V) is semi-preclosed in (Y, σ) for every semi-preclosed set V of (X, τ) .

Remark 2.14. From above definition, for a function $(X, \tau) \to (Y, \sigma)$, we have the following diagram of implications:

$$\beta\text{-irresoluteness} \qquad gsp\text{-irresoluteness}$$

$$\downarrow \qquad \qquad \downarrow$$

$$precontinuity \quad \rightarrow \quad \beta\text{-continuity} \quad \rightarrow \quad gsp\text{-continuity}$$

Theorem 2.15 [16]. Let $f:(X,\tau)\to (Y,\sigma)$ be a gsp-irresolute function. If (X,τ) is a semi-pre- $T_{1/2}$ -space, then f is β -irresolute.

Proof. Let V be a semi-preclosed subset of (Y, σ) . Then V is gsp-closed. Since f is gsp-irresolute, then $f^{-1}(V)$ is gsp-closed in (X, τ) . Since X is semi-pre- $T_{1/2}$, then $f^{-1}(V)$ is semi-preclosed in (X, τ) . Hence f is β -irresolute. \square

Theorem 2.16 [16]. Let $f:(X,\tau)\to (Y,\sigma)$ be a continuous and pre- β -closed function. Then for every gsp-closed set A of (X,τ) , f(A) is gsp-closed in (Y,σ) .

The composition of two gsp-continuous funtions need not be gsp-continuous. For, consider the following example:

Example 2.17 [19]. Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and let $\sigma = \{\phi, \{a, d, e\}, X\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity function. Then f is gsp-continuous. Let $\nu = \{\phi, \{e\}, X\}$. Clearly the identity funtion $g: (X, \sigma) \to (X, \nu)$ is also gsp-continuous, since $\{a, b, c, d\}$ is gsp-closed in (X, τ) . But the composition function $g \circ f: (X, \tau) \to (X, \nu)$ is not gsp-continuous, since $\{a, b, c, d\}$ is closed in (X, ν) but not gsp-closed in (X, τ) .

However the following theorem holds.

Theorem 2.18 [19]. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\nu)$ be two funtions. Then:

- (a) If g is continuous and f is gsp-continuous, then $g \circ f$ is gsp-continuous.
- (b) If g is gsp-irresolute and f is gsp-irresolute, then $g\circ f$ is gsp-irresolute.

- (c) If g is gsp-continuous and f is gsp-irresolute, then $g \circ f$ is gsp-continuous.
- (d) Let (Y, σ) be semi-pre- $T_{1/2}$ -space. If g is g-sp-continuous and f is β -irresolute, then $g \circ f$ is β -continuous.

Theorem 2.19 [16]. Let $f:(X,\tau)\to (Y,\sigma)$ be an onto, gsp-irresolute and pre- β -closed function. If (X,τ) is a semi-pre- $T_{1/2}$ space, then (Y,σ) is also semi-pre- $T_{1/2}$.

3. Generalized b-closd sets

Definition 3.1. A subset A of a space (X, τ) is called *generalized b-closed* (briefly, gb-closed) if $bcl(A) \subset U$ whenever $A \subset U$ and U is b-open in X.

Remark 3.2. From Definitions 2.2 and 3.1, we have the following diagram of implications:

The reverses in the remark above need not be true as the following examples show.

Example 3.3. Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a\}, \{e\}, \{c, d\}, \{a, e\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}\}$. Then $\{a, d, e\}$ is gsp-closed but not gb-closed in (X, τ) .

Example 3.4. Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$. Then $\{b, c\}$ is gb-closed but not gs-closed in (X, τ) .

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{a\}$ is gb-closed but not gp-closed in (X, τ) .

Example 3.6. Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a\}, \{a, b, c\}\}$. Then $\{a, b, d\}$ is gb-closed but not b-closed in (X, τ) .

The union (or intersection) of two gb-closed sets need not be gb-closed.

Example 3.7. Let (X, τ) be a topological space given in Example 3.3. Put $A = \{c, d\}$ and $B = \{e\}$. Then A and B are gb-closed but $A \cup B$ is not gb-closed in X.

Example 3.8. Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a\}, \{a, b, c\}\}$. Put $A = \{a, b, c\}$ and $B = \{a, c, e\}$. Then A and B are gb-closed but $A \cap B$ is not gb-closed in (X, τ) .

Theorem 3.9. If A is gb-closed in (X, τ) , then $bcl(A) \setminus A$ contains no nonempty closed set of X.

Proof. Suppose that F is nonempty closed subset of $\operatorname{bcl}(A) \setminus A$. Then $F \subset \operatorname{bcl}(A) \setminus A$. Therefore $F \subset \operatorname{bcl}(A)$ and $F \subset X \setminus A$. Since $X \setminus F$ is open and A is a gb-closed, $\operatorname{bcl}(A) \subset X \setminus F$. Therefore $F \subset X \setminus \operatorname{bcl}(A)$. Thus $F \subset \operatorname{bcl}(A) \cap (X \setminus \operatorname{bcl}(A)) = \phi$. This is a contradiction. \square

However, the converse of above theorem need not be true as is seen from the following example.

Example 3.10. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c, d\}, \{a, b, c\}\}$. Put $A = \{a, c\}$. Then $bcl(A) \setminus A = \{b, d\}$ contains closed set $\{d\}$ but A is not gb-closed in (X, τ) .

Corollary 3.11. Let A be gb-closed in X. Then A is b-closed if and only if $bcl(A) \setminus A$ is closed.

Proof. If A is b-closed then $bcl(A) \setminus A = \phi$ is closed.

Conversely, since $bcl(A) \setminus A$ is gb-closed set and $bcl(A) \setminus A$ is closed subset of itself, by above theorem $bcl(A) \setminus A = \phi$ and hence A be b-closed. \square

Theorem 3.12. Let A be a gb-closed set of X and $A \subset B \subset bcl(A)$. Then B is gb-closed in X.

Proof. Let $B \subset U$ and U is an open set and $bcl(A) \subset U$. Then $bcl(B) \subset bcl(A) \subset U$. Hence B is gb-closed. \square

Theorem 3.13. Let $BO(X,\tau) = \tau$. Let B be gb-closed relative to A and A be gb-closed and open in X. Then B is gb-closed relative to X.

Proof. Let $B \subset G$ and G be open in X. Then $B \subset A \cap G$ and $A \cap G$ is open in A. Since B is gb-closed relative to A, $bcl_A(B) = bcl(B) \cap A \subset A \cap G$. Therefore $A \cap bcl(B) \subset G$ and so $A \subset G \cup (X \setminus bcl(B))$. By hypothesis $G \cup (X \setminus bcl(B))$ is a open set. Then $bcl(B) \subset bcl(A) \subset G \cup (X \setminus bcl(B))$. Hence $bcl(B) \subset G$. \square

Corollary 3.14. Let $BO(X, \tau) = \tau$. If A is gb-closed and F is b-closed, then $A \cap F$ is gb-closed.

Proof. Since F is b-closed, $A \cap F$ is a b-closed set of A and then $A \cap F$ is gb-closed in A. Hence, by Theorem 3.13, $A \cap F$ is gb-closed in X. \square

Lemma 3.15. Let $A \subset Y \subset X$ and Y be an open subspace of a space X. Then we have $bcl_Y(A) = bcl_X(A) \cap Y$, where $bcl_Y(A)$ is b-closure of A in subspace Y.

Theorem 3.16. Let $A \subset Y \subset X$ and Y be open in X. If A is gb-closed relative to X, then A is gb-closed relative to Y.

Proof. Let $A \subset G$ and G be an open set of Y. Then there exists an open set H of X such that $H \cap Y = G$. Since $B \subset H$, H is an open set of X and B is a gb-closed set of X. Therefore $bcl(B) \subset H$. By Lemma 3.15, $bcl_Y(A) = bcl(A) \cap A \subset H \cap A \subset G$. Hence A is a gb-closed relative to Y. \square

Theorem 3.17. Let A be subset of a space (X, τ) . Then A is gb-closed if and only if $\tau \subset BF(X, \tau)$, where $BF(X, \tau)$ is the family of all b-closed sets.

Proof. Suppose that $\tau \subset BF(X,\tau)$. Let $A \subset G$ and G be an open set. Then $bcl(A) \subset bcl(G) = G$ and so A is gb-closed. Conversely, let $G \in \tau$. Since $G \subset G$ and G is gb-closed, $bcl(G) \subset G$ and then $G \in BF(X,\tau)$. Hence $\tau \subset BF(X,\tau)$. \square

Definition 3.18. A subset A of (X, τ) is called gb-open if its complement $X \setminus A$ is gb-closed.

Theorem 3.19. Let A be subset of a space (X, τ) . Then A is gb-open if and only if $F \subset bint(A)$ whenever $F \subset A$ and F is closed in X.

Proof. Let F be closed in X and $F \subset A$. Then $X \setminus A \subset X \setminus F$ and $X \setminus F$ is open in X. Since $X \setminus A$ is gb-closed, $bcl(X \setminus A) \subset X \setminus F$. Hence $F \subset bint(A)$. Conversely, let U be open in X and $X \setminus A \subset U$. By hypothesis, $X \setminus U \subset bint(A)$ and $bcl(X \setminus A) \subset U$. Therefore $X \setminus A$ is gb-closed, that is, A is gb-open. \square

Definition 3.20. Two subsets A and B of a space (X, τ) is said to be b-separated if $bcl(B) \cap A = \phi = bcl(A) \cap B$.

Theorem 3.21. Let $BO(X, \tau) = \tau$. Then:

- (a) If A and B are b-separated b-open sets, then $A \cup B$ is gb-open.
- (b) If A and B are b-separated gb-closed sets, then $A \cap B$ is gb-closed.

Proof. We prove only (a). Let F be a closed set and $F \subset A \cup B$. Then $F \cap \operatorname{bcl}(A) \subset \{(A \cup B) \cap \operatorname{bcl}(A)\} = A \cap (B \cap \operatorname{bcl}(A)) = A$. Thus $F \cap \operatorname{bcl}(A) \subset \operatorname{bint}(A)$. Similarly, $F \cap \operatorname{bcl}(B) \subset \operatorname{bint}(B)$. Hence $F \subset \{F \cap (A \cup B)\} \subset \{(F \cap \operatorname{bcl}(A)) \cup (F \cap \operatorname{bcl}(B))\} \subset \{\operatorname{bint}(A) \cup \operatorname{bint}(B)\} \subset \operatorname{bint}(A \cup B)$. Hence $A \cup B$ is gb-open. \square

The intersection of gb-open sets is generally not gb-open as the following example shows.

Example 3.22. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Put $A = \{a, c, d\}$ and $B = \{b, c, d\}$. Then A and B are gb-open but $A \cap B$ is not gb-open in (X, τ) .

Theorem 3.23. Let A be a gb-open set and $bint(A) \subset B \subset A$. Then B is gb-open set.

Proof. Let F is a closed set and $F \subset B$. Since A is gb-open and $F \subset bint(A)$, $F \subset bint(A) \subset bint(B)$. Hence B is gb-open. \square

Theorem 3.24. Let $BO(X, \tau) = \tau$ and $A \subset X$. Then A is gb-closed if and only if $bcl(A) \setminus A$ is gb-open.

Proof. Let $F \subset bcl(A) \setminus A$ and F be a closed set. By Theorem 3.8, we have $F = \phi$. Hence $F \subset bint(bcl(A) \setminus A)$. By definition $bcl(A) \setminus A$ is gb-open.

Conversely, let $A \subset O$ and O be an open set. Now, $bcl(A) \cap (X \setminus O) \subset bcl(A) \cap (X \setminus A) = bcl(A) \setminus A$. Since $bcl(A) \cap (X \setminus O)$ is closed and $bcl(A) \setminus A$ is gb-open, $bcl(A) \cap (X \setminus O) \subset bint(bcl(A) \setminus A) = \phi$. Thus $bcl(A) \cap (X \setminus O) = \phi$, that is, $bcl(A) \subset O$. Hence A is gb-closed. \square

Definition 3.25. The gb-closure of subset A of a space X, denoted by gb-cl*(A), is gb-cl* $(A) = \cap \{F : A \subset F \text{ and } F \text{ is } gb$ -closed $\}$.

Theorem 3.26. (a) For subsets A, B of (X, τ) , the following implications hold:

- i) $A \subset gb\text{-}cl^*(A) \subset bcl(A)$.
- ii) $gb\text{-}cl^*(\phi) = \phi$ and $gb\text{-}cl^*(X) = X$.
- iii) $gb\text{-}cl^*(A) \cap gb\text{-}cl^*(B) \subset gb\text{-}cl^*(A \cap B)$.
- iv) $gb-cl^*(gb-cl^*(A)) = gb-cl^*(A)$.
- v) If A is gb-closed in X, then $gb\text{-}cl^*(A) = A$.
- (b) If $BO(X, \tau)$ is closed under finite intersections, then $GBO(X, \tau)$ is closed under finite intersections.
- (c) Let $\tau_b^* = \{U : gb\text{-}cl^*(X \setminus U) = X \setminus U\}$. If $BO(X, \tau)$ is closed under finite intersections, τ_b^* is a topology for X.

Proof. (a) i) and ii) are trivial.

- iii) Let F be a gb-closed set of $A \cup B$. Then $A, B \subset F$ and so gb-cl*(A), gb-cl* $(B) \subset F$. Thus gb-cl* $(A) \cup gb$ -cl* $(B) \subset gb$ -cl* $(A \cup B)$.
- iv) Let F be a b-closed set and $A \subset F$. Then gb-cl* $(A) \subset F$ and hence gb-cl*(gb-cl* $(A) \subset gb$ -cl*(A). But from (a), gb-cl* $(A) \subset gb$ -cl*(gb-cl*(A)). Thus gb-cl*(gb-cl*(A)) = gb-cl*(A).
- (b) Let $A \subset GBO(\tau)$ and $B \subset GBO(\tau)$. Let U be an open set containing $X \setminus (A \cap B)$. Since $X \setminus A \subset U$ and $X \setminus B \subset U$, we have $bcl(X \setminus A) \subset U$ and $bcl(X \setminus B) \subset U$. Since BO(X) is closed under finite intersections, $bcl(X \setminus (A \cap B)) = bcl(X \setminus A) \cup bcl(X \setminus B) \subset U$. Therefore $X \setminus (A \cap B)$ is gb-closed in (X, τ) and hence $A \cap B \in GBO(\tau)$.
 - (c) i) By (a), clear.
- ii) Let $U_i \in \tau_b^*$ for all $i \in I$. Then $gb\text{-}\mathrm{cl}^*(X \setminus U_i) = X \setminus U_i$. By (a), $X \setminus (\cup_i U_i) \subset gb\text{-}\mathrm{cl}^*(X \setminus (\cup_i U_i))$. And $gb\text{-}\mathrm{cl}^*(X \setminus (\cup_i U_i)) = gb\text{-}\mathrm{cl}^*(\cap_i (X \setminus U_i)) \subset$

gb-cl* $(X \setminus U_i) = X \setminus U_j$ for all $j \in I$. Hence gb-cl* $(X \setminus (\cup_i U_i)) \subset \cap_i (X \setminus U_i) = X \setminus (\cup_i U_i)$.

iii) Let $U, V \in \tau_b^*$. Then $gb\text{-}\mathrm{cl}^*(X \setminus U) = X \setminus U$ and $gb\text{-}\mathrm{cl}^*(X \setminus V) = X \setminus V$. Since $BO(X, \tau)$ is closed under finite intersections, $gb\text{-}\mathrm{cl}^*(X \setminus (U \cap V)) = gb\text{-}\mathrm{cl}^*((X \setminus U) \cup (X \setminus V)) = gb\text{-}\mathrm{cl}^*(X \setminus U) \cup gb\text{-}\mathrm{cl}^*(X \setminus V) = (x \setminus U) \cup (X \setminus V) = X \setminus (U \cap V)$. Therefore, by i)-iii), τ_b^* is a topology for X. \square

Theorem 3.27. (a) For a space (X, τ) , every gb-closed set is preclosed (i.e. $GBO(\tau) = BO(\tau)$) if and only if $\tau_h^* = BO(\tau)$ holds.

(b) For a space (X, τ) , every gb-closed set is closed (i.e. $GBO(\tau) = \tau$) if and only if $\tau_b^* = \tau$ holds.

Proof. (a) Since $GBO(\tau) = BO(\tau)$ holds by assumption, we have $gb\text{-}\mathrm{cl}^*(E) = \mathrm{bcl}(E)$ for every subset E of (X,τ) . We need to show $\tau_b^* \subset BO(\tau)$. Let $V \in \tau_b^*$. Then, $X \setminus V = gb\text{-}\mathrm{cl}^*(X \setminus V) = \mathrm{bcl}(X \setminus V)$ and so $X \setminus V$ is $b\text{-}\mathrm{closed}$, that is, $V \in BO(\tau)$. Conversely, let V be a $gb\text{-}\mathrm{closed}$ set. Then by assumptions, $gb\text{-}\mathrm{cl}^*(V) = V$ and hence $X \setminus V \in \tau_b^* = BO(\tau)$. Therefore, every $gb\text{-}\mathrm{closed}$ set is $b\text{-}\mathrm{closed}$.

(b) By $\tau \subset BO(\tau) \subset \tau_b^*$, this is shown similarly to the proof of (a).

Theorem 3.28. For a space (X, τ) , the following conditions are equivalent:

- (a) X is a semi-pre- $T_{1/2}$.
- (b) Every singleton of X is closed or b-open.
- (c) Every gb-closed is b-closed.

Proof. (a) \Leftrightarrow (b): Since preopen is b-open, by Theorem 2.10, trivial.

(b) \Rightarrow (c): Let $A(\subset X)$ be gb-closed. We need to show that A is b-closed or eqivalently that bcl(A) = A. The inclusion $A \subset bcl(A)$ is trivial. For the reverse, let $x \in bcl(A)$. By assumption $\{x\}$ is either closed or b-open. We consider these two cases.

Case 1. Let $\{x\}$ be closed. By Theorem 3.9 $bcl(A) \setminus A$ does not contain $\{x\}$. Since $x \in bcl(A)$, then $x \in A$.

Case 2. Let $\{x\}$ be preopen. Clearly $\{x\}$ is b-open and since $x \in bcl(A)$, then $\{x\} \cap A \neq \phi$. Thus $x \in A$.

This shows that in both cases $x \in A$ or equivalently $bcl(A) \subset A$.

(c) \Rightarrow (b): Assume that for some $x \in X$ the set $\{x\}$ is not closed. Then	
$X\setminus\{x\}$ is not open. Thus the only open set containing $X\setminus\{x\}$ is X itself and	
hence $X \setminus \{x\}$ is trivially gb-closed. By (c) it is b-closed or equivalently $\{x\}$ is	
b -open. \square	
Theorem 3.29. For a space (X, τ) , the following conditions are equivalent:	
(a) X is a semi-pre- $T_{1/2}$.	
(b) Every non b-open singleton is closed.	

Proof. It follows from Theorem 3.28. \Box

4. Generalized b-continuous functions

Definition 4.1. A function $f: X \to Y$ is called:

- (a) b-continuous [20] (resp. b-irresolute) if for every open (resp. b-open) set G of Y, $f^{-1}(G)$ is b-open in X.
 - (b) pre- β -closed if for every b-closed set F of X, f(F) is b-closed in Y.

Definition 4.2. A function $f: X \to Y$ is called:

- (a) generalized b-continuous (briefly, gb-continuous) if for every closed set F of Y, $f^{-1}(F)$ is gb-closed in X.
- (b) generalized b-irresolute (briefly, gb-irresolute) if for every gb-closed set F of Y, $f^{-1}(F)$ is gb-closed in X.

Theorem 4.3. Every b-continuous function is gb-continuous.

Proof. Since every b-closed set is gb-closed, it is obvious. \square

Remark 4.4. For a function $f: X \to Y$ from Definitions 2.13, 4.1 and 4.2, we have the following diagram of implications:

Example 4.5. Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$, $Y = \{p, q\}$ and $\sigma = \{X, \phi, \{p\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be defined by f(c) = q, f(a) = f(b) = p. Then f is gb-continuous, but it is not b-continuous.

Lemma 4.6. Let A be a subset of a space (X, τ) . Then $x \in gb\text{-}cl^*(A)$ if and only if for each gb-open set U containing $x, U \cap A \neq \phi$.

Proof. Suppose that $x \in gb\text{-}cl^*(A)$. If there exists a gb-open set U containing x such that $U \cap A = \phi$. Then $A \subset X \setminus U$. Since $X \setminus U$ is gb-closed, $gb\text{-}cl^*(A) \subset X \setminus U$ and so $x \notin gb\text{-}cl^*(A)$. This is a contradiction.

Conversely, suppose that $x \notin gb\text{-}cl^*(A)$. Then there exists a gb-closed set F such that $A \subset F$ and $x \notin F$. Thus $x \in X \setminus F$ and $X \setminus F$ is a gb-open set but $X \setminus F \cap A = \phi$. This is a contradiction by hypothesis. \square

Theorem 4.7. Let $f:(X,\tau)\to (Y,\sigma)$ be a function.

- (a) f is gb-continuous.
- (b) The inverse image of each open set of Y is gb-open in X.
- (c) $f(gb\text{-}cl^*(A)) \subset cl(f(A))$ for each $A \subset X$.
- (d) For each $x \in X$ and each V is open set containing f(x), there exists a gb-open set U containing x of X such that $f(U) \subset V$.

Then we have the following implications:

$$(a) \Leftrightarrow (b) \Rightarrow (c) \Leftrightarrow (d)$$

Proof. (a) \Leftrightarrow (b): From definition, it is clear.

- (a) \Rightarrow (c): Let A be any subset of X. Since $A \subset f^{-1}(\operatorname{cl}(f(A)))$, by (a), $gb\text{-}\operatorname{cl}^*(A) \subset gb\text{-}\operatorname{cl}^*(f^{-1}(\operatorname{cl}(f(A)))) = f^{-1}(\operatorname{cl}(f(A)))$. Hence $f(gb\text{-}\operatorname{cl}^*(A)) \subset f(f^{-1}(\operatorname{cl}(f(A)))) \subset \operatorname{cl}(f(A))$.
- (c) \Rightarrow (d): Let $x \in X$ and V be any open set containing f(x). Let $A = f^{-1}(X \setminus V)$ then $x \notin A$. Since $f(gb\text{-}cl^*(A)) \subset cl(f(A)) \subset X \setminus V$. Then $gb\text{-}cl^*(A) \subset f^{-1}(f(gb\text{-}cl^*(A)) \subset f^{-1}(X \setminus V) = A$. Therefore $gb\text{-}cl^*(A) = A$. Since $x \notin gb\text{-}cl^*(A)$, there exists a gb-open set U containing x such that $U \cap A = \phi$. Thus $f(U) \subset f(X \setminus A) \subset V$.
- $(d)\Rightarrow(c)$: Let $y\in f(gb\text{-}cl^*(A))$ and V be any open neighborhood of y. Then there exists $x\in X$ and there exists a gb-open set U such that f(x)=y, $x\in U, x\in gb\text{-}cl^*(A)$ and $f(U)\subset V$. Since $x\in gb\text{-}cl^*(A), U\cap A\neq \phi$. Hence $f(A)\cap V\neq \phi$ and so $y=f(X)\in cl((f(A))$. Hence $f(gb\text{-}cl^*(A))\subset cl(f(A))$. \square

Theorem 4.8. Let $f:(X,\tau)\to (Y,\sigma)$ be a function.

- (a) f is gb-irresolute.
- (b) The inverse image of each gb-open set of Y is gb-open in X.
- (c) $f(gb\text{-}cl^*(A)) \subset gb\text{-}cl^*(f(A))$ for each $A \subset X$.
- (d) For each $x \in X$ and each V is gb-open set containing f(x), there exists a gb-open set U containing x of X such that $f(U) \subset V$.

Then we have the following implications:

$$(a) \Leftrightarrow (b) \Rightarrow (c) \Leftrightarrow (d)$$

Proof. Similarly to Theorem 4.7. \square

Theorem 4.9. Let $f:(X,\tau)\to (Y,\sigma)$ be a gb-continuous function and $\tau=BO(X,\tau)$. If H is a gb-closed and open subspace of (X,τ) , then $f\mid H:(H,\tau\mid H)\to (Y,\sigma)$ is gb-continuous.

Proof. Let F be a closed set of Y. By using assumption and Corollary 3.13 $f^{-1}(F) \cap H$ is a gb-closed set of X. By Theorem 3.14, $f^{-1}(F) \cap H = (f \mid H)^{-1}(F)$ is a gb-closed set of H. Thus $f \mid H$ is gb-continuous. \square

Theorem 4.10. Let $X = H \cup G$ be a space with topology τ and Y be a space with topology σ . Let $f: (G, \tau \mid G) \to (Y, \sigma)$ and $g: (H, \tau \mid H) \to (Y, \sigma)$ are gb-continuous functions such that f(x) = g(x) for all $x \in G \cap H$. Suppose that $BO(X, \tau) = \tau$ and G, H are gb-closed and open in X. Then the combination $h: (X, \tau) \to (Y, \sigma)$ is gb-continuous.

Proof. Let F be any closed set of Y and $h^{-1}(F) = f^{-1}(F) \cup g^{-1}(F) = C \cup D$ where $C = f^{-1}(F)$, $D = g^{-1}(F)$. Since C is a gb-closed set of H, by hypothesis, C is gb-closed in X. Similarly, D is gb-closed in X. By hypothesis, $C \cup D$ is a gb-closed set. Thus $h^{-1}(F)$ is gb-closed in X. Hence h is gb-continuous. \square

Theorem 4.11. If $f:(X,\tau)\to (Y,\sigma)$ is gb-irresolute and (X,τ) is a semi-pre- $T_{1/2}$ -space. Then f is b-irresolute.

Proof. Let V be a b-closed subset of Y. Then V is gb-closed. Since f is gb-irresolute, $f^{-1}(V)$ is gb-closed in X. And, since X is semi-pre- $T_{1/2}$, $f^{-1}(V)$ is b-closed in X. Hence f is b-irresolute. \square

Theorem 4.12. Let $f:(X,\tau)\to (Y,\sigma)$ be continuous and pre-b-closed. Then for every gb-closed set A of (X,τ) , f(A) is gb-closed in (Y,σ) .

Proof. Let A be gb-closed in X. Let $f(A) \subset O$, where O is open in Y. Since A is gb-closed and $f^{-1}(O)$ is open in X, $bcl(A) \subset f^{-1}(O)$ and so $f(bcl(A)) \subset O$. Therefore $bcl(A) \subset bcl(f(bcl(A))) = f(bcl(A)) \subset O$, since f is pre-b-closed. This implies that f(A) is gb-closed in Y. \square

Theorem 4.13. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\nu)$ be two funtions. Then:

- (a) If g is continuous and f is gb-continuous, then $g \circ f$ is gb-continuous.
- (b) If g is gb-irresolute and f is gb-irresolute, $g \circ f$ is gb-irresolute.
- (c) If g is gb-continuous and f is gb-irresolute, then $g \circ f$ is gb-continuous.
- (d) Let (Y, σ) be semi-pre- $T_{1/2}$ -space. If g is gb-continuous and f is b-irresolute, then $g \circ f$ is b-continuous.

Proof. Obvious. \square

Theorem 4.14. Let $f:(X,\tau)\to (Y,\sigma)$ be a gb-irresolute and pre-b-closed surjection. If (X,τ) is a semi-pre- $T_{1/2}$ -space, then (Y,σ) is also semi-pre- $T_{1/2}$.

Proof. Let A be a gb-closed subset of Y. Since f is gb-irresolute, $f^{-1}(A)$ is gb-closed in X. And, since X is semi-pre- $T_{1/2}$ space, $f^{-1}(A)$ is b-closed in X. By the rest of the assumption, it follows that A is b-closed in Y or equivalently Y is semi-pre- $T_{1/2}$. \square

5. GBO-connectedness

Definition 5.1. A space X is said to be GBO-connected if X cannot be written as a disjoint union of two non-empty gb-open sets. A subset of X is GBO-connected if it is GBO-connected as a subspace.

Theorem 5.2. For a space X, the following are equivalent:

- (a) X is GBO-connected.
- (b) The only subsets of X which are both gb-open and gb-closed are the empty set ϕ and X.
- (c) Each gb-continuous function of X into a discrete space Y with at least two points is a constant function.
- *Proof.* (a) \Rightarrow (b): Let U be a gb-open and gb-closed subset of X. Then $X \setminus U$ is both gb-open and gb-closed. Since X is the disjoint union of the gb-open sets U and $X \setminus U$, one of these must be empty, that is $U = \phi$ or U = X.
- (b) \Rightarrow (a): Suppose that $X = A \cup B$ where A and B are disjoint non-empty gb-open subsets of X. Then A is both gb-open and gb-closed. By assumption, $A = \phi$ or X. Hence X is GBO-connected.
- (b) \Rightarrow (c): Let $f: X \to Y$ be a gb-continuous function. Then X is covered by gb-open and gb-closed covering $\{f^{-1}(y): y \in Y\}$. By assumption, $f^{-1}(y) = \phi$ or X for each $y \in Y$. If $f^{-1}(y) = \phi$ for all $y \in Y$ then f fails to be a function. Then there exists only one point $y \in Y$ such that $f^{-1}(y) \neq \phi$ and hence $f^{-1}(y) = X$ which shows that f is a constant function.
- (c) \Rightarrow (b): Let U be both gb-open and gb-closed in X. Suppose $U \neq \phi$. Let $f: X \to Y$ be a gb-continuous function defined by $f(U) = \{y\}$ and $f(X \setminus U) = \{w\}$ for some distinct points y and w in Y. By assumption, f is constant. Hence we have U = X. \square

It is obvious that every GBO-connected space is connected. The following example shows that the converse is not true.

Example 5.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Then (X, τ) is connected. However, since every subset of X is both gb-open and gb-closed, (X, τ) is not GBO-connected by Theorem 5.2.

Theorem 5.4. In space (X, τ) with at least two points, if $\tau = BF(X, \tau)$, then X is not GBO-connected.

Proof. Let $\tau = BF(X,\tau)$. Then every subset of X is gb-closed. In fact, let $A \subset X$ and let $U \in \tau$ such that $A \subset U$. Then $bcl(A) \subset bcl(U) = U$ and hence A is gb-closed. There is a proper non-empty subset of X which is both gb-open and gb-closed in X. By Theorem 5.2, X is not GBO-connected. \square

Theorem 5.5. If $f: X \to Y$ is a gb-continuous surjection and X is GBO-connected, then Y is connected.

Proof. Suppose that Y is not connected. Let $Y = A \cup B$ where A and B are disjoint non-empty open sets in Y. Since f is gb-continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty and gb-open in X. This contradicts that fact that X is GBO-connected. Hence Y is connected. \square

With reference to Theorem 5.5 we have the following:

Theorem 5.6. Let $f:(X,\tau)\to (Y,\sigma)$ be a gb-continuous function and $\sigma=BO(Y,\sigma)$. If H is an open, gb-closed and GBO-connected subset of X, then f(H) is a connected subset of Y.

Proof. By Theorem 4.8, the restriction f|H of f is gb-continuous. By Theorem 5.5, the image of the GBO-connected space $(H, \tau|H)$ under $f|H: (H, \tau|H) \to (f(H), \sigma|f(H))$ is connected. Thus $(f(H), \sigma|f(H))$ is connected and hence f(H) is connected subset of Y. \square

Lemma 5.7. Let A and B be subsets of X and Y respectively. If A is gb-open in (X, τ) and B is gb-open in (Y, σ) , then $A \times B$ is gb-open in $(X \times Y, \tau \times \sigma)$.

Proof. Let F be a closed subset of $(X \times Y, \tau \times \sigma)$ such that $F \subset A \times B$. For each $(x,y) \in F$, $\operatorname{cl}\{x\} \times \operatorname{cl}\{y\} = \operatorname{cl}(\{x\} \times \{y\}) = \operatorname{cl}(\{x,y\}) \subset \operatorname{cl}(F) = F \subset A \times B$. Two closed sets $\operatorname{cl}\{x\}$ and $\operatorname{cl}\{y\}$ are contained in A and B respectively. It

follows from assumption that $\operatorname{cl}\{x\} \subset \operatorname{bint}(A)$ and $\operatorname{cl}\{y\} \subset \operatorname{bint}(B)$ hold. This implies that, for each $(x,y) \in F$, $(x,y) \in \operatorname{bint}(A) \times \operatorname{bint}(B) \subset \operatorname{bint}(A \times B)$ and so $F \subset \operatorname{bint}(A \times B)$. Hence $A \times B$ is gb-open. \square

Theorem 5.8. If the product space of two non-empty spaces is GBO-connected, then each factor space is GBO-connected.

Proof. Let $(X \times Y, \tau \times \sigma) \to (X, \tau)$ be projection function and let $(X, \times Y, \tau \times \sigma)$ be a GBO-connected space. We first show that inverse image of every gb-closed under the projection p is gb-closed. Let F be gb-closed in X. Since $X \setminus F$ and Y are gb-open, by Lemma 5.7, $p^{-1}(X \setminus F) = (X \setminus F) \times Y$ is gb-open. And, since $p^{-1}(F) = F \times Y = X \times Y \setminus ((X \setminus F) \times Y) = X \times Y \setminus (p^{-1}(X \setminus F)), p^{-1}(F)$ is gb-closed.

Next we show that each factor space is GBO-connected. Suppose that X is not GBO-connected. By Theorem 5.2, there exists non-empty proper subset A of X which is both gb-open and gb-closed in X. Then $p^{-1}(A) = A \times Y$ is non-empty proper subset of $X \times Y$ which is both gb-open and gb-closed in $X \times Y$. This contradicts the fact that $X \times Y$ is GBO-connected. Hence X is GBO-connected. The proof for a space Y is similar to the case of X. \square

References

- 1. M. E. Abd-El-Monsef. S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. **12** (1983), 77-90.
- 2. D. Andrijević, Some properties of the topology of α -sets, Mat. Vesnik. **29** (1983), 1-9.
- 3. D. Andrijević, Semi-preopen sets, Mat. Vesnik. 38 (1986), 24-32.
- 4. D. Andrijević, On the topology generated by preopen sets, Mat. Vesnik. 39 (1987), 367-375.
- 5. D. Andrijević, On SPO-equivalent topologies, Suppl. Rend. Circ. Mat Palermo 29 (1992), 317-328.
- 6. D. Andrijević, On b-open sets, Mat. Vesnik. 48 (1996), 59-63.
- 7. D. Andrijević and M. Ganster, A note on the topology generated by preopen sets, Mat. Vesnik. **39** (1987), 115-119.
- 8. I. Arokiarani, K. Balachandran and J. Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. 20 (1999), 93-104.
- 9. S. P. Arya and T. Nour, Characterization of s-normal spaces, Indian J. Pure Appl. Math. (1987), 717-719
- K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological space, Mem. Fac. Sci. Kochi Univ. 12 (1991), 5-13.
- K. Balachandran, P. Sundaram and H. Maki, Generalized locally closed sets and GLC-continuous funtions, Indian J. Pure Appl. Math. 27 (1996), 235-244.
- 12. K. Balachandran, R. Devi and H. Maki, Generalized α -closed maps and α -generalized closed maps, Indian J. Pure Appl. Math. **29** (1998), 37-49.
- 13. K. Balachandran, and Arokiarani, On generalized preclosed sets, preprint.
- 14. P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987), 375-382.

- 15. S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. **74** (1974), 233-254.
- J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. 16 (1995), 35-47.
- 17. J. Dontchev, H. Maki, On behavior of gp-closed sets and their generalizations, Mem. Fac. Sci. Kochi Univ. Ser. A. 19 (1998), 57-72.
- 18. W. Dunham and N. Levine, Further results on generalized closed sets in topology, Kyungpook Math. J. 20 (1966), 169-175.
- 19. W. Dunham, A new closure operator for non- T_1 topologies, Math. Vesnik 4(17) (1980), 55-59.
- 20. W. Dunham, $T_{1/2}$ -space, Kyungpook Math. J. **17(2)** (1977), 161-169.
- A. A. El-Atik, A study on some types of mappings on topological spaces, M.
 Sc. Thesis Egypt. Tanta Univ. Ser. A. (1997)
- 22. M. Ganster and D. Andrijević, On some questions concerning semi-preopen sets, Journ, Inst. Math. and Comp. Sci.(Math. Ser.) 1 (1988), 65-75.
- 23. Y. Gnanambal, On generalized preregular closed sets in topoloical spaces, Indian J. pure appl. Math. 28 (1997), 351-360.
- 24. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- 25. N. Levine, Generalized closed sets in topology, Rend. Cir. Mat. Palermo 19 (1970), 89-96.
- R. A. Mahmoud and M. E. Abd-El-Minsef, β-irresolute and β-tolpological invariant, Proc. Pakistan Acad. Sci., 27(3) (1990), 285-296.
- 27. H. Maki, J. Umehara and T. Noiri, Every topological space is $pre-T_{1/2}$, Mem. Fac. Sci. Kochi Univ. Ser. A. 17 (1996), 33-42.
- 28. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and week precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47-53.
- A. A. Nasef, On b-locally closed sets and related topics, Chaos. Solitons and Fractals 12 (2001), 1909-1915.
- 30. O. Njåstad, On some classes of nearly open sets, Pacific J Math. 15(9) (1965), 961-970.

- 31. T. Noiri, H. Maki and J. Umehare, Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Ser. A. 19 (1998), 13-20.
- J. H. Park, B. Y. Lee and M. J. Son, On δ-semiopen sets in topological space,
 J. Indian Acad. Math. 19 (1997), 59-67.
- 33. J. H. Park, B. Y. Lee and Y. B. Park, On gp-closed sets and pre gp-continuous functions, Indian J. Pure Appl. Math. 33 (2002), 3-12.
- 34. J. H. Park, Almost p-normal, mildly p-normal spaces and some functions, Chaos, Solitons and Fractals 18 (2003), 267-274.