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Image Compression using Wavelet-Vector

Quantization Algorithms

Yongri Piao

Department of Telematics Engineering, Graduate School
Pukyong National University

Abstract

This paper proposes the method to images of losses using restorable
Wavelet Transformation. The algorithm proposed in this work starts from
processing the Pre-quantizer on the original images to organize an image
that matches the gray level. The Wavelet Transformation filters the original
image which is already pre-quantized in order to segment bands.
Considering the lowest coding of bands influencing the most to the overall
condition of the reconstructed image. it uses the Huffman coding using
prediction. Reconstructed images by proposed algorithm showes higher
PSNR than coding images of JPEG or non Pre-quantized images. Pre-
quantizer can control the peak errors and is expected to be useful at mass

mage compression.



l. Introduction

With the development of the society, human needs more and more
information in exchanging image, voice, and various medias. Using digital
techniques to process image and voice, human needs to do a huge amount of
work. Saving and transforming the data directly not only costs a lot of
money, but also is not supported by equipments. That is because there are
many redundancies in data. Employing the current compression techniques
can achieve 3 or 4 times of compression rate or tens or hundreds times
compared to the original data capacity.

Digital image compression techniques can be divided into lossless and
loss compression techniques. Lossless compression technique consists of
DPCM (differential pulse code modulation) and PCM (pulse code modulation).
Traditional digital image compression technique mainly predicts PCM,
DPCM( 13-14], BKC (block truncation coding), VQ (vector quantization)[11-
12], HC (hierarchical coding), SC (subband coding)[ 18-20], TC (transform
coding)[11-15] and etc. International standard of image compression
successfully adopted one or more compound compression techniques, for
example, JBIG, JPEG, MEPG-1, MPEG-2, MPEG-4, and developing MPEG-7.

Generally, using DPCM to compress an image is limited, and is weak



against channel errors. However, JPEG[16-17] is the compression standard
to process color or binary images. Utilizing JPEG can achieve higher
compression ratio, and also can change the form of images in coding
process. In addition, reconstruction images can make Block effect
horizontally and vertically. That is because DCT[11-15] transforms and
quantizes the original image.

In 1980, a French scientist, Morlet, first presented Wavelet transform [1-
10]. Comparing Fourier analysis, Wavelet transform is the local transform of
time and frequency. It obtains signals more effectively and analyses local
signals. Using Wavelet transform can achieve higher compression ratio, but
no block effects. Aside from that, Wavelet transform possesses shortening,
and horizontally shifting images and produces various resolution pictures.

Wavelet transform not only has the advantage of Fourier transform,
overcomes its drawbacks and conquers some disadvantages of it. Wavelet
transform is broadly used in the still image and video compression domain
and it has become an important algorithm of the international standard of
SOme 1mage compressions.

This paper proposes the method for images of losses using restorable
Wavelet transformation. The algorithm proposed in this work starts from

processing the pre-quantizer on the original images to organize an image

(\V]



that matches the gray level. The Wavelet transformation filters to the
original image which is already pre-quantized in order to segment bands.
Considering the lowest coding of bands influencing the most to the overall
condition of the reconstructed image, it uses only the Huffman coding with
prediction. Reconstructed images by proposed algorithm showes higher
PSNR than coding JPEG or non pre-quantized images. Applying pre-
quantizer can control the peak errors and can also be expected to be useful

for mass image compression.



Il Wavelet Transform and Huffman Coding

Considerable interest has arisen in recent years regarding to new
transform techniques that address specifically the problems of image
compression, edge or feature detection and texture analysis. These
techniques come under the headings of multi-resolution analysis, time-
frequency analysis, pyramid algorithms, and Wavelet transforms [1].

In this paper, we review some of the limitations of the traditional Fourier
and similar transforms and define three types of Wavelet transforms that
promise improved performance for certain applications. We trace some of
the developments that have led to the current state of Wavelet analysis,
nothing similarities that tend to unify these different approaches under the
banner of Wavelet transforms. Later in the paper, we illustrate some of the
applications of Wavelet transforms.

We restrict ourselves to transforming real-valued, measurable, square-
integrable functions of one and two dimensions, since these encompass the
signals and images that are of interest to us. As before, we introduce each
concept in one dimension for simplicity and then generalize it to two
dimensions for application to images. We begin by introducing the three
basic tvpes of Wavelet transforms. Then we illustrate some particular

Wavelets and applications of Wavelet transforms.



1. Continuous Wavelet Transform
1.1 Definition
If w(x) 1s a real-valued function whose Fourier spectrum, w(x) .

satisfies the admissibility criterion [2,3]

then, the w(x) is called a basic Wavelet. Notice that, due to the s is the

denominator of the integrand, it is necessary.

w(0) =0 = Lw(x)dx:O (2)
Furthermore, since w(x) =0 as well, we can see that the amplitude
spectrum of an admissible wavelet is similar to the transfer function of a
bandpass filter. In fact, any bandpass filter impulse response with zero mean
[Eq. (2)] that decays to zero fast enough with increasing frequency [Eq.
(1)] can serve as a basic Wavelet for this transform.

A set of Wavelet basis functions, {(//a.b(x) }, can be generated by

translating and scaling the basic Wavelet, w(x), as

R

Ta w(

z//u,h (x) = ) (3)
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where a>0 and b are real numbers. The variable reflects the scale (width) of
a particular basis function, while b specifies its translated position along the
X-axis.

The continuous Wavelet transform of f(x) with respect to the Wavelet

w(x) 1s then [2,3]

W,(@.b)=<f.y,, >= [ fy,,(xdx (a)

The Wavelet transform coefficients are once again given as inner
products of the function being transformed with each of the basis functions.
Grossman and Morlet [2] showed that the inverse continuous Wavelets

transform is

1 d -
)= [ Ly @ow, = 5)

The scale factor in front of the right-hand side of Eq. (3) ensures that the

norms of the Wavelet basis functions are all equal, since

f .f‘(“‘”b>||=\/[1|f(x"b)43 de=Nal fx| ®

a a



Since the basic Wavelet has zero mean [Ea. (2)], all scaling and
translations of it [Eq. (3)] will be likewise to have zero mean, and the mean

of f(x) must be accounted for separately.

1.2 Two-Dimensional CWT

The continuous Wavelet transform Wa,b) of a one-dimensional function
f(x) is a function of two variables, one more than f(x). The CWT is said
to be overcomplete, as it represents a considerable increase in information
content and in the volume required for data storage. For functions of more
than one variable, this transform also increases the dimensionality by one.

If f(x) is a function of two dimensions, its continuous Wavelet transform

Wabb)= [ [ fow,, , (x.y)dxdy @

where bX and by specify the translation in two dimensions. The inverse

two-dimensional continuous Wavelet transform is

-~



1 da
f(x’y)zc_w f [ wiab.byw,,, dbdb, ~ @)
where
1 x-b, y-—b,
Wb, p (X,3)=—w( 1 ) (9)
: la| a a

and y(x,y) is a two-dimensional basic Wavelet. The same generalization

extends to cover functions of more than two variables.

1.3 Filter Bank Interpretation

The following exercise illustrates one way of viewing the continuous
Wavelet transform. We define the general Wavelet basis function at scale a

das

1 x
_ o (10)
W, (x) JEW(a) 1

This is the basic Wavelet scaled by a and b normalized by 4 V2. It
defines a set of functions that becomes broader with increasing a. We also

define

v . 1 . X
W ()=, (-x) =—=y (——) (1
Ja& o a
which is the reflected complex conjugate of the scaled wavelet. If w(x) s

real and even, as is often the case, the reflection and conjugation have no



effect.

Now we can write the continuous Wavelet transform [Eq. ()] as

Woab)= [ fw,(b-xdc= [y, (12)
For fixed a, then, W (a,b) is the convolution of f(x) with the reflected

conjugate Wavelet at scale a.

T [T Wy
— —
W, (x) W, (2.x)
J(x) U .
5 (x)
W, (3,x)
(;4(x) W)

Fig.1. Filter bank analogy for the Wavelet transform of a signal

Figure 1 shows the Wavelet transform as a bank of linear (convolution)

filters acting upon f(x). Each value of @ defines a different bandpass



filter, and the outputs of all the filters, taken together, comprise the Wavelet

transform. Further Eq. (6) becomes

1 v da
o=z [C Ly O, (b -x)db—

1 - da
=CfJ[D[f*cl/u*l//a](X)a—2 (13)
iy

which implies that the filter outputs, each filtered again by (//u(x) and
properly scaled, combine to reconstruct f(x) This is a statement of

calderon’s identity [4,5], which predates Grossman and Morlet by 20 vears.

1.4 Two Dimensional Filter Banks

Figure 2 illustrates the filter bank approach in two dimensions. Here, each
filter v, (x,y) 1s two-dimensional impulse response, and its output is a
bandpass-filtered version of the image. The stack of filtered images
comprises the Wavelet transform.

Again, the redundancy is considerable. In fact, if w(u,v), the transfer
function of w(x,y) 1s nonzero everywhere except at the origin, one could,
theoretically, recover the original image from any one of the filter output by

inverse filtering. Alternatively, if the image is bandlimited to an interval

10



over which at least one y,(#,v) is nonzero. then f(x,y) could be
recovered from that filter output alone. The conclusion, then, is that the
potential value of the integral Wavelet transformation lies not in a compact

representation, but in decomposition and analysis of signals and images.

—» v, (x,y) >

—..> W2(x~y)

CEI

— > yny) —»

Fig. 2. Filter bank analogy for the Wavelet transform of an image
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2. Discrete Wavelet Transform

The DWT most closely resembles the unitary transforms discussed in the
previous section. It promises to be the most useful for image compression,
processing an analysis. Given a set of orthonormal basis functions, one can
compute the discrete Wavelet transform just as one does any other unitary
transform. Obtaining a suitable basic wavelet, however, requires further

background material.

2.1 Subband Coding and Decoding

Two-channel subband coding, then ,requires only filtering f(iAr) with
ho (iAt) and hl (iAt), followed by subsampling each output. This yvields the

two half-length subband signals

go(kAr) =" f(iADhy ((—i + 2k)Ar) (14)
and

g (kALY =3 fF(iADR ((~i + 2k)At) (15)

Reconstruction is effected by upsampling the lower and upper subband
signals, interpolating them with 2hy(iAr) and 2p, (iAr). respectively, and

adding them together. This is given by

12



TGA) =23 (g, (kAN (i + 2K)Ar) + g, (KADA, (=i + 2K)AD)] (16)

and 1s 1illustrated in Figure 3.

We have a slight problem at the midfrequency point s=sN/2, since
encoding and decoding entails filtering f(iAf) twice, once with h, (iAt)
and once with A, (iAf), since H (s, /2)=1/2 and H/(s,/2)=1/2. In
the next section. where we use more general bandpass filters, we handle

the situation explicitly.

1 (iAr) 8o (iAr) S (A

h, (iAr) —*<J>—>g;(mzr>®—> ho(itt) ()
h, (iAt) »@. gam»@—» h, (iAr)

Fig. 3. Two~-band subband coding and reconstruction

We could have chosen to partition the frequency axis into M shorter
intervals of length 2s, /M , producing M subband singals of N/M points
each, as is commonly done in subband coding. Different frequency
components then show up in separate subband channels. Since we are
moving toward the DWT, however. we stick with the choice of two subbans

(M=2).

13



2.2 Fast Wavelet Transform Algorithm

Mallat [6] defined a discrete Wavelet transform algorithm that is more
efficient than computing a full set of inner products. It applies two-band
subband coding in an iterative fashion and builds the Wavelet transform
from the bottom to up, which is, computing small-scale coefficients first.

After the first step of subband coding, as outlined in Section A, the lower
subband signal, g,(iAt) , 1s once again subjected to halfband subband
coding. This leaves us with the N/2-point upper halfband signal and two
N/4-point subband signals corresponding to the first and second quarters
the interval [0, 5, ].

The process is continued, at each step retaining the upper halfband signal
and further encoding the lower hanfband signal, until a one-point lowband
signal is obtained. The transform coefficients are then the lowband point
and the collection of subband-coded upper hanfband signals. This is shown
in Figure 4. the first N/2 coefficients come from the upper halfband of F(s),

the next N/4 points from the second quarter band, etc.

The impulse response, h}_, doubles in scale at each interation. Thus, we

have an orthonormal wavelet transform. The basic Wavelet is

h(t) = 6(t) —sinc(at), and the basis function is {27//2 h(2’t —n)} . Thus,

subband coding, basically a time-frequency transform technique, has been

14



employed to define a time-scale Wavelet transform.

The foregoing algorithm is sometimes referred to as the fast Wavelet

transform (FWT), or Mallat’s herringbone algorithm, due to

the appearance

of the diagram in Figure 4. The inverse transform is obtained by reversing

the process, as shown in Figure 5.

1A

(s | (> g 2ian)

h, (iAr) ~>(;)—> & (4iar)

P20 o> hiar) (3>

ho(i88) (>

2,(8iAr)

-u[ By (A1) (L)

Fig. 4. The discrete Wavelet transform algorithm

g, (ziAr)"@—’

a8y g ian —P@>| mGan

(3> hGan

B, (iAD)

—f@—b hy (A1)

h (iAt)
hy (iAt)
flany €

Fig. 5. The inverse discrete Wavelet transform



2.3 Discrete Wavelet Transform Design

We are now prepared to approach the design of a basic Wavelet for use in
a discrete Wavelet transform. For the DWT, we can use any pair of subband
coding filters that allows Eq. 16 to hold.

Writing Eq. 16 in the frequency-domain, we have

F(5) =20y () Hy(5) + Gy (9, (5]

=2 FOH O+ LF@ @ E ) a7)

which means that
F(s)= F(s)[Hoz(s)+H,2(s)] (18)
and the two filter transfer functions must satisfy the condition
Hi($)+Hl(s)=1 for 0gsl<s, (19)

The transfer functions are squared here because f(t) is convolved twice

with each filter, once during coding and once during decoding. This resolves

the problem that was noted in Section A.

16



Suppose Ho(s) is a smooth-edged lowpass transfer function that we
wish to use in a Wavelet transform. Clearly, the corresponding H1 (s) is

given by
Hl(s)=1-Hl(s) (20)

Thus, a well-selected lowpass filter is all that is required to design a

discrete Wavelet transform.

2.3.1 Scaling Vector

To develop a discrete Wavelet transform, we need only a discrete

lowpass filter impulse response ho(k) that meets certain conditions [8].
This impulse response is sometimes called a scaling vector.
From ho(k) we can generate a related function @(t), called the scaling
function. We can also generate h](k) and, from it and ¢(r) the bhasic
Wavelet, w(t). If the scaling vector has only a finite number of nonzero
entries, then ¢(r) (//([), and the resulting Wavelets will all have compact
support [8]. That is, they will be zero outside a relatively short interval on
the t-axis.

Let the scaling vector be a sequence such that

D (k) =~2 and Y kg (hkyhy (k +21) = 5(1) (21)
k k

17



then there exists a scaling function
#(1) =D h,(k)p(2t k) (22)
k

2.3.2 Wavelet Vector

Once we have both #(t) and hy (k) in hand, we continue the
development by defining a discrete highpass impulse response called the

Wavelet vector as

h(k)= (=D h,(=k +1) (23)

and, from that, a basic Wavelet

w(t) = h (k)¢ —k) (24)

from which an orthonormal Wavelet set

v, (=220 (=) (25)

follows.

18



2.4 Two-Dimensional Discrete Wavelet Transform

The concepts developed for the representation of one-dimensional
signals generalize easily to two dimensions [3,5,6,8]. As with unitary image
transforms, we consider the case where the two-dimensional scaling

function is separable; that is,

#(x,y) = d(x)p(y) (26)

where @#(x) is one-dimensional scaling function. If yw(x) 1s its companion

Wavelet. then the three two-dimensional basic Wavelets

v (x.y) = () ()
(X ) = w(x)(y)

w(x,y) = () (y) (27)

establish the foundation for a two-dimensional Wavelet transform. Note that
the superscript is used here as an index rather than an exponent. It

particular, the set of functions

W ey =20y =2V my=2'm))  j200=123 @8

where J.l,m,n are integers, is an orthonormal basis for Lz(Rz).

19



2.5 Biorthogonal Wavelet Transform

The functions that qualify as orthonormal Wavelet with compact support

lack desirable symmetry properties. It would be convenient, for example, if

w(x) and w(x)-one for decomposition and the other for reconstruction-

we can have symmetrical Wavelets with compact support [3,4,9,10,11]. The

two Wavelets are duals of each other, and the Wavelet families {V’/k (x)}

and {l/;/k (x)} are biorthogonal; that is ,

< t//J.I( '-'l//l.m >= 5]"15[;_;" (29)

then we have

C,x =< f(x)ﬂlr//j_k (x) > and dj,k =< f(x)’(//j,k (x) > (30

for the decomposition, and

N 2
f(x):zcj_kl//j_k(x):zdj,k Wi J(X) 31
Jk J.k
for the reconstruction. Either Wavelet can be used for the decomposition,
provided that the other one is used for the reconstruction. The biorthogonal
Wavelet transform allows the use of symmetric Wavelets having compact

support.



251 Implementation
The one-dimensional biorthogonal Wavelet transform requires four

discrete filters. We must choose two lowpass filters (scaling vectors),

hy(n) and ho(n). whose transfer functions satisfy

H(0)=Ho(0)=1 and H(sy)=Ho(s,)=0 (32)
where s, =1/2Ax is the folding frequency. From these, we generate two
bandpass filters (wavelet vectors), as before, by half-period shifts of their

transfer functions:

h (n)=(-1)" hy(1-n) and hi(n)=(-1)" ho(1—n) (33)
Now we can implement the FWT herringbone algorithm using these four

filters, as shown in Figure 6.

P h, ——»

f —> f
A W
v y

Fig. 6. One decomposition step and one reconstruction step of the

biorthogonal Wavelet transform



2.5.2 Biorthogonal Wavelets

The conditions upon biorthogonal Wavelet filters are
Zho(n)=zh0(")=\5 and 3 k()= hi(n)=0 (34)

and the perfect reconstruction property requires that

Ho(s) Ho(s)+ H,(s) H(s)

= Hy()Ho(s) + Hy(s~5,) Ho(s ~5.,) (35)
-1

The two scaling functions are given, in the frequency domain, by

D(2s) = Ho(s)D(s) = ﬁ Ho(s/2")

n=0

D(2s) = Ho(s)D(s) :ﬁHO(s/z") (36)

n=0

and the Wavelets are then

y(x) =2 h(n+1D)p2x - n)

y)(x) :ﬁZhl(nH)é(Zx—n) (37)



3. Huffman Coding for Image Compression

In lossless image compression, there is an intrinsic limitation to how much
an 1mage can be compressed. Compression past this point will eliminate
some of the information necessary to recreate the original full in its exact
form,

The entropy of an image is a measure of this limit. An image’s entropy is
a measure of its information content. If the entropy is high, an image’s
information tends to be highly unpredictable. Stating in another way, a high-
entropy image’s information contains a lot of randomness and has little
redundancy. If the entropy is low, an image's information is more
predictable - it contains little randomness and its redundancy is high.

We can compute an image’s entropy and the probability of its occurrence.
This is displayed as a number representing the number of bits necessary to

represent that probability. For any random image, this would be as follows:

Entropy=Number of Pixels x Number of Lines x Number of Bits per Pixel

Because images are rarely made up of totally randomly varying

brightnesses, the actual entropy of a normal image will generally be

something less than the calculation above. This is because the raw image



data quantity will always be higher than the average information data
quantity. The actual entropy of an image is the average information quantity
of the image. The form of compression that does this is called entropy
coding.

Another common entropy-coding compression technique is Huffman
coding. Huffman coding converts the pixel brightness values in the original
image to new variable-length codes, based on their frequency of
occurrence in the image. In this way, brightnesses that occur frequently are
assigned shorter codes, and brightnesses that occur infrequently are
assigned longer codes. The result is that the compressed image will require
fewer overall bits to describe the original mage.

The Huffman compression scheme begins by looking at the brightness
histogram of an image. With the histogram, the frequency of occurrence for
all brightness in the image is available. By ordering the brightness values by
their frequencies of occurrence, we are left with a list where the first value
is found the most often in the image, and the last value is found the least
often in the image. With this list, the Huffman coder assigns new codes to
each brightness value. The assigned codes are of varying lengths; the
shortest codes are assigned to the first (most frequent) values in the list

and, eventually, the longest codes are assigned to the last(least frequent)



values in the list. Finally, the compressed image is created by simply
substituting the new variable-length brightness—-value codes for the original
I-bvte brightness-value codes. Of course, the Huffman code list that
couples original brightness values to their new Huffman variable codes must
be appended to the image for use by the Huffman decompression operation,

as shown in Figure 7.

Arrange values ¢
in descending £
frequency of

occurance

Assign Huffman

Brighmess variable-length

Histogram

codes

Huffman Code
Image Data

Raw Image

0.10,0. 1100
1HH, 10,

98, 100, 103,

Substitute
»-| Huffman
codes

Fig. 7. The flow of the Huffman coding operation

\)
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Huffman codes are assigned by creating a Huffman tree that pairs the
brightness values based on their combined frequencies of occurrence. The
Huffman tree ensures that the longest codes get assigned to the least
frequent brightnesses and vice versa. Using the brightness ranked in order
of their frequencies of occurrence. the two at the bottom of the list (least
frequent) are paired together and labeled 0 and 1. The brightness is
represented by their combined frequencies of occurrence, Then, the next
two lowest frequencies of occurrence made up occurrence. This continues
until all brightness and paired brightness have been paired. The result is a
tree that, when followed, indicates the new Huffman binary code for each

brightness in the image.

Fig. 8a. Original image, with 3-bit brightness values

26



Figure 8 shows a 640 by 480 line image, where each pixel is represented,
for simplicity, by a 3-bit brightness value. The image’s histogram shows the
actual number of pixels in the image with each of the eight brightness
values. The brightness is ordered based on their frequencies of occurrence
and then original image were coded as 3-bit brightness values. The
Huffman codes are as small as 1 bit and can be as large as 7 bits. The
longest Huffman codes can never be greater than the number of different
brightness in the image (in this case. eight) minus 1, even though

frequencies of occurrence are always statistically low.

Brightness Huffinan
{in order of most frequent) Number of Pixels Codes
. 0
73 69,980 10
110 67,181 & 00
146 41,988 g 133064 ¢ 110
307.200
y [ 172,138
36 34,990 57881 : 010
1
5 -]
183 32,891 i 102,158 on
—_— 0 1
219 30,791 60.170 1110
0
255 27,992 129379 11110
1
0 1387 —— 11111

1
307,200 = 640 x 480

Fig. 8b. The creation of the Huffman tree

oo
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The data size of the original image can be computed as 640 by 480 by 3
bits. The Huffman-coded image data size can be computed as the sum of
the eight frequencies of occurrence multiplied by the respective number of
bits in their code.

Huffman image decompression reverses the compression process by
substituting the original fixed-length 1-byte-long brightness values for the
variable-length Huffman-coded values. The original image is exactly
recreated. Huffman image compression will generally provide compression
ratios around 1.5:1 to 2:1.

Modified versions of the Huffman coding scheme can be used to allow
code changes throughout the image. This is done by computing image
histograms over regions of the image, rather than over the entire image.
Codes are then assigned based on the brightness frequencies of occurrence
in each region. This modification of the basic Huffman coding scheme allows
the codes to change based on the brightness distributions found in different
parts of the image. The codes are therefore more efficiently adapted to the
regions of the image, yielding improved compression ratios. Of course,
every time the Huffman codes are changed, the changes must be appended

to the image for later decompression.

28



i Image Compression Algorithm

1. Pre-Quantizer

Pre-quantization in spatial domain is optionally employed for bit-rate
control and peak error control. Conventionally a single quantizer is used for
pre-quantization, by which gray levels as well as precision are reduced. For
example, il one applies a pre-quantization with peak error 1 to an image
with 256 gray levels, the number of gray levels after pre-quantization may
be reduced form 256 down to 86. The reduction of gray may introduce
additional visual degradation in addition to the quantization. This visual
degradation would be serious in such regions where gray levels are
changing slowly. If one uses a single quantizer, the quantized output may be

expressed as

X+e

PO=3

] (38)

where x is input, e is absolute peak error, and [z] is for function which
takes the largest integer number less that z Reconstruction or

dequantization may be expressed as

P‘l(x) = P(x)-(2e+1) (39)
To overcome the visual degradation due to the reduction of the gray levels,

a novel pre-quantization scheme using multiple quantizers instead of single



quantizer is proposed. The quantized output using multiple quantizers is

expressed by

O,(x) =1 . ] (40)
2e +1
and
071 (x) = 0,(x)2e +1) + (e — i), 50,1.2 2¢ @1

where | is the index identifving the quantizer among multiple quantizers.
The guantizer may be chosen by a selection rule on a pixel by pixel basis.
The index may be chosen in cyclic or random orders, or by a context based
rule.

Since each quantizer ha different representation values as seen in Eq. (41),
the number of gray levels in the pre-quantized image with the multiple

quantizers are the same as that in the original image.
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Fig. 9. Pre-quantized Lena image

Thus visual degradation due to the reduction of number of gray levels with
single quantizer and multiple quantizers are exemplary show in Fig.9 for a
better visualization of the degradation due to the reduction of gray levels. In
this example, absolute peak error was 2. The context-based rule is given
by

I=mod((a+b-c),7) (42)

where a, b and c are reconstructed gray levels of the nearest neighbor
pixels, ie., upper, left, and upper left pixels of the current pixel. Note that

the index is given to match the gray level of the current pixel by a
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prediction. Due to a decrease of number of gray levels with conventional
single quantizer. artifact is observed in gradually changing regions.
However in the proposed multiple quantizers, no such artifact is observed in
either random selection of the quantizer or selection by a context-based
rule. The PSNR and bit rate of the pre—quantized images by the proposed

multiple quantizers appear similar to that with a convention single quantizer,

2. Wavelet Transform
Wavelet-based compression is one type of transform-based compression.
In general, transform-based compression is done according to the scheme

shown in Fig. 10.

Compression Process

Compressed
Image = Transform = | Encode o
Image
Decompression Process
Compressed Inverse
@ | Decode ) = | Image
Image Transform

Fig. 10. Transform—based Compression
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For some applications of Wavelet transform, where Wavelet coefficients
are lossless encoded, Wavelet coefficients in 7-9 tap Daubechies [22] are
useful. Furthermore, if the Wavelet coefficients are properly encoded,
image can be progressively reconstructed form loss to lossless [23] in a
unified manner with one bit stream. For this purposes, several Wavelet
transforms whose Wavelet coefficients are Daubechies 7-9 tap have been

used. Table 1 shows the 7-9 tap Wavelet filter coefficients.

Table 1. 7-9 tap Wavelet filter coefficients

n 0 +1 +2 +3 +4
h, 10.602949 | 0.266864 | -0.078223 | ~0.016864 | 0.026749
~ 0.557543 | 0.295363 | -0.028772 | -0.045636 | 0

We have decomposed the image Lena (Fig. 11) with 7-9 tap Daubechies
Wavelet filter. The results are presented in Fig.12. In Fig. 12 we can see
the normalized detail subimages at resolution level m=3 (Wavelet

coefficients).
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Fig. 11. Decomposed Lena image

LL3|LH3

HL3 HH3 LH2

HL2 HH2 LHI1

HL1 HH1

Fig. 12. Subimage at resolution level m=3



3. Huffman Coding with The Predictor

In this paper we use 7-9 tap Daubechies Wavelet filter to transform the
image pre-quantized images. After Wavelet transforming the image, we can
divide the image into two parts, and then code them.

We consider that energy of images mainly is centralized in LL3 area, and
the quantization of LL3 area directly affects the quality of reconstruction
image. S0 we use Huffman coding [ 18] with the predictor in 113 area. The

predictor is defined as follows:

Ez:b+c—d (43)

where @ is predicted value of pixel, b, c and d are predicted pixels of the
nearest neighbor pixels, ie., upper, left, and upper left pixels of current
pixel.

Because to other domains’ signal coding, there is a great deal of edge of
original images in those domains, signals in those domains are zigzag
scanned, and then we obtain the one- dimension signal. The Fig. 13 shows

the direction of the scan.



1

Fig. 13. Direction of zigzag scanning

Because we consider that the great mass of values of one- dimensional
signal of the realigned scan is egqual to zero, the number of zeroes
presented in signals and values consists of a couple of signals. Then the
couple of signals are Huffman coded.

In the light of steps, we can accomplish the algorithm of the image

compression mentioned in this paper.
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V. Simulation Results

The proposed algorithm is applied to several test tmages. The proposed
algorithm has unique feature adequate for image compression, i.e.,
compression from near lossless, to lossless compression. Furthermore peak
error can be controlled in near lossless compression using a pre-quantizer
in spatial domain. Table 2 shows peak errors and peak signal-to-noise ratio
(PSNR) between the lossless proposed compression schemes with pre-
quantization and lossy compression without pre-quantization. It is as seen in
Table 2 with a pre-quantization at near lossless compression. With larger
peak error, however, performance of the pre-quantization in spatial domain
becomes worse than those by the bit rate control in the Wavelet domain.
The test image used in Table 2 was Lena in 256 x 256 matrix size with 8
bit gray scales.

In Table 3, performances of the proposed coding schemes are compared
to those of a float-point based wavelet transform coding and the JPEG
standard. For the float-point based wavelet coding, 7-9 tap Daubechies
Wavelet filter was used. 256x 256, 8 bit gray scale images was used for
the simulation of the lossless and near lossless compression. As seen in
Table 3. the proposed Daubechies wavelet transform coding with a pre-

quantizer for near lossless compression provides higher PSNR compared to

w
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the float-point based Wavelet transform coding and the JPEG standard. The
peak errors by the proposed coding scheme are also much lower than those
by the float-point based Wavelet transform coding or the JPEG standard.
The capability of the peak error control with the pre-quantizer and the
Daubechies Wavelet transform coding is a useful in widely applied in the

image compression. Fig. 14-16 shows reconstructed images.

Table 2. Peak error and PSNR in the compressed images with and without

pre—quantizer in the proposed coding scheme

Bit rate With pre-quantizer Without pre—-quantizer

[ bits/pixel] PSNR [dB] Peak error PSNR [dB] Peak error

2.89 49.9 1 47.8 5
2.37 45.1 2 44.9 6
2.10 42.1 3 44.0 7
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Table 3. Simulation Results

SRy H E& | ¢+5& | PSNR([dB]
Wavelet | 1 bpp 8 40.09 dB
JPEG 1 bpp 8 38.32 dB
Wavelet | 1 bpp 3 43.54 dB
JPEG 1 bpp 8 41.81 dB
Wavelet | 1 bpp 8 40.96 dB
JPEG 1 bpp 8 38.10 dB
Wavelet | 1 bpp 8 39.13 dB
JPEG 1 bpp e 36.94 dB
Wavelet | 1 bpp 3 38.67 dB
JPEG 1 bpp 8 35.93 dB
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Fig. 15. Camera man original Images and reconstructed Images (1 bpp, PSNR=43.54 dB)

Fig. 16. Hat girl original images and reconstructed Images (1 bpp, PSNR=38.67 dB)
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V. Conclusion

In this paper. in order to improve compression ratio. firstly. [ pre-quantize
the original image, and then gain the image which is the same as the gray-
level of the original image.

Based on pre-quantization. 7-9 tap Wavelet filter and Huffman coding
with a predictor can compress images. We consider that energy of images
mainly is centralized in LL3 area, and the quantization of L3 area directly
affects the quality of reconstruction umage. So we use Huffman coding with
the predictor in LL3 area. and use runlength coding in other areas.

In order to test the capability of the proposed algorithm, we adopt the
image of 256 by 256 size of 8 bit gray level in the simulation. Apparently,
we can gain from the simulation results that under the same compression
ratio. the algorithm we proposed is better than JPEG, and PSNR of the
algorithm is higher than that of JPEG by 2.8 dB. So the algorithm can be
widely applied to the image compression.

In the future research, we will continue to explore in the new domain of
the image compression. The CNN Theory is widely applied in image
processing. The direction of the research is how to use the theory of CNN
to apply in the image compression in future, although this is a huge

challenge to us!
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