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1 Introduction

In 1965, Zadeh [20] introduced the concept of fuzzy sets which formed the fun-
damental of Mizzy mathematics. Since then various workers have contributed to the
development of the fuzzy theory. In particular, using the idea of fuzzy sets, Kim et al,
[12,13] introduced fuzzy matrices as a generalization of matrices over the two elenient
Boolean algebra (matrices with elements having values anywhere in the closed interval
|0.1}). Ragab and Emam [15] further studied some properties of the determinant and
adjoint of square fuzzy matrix defined by Thomason [17] and Kim [13], respectively.

Atanassov |1-4] introduced and studied the concept of intuitionistic fuzzy sets as a
generalization of fuzzy sets. Using the idea of “intuitionistic fuzzy sets”, Im et al. |8]
defined the concept of intuitionistic fuzzy matrices as a natural generalization of fuzzy
matrices and in |9] they introduced and studied the determinant of square intuitionistic
fuzzy matrices.

Recently, Mondal and Samanta {14] introduced definitions of generalized intuition-
istic fuzzy sets, as a generalization of intuitionistic fuzzy sets, generalized intuitionistic
fuzzy relations and generalized intuitionistic fuzzy topelogy and studied some of their
properties.

[n this paper, using the idea of “generalized intuitionistic fuzzy set”. we study the
notion of generalized intuitionistic fuzzy matrices as a generalization of fuzzy matrices.
We show that some properties of a square generalized intuitionistic fuzzy matrix such
ax reflexivity, transitivity and circularity are carried over to the adjoint generalized
intuitionistic fuzzy matrix. Finally. we prove that A(det,A) is transitive for general-
ized intuitionistic fuzzy matrix A 1t enables us to construct a transitive generalized
mtuitionistic fuzzy matrix from a given one and it is useful for studying transitive gen-

eralized intuitionistic fuzzy matrix and generalized intuitionistic fuzzy relations [14}.



2 GIF matrices
A genepalized inbwilioristic fuzzy matriz (briefly, GIF matra) A s
A |(48)| - 1(”’ijtbij)|

where A and 13 are fuzzy matrices, and a; A b;; < l, for all . j.
Obviously, every fuzzy matrix A = [{a;;)] is an intuitionistic fuzzy matrix of the
form [{a;;. 1 —ag)] . Every intuitionistic fuzzy matrix A = |{(ay;, b;)} is GIF matrix,

since a;; t by < Limplies a;; A by # % for all 7, 5.

Let A= [(aij, b} and C - [(ey5. dyy)| be m x n GIF matrices and £ = |(eyy, fi;)] be
an re X L GIF matrix. Then the matrix operations defined by

(1) A+ C = [(ay V cij. by Adyy)l;

(2) [(lek<n( z‘k/\‘fkj)-/\l§k5n(bikka-j)”?

(3) AT - (a4, b53)]:

(hy AR AR A k=001,2,

(5)

H) A=Cifa; <ejand by > d;; for all 2. 3.

Let .J be an n x n fuzzy matrix that have all entries 1 and I be an n x n identity

fuzzy matrix, and Z = [({.J — I)|. Then by the simple calculation
AT - TA - A

Theretore, T is the identity GIF matrer.
Let 12 be an nox on permutation fuzzy matrix and P [(P,J — ). Then by the
simple ealewdation

ppt plip T

Therefore, Pis a permatation GHP mnatris.



Theorem 2.1 Let A ({135, b)), C |(ei. di)] and & [(eij- fi)] be exon GIF
matrices. [f A <C. then AE =< CE.

Proof lor cach termwise, (a;x Aeg;) < (cipAeg;) and (b V frj) > (dig Vv (fx;) where
tj ke {l, 2. . n}. Hence

(ail A (—yl_j) Y (ain A (’nj) < (["il I (Jlj) VoW (Cin A (fnj):
and

(hi] v [1]) ANEENG (bin v fnj) = (di] v ./.1_)) Ao A (d‘in V fnj)-
Therefore, AC < CE&. 0
Theorem 2.2 Let A = [(A, B)| be a GIF matric and P be a permutation GIF matriz.

Then PA is a row changed matrir of A and AP is a column changed matriz of A.

Proof Suppose that A is a GIF matrix and P is a permutation GIF matrix which is

generated by a permutation o, where

I 2 - i - {n—-1) n
a(ly o{(2) -+ o(@) - oln—-1) o(n)
Then
PA [ (Vycpenin A ar)s Ay, (1= i V i)
[(aa(i)j:ba(i)j)} :

Therefore, for any 7. the i-th row of P.Ais a row of A. The case of AP is similar to the

above proof. O

Definition 2.3 The deferminant det A of an nx n GIF matrix A - {(a;;. b)) is de-

fimed as follows:

(I(‘t‘./-'l \/ ”’]n(l)/\ "'/\"‘rmr(n)‘ /\ blrr(l)\/ Y bm‘r(u)
AT TESH
where S, denotes the symmetric group of all permutations of the indices {1,2,-- .. n}.

~ 4~



Example 2.4 Let 4 ag| and /5 {b;,] be two fuzzy matrices such that.

Since ag; A by < /2 for all /. j.

(0.8,0.3) (0.5.0.5)

A (A B -
(0.2,0.7) (0.9.0.3)

s a0 2% 2 GIF matrix. We calculate the determinant det A as follows:
detd - det (4. B))
= ({08709} V{0.5A02},{0.3v 03} A{0.5V0.7})
= (0.8V0.2.0.3A 0.7)
= (0.8.0.3).
Theorem 2.5 [f a GIF muatrix C 15 obtained from an n x n GIF matriz A - [(A, B)|

by multiplying A by k € (0, U}, then detC = k{det.A).
Proof Suppose that C = [(¢;. d;;)] = [(kasj, kbi;)| . Then

detC = [(Vaesn Clo(y N Cno(n): Nees, Toy V-V dn(n))]
= {(Vaes,, Raysoy A Ry Ages, Rbigay Voo Vv kbn(n))}
= [(/\‘\/acs,. a1 N gty K Aaes, biay VooV bn(n})i!
[(kdet A, kdet3)}

Lk l(d(*l,/‘: det If)l

k{detA),

Theorem 2.6 Let A [(A B)} be an e x n GIF matrie. Then
det(7;4)  detA  det{AT;),

~ 5~



where iy ts a permnudation: GU matrie which 1s obtained from the identity GIHF malvir

by nterchanging row ¢ and row J.

Proof Let Z;A  [(¢;.di)]. Then, for any 7, j, the é-th (resp. j-th) row of I;A is
the j-th (resp. i-th) row A. In fact, Z;; is a permutation GEHF matrix which is generated

by a permutation

i
ot
Since, for any permutation o € S,
i ‘
o= T€ES,.
7
det’(Iz’j/A‘) = (VgCS" Clo(1) ARRRFA Cho(n): [\agb’n d’a’(]) A A dna(n))
- (VTCSU 101y ARRRNFA Uyyr(n): /\TES” bT(]) ARERTA bm’(n))
det.A.
The case of AZ;; is similar to the above proof. 0

Since any permutation GIF matrix is the product of Z;;'s for some 7, j, we have the

following:

Corollary 2.7 Let A - [{A, B)| be ann x n CIF matriz. Then
det{PAQ) - det A

where P oand Q@ wre any permutation GIF wabrices.

From Corollary 2.7, we know that det(PA)  (det PY{detA) where P is a permuta-

tion GIF matrix and A is any GII matrix. However, in general we have the following:
Theorem 2.8 det{AB) = (det A)(detB3) for any GIF malrices A and B.

~ o~



Example 2.9 Lot

(0.8,0.35) (0.42.0.7) (0.65,0.35) (0.8.0.4H
and B -
(0.5,0.6)  (0.25,0.9) (0.17.0.6)  (0.36,0.7)

he G matrices. Then

(0.65,0.35 0.8.0.44
. 035) (0.8.044)

(0.5,0.6)  (0.5.0.6)

Thus det. A {0.42.0.7), detB = (0.36, 0.6), (det.A)(detBB) = (0.36,0.7) and det(AB) -

(0.5. 0.6). Therefore, det(AB) > {(det.4)(detB).



3 The adjoint of square GIF matrices

Definition 3.1 The adjomnt matriz of an nx n GIF matrix A [(A. B)], denoted by

adjA, is delined as follows:
adj A = (e dij)] [(detAj; detd35;)].

where (det Aj;.detB3;;) is the determinant of the (n — 1) x (n — 1} GIF matrix formed

by deleting row j and column ¢ from A and B, respectively, in the each operations.

We know that detA4;; can be obtained from det A by replacing a;j; by 1 and all other
row-j factors aje. k& # ¢ by 0 and det3;; can be obtained from detf3 by replacing bj;
by O and all other row-7 factors b;r. &/ ¢, hy 1. We also can write the elements Cij

and d;; of adjA as follows:

Cij = \/ Ntcn, Qo) | - dij /\ Vien, dto(t) )
TESnin, TESn
where r; = {1,2,---,n}\ {5} and S,,,,, is the set all permutations of set n; over the

seto ;.

Theorem 3.2 Let A - [(A, B)| and C ~ [(C, D)] be n x n GIF matrices. Then
(1Y A =C mnplies adjA < adj C;
(2) adjA | adjC < adj(A | C);

(3) adi(AT) = (adj )T,

Proof (1) Let adjd ({5 pi5)] and adjC - [(z;;.0045)]. Then

(_-"r_)\ .1/‘1'.)) \/ /\((’HJ Qa1 /\ \Vfl(_nj bfﬂ(f)

rr(S'“J " rf(b'.u..1



and
(zi.j- “"ij) \/ /\!('n) Clat): /\ \/{En) dt(r(t,)
oSy n TS n;
P Fi
IUds clear that gy < zy and yi; > wyy sinee a0y < Cpqpy and by, > dig(ey for every
17 j alty /.
(2) Since A.C < (A 1€}, adjA, adiC < adj{ A4 +C) and so adjA + adjC < adj(A | ().
(3) Let adjA - (@i, ;)] and adj(A") = [(zi;. wi;)]. Then

(-'fzj: yi;) - \/ /\f':fl)afﬂ(f)‘ /\ Vf(n_, bm(t)
oGSy TESh . n
Fr 2
and
(zz'j-, 'wij) - \/ /\a'(t)(-n]ata(t): /\ va(t)Erlj bta(t) )

OE“”TI n O‘EST;, N

Je 3ot
which is the element (a5, 4,:). Hence (adj)? n.dj(.AT). O

Theorem 3.3 Lel A= [(A. B)| be an n x n GIF matriz. Then
{1) A(adjA) = (det A)Z,,:
(2) (adjA)A = (detA)Z,,.

Proof (1) Let A{adjA} - [(x;.v:;)]. Now, the i-th row of Ais
(Cair. b)), (g big), - (@i, b3n).
Then the j-th column of adjA is

det f3;

(det A odetBy). (det Ay det Bya) - (det A i)}

Jree

Thns

{euiy) ( \/ (e A detA ), /\ (b V (i(’t,ffjk)) > (0,1).
1

TheTn 1< kn



]l(‘[l(i(‘

(s yii) \/ (i A det Agg). /\ (b V det B,-k)) ,

17k Flh<ln
which is equal to det A, Therefore, A(adjA) > (det A)VZ,.

(2) The proof is similar to (1). O

Theorem 3.4 Let A (A B) be a GIF matric with o 0°s row in A and a 1°s row in

3 and let O be @ zero matrie. Then (adjA) A - [(O.)].

Proof Let (adjA)A (. 455)] . Then

(@35, Upq) ( \/ {(det Ay A ay;), /\ (det By, v bkq)) .

t7k<n 1<9k<ln
If the ¢-th row of A is 0's and the p-th row of B is I's, then A contains a 0’s row
where k # 7 and By, contains a I's row where k& # p. So detAy; - 0 for every & # ¢,

detBy, = 1 for every & # p. If & =7, then a;; = 0 and if & = p, then bi; = 1 for every

J. Hence
v (detAg; Aag;) - 0 and /\ (det By, V brg) = L.
1<k<n 1< k<n
Therelore, (adjA)A = (O, J)]. O

Theorem 3.5 Let A [(A B)| be an e xn GIF wmatrie. Then det.d - det(adjA).

Proof Since

(det A, detBy) (detAy detByy) - (detA, . detB,,))
) (det Ao detBro)  (detAss. detf3ae) - (det Ao, detB,,0)
;1(1'].,4
L ((h‘l‘-'/1 ler- det lfl e } (d(‘l “12/“ del'BZH) e ((10t"4rt113 d(\'t"liun) ]

~10 ~



({s‘l_(;\d_j./-l)

\/ ((l(’lu"‘iﬂ(l) - A det. 4,”.,. ) /\ ((l(‘,l B],,“] VoV det H,m(”))

Te5, TS,

V (Arcicadet A ) N (Vicendet By )

Lo€ Sn a5,

Vot Vo Menstion), (Vicienl N\ Viewbion))

a&Sy [l Sn!r e a5y, [ Snlu"(”
L

\/ (( \/ Atew, o) M A \/ At nn 40(1)))-

_”‘ESN OCSHIH.U(J) OES,,H EPReA
/\ {( /\ Vicabiogn) V-V /\ Veen, bien))
ag Sy 9€Sn]n,,(1) 055n”7w(n)

\/ ((Atem o) A A Ntean o, (1)) /\ ((Meen big, () V vV (Viem, b, (1))
TE S, 7Sy

for some B € Srnuam‘ > C S,lwam: 6,8, ,

o(n)
\/ {azg,(2) A @z ) N A tagy ) A (@10, A Gagysy A A dgy o) A A
_a'ESn

(algn{l) A A 2y, ]0,,(1171))):

/\ ((Bag,(2) V bsgy () V- -V g 1))V (Brgyiy V bagyay V - -V bo,0 )V -V
rrES,,

(bio, 1V Vb, 16, 71)))}

W (agyry A arayy A - A, 1) A (agy ) A fiagyay A - Aagg, () Ao A
ASI

(”1101(11) A Tpds{n)y """ A g, ;[rt)))r

A a0y V bian VoV biga) V (bagy ) V bag,im) VoV oboe ) VeV
it s,

({)nﬁ](n) Y b:u’)g(u\ s A bn(),, 3(11)))}

V (rp, () Nz in N N g, (n))s /\ (bro, () Vg VoV, ()

ai s, FCS,

for some fy e {L2 -\ {d}, ¢ 1.2



Hlillf(‘ H‘i()f“{ﬂ £ ”’iﬂ(fi)' fl,,'oj’i“)

det(ad)A)

g Pherefore,

Example 3.6 Let

( \/ Qo) A A pger(e)s /\ bla(l) VeV buo‘(n))
g€y, ae Sy
det.A.
(0.2.0.8) (0.4.0.5) (0.7.0.4)

A= [ (01,09 (0.6,05) (0.5.0.3)

Then det.A - (0.6,0.5) and

det. Ay,

det Az

det. Ay

(l(‘T.A;{l

(0.7.0.2) (04.0.4) (0-1.0.7)
0.6, 0.5 0.5.0.3 0.1,0.9
det (0-6,0.5) ( ) detA;2 = det ( )
(0.4,0.4) (0.4.0.7) (0.7,0.2)
(0.4, 0.4), - (0.5,0.3),
0.1,0.9 0.6.0.5 0.4,0.5
det ( ) (06.05) detAdz; = det ( )
(0.7.0.2) (0.4.0.4) (0.4,0.4)
(0.6.0.5), - (0.4,0.4),
(0.2,0.8) (0.7.0.4) (0.2,0.8)
det, det Ay det, ;
(0.7,0.2) (0.4.0.7) (0.7,0.2)
(0.7,0.4). (0.4, 0.5),
0.4,0.5) (0.7.0.4 0.2,0.8
det. ( (0.3 ) det. Ay, det. ( )

(0.6.0.5)
(0.6.0.5).

(0.5.0.3)

~192~

(0.1,0.9)
(0.2,0.8),

5.0.3)
1.0.7)

L0.4)
1.0.7)

(0.1.0.5)
(0.1.0.4)

0.1)
5.0.3)



(0.2,0.8) (0.4,0.5)
detdyy  det (0.2.0.8).
(0.1,0.9) (0.6.0.5)

Thus
(0.4,0.4) (0.4,0.4) (0.6,0.5)
adjA (1L5,0.3) (0.7,0.4) (0.2.0.8)
(0.6,0.5) (0.4.0.3) (0.2.0.8)
Therefore. det(adjA) —~ (0.6.0.5) = det.A.

Definition 3.7 Ann x n GIF matrix A = [(A, B)| is said to be constant if a;e = aj;

and by by for all 67,4, that is, its rows are equal to each other.

Theorem 3.8 Let A= (A, B)| be an n x n constant GIF matriz. Then
(1) (adj )T is constant;
(2} A{ad}A) is constant;

(3) det A 15 the munimumn element in A and det B is the marimum element in B.

Proof (1) Let C = [{¢y.dy;)|adjA. Then

Cijy \/ (/\tEn) (J,m(t}) . Cik = \/ (/\tgnkam(t))
TESn n; oCSn, n;

and

dij - \/ (/\rcnjbmm) dip - \/ (Aian.b!n(H)-

ac .5',,) n; TESupn,
We know that ¢;; e and dy; dig since the numbers o (8) of columns cannot be
changed in the paired expansions of e;; and ¢ and d;; and dig. Therefore, (adi )T s
votstant.

(2} Let A(adjA)  [(X.Y)]. Since A is constant, Aj

every g e {12 n} Then

A and By B for

~ 13~



vV e Adet(Ap))  detd

1<k<n

and

gy -\ (b Adet(B1)) - dethi.
17 kn

Therefore, A(adjAA) is constant.
(3) Now,
det. A \/ Do) AN Qag(2) N A gy = Bgy A Qag(y N A Qg
TCSn
and

det 3 /\ b]rf(l) N b2v(2) VeV bna(n) - b]a(l) v })20(2) VeV brm’(n)
Ty,

for any o € 5,,. Taking o the identity permutation, we have
detA = ay Aapn---Na,, and detB b VbnVv. - Ab,,
which are the minimum and maximum elenments in 4 and B, respectively. a

Definition 3.9 Let A = [(A. B)| be an n X 7 GIF matrix. Then A is called
(1) symmetric if A = AT,
(2) reflezive if A= T
(3) transitive if A% < A;
(1) idempotent if A% == A;
(5) cireular it (AT < A

Lemma 3.10 Lef A be anonexon reflerive GEHF mateiz, Then adjAd A7 where A7 s

tdempolent and ¢ << — 1.

Proof The proof is similar to that of Proposition 4 in [18]. a



Theorem 3.11 fet A (A B)| be an n x n refleviee GH matrie. Then
(1) adjA is reflexive:
(2) adjAd = A
(3) adjA? - (adjA)? - adjA:
(1) If A s tdempotent. then adjA -+ A;
(5) adj(adjA) = adjA;
(6) A(adjA)  adjA — (adjA)A.

Proof (1) Let C = [(C. D)| = adj.A. Then, for each i,

Cii \/ (/\tGrliato(t)) and dy = /\ (V(€rqu(t))'

JCSni UCSn_l

Taking the identity permutation o(t) == t, we have

Cii Ay ANags A A Q1) (i 1) A A1) NNy, =

and
dii S bH A b‘lz Vo b(i*l)(i*]) vV b(ifl)(i+1) VoV bnn = 0

Therefore, adjA is reflexive since ¢;; = | and d;; = 0.

(2) Let € - [(C.D)] adjA. Then, for each i, 7,

Cij — \/ (/\tg,,]awm) and di; — /\ (Veen, bio())-

0(.‘;“}”1 JEH,,)nz
Tuking the permutation a(7)  j and a(h) - k, where b / ¢ then the permutation o

I S'“),h is the lollowing forny:

123 e ) G o om

b2 3 oy e y=10n G - on

~15~



Then. each
ay) /\(I‘_WZ/\’"'/\(L,‘J /\“"/\(L(J B 1]/\ (Ll‘}.”(i¢1)./\"'/\Ll,m,

and

by Vb VeV b VY by

WY b,
are terms of ¢;; and dy;. respectively. Hence

Cip =y Mg A A iz N A A1y, 1) A G- N N B — Ay
El]ld

dij SOV OV Vby VeV oy VY bGongan Vo Ve, = by

Therefore, C = adjd = A.

(3) Since A is reflexive, we get. 4% is also reflexive and adjA? = {A2) = (4°)2 =
{adjA)%. But since A° is idempotent, we have (adj4)? - adjA.

(1) We have by Lemma 3.10 that adj4 = A°(¢ < ri — 1). But we have also that A
i= idempotent. S50 A° == A. Thus adjAd = A,

(5) Since A is reflexive, we get adjA is idempotent by Lemma 3.10 and reflexive by
(1). So that by (4) adj(adjA) = adj.A.

(6) Let & = [(ey. fi))] = A(adjA) and G = |(g;, hi;)] = (adjA)A. Then

€ \/ aip AdetAje > ay Adet Ay det Ay = ¢
1 <k<n

and

tii /\ b VdetAje < by Vdet Ay det Ay dy.
LT
Stlavlyo g, e and by di Thus we have A{adjA) = adjAd and (adjd).A = adjA.

Bat by (3). (2) and Theorem 2.1 we see that adjd  (adjd)(adjA) = AadjA. So that
AradjA) adjA. Also adjA (adjd)(adjA) = (adjA)A so that (adjd)Ad — adjA.
Phus we get A(adj Ay (adjA) A - adjA. 0

~16~



Example 3.12 Lot A

(1.0,0.0) (0.4..0.5) (0.7.0.1)
A (0.1,0.9) (L.0.0.0) (0.5,0.3)
(0.8,0.3) (0.5,0.6) (1.0.0.0)
Since
(1.0.0.0) (0.5,0.3) (0.1
det Ay - det det Ay, =  det
(0.5.0.6) (1.0.0.0) (0.8
(1.0,0.0). = {0.5,0.3).
(0.1.0.9) (1.0,0.0) (0.4
det. A3 det. det A,y = det
(0.8.0.3) (0.5,0.6) (0.5
{0.8.0.3). = (0.5,0.5),
(1.0.0.0) (0.7,0.4) (1.0
det dyy = det det Ay =  det
(0.8.0.3) (1.0,0.0) (0.8
(1.0.0.0). (0.5,0.3).
(0.1.0.5) (0.7,0.4) 1.0
det Ay, det det.Aan det,
(1.0.0.0) {0.5,0.3) (0.1
- {0.7,0.4). = {05,0.3),
(1.0.0.0) (0.1.0.5)
(I(“,A’g;# ({(‘l/ ( 1.0} U())
(0.1,0,9) (1.0.0.0)
woe have
(1.0,0.0) (0.5.0.5) (0.7.0.4)
adjA (0.5,0.3) (L.0.0.0) (0.5.0.3)
(0.8.0.3) (0.5.0.3) (1.0,0.0)

1,0.9)
8.0.3)

.0.0)
.0.3)

.0.0)
.0.9)

A, B)| be a3 x 3 reflexive GIF matrix as follows:

(1.

(0.7,
.0,0.0)

(0.4,
(0.5,

(0.7,
(0.

feba )

-

b,

.0.3)
0,

0.0)

0.4)

0.5)
0.6)

0.4)
0.3)



['herefore. adjAd is reflexive and adjA > A.

Now,
Aladjd)  (adjAd)A

‘(I.l].{).[)) (0.4, 0.5) (0.7.0.4)q r(1.0,0.0) (0.5.0.5) (l).?.(m)_
(0.1.0.9) (1.0.0.0) (0.5.03) | -] (0.5.0.3) (1.0.0.0) (0.5.0.3
| (0.8.0.3) (05.06) (1.0,0.0) | | (0.8,0.3) (05,03) (1.0,0.0) |
F(I.(].().()) (0.5.0.5) (0.7,0.4)_ —(1.0‘0.0) (0.4,0.5) (0,7,0.4)_
(0.5.0.3) (1.0.0.0) (0.5,03 |- | (0.1.0.9) {1.0,0.0) (0.5, 0.3)
| (0.5,0.3) (05.0.3) (1.0.0.0) | | (0.8.0.3) (0.5,0.6) (1.0,0.0)
[ (1.0.0.0) (0.5,05) (0.7,04) ]

(0.5,0.3) (1.0,0.0) (0.5,0.3) | = adjA.

| (0.8.0.3) (0.5,0.3) (1.0.0.0) |

Theorem 3.13 For ann x n GIF matrizx A — |(A, B} we have the following:
(1) If A us symmetric. then adjA 1s symmetric.
(2) If A is transitive. then adjA 1s transitive.

(3) If A is circular, then adjA is circular.

Proof (1) Let C — adjd = [(C, D)]. Since A is symmetric, we have

Ciy - \/ /\IGNJ(-L{.rr({} \/ /\f(f’lia'ﬂ(t)l ST

TS TE S,

’ll.j /\ \//(“J b.frr(‘i,) /\ \’/folerr(f)f. '[Jz .

TE S, i TES,, i,

(2) Let & [{gnn- cnd] - Aiy. We can determine the elements of G in terms of the

elements of AL 3 as follow:

~18~



(k. bpk)

(2 ks B eyg)
(Gha Cnn)
(i 1y brgrs )

(@ k1) Py k1))

if

if

if

if

h

h

h

h

<

[:'.

iok< .

t, k> j.

k< j.

, k>

where A;;  [(A;;. B;;)] denotes the (n— 1) x (n — 1) GIF matrix obtained from A

by deleting the &-th row and column ;.

Now we show that Agds, < Ag,, for every ¢ € {1,2, - n}. Let R

[(!’,J,SU)I s P Am I(‘pfj.fhj)l, Foo- .AS,L B I(.fuiu)] and W = .A_qt./—l,gu

Note that A is transitive. Then

- \/ Tik N Pr;

1 <k<r—1

\/ (aie Nary} < ag; = [y

'LUU’

1< k<n-1

Vol Aagan) Sageon = £y
1<k<n 1

\/ (“z(k<])/\a(k+])j)Saz’jlfz']
1<k<n- |

1k<n 1

’?\< |

(ag e Aakg) Sagoyy = fiy
1

A
~
-

i
=

(a'(;‘ ke A G(LLH)J') > gy
|

Pl
A

(”(; itk A Lk 1)y - 1)) <o
I

o<z

o~
I

(g e A LIV m)) < IRV ITRNY
I

L

b
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\/ (a'i(k-—l) A a(k+1)(j+1)) < Qiij+1) =~ fij

if +

v

A.‘it

= [(wyj, i) -

s.

. k<t

J < i,

s J o<



ey /\ Sik v qk‘]

1okZn

N (b Abeg) > b ifi<s k<t j<u
| kT |

/\ (i N, ny) 2 b, L ifi<s, Bl 1 2u
kel -1

/\ (bi(k.*l)/\b(k’rl)j)zbij ,,] lfl<" E>t _]<M
| <1

/\ (bi(k‘Fl)/\‘b(k‘+1)(l[’f|)) Ebf(JAH l” lf£<.5 sz jzu
IR ST |

AN b Abrg) =0y L ifi>s k<t §<u,

l<h<n--1

i1y N b eny;) 2 by, o b ifizs k2t j<u

(b A by n) Zbeengeny =y ifizs k>t §2u,

e

[<hk<n—1

AN Benr AbrGay) = b -0 = b ifi>s k<t 2w
L<k<n—1

Thus wy; < fij. w5 = 4 in every case and therefore AgAdy,, = A, for every 1t €

{1.2.-- . n}. By Theorem 2.8 we get (detd)}(detd;,) < det{ A A;,) = detA,,. This

Means 0 < Cus and dygdyy > das, 1.6 eyt < ey and dydis > dys for every

t € {1.2.---.n}. Hence C = adj.A is transitive.

(3) Similarly, as in (2) we can show that 4,.4,, < AT foreveryt € {1,2,---.n}so that

det A (detAy) < det AT, det A, Thus cocin < Cus Aaidin = dys and € = adjA is
s H J

circular.

Theorem 3.14 {f A = [(A, B)| is arn o x v GIF matrie, then GIF matrie AladjA) is

froansioee
Proof Lot A{adjAd), ie..
Cry \/ a A d(‘t.AA,-k. @iy N dm,A”
| < hn



and

i /\ Y (1(‘41‘}1,];; :

S S
for some f e {1.2.--+ . n} and

(:gf) \/ Cis Nty \/

| [l

\/ iy A (l(‘t‘A.\h A Qi A thAju S Aih A (](‘tAJU

1<s<n

i by v det A,

[( \/ air A detAg) A \/ o AN detAj)
n 1<l<n

T<é"n

AN

aif N (i(%hA,’f R

and

f]'ﬁ;i,) /\ dpe V dy

1<s<n 1<<s<In 1<i<n 1<t<ln

/\ {( /\ bu Vv det Ag) v ( /\ e V det Ay)

/\ Y det Ag, V b, V det.Aju > by, V (letAJ'u
1<s<n

> by VdetAy — dy,
for some b, w e {1,2.---.n}. Thus (A(adjA))? < AladjA).

Example 3.15 Let A = [(A, B)| be a 3 x 3 GIF matrix as follows:

(0.5.0.5) (0.7,0.4) (0.8.0.3)
A= 1 (03.08) (06,0.2) (0.4,0.7)
(0.9.0.1) (0.2,0.9) (1.0.0.0)
Then we have
[ (0.6,03) (0.7.04) (05,05 | [ (0.6,03) (0.7.04) (0.5,0.5)
(A(adjA))? (0.4,0.7) (0.6.0.3) (0.4,0.7) (0.4.0.7) (0.6,0.3) (0.4,0.7)
| (0.6.0.2) (0.7.0.40) (0.6.03) | | (0.6.02) (0.7.0.4) (0.6.0.3)
-(l).(j.().:ﬁ) (0.6, 0.1) (().r).{)ls)ﬁ
(0.1,0.7) (0.6.0.3) (0.4,0.7) | = A(adjA).
| (0:6.0.3) {0.6.0.1) (0.6.0.3) |
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