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1. Introduction

The initiation of the study of generalized closed sets was done by Levine
[25] in 1970 as he considered sets whose closure belongs to every open super-
sets. He called them generalized closed (briefly g-closed) and studied their most
fundamental properties. The spaces in which the concept of g-closed sets and
closed sets coincide are called T} j2-spaces. In 1977, Dunham [20] showed that
Ty /2-spaces are precisely the spaces in which singletons are open or closed. In
1990, Balachandran et al. [10] introduced the concept of a new class of maps,
namely g-continuous maps, which includes the class of continuous maps, and
a class of gc-irresolute maps defined as an analogy of irresolute maps. More-
over they introduce the concept of GO-connectedness of topological spaces and
prove product theorem for GO-connected spaces, i.e. if the product space of two
non-empty spaces is GO-connected, then each factor space is GO-connected.

The generalization of generalized closed sets and generalized continuity was
intensively studied in recent years by Balachandran, Devi, Maki, Arya, Nour,
Arokiarani and Sundaram, et al.

Bhattacharya and Lahiri [14] introduced the notion of semi-generalized closed
sets by replacing the closure operator in the original Levin’s definition with semi-
closure operator and by replacing openness of the superset with semi-openness.
Arya and Nour [9] defined the notion of generalized semi-closed sets (briefly gs-
closed sets). Although g-closed and sg-closed sets are independent notions, they
both imply gs-closedness and the reverse implications fails to be always true.
Maki et al. [27, 31] defined and investigated the concept of gp-closed sets and
used this notion to obtain a characterization of p-normal spaces. This notion
is generalization of preclosed sets which were further studied by Dontchev and
Maki [17], Arokiarani et al. [8] Noiri et al. [31] and Park et al. [33]. In
1995, Dontchev [18] defined the concepts of generalized semi-preclosed sets and
semi-pre-T;/o-spaces. He showed that the notions of sp-closed sets and gs-
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closed sets are independent from each other. Moreover, he investigated the

characterizations of semi-pre-T} /2, semi-17 /5 and T} jo-spaces.

The aim of this paper is to continue the study of the above mentioned classes
of sets by introducing the notion of generalized b-closed sets (briefly, gb-closed
sets) via the concept of b-open sets due to Andrijevi¢ [6]. The class of gb-
closed sets contains properly the classes of g-closed, gs-closed, sg-closed and
gp-closed sets and is contained in the class of gsp-closed sets. And generalized
b-continuous functions are defined and investigated. Moreover, we introduce the
concept of G BO-connectedness of topological spaces and prove product theorem
for GBO-connected spaces as follows:

Theorem 5.8. If the product space of two non-empty spaces is GBO-connected,
then each factor space is GBO-connected.



2. Preliminaries

In recent years a number of generalization of open sets have been considered.

Definition 2.1. A subset A4 of a space (X, 7) is called:
(1) a-set [30] if A C int(cl(int(A)),
(2) semi-open [24] if A C cl(int(A)),
(3) preopen (28] if A C int{cl(A)),
(4) semi-preopen [3] if A C cl(int(cl{4))),
(5) b-open [3] if A C cl(int(A)) Uint(cl(A)).

We denote the classes of these sets in a space (X, 1) by 7,, SO(X), PO(X),
SPO(X) and BO(X), respectively. All of them are larger then 7 and closed
under forming arbitrary unions. Njastad [28] showed that 7, is a topology
on X. In general, SO(X) need not be a topology on X, but the intersection
of a semi-open set and an open set is semi-open. The same result haolds for
PO(X), SPO(X) and BO(X). The complement of a semi-open set is called
semi-closed. Thus A is semi-closed if and only if int(cl{(4)) C A. The notions
of preclosed, semi-preclosed and b-open sets are similarly defined. For a subset
A of a space X the semi-closure (resp. preclosure, semi-preclosure, b-closure)
of A, denoted by scl(A} (resp. pcl(A), spcl(A), bel(A)) is the intersection of all
semi-closed (resp. preclosed, semi-preclosed, b-closed) subsets of X containing
A. Dually, the semi-interior (resp. preinterior, semi-preinterior, b-interior}
of A, (resp. pint(A), spint(A), bint(A)) is the union of all semi-open(resp.
preopen, semi-preopen, b-open) subsets of X contained in A. Tt is obvious that
PO(X)uUSO(X) c BO(X) C SPO(X) and we shall show that the inclusions
cannot be replaced with equalities.

Example 2.2 [6]. Consider the set R of real numbers with the usual topology,
and let A =[0,1JU((1,2)N@Q) where Q stands for the set of rational numbers.
Then A is b-open but neither semi-open nor preopen. On the other hand, let
T'= [0,1)NQ. Then T is semi-preopen but not b-open.



Theorem 2.3 [6]. For a subsets A of a space (X, 7), the following are equiva-
lent:

(a) A is b-open.

(b) A = pint(A) U sint(A).

(c) A C pcl(pint(A)).

Theorem 2.4 [6]. Let A be a subset of a space (X, 7). Then:
(a) bcl(A) = scl(A) N pcl(A).
(b) bint(A) = sint{A) U pint(A).

Definition 2.5. A subset A of a space (X, 7) is called: ‘

(a) generalized closed (briefly, g-closed) [25] if cl(A) ¢ U whenever 4 c U
and U is open in X,

(b) semi-generalized closed (briefly, sg-closed) [14] if scl{A) C U whenever
A C U and U is semi-open in X,

(c) generalized semi-closed (briefly, gs-closed) [9] if scl(A) ¢ U whenever
ACU and U is open in X,

(d) generalized preclosed (briefly, gp-closed) [13] if pcl(A) C U whenever
ACU and U is open in X,

(e) generalized semi-preclosed (briefly, gsp-closed) [16] if spcl(A) C U when-
ever A C U and U is open in X.

Definition 2.6 [16]. A space (X,7) is called:
(a) Ty /9 if every generalized closed is closed,
(b) semi-T7 ;5 if every sg-closed is semi-closed,
(c) semi-pre-T /5 if every gsp-closed is semi-pre-closed.

Theorem 2.7 [16]. For a space (X, 7), the following implications hold:

T1 :>T1/Q :>T()

Theorem 2.8 [16]. A space (X, 1) is semi-T' s if and only if every singleton

is (semi)-open or semi-closed.



Remark 2.9 [16]. Every T} /2 space is semi-T7,,. Then the reverse is not
usually true. The following example shows this: let X —= {a,b,c} and T =
{¢,{a}, X}, then X is semi-T1 /5 but not T 5.

Theorem 2.10 [16]. For a space (X,T), the following conditions are equiva-
lent:

(a) X is semi-pre-T; ;5.

(b) Every singleton of X is closed or semi-preopen.

(c¢) Every singleton of X is closed or preopen.

(b) Every nowhere dense singleton of X is closed.

(c) Every non-preopen singleton is closed.

Remark 2.11 [16]. Every T} /2 space is semi-pre-17 /5. But a semi-pre-T} /2
space need not be T} /5. The following example shows this: For the real line with
the indiscrete topology, none of the singletons in this space is either semi-open

or semi-closed. Thus it is not even semi-7} /2

In remark 2.9, X need not semi-pre-T, s2- Hence the concepts of semi-pre-
T /2 and semi-T,, spaces are independent from each other.

Theorem 2.12 [16]. For a space (X, 1), the following conditions are eqivalent:
(a) X is Tl/Q'
(b} X is semi-T} /2 and semi-pre-T ;5.

Definition 2.13 [16]. A function f: (X,7) — (Y, o) is called:

(a) precontinuous [28] (resp. 3-continuous [1], gp-continuous [8], gsp-continu
ous [16]) if f~1(V) is preclosed (resp. B-closed, gp-closed, gsp-closed) in (X, 7)
for every closed set V of (Y,0),

(b) B-irresolute [26](resp. gp-irresolute (8], gsp-irresolute [16]) if f~HV) is
3-closed, (resp. gp-closed, gsp-closed) in (X,7) for every 3-closed (resp. gp-
closed, gsp-closed) set V of (Y,0),

(c) pre-B-closed [26] if f(V') is semi-preclosed in (Y, &) for every semi-preclosed
set V of (X, 7).



Remark 2.14. From above definition, for a function (X, 7} — (Y, o), we have

the following diagram of implications:

B-irresoluteness gsp-irresoluteness

X3 1

precontinuity —  S-continuity —  gsp-continuity

Theorem 2.15 {16]. Let f : (X,7) — (Y,0) be a gsp-irresolute function. If
(X,7) is a semi-pre-T} s2-space, then f is B-irresolute.

Proof. Let V be a semi-preclosed subset of (Y, o). Then V is gsp-closed. Since f
is gsp-irresolute, then f~1(V) is gsp-closed in (X, 7). Since X is semi-pre-T /2,
then f~1(V) is semi-preclosed in (X, 7). Hence f is B-irresolute. []

Theorem 2.16 [16]. Let f: (X,7) — (Y,0) be a continuous and pre-8-closed
function. Then for every gsp-closed set A of (X, 7), f(A) is gsp-closed in (Y, 7).

The composition of two gsp-continuous funtions need not be gsp-continuous.
For, consider the following example:

Example 2.17 [19]. Let X = {a,b,¢,d, e}, 7 = {¢,{a,b},{c,d},{a,b,¢c,d}, X}
and let o = {¢, {a,d, e}, X}. Let f: (X,7) = (X,0) be the identity function.
Then f is gsp-continuous. Let v = {¢,{e}, X}. Clearly the identity fun-
tion g : (X,0) - (X,v) is also gsp-continuous, since {a,b,e,d} is gsp-closed
in (X, 7). But the composition function g o f : (X,7) — (X,v) is not gsp-
continuous, since {a,b,c,d} is closed in (X, ) but not gsp-closed in (X, 7).

However the following theorem holds.

Theorem 2.18 [19]. Let f: (X,7) — (Y,0) and g : (Y,0) = (Z,v) be two
funtions. Then:
(a) If g is continuous and f is gsp-continuous, then go f is gsp-continuous.

(b) If g is gsp-irresolute and f is gsp-irresolute, then g o f is gsp-irresolute.
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(c) If g is gsp-continuous and f is gsp-irresolute, then go f is gsp-continuous.
(d) Let (Y,0) be semi-pre-1' sp-space. If g is gsp-continuous and f is (3-
irresolute, then g o f is 3-continuous.

Theorem 2.19 [16]. Let f : (X,7) — (Y,0) be an onto, gsp-irresolute and

pre-B-closed function. If (X,1) is a semi-pre-Ty;, space, then (Y,o) is also

semi-pre-11 /.



3. Generalized b-closd sets
Definition 3.1. A subset A of a space (X, 7) is called generalized b-closed
(briefly, gb-closed) if bcl(A) C U whenever A C U and U is b-open in X.
Remark 3.2. From Definitions 2.2 and 3.1, we have the following diagram of

implications:

gs-closed

/" hS
g-closed gb-closed — gsp-closed

N e
gp-closed

The reverses in the remark above need not be true as the following examples
show.

Example 3.3. Let X = {a,b,¢,d,e} and v = {X, ¢, {a}, {€},{c,d}, {a, e}, {a,c,
d},{c,d,e}, {a,c,d, e}, {b,c,d,e}}. Then {a,d,e} is gsp-closed but not gb-closed
in (X,7).

Example 3.4. Let X = {a,b,c,d,e} and 7 = {X, ¢, {a, b}, {c,d}.{a,b,c,d}}.
Then {b, ¢} is gb-closed but not gs-closed in (X, 7).

Example 3.5. Let X = {a,b,c} and 7 = {X, ¢, {a}, {b},{a,b}}. Then {a} is
gb-closed but not gp-closed in (X, 7).

Example 3.6. Let X = {a,b,c,d e} and 7 = {X,¢,{a},{a,b,c}}. Then
{a,b,d} is gb-closed but not &-closed in (X, 7).

The union (or intersection) of two gb-closed sets need not be gb-closed.

9



Example 3.7. Let (X, 7) be a topological space given in Example 3.3. Put
A = {¢,d} and B = {e}. Then A and B are gb-closed but AU B is not gb-closed
in X.

Example 3.8. Let X = {a,b,c,d,e} and 7 = {X, ¢,{a},{a,b,c}}. Put A =
{a,b,c} and B = {a,¢,e}. Then A and B are gb-closed but ANB is not gh-closed
in (X, 7).

Theorem 3.9. If A is gb-closed in (X, 7), then bel(A)\ A contains no nonempty
closed set of X.

Proof. Suppose that F' is nonempty closed subset of bel(4) \ A. Then F
bel(A) \ A. Therefore F' C bel(A) and F € X \ A. Since X \ F is open
and A is a gb-closed, bcl(A) € X \ F. Therefore F C X \ bcl(A). Thus
F Chel(A) N (X \ bel(A)) = ¢. This is a contradiction. [

However, the converse of above theorem need not be true as is seen from the
following example.

Example 3.10. Let X = {a,b,c,d} and 7 = {X, ¢, {a}, {¢}, {a, b}, {a, ¢}, {a, e,
d},{a,b,c}t}. Put A= {a,c}. Then bel(A)\ A = {b,d} contains closed set {d}
but A is not gb-closed in (X, 7).

Corollary 3.11. Let A be gb-closed in X. Then A is b-closed if and only if
bcl{A) \ A is closed.

Proof. If A is b-closed then bcl(A) \ A = ¢ is closed.
Conversely, since bcl(A) \ A is gb-closed set and bel(A4) \ A is closed subset
of itself, by above theorem bel(A4)\ A = ¢ and hence A be bclosed, [

Theorem 3.12. Let A be a gb-closed set of X and A C B C bcl(A). Then B
is gb-closed in X.

Proof. Let B C U and U is an open set and bcl(A) ¢ U. Then bel(B) C
bel(A) C U. Hence B is gb-closed. [

10



Theorem 3.13. Let BO(X,7) = 7. Let B be gb-closed relative to A and A
be gb-closed and open in X. Then B is gb-closed relative to X.

Proof. Let B C G and G be open in X. Then B C ANG and ANG is open in
A. Since B is gb-closed relative to A, bel4(B) = bel(BYNA C ANG. Therefore
ANbel(B) C G and so A C GU(X \ bel(B)). By hypothesis GU (X \ bel(B)) is
a open set. Then bcl(B) C bel(4) € G U (X \ bel(B)). Hence bel(B) ¢ G. O

Corollary 3.14. Let BO(X,7) = 7. If A is gb-closd and F is b-closed, then
ANF is gb-closed.

Proof. Since F is b-closed, ANF is a b-closed set of A and then ANFE is gb-closed
in A. Hence, by Theorem 3.13, AN F is gb-closed in X. [J

Lemma 3.15. Let ACY C X andY be an open subspace of a space X. Then
we have bcely (A) = belx (A) MY, where bely (A) is b-closure of A in subspace
Y.

Theorem 3.16. Let ACY C X andY beopen in X. If A is gb-closed relative
to X, then A is gb-closed relative to Y.

Proof. L.et A C G and G be an open set of Y. Then there exists an open set
H of X such that HNY = G. Since B C H, H is an open set of X and B
is a gb-closed set of X. Therefore bcl(B) € H. By Lemma 3.15, bely (A) =
bel(A)NAC HNACG. Hence A is a gb-closed relative to Y. [

Theorem 3.17. Let A be subset of a space (X, 7). Then A is gb-closed if and
only if - C BF(X, ), where BF(X, 1) is the family of all b-closed sets.

Proof. Suppose that 7 C BF(X,7). Let A C G and G be an open set. Then
bel{A) C bel(G) = G and so 4 is gb-closed. Conversely, let G € 7. Since
G C G and G is gb-closed, bcl(G) C G and then G € BF(X,7). Hence
T C BF(X,r). O

Definition 3.18. A subset A of (X, 7) is called gb-open if its complement X\A
is gb-closed.

11



Theorem 3.19. Let A be subset of a space (X, 7). Then A is gb-open if and
only if F C bint(A) whenever F C A and F is closed in X.

Proof. Let F be closed in X and F ¢ A. Then X\ AC X\ Fand X\ F is
open in X. Since X \ A is gb-closed, bel(X \ A) C X \ F. Hence F C bint(A).
Conversely, let U be open in X and X \ A C U. By hypothesis, X\U C bint(A)
and bel(X \ A) C U. Therefore X \ A is gb-closed, that is, A is gb-open. [

Definition 3.20. Two subsets A and B of a space (X, 7) is said to be b
separated if bcl(B) N A = ¢ = bel(4) N B.

Theorem 3.21. Let BO(X,7) = 7. Then:
(a) If A and B are b-separated b-open sets, then AU B is gb-open.
(b) If A and B are b-separated gb-closed sets, then AN B is gb-closed.

Proof. We prove only (a). Let F be a closed set and F ¢ AU B. Then
Fnibcl(A) C{{(AUuB)Nbel(A)} = An (Bnbcl(A)) = A. Thus Fn bel(A) C
bint(A). Similarly, F N bcl(B) C bint(B). Hence FF ¢ {F N (AU B)} C
{(F Nbel(A)) U (F Nbel(B))} ¢ {bint(4) Ubint(B)} c bint(4 U B). Hence
AU B is gb-open. [

The intersection of gb-open sets is generally not gb-open as the following
example shows.

Example 3.22. Let X = {a,b,c,d} and 7 = {X, ¢, {a}, {b},{a,b}}. Put A =
{a,c,d} and B = {b,¢,d}. Then A and B are gb-open but AN B is not gh-open
in (X, 7).

‘Theorem 3.23. Let A be a gb-open set and bint(A) € B C A. Then B is
gb-open set.

Proof. Let I is a closed set and F C B. Since A is gb-open and F C bint(A),
F C bint(A) C bint(B). Hence B is gh-open. O

Theorem 3.24. Let BO(X,7) = 7 and A C X. Then A is gb-closed if and
only if bel(A)\ A is gb-open.

Proof. Let F' C bcl(A) \ A and F be a closed set. By Theorem 3.8, we have
F'= ¢. Hence F C bint(bcl(A) \ A). By definition bel{A)\ A is gh-open.

12



Conversely, let A € O and O be an open set. Now, bel(A4) N (X \O) C
bel(A) N (X \ A) = bel(A) \ A. Since bel(4)N (X \ O) is closed and bel(A)\ A is
gb-open, bel(A) N (X \ O) C bint(bel(A) \ A) = ¢. Thus bel(A4) N (X\0) =2,
that is, bel(A) C O. Hence A is gb-closed. [

Definition 3.25. The gb-closure of subset A of a space X, denoted by gb-cl*(A),
is gb-cl"(A) = N{F : A C F and F is gb-closed}.

Theorem 3.26. (a) For subsets A, B of (X, 1), the following implications hold:

i) A C gb-cI*(A) C bcl(A).

i} gb-cI*(¢) = ¢ and gb-cl*(X) = X.

iii) gb-cI*(A) N gb-cI*(B) C gb-c*(AN B).

iv) gb-cI*(gb-cI* (A)) = gb-cI*(A).

v) If A is gb-closed in X, then gb-cI*(A) = A.

(b) If BO(X, ) is closed under finite intersections, then GBO(X, 7) is closed
under finite intersections.

(c) Let 7y = {U : gb-cF(X\U)= X\ U}. If BO(X, 1) is closed under finite
intersections, 7, is a topology for X.

Proof. (a) i) and ii) are trivial.

iii) Let F be a gb-closed set of AUB. Then A,B < F and so gb-cl*(A4),
gb-cI"(B) C F. Thus gb-cl*(A) U gb-cl*(B) C gb-cl* (AU B).

iv) Let F' be a b-closed set and A C F. Then gb-cl*(4) C F and hence
gb-cl*(gb-cl"'{A)) C gb-cl*(A). But from (a), gb-cl*{4) C gb-cl*(gb-cl*(A)).
Thus gb-cl*(gb-cl*(A)) = gb-cl*(A).

(b) Let A C GBO(7) and B C GBO(r). Let U be an open set containing
X\N(ANB). Since X\ A C U and X\ B C U, we have bel(X \ A) C
U and bel(X \ B) C U. Since BO(X) is closed under finite intersections,
bel(X \ (AN B) = be(X \ A) Ubel(X \ B) € U. Therefore X \N(ANB) is
gb-closed in (X, 7) and hence AN B € GBO(r).

(¢) i) By (a), clear.

ii) Let U; € 7y for all ¢ € 1. Then gh-cl*(X \ U;) = X\ U;. By (a),
XN (UU3) C gb-cl" (X A\ (Uilh)). And gb-cl*(X\ (UU;)) = gh-cl*(Ny(X \ T5)) ©

13



gb-cI" (X \U;) = X\ U; for all j € I. Hence gb-cl*(X \ (U;T;)) C (X \U;) =

iii) Let U,V € 7. Then gb-cl"(X \ U) = X \ U and gb-cl*(X \ V) =
X\ V. Since BO(X, 1) is closed under finite intersections, gh-cl* (X\NUNV)) =
go-cl* (X \U)U(X\V)) = gb-cI* (X \U)Ugbcl*(X\ V) = (\U)U(X\V) =
X\ (UNV). Therefore, by i)-iii), 77 is a topology for X. O

Theorem 3.27. (a) For a space (X, 7), every gb-closed set is preclosed (ie.
GBO(r) = BO(r)) if and only if 7} = BO(7) holds.

(b) For a space (X, 1), every gb-closed set is closed (i.e. GBO(r) = 7) if and
only if 7 = 7 holds.

Proof. (a) Since GBO(t) = BO(r) holds by assumption, we have gb-cl*(E) =
bel(E) for every subset E of (X, 7). We need to show 7 € BO(7). Let V .
Then, X \ V = gb-cI"(X \ V) = bel(X \ V) and so X \ V is b-closed, that
18, V€ BO(r). Conversely, let VV be a gb-closed set. Then by assumptions,
gb-cI'(V) = V and hence X \ V € 77 = BO(7). Therefore, every gb-closed set
is b-closed.

(b) By 7 € BO(r) C 7, this is shown similarly to the proof of (a).

Theorem 3.28. For a space (X, 1), the following conditions are equivalent:
(a) X is a semi-pre-T) /5.
(b} Every singleton of X is closed or b-open.
(c) Every gb-closed is b-closed.

Proof. (a)¢>(b): Since preopen is b-open, by Theorem 2.10, trivial.

(b)=>(c): Let A(C X) be gb-closed. We need to show that A is b-closed
or eqivalently that bel(A) = A. The inclusion A C bcl(A) is trivial. For the
reverse, let x € bcl(A4). By assumption {z} is either closed or b-open. We
consider these two cases.

Case 1. Let {z} be closed. By Theorem 3.9 bcl(A) \ A does not, contain {z}.
Since o € bcl{A), then z € A.

Case 2. Let {x} be preopen. Clearly {x} is b-open and since = € hel(A),
then {z} N A+ ¢. Thus x € A.

This shows that in both cases x € A or equivalently hel(A) C A.

14



(c)=(b): Assume that for some z € X the set {z} is not closed. Then
X\ {z} is not open. Thus the only open set containing X \ {z} is X itself and
hence X \ {z} is trivially gb-closed. By (c) it is b-closed or eqivalently {z} is
b-open. [

Theorem 3.29. For a space (X, 1), the following conditions are equivalent:
(a) X is a semi-pre-T} 5.

(b) Every non b-open singleton is closed.

Proof. It follows from Theorem 3.28. [

15



4. Generalized b-continuous functions

Definition 4.1. A function f: X — Y is called:

(a) b-continuous [20] (resp. b-irresolute) if for every open (resp. b-open) set
G of Y, f~YG) is b-open in X.

(b) pre-f-closed if for every b-closed set F of X, f(F) is b-closed in Y.
Definition 4.2. A function f: X — Y is called:

(a) generalized b-continuous (briefly, gb-continuous) if for every closed set F
of Y, f~1(F) is gb-closed in X.

(b) generalized b-irresolute (briefly, gb-irresolute) if for every gb-closed set I
of Y, f 1(F) is gb-closed in X.
Theorem 4.3. Every b-continuous function is gb-continuous.

Proof. Since every b-closed set is gb-closed, it is obvious. [

Remark 4.4. For a function f: X — Y from Definitions 2.13, 4.1 and 4.2, we
have the following diagram of implications:

gp-irresoluteness gb-irresoluteness gsp-irresoluteness

1 1 S

gp-cotinuity —  gb-continuity —  gsp-continuity

Example 4.5. Let X = {a,b,c}, 7 = {X,¢,{a}}, Y = {p,¢} and o =
{X, ¢, {p}}. Let f: (X,7) = (X,0) be defined by f(c) = q, f(a) = f(b) = p.
Then f is gb-continuous, but it is not b-continuous.

Lemma 4.6. Let A be a subset of a space (X, 7). Then x € gh-cI*(A) if and
only if for each gb-open set U containing x, U N A # ¢.

Proof. Suppose that x € gb-cl*{A). If there exists a gb-open set U containing x
such that UNA = ¢. Then A C X\U. Since X\U is gb-closed, gb-cl*(A) C X\U
and so z ¢ gb-cl*(A). This is a contradiction.
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Conversely, suppose that x ¢ gb-c1*(A). Then there exists a gb-closed set F
such that AC Fand z ¢ F. Thus z € X \ F and X \ F is a gb-open set but
X\ FMA=¢. This is a contradiction by hypothesis. [J

Theorem 4.7. Let f: (X,7) > (Y,0) be a function.

(a) f is gb-continuous.

(b) The inverse image of each open set of Y is gb-open in X.

(¢) flgb-cI*(A)) C cl(f(A)) for each A C X.

(d) For each x € X and each V is open set containing f(z), there exists a
gb-open set U containing x of X such that f(U) C V.

Then we have the following implications:

(a) & (b) = (c) & (d)

Proof. (a)<(b): From definition, it is clear.

(a)=-(c): Let A be any subset of X. Since A C f 1(cl(f(A))), by (a),
gb-cl*(4) C ghel*(f M (A(F(A)) = f M(A(f(A))). Hence f(gbcl*(4)) C
FUEHA(£(A))) C cl(f(A)).

(c)=(d): Let z € X and V be any open set containing f(z). Let A =
F7HX\V) then = ¢ A. Since f(gbcl*(4)) C c(f(4)) ¢ X\ V. Then
gb-cI*(A) < f7Y(f(gbcl*(4)) € F YX \V) = A. Therefore gb-cl*(A4) = A.
Since x ¢ gb-cl*(A), there exists a gb-open set U containing = such that UNA =
¢. Thus f(U) C f(X\A) CV.

(d)=>(c): Let y € f(gb-cl*(4)) and V be any open neighborhood of 3. Then
there exists + € X and there exists a gb-open set U such that f(z) = y,
reU,z € gbcd (A) and f(U) C V. Since x € gb-cl*(A), U N A # ¢. Hence
FANV # dandsoy = f(X) € cl({f(A4)). Hence f(gbcl*(A)) Ccl(f(A). O

Theorem 4.8. Let f: (X, 7) — (Y,0) be a function.

(a) f is gb-irresolute.

(b) The inverse image of each gb-open set of Y is gh-open in X .

(c) f(gb-cI"(A)) C gb-cI"(f(A)) for each A C X.

(d) For each x € X and each V is gb-open set containing f(x), there exists
a gb-open set U containing = of X such that f(U) C V.
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Then we have the following implications:
(a) = (b) = (c) < (d)
Proof. Similarly to Theorem 4.7. [

Theorem 4.9. Let f: (X,7) — (Y,0) be a gb-continuous function and 7 =
BO(X, 7). If H is a gb-closed and open subspace of (X,7), then f | H: (H,7 |
H) — (Y, o) is gb-continuous.

Proof. Let F be a closed set of Y. By using assumption and Corollary 3.13
f7HF)N H is a gb-closed set of X. By Theorem 3.14, f"Y(F)NH = (f |
H) 1(F) is a gbclosed set of H. Thus f | H is gb-continuous. O

Theorem 4.10. Let X = HUG be a space with topology 7 and Y be a space
with topology o. Let f : (G,7 | G) = (Y,0) and g : (H,7 | H) — (Y,0) are
gb-continuous functions such that f(z) = g(x) for all x € G H. Suppose that
BO(X,r) = v and G, H are gb-closed and open in X. Then the combination
h:(X,7) = (Y,0) is gb-continuous.

Proof. Let F be any closed set of Y and A=Y{F) = f Y(F)Uug Y (F)=CuUD
where C'= f1(F), D = g71(F). Since C is a gb-closed set of H, by hypothesis,
C'is gb-closed in X. Similarly, D is gb-closed in X. By hypothesis, C U D is a
gb-closed set. Thus h™!(F) is gb-closed in X. Hence A is gb-continuous. [J

Theorem 4.11. If f : (X,7) — (Y, 0) is gb-irresolute and (X, 1) is a semi-pre-
Ty/9-space. Then f is b-irresolute.

Proof. Tet V be a b-closed subset of Y. Then V is gb-closed. Since f is gb-
irresolute, f1(V) is gb-closed in X. And, since X is semi-pre-T} /o, f~1(V} is
b-closed in X. Hence f is b-irresolute. [J

Theorem 4.12. Let f : (X,7) — (Y,0) be continuous and pre-b-closed. Then
for every gb-closed set A of (X,7), f(A) is gb-closed in (Y, ).

Proof. Let A be gb-closed in X. Let f(A) C O, where O is open in Y. Since A
is gb-closed and f~1(O) is open in X, bel(A) ¢ f~(0) and so f(bcl(A)) C O.
Therefore bel(A) C bel(f(bel(A))) = f(bel(A)) € O, since f is pre-b-closed.
This implies that f(A) is gb-closed in Y. []
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Theorem 4.13. Let f: (X,7) = (Y,0) and g : (Y,0) — {Z,v) be two fun-
tions. Then:
(a) If g is continuous and f is gb-continuous, then g o f is gb-continuous.
(b) If g is gb-irresolute and f is gb-irresolute, g o f is gb-irresolute.
(c) If g is gb-continuous and f is gb-irresolute, then g o f is gb-continuous.
(d) Let (Y,0) be semi-pre-Ty y-space. If g is gb-continuous and f is b-

irresolute, then g o f is b-continuous.
Proof. Obvious. [

Theorem 4.14. Let f : (X,7) — (Y,0) be a gb-irresolute and pre-b-closed
surjection. If (X, 7) is a semi-pre-T so-space, then (Y, 0) is also semi-pre-T} /2-

Proof. Let A be a gb-closed subset of Y. Since f is gb-irresolute, f 1(A) is
gb-closed in X. And, since X is semi-pre-T} /5 space, f 1(A) is b-closed in X.
By the rest of the assumption, it follows that 4 is b-closed in Y or equivalently
Y is semi-pre-T7 /. O
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5. GBO-connectedness

Definition 5.1. A space X is said to be GBO-connected if X cannot be written
as a disjoint union of two non-empty gb-open sets. A subset of X is GBO-
connected if it is GBO-connected as a subspace.

Theorem 5.2. For a space X, the following are equivalent:

(a) X is GBO-connected.

(b) The only subsets of X which are both gb-open and gh-closed are the
empty set ¢ and X .

(c) Each gb-continuous function of X into a discrete space Y with at least

two points is a constant function.

Proof. (a)=-(b): Let U be a gb-open and gb-closed subset of X. Then X \ U is
both gb-open and gb-closed. Since X is the disjoint union of the gb-open sets
U and X \ U, one of these must be empty, that is I/ = ¢ or U = X.

(b)=(a): Suppose that X = AU B where 4 and B are disjoint non-empty
gb-open subsets of X. Then A is both gb-open and gb-closed. By assumption,
A= ¢ or X. Hence X is GBO-connected.

(b)=(c): Let f: X — Y be a gb-continuous function. Then X is covered by
gb-open and gb-closed covering {f!(y) : y € ¥'}. By assumption, f (y) = ¢
or X foreach y € Y. If f~'(y) = ¢ for all y € Y then f fails to be a function.
Then there exists only one point y € Y such that f~'(y) # ¢ and hence
S Yy) = X which shows that f is a constant function.

(¢)=(b): Let U be both gb-open and gb-closed in X. Suppose U # ¢. Let f :
X — Y be a gb-continuous function defined by f(U) = {y} and f(X\U) = {w}
for some distinct points y and w in Y. By assumption, f is constant. Hence we
have 7 = X. [

It is obvious that every G BO-connected space is connected. The following

example shows that the converse is not true.

20



Example 5.3. Let X = {a,b,c} and 7 = {X, ¢, {a}}. Then (X,7) is con-
nected. However, since every subset of X is both gb-open and gb-closed, (X, 1)
18 not GBO-connected by Theorem 5.2.

Theorem 5.4. In space (X, 7) with at least two points, if 1 = BF(X, ), then
X is not GBQO-connected.

Proof. Let 7 = BF(X, 7). Then every subset of X is gb-closed. In fact, let
A C X and let U € 7 such that A C U. Then bel(A) € bel(U) = U and hence

A is gb-closed. There is a proper non-empty subset of X which is both gb-open
and gb-closed in X. By Theorem 5.2, X is not GBO-connected. []

Theorem 5.5. If f : X - Y is a gb-continuous surjection and X is GBO-
connected, then Y is connected.

Proof. Suppose that Y is not connected. Let Y = AU B where 4 and B
are disjoint non-empty open sets in Y. Since f is gb-continuous and onto,
X = f"HA)U f1(B) where f~1(A4) and f~!(B) are disjoint non-empty and
gb-open in X. This contradicts that fact that X is GBO-connected. Hence Y
is connected. [J

With reference to Theorem 5.5 we have the following:

Theorem 5.6. Let f: (X,7) — (Y,0) be a gb-continuous function and o —
BO(Y,o). If H is an open, gb-closed and GBO-connected subset of X, then
f(H) is a connected subset of ¥ .

Proof. By Theorem 4.8, the restriction f |H of f is gb-continuous. By Theorem
5.9, the image of the GBO-connected space (H,r|H) under flH : (H,7|H) —
(f(H),olf(H)) is connected. Thus (f(H),olf(H)) is connected and hence
f(H) is connected subset of Y. [

Lemma 5.7. Let A and B be subsets of X and Y respectively. If A is gb-open
in (X,7) and B is gb-open in (Y,¢), then A x B is gb-open in (X x Y, 7 x o).

Proof. Let I be a closed subset of (X x Y, 7 x o) such that F ¢ A x B. For each
(z,y) € 1, ) < My} = cd({a} x {y}) = el({x,y}) ¢ c{(F)=F C AxB.
Two closed sets cl{z} and cl{y} are contained in A and B respectively, It
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follows from assumption that cl{z} C bint(A) and cl{y} C bint(B) hold. This
implies that, for each (z,y) € F, (x,y) € bint(A4) x bint(B) C bint(A x B) and
so F' C bint(A x B). Hence A x B is gb-open. [

Theorem 5.8. If the product space of two non-empty spaces is G BO-connected,
then each factor space is GBO-connected.

Proof. Let (X xY,7x0) = (X, ) be projection function and let (X, xY, 7 x ¢)
be a GBO-connected space. We first show that inverse image of every gb-closed
under the projection p is gb-closed. Let F be gb-closed in X. Since X \ F and
Y are gb-open, by Lemma 5.7, p~ (X \ F) = (X \ F) x Y is gb-open. And, since
PUF)=FxY =X xY\((X\F)x¥) = X x ¥\ (o (X \ F)), p~L(F) is
gb-closed.

Next we show that each factor space is GBO-connected. Suppose that X is
not GBO-connected. By Theorem 5.2, there exists non-cmpty proper subset
A of X which is both gb-open and gb-closed in X. Then p A = AxY
is non-empty proper subset of X x Y which is both gh-open and gb-closed in
X x Y. This contradicts the fact that X x Y is GBO-connected. Hence X is
G BO-connected. The proof for a space Y is similar to the case of X. O
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