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1. Introduction

The theory of Kaehler submanifolds is one of fruitful fields in Riemannian
geometry and we have many studies [1], [2] and [9] etc. For the curvatures of
a Kaehler manifold M , we can consider two kinds of sectional curvature which
are related to almost complex structure J and different from usual sectional
curvatures, holomorphic sectional curvatures and totally real bisectional curva-
tures. The pinching problem for these three kinds, the sectional curvature, the
holomorphic sectional curvature and the totally real bisectional curvature, is an
interesting topic in Kaehler geometry.

For a complex submanifoldM =Mn of a complex space formM ′ =Mn+p(c),
the set B(M) of the totally real bisectional curvatures satisfies B(M) � c

2 by
the Gauss equation. It is easily seen that a totally geodesic complex subman-
ifold M = Mn(c) of M ′ = Mn+p(c) satisfies B(M) = c

2 again by the Gauss
equation. On the other hand, a complex quadric M = Qn of M ′ = Mn+p(c),
c > 0, satisfies 0 � B(M) � c

2 by Kobayashi and Nomizu [7]. By paying
attention to this fact, the following theorem by Ros for holomorphic sectional
curvatures.

Theorem 1.1([10]). Let M = Mn be an n-dimensional complete Kaehler
submanifold of an (n + p)-dimensional complex space form M ′ = Mn+p(c) of
constant holomorphic sectional curvature c(> 0). If every holomorphic sectional
curvature of M is greater than c

2 ,
then M is totally geodesic.

Ogiue gave also the following theorem.

Theorem 1.2([8]). Let M = Mn be an n-dimensional complete Kaehler
submanifold of an (n + p)-dimensional complex space form M ′ = Mn+p(c) of
constant holomorphic sectional curvature c(> 0). If every Ricci curvature of M
is greater than c

2n, then M is totally geodesic.

The purpose of this paper is to consider the similar problem for totally real
bisectional curvatures. In this paper, we proved the following two results.

Theorem 4.4. Let M = Mn be an n(� 3)-dimensional complete Kaehler
submanifold of an (n + p)-dimensional complex space form M ′ = Mn+p(c) of
constant holomorphic sectional curvature c(> 0). If every totally real bisectional
curvature of M is greater than c

4(n2−1)
n(2n− 1), then M is totally geodesic.
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Corollary 4.5. Let M = Mn be an n(� 3)-dimensional complete Kaehler
submanifold of an (n + p)-dimensional complex space form M ′ = Mn+p(c) of
constant holomorphic sectional curvature c(> 0). If every sectional curvature of
M is greater than c

8(n2−1)
n(2n− 1), then M is totally geodesic.
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2. Kaehler manifolds

This section is concerned with recalling basic formulas on Kaehler mani-
folds. Let M be a complex n(� 2)-dimensional Kaehler manifold equipped
with Kaehler metric tensor g and almost complex structure J . We can choose
a local field {Ej, Ej∗} = {E1, · · · , En, E1∗ , · · · , En∗} of orthonormal frames on
a neighborhood ofM , where Ej∗ = JEj and j∗ = n+ j. Here and in the sequel,
the Latin small indices j, k, · · · run from 1 to n. We set Uj = 1√

2
(Ej − iEj∗)

and U j = 1√
2
(Ej + iEj∗), where i denotes the imaginary unit. Then {Uj} con-

stitutes a local field of unitary frames on the neighborhood of M. With respect
to the Kaehler metric, we have g(Uj, Uk) = δjk.

Now let {ωj} be the canonical form with respect to the local field {Uj} of
unitary frames on the neighborhood of M . Then {ωj} = {ω1, · · · , ωn} consists
of complex valued 1-forms of type (1,0) on M such that ωj(Uk) = δjk and
ω1, · · · , ωn, ω̄1, · · · , ω̄n are linearly independent. The Kaehler metric g ofM can
be expressed as g = 2

∑
j ωj ⊗ ω̄j. Associated with the frame field {Uj}, there

exist complex-valued 1-forms ωjk, which are usually called complex connection
forms on M such that they satisfy the structure equations of M

(2.1)

dωi +
∑

k

ωik ∧ ωk = 0, ωij + ω̄ji = 0,

dωij +
∑

k

ωik ∧ ωkj = Ωij,

Ωij =
∑

k

Kījkl̄ ωk ∧ ω̄l,

where Ωij (resp. Kījkl̄) the curvature form (resp. the components of the Rie-
mannian curvature tensor R) of M . From the structure equations, the compo-
nents of the curvature tensor satisfy

Kījkl̄ = K̄j̄ilk̄,(2.2)

Kījkl̄ = Kīkjl̄ = Kl̄jkī = Kl̄kjī.(2.3)

Next, relative to the frame field chosen above, the Ricci tensor S of M can
be expressed as follows :

(2.4) S =
∑

i,j

(Sij̄ωi ⊗ ω̄j + Sījω̄i ⊗ ωj),
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where Sij̄ =
∑

kKk̄kij̄ = Sj̄i = S īj. The scalar curvature r of M is also given
by

(2.5) r = 2
∑

j

Sjj̄.

An n-dimensional Kaehler manifold M is said to be Einstein if the Ricci tensor
S satisfies the condition

(2.6) Sij̄ =
r

2n
δij.

The components Kījkl̄m and Kījkl̄m̄ (resp. Sij̄k and Sij̄k̄) of the covariant
derivative of the Riemannian curvature tensor R (resp. the Ricci tensor S) are
given by

(2.7)

∑

m

(Kījkl̄mωm +Kījkl̄m̄ω̄m) = dKījkl̄

−
∑

m

(Km̄jkl̄ω̄mi +Kīmkl̄ωmj +Kījml̄ωmk +Kījkm̄ω̄ml),

(2.8)
∑

k

(Sij̄kωk + Sij̄k̄ω̄k) = dSij̄ −
∑

k

(Skj̄ωki + Sik̄ω̄kj).

The second Bianchi identity is given as follows :

(2.9) Kījkl̄m = Kījml̄k.

And hence we have

(2.10) Sij̄k = Skj̄i =
∑

m

Kj̄ikm̄m.

Lastly, a Kaehler manifold of constant holomorphic sectional curvature is
called a complex space form. The components Kījkl̄ of the Riemannian curva-
ture tensor R of an n-dimensional complex space form of constant holomorphic
sectional curvature c is given by

(2.11) Kījkl̄ =
c

2
(δijδkl + δikδjl).

5



3. Complex submanifolds

This section is recalled complex submanifolds of a Kaehler manifold. First
of all, the basic formulas for the theory of complex submanifolds are prepared.

Let M ′ = Mn+p be an (n + p)-dimensional Kaehler manifold with Kaehler
structure (g′, J ′). Let M be an n-dimensional complex submanifold of M ′ and
let g be the induced Kaehler metric tensor onM from g′. We can choose a local
field {UA} = {Ui, Ux} = {U1, · · · , Un+p} of unitary frames on a neighborhood
of M ′ in such a way that, restricted to M, U1, · · · , Un are tangent to M and
the others are normal to M . Here and in the sequel, the following convention
on the range of indices is used throughout this paper, unless otherwise stated :

A,B, · · · = 1, · · · , n, n+ 1, · · · , n+ p,
i, j, · · · = 1, · · · , n,
x, y, · · · = n+ 1, · · · , n+ p.

With respect to the frame field, let {ωA} = {ωi, ωx} be its dual frame fields.
Then the Kaehler metric tensor g′ of M ′ is given g′ = 2

∑
A ωA ⊗ ω̄A. The

canonical forms ωA, the connection forms ωAB of the ambient space M ′ satisfy
the structure equations

(3.1)

dωA +
∑
εCωAC ∧ ωC = 0, ωAB + ω̄BA = 0,

dωAB +
∑

C

ωAC ∧ ωCB = Ω′
AB,

Ω′
AB =

∑

C,D

K ′
ABCD

ωC ∧ ω̄D,

where Ω′
AB (resp. K ′

ABCD
) denotes the curvature form (resp. the components

of the Riemannian curvature tensor R′) of M ′.

Restricting these forms to the submanifold M , we have

(3.2) ωx = 0,

and the induced Kaehler metric tensor g ofM is given by g = 2
∑

j ωj⊗ω̄j. Then
{Uj} is a local unitary frame field with respect to the induced metric and {ωj}
is a local dual frame filed due to {Uj}, which consists of complex-valued 1-forms

6



of type (1,0) on M . Moreover, ω1, · · · , ωn, ω̄1, · · · , ω̄n are linearly independent,
and {ωj} is the canonical forms onM . It follows from (3.2) and Cartan’s lemma
that the exterior derivatives of (3.2) give rise to

(3.3) ωxi =
∑

j

hx
ijωj, hx

ij = h
x
ji.

The quadratic form α =
∑

i,j,x h
x
ijωi⊗ωj ⊗Ux with values in the normal bundle

onM inM ′ is called the second fundamental form of the submanifoldM . From
the structure equations for M ′, it follows that the structure equations for M
are similarly given by

(3.4)

dωi +
∑

k

ωik ∧ ωk = 0, ωij + ω̄ji = 0,

dωij +
∑

k

ωik ∧ ωk = Ωij,

Ωij =
∑

k,l

Kījkl̄ωk ∧ ω̄l.

For the Riemannian curvature tensors R and R′ of M and M ′, respectively, it
follows from (3.1), (3.3) and (3.4) that

(3.5) Kījkl̄ = K
′̄
ijkl̄ −

∑

x

hx
jkh̄

x
il.

The components Sij̄ of the Ricci tensor S and the scalar curvature r on M are
given by

Sij̄ =
∑

k

K ′̄
kkij̄ − hij̄

2,(3.6)

r = 2(
∑

j,k

K ′̄
kkjj̄ − h2),(3.7)

where hij̄
2 = hj̄i

2 =
∑

m,x h
x
imh̄

x
mj and h2 =

∑
j hjj̄

2
.

Now the components hx
ijk and h

x
ijk̄

of the covariant derivative of the second
fundamental form on M are given by

(3.8)

∑

k

(hx
ijkωk + hx

ijk̄ω̄k)

= dhx
ij −

∑

k

(hx
jkωki + hx

ikωkj) +
∑

y

hy
ijωxy.
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Then, substituting dhx
ij in this definition into the exterior derivative

dωxi =
∑

j

(dhx
ij ∧ ωj + hx

ijdωj)

of (3.3) and using (3.1) ∼ (3.4) and (3.6), we have

(3.9) hx
ijk = h

x
ikj, hx

ijk̄ = −K ′
x̄ijk̄.

In particular, let the ambient spaceM ′ =Mn+p(c) be an (n+p)-dimensional
complex space form of constant holomorphic sectional curvature c. Then, by
(2.11) and (3.5) ∼ (3.7), we get

Kījkl̄ =
c

2
(δijδkl + δikδjl)−

∑

x

hx
jkh̄

x
il,(3.10)

Sij̄ =
c

2
(n+ 1)δij − hij̄

2
,

(3.11)

r = cn(n+ 1)− 2h2,(3.12)
hx

ijk̄ = 0.(3.13)
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4. Totally real bisectional curvatures

In this section, we are concerned with the totally real bisectional curvature
of a Kaehler manifold.

Let M be an n-dimensional Kaehler manifold. A plane section P of the
tangent space TxM of M at any point x is said to be non-degenerate, provided
that the restriction of gx|TxM to P is non-degenerate. It is easily seen that P is
non-degenerate if and only if it has a basis {X, Y } such that g(X,X)g(Y, Y )−
g(X, Y )2 	= 0.

If the non-degenerate plane P is invariant by the complex structure J , then
it said to be holomorphic. For the non-degenerate plane P spanned by X and
Y in P , the sectional curvature K(P ) of P is usually defined by

K(P ) = K(X, Y ) =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2 .

The sectional curvature K(P ) of the non-degenerate holomorphic plane P is
called the holomorphic sectional curvature, which is denoted by H(P ). The
Kaehler manifold M is said to be of constant holomorphic sectional curvature
if its holomorphic sectional curvature H(P ) is constant for any non-degenerate
holomorphic plane P and any point on M . Then M is called a complex space
form, which is denoted by Mn(c) provided that it is of constant holomorphic
sectional curvature c and of complex dimension n. It is seen by Wolf [11] that
the standard models of complex space forms are the following three kinds :
the complex projective space CPn(c), the complex Euclidean space Cn or the
complex hyperbolic space CHn(c), according as c > 0, c = 0 or c < 0.

Let (M, g) be an n-dimensional Kaehler manifold with almost complex struc-
ture J. In their paper [4], Bishop and Goldberg introduced the notion for totally
real bisectional curvature B(X, Y ) on a Kaehler manifold.

A plane section P in the tangent space TpM at any point p in M is said
to be totally real if P is orthogonal to JP. For an orthonormal basis {X, Y }
of the totally real plane section P, any vectors X, JX, Y and JY are mutually
orthogonal. It implies that for orthogonal vectors X and Y in P, it is totally
real if and only if two holomorphic plane sections spanned by X, JX and Y, JY
are orthogonal.
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Houh [6] showed that an n(� 3)-dimensional Kaehler manifold has constant
totally real bisectional curvature c if and only if it has constant holomorphic sec-
tional curvature 2c. On the other hand, Goldberg and Kobayashi [5] introduced
the notion of holomorphic bisectional curvature H(X, Y ) which is determined
by two holomorphic planes Span{X, JX} and Span{Y, JY }, and asserted that
the complex projective space CPn(c) is the only compact Kaehler manifold
with positive holomorphic bisectional curvature and constant scalar curvature.
If we compare the notion of B(X, Y ) with the holomorphic bisectional curvature
H(X, Y ) and the holomorphic sectional curvature H(X), then the holomorphic
bisectional curvature H(X, Y ) turns out to be totally real bisectional curva-
ture B(X, Y ) (resp. holomorphic sectional curvature H(X)), when two holo-
morphic planes Span{X, JX} and Span{Y, JY } are orthogonal to each other
(resp. coincides with each other). From this, it follows that the positiveness
of B(X, Y ) is weaker than the positiveness of H(X, Y ), because H(X, Y ) > 0
implies that both of B(X, Y ) and H(X) are positive but we do know whether
or not B(X, Y ) > 0 implies H(X, Y ) > 0.

Furthermore, Goldberg and Kobayashi [5] showed that a complete Kaehler
manifoldM with constant scalar curvature and positive holomorphic bisectional
curvature is Einstein. In order to get this result, they should have verified that
the Ricci tensor is positive definite. In that proof, they used that the fact that
the holomorphic sectional curvature H(X) is positive, which necessarily from
the condition H(X, Y ) > 0. But the condition B(X, Y ) > 0 curries less in-
formation than the condition of H(X, Y ) > 0, and it gives us no meanings to
use Goldberg and Kobayashi’s method to derive the fact that M is Einstein.
That is, we can not use the condition H(X, Y ) > 0. The totally real bisec-
tional curvature B(X, Y ) can be also consider for non-degenerate totally real
planes Span{X, Y } in any Kaehler manifold. In their paper [3], Barros and
Romero asserted that above mentioned Houh’s result can be extended to indefi-
nite Kaehler manifolds. Aiyama, Kwon and Nakagawa [1] have also studied the
classification problem of space-like complex submanifolds of indefinite complex
hyperbolic space CHn+p

0+p (c) with bounded scalar curvature.

By being motivated by these results, the classification problems with bounded
totally real bisectional curvature are presented. The problems are here intro-
duced.

Let (M, g) be an n-dimensional Kaehler manifold with almost complex struc-
ture J. In the sequel, we only consider the definite totally real planes, unless
otherwise stated.
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Definition 4.1. For a totally real plane section P spanned by orthonormal
vectors X and Y , the totally real bisectional curvature B(X, Y ) is defined by

(4.1) B(X, Y ) = g(R(X, JX)JY, Y ).

Then, using the first Bianchi identity to (4.1) and the fundamental properties
of the Riemannian curvature tensor of Kaehler manifolds, we get

(4.2)
B(X, Y ) = g(R(X, Y )Y,X) + g(R(X, JY )JY,X)

= K(X, Y ) +K(X, JY ),

where K(X, Y ) means the sectional curvature of the plane spanned by X and
Y.

Example 4.2. Let Mn(c) be an n-dimensional complex space form of con-
stant holomorphic sectional curvature c. Then, Mn(c) has constant totally real
bisectional curvature c

2 .
In fact, if a plane Span{X, Y } is totally real, then we

have

B(X, Y ) =
g(R(X, JX)JY, Y )
g(X,X)g(Y, Y )

=
c

2 ,

which follows easily from the form of the curvature tensor of Mn(c).

Example 4.3. Let Qn be a complex quadric in a complex projective space
CPn+1(c) of constant holomorphic sectional curvature c. In CPn+1(c) with
homogeneous coordinates z0, z1, · · · , zn+1, the complex quadric Qn is complex
hypersurface defined by the equation

(z0)2 + (z1)2 + · · ·+ (zn+1)2 = 0.

Let g be the Fubini-Study metric on CPn+1(c) of constant holomorphic sec-
tional curvature c. Its restriction g to Qn is a Kaehler metric. Then, it is seen
in Kobayashi and Nomizu [7] that Qn is an Einstein hypersurface whose Ricci
tensor S satisfies

S =
c

2
ng,

and its totally real bisectional curvature B(Qn) satisfies

0 � B(Qn) � c

2 .
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In the rest of this section, we suppose that X and Y are orthonormal vectors
in a non-degenerate totally real plane section such that g(X,X) = g(Y, Y ) =
±1. If we put X ′ = 1√

2
(X+Y ) and Y ′ = 1√

2
(X−Y ), then it is easily seen that

g(X ′, X ′) = g(Y ′, Y ′) = ±1, g(X ′, Y ′) = 0.

Thus we get

B(X ′, Y ′) = g(R(X ′, JX ′)JY ′, Y ′)

=
1
4
{H(X) +H(Y ) + 2B(X, Y )− 4K(X, JY )},

where H(X) = K(X, JX) means the holomorphic sectional curvature of the
holomorphic plane spanned by X and JX . Hence we have

(4.3) 4B(X ′, Y ′)− 2B(X, Y ) = H(X) +H(Y )− 4K(X, JY ).

If we put X ′′ = 1√
2
(X + JY ) and Y ′′ = 1√

2
(JX + Y ), then we get by the

definiteness of the plane Span{X, Y }

g(X ′′, X ′′) = g(Y ′′, Y ′′) = ±1, g(X ′′, Y ′′) = 0.

Using the similar method as in (4.3), we have

(4.4) 4B(X ′′, Y ′′)− 2B(X, Y ) = H(X) +H(Y )− 4K(X, Y ).

Summing up (4.3) and (4.4) and taking account of (4.2), we obtain

(4.5) 2B(X ′, Y ′) + 2B(X ′′, Y ′′) = H(X) +H(Y ).

Now let M = Mn be an n(� 3)-dimensional complex submanifold of an
(n+ p)-dimensional Kaehler manifold M ′ = Mn+p(c) of constant holomorphic
sectional curvature c.

Assume that the totally real bisectional curvatures on M is bounded from
below (resp. above) by a constant a (resp. b), and let a(M) and b(M) be
the infimum and the supremum of the set B(M) of the totally real bisectional
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curvatures onM, respectively. By definition, we see a � a(M) (resp. b � b(M)).
From (4.5), we have

(4.6) H(X) +H(Y ) � 4a (resp. � 4b).

For an orthonormal frame field {E1, · · · , En, E
∗
1 , · · · , E∗

n} on a neighborhood
of M , the holomorphic sectional curvature H(Ej) of the holomorphic plane
spanned by Ej can be expressed as

(4.7) H(Ej) = g(R(Ej, JEj)JEj, Ej) = Rjj∗j∗j = Kj̄jjj̄.

On the other hand, it is easily seen that the plane sections Span{Ej , JEj},
and Span{Ek, JEk}, j 	= k, are orthogonal and the totally real bisectional
curvature B(Ej, Ek) is given by

(4.8) B(Ej, Ek) = g(R(Ej, JEj)JEk, Ek) = Kj̄jkk̄, j 	= k.

From the inequality (4.6) for X = Ej and Y = Ek, we have

(4.9) Kj̄jjj̄ +Kk̄kkk̄ � 4a (resp. � 4b), j 	= k.
Thus we have

(4.10)
∑

j<k

(Kj̄jjj̄ +Kk̄kkk̄) � 2an(n− 1) (resp. � 2bn(n− 1)),

which implies that

(4.11)
∑

j

Kj̄jjj̄ � 2an (resp. � 2bn),

where the equality holds if and only if Kj̄jjj̄ = 2a (resp. = 2b) for any index j.

Since the scalar curvature r is given by

r = 2
∑

j,k

Kj̄jkk̄ = 2(
∑

j

Kj̄jjj̄ +
∑

j �=k

Kj̄jkk̄),

we have by (4.10)

r � 2
∑

j

Kj̄jjj̄ + 2an(n− 1) (resp. � 2
∑

j

Kj̄jjj̄ + 2bn(n− 1)),
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from which it follows that

(4.12)
∑

j

Kj̄jjj̄ � r

2
− an(n− 1) (resp. � r

2
− bn(n− 1)),

where the equality holds if and only if Kj̄jkk̄ = a (resp. = b) for any distinct
indices j and k. In this case, M is locally congruent to Mn(a) (resp. Mn(b))
due to Houh [6]. Also (4.9) gives us

∑

k(�=j)

(Kj̄jjj̄ +Kk̄kkk̄) � 4a(n− 1) (resp. � 4b(n− 1))

for each j, so that

(n− 2)Kj̄jjj̄ +
∑

k

Kk̄kkk̄ � 4a(n− 1) (resp. � 4b(n− 1)).

From this inequality together with (4.12), it follows that

(4.13)
(n− 2)Kj̄jjj̄ � a(n− 1)(n+ 4)− r

2
(resp. � b(n− 1)(n+ 4)− r

2
)

for any index j, so that the holomorphic sectional curvature Kj̄jjj̄ is bounded
from below (resp. above) for n � 3. Moreover, the equality holds for some
index j if and only if M is locally congruent to Mn(2a) (resp. Mn(2b)).

By applying Theorem 1.1, the following theorem is proved.

Theorem 4.4. Let M = Mn be an n(� 3)-dimensional complete Kaehler
submanifold of an (n + p)-dimensional complex space form M ′ = Mn+p(c) of
constant holomorphic sectional curvature c(> 0). If every totally real bisectional
curvature of M is greater than c

4(n2−1)n(2n− 1), then M is totally geodesic.

Proof. By the assumption B(M) � a and (4.13), we have

(n− 2)H(M) � a(n− 1)(n+ 4)− r
2 ,

where H(M) is the set of the holomorphic sectional curvatures of M .
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Since we see r = cn(n+ 1)− 2h2 by (3.12), we obtain

H(M) � 1
2(n− 2)

{2a(n− 1)(n+ 4)− cn(n+ 1)} ≡ a0.

Thus we have by (3.10)

(4.14) Kj̄jjj̄ = c−
∑

x

hx
jj h̄

x
jj � a0, Kīijj̄ =

c

2
−

∑

x

hx
ij h̄

x
ij � a

for any distinct indices i and j. Since the Ricci curvature Sjj̄ of M is given by
(3.11)

Sjj̄ =
c

2
(n+ 1)− λj , λj =

∑

m,x

hx
jmh̄

x
jm

and
λj =

∑

x

hx
jj h̄

x
jj +

∑

m(�=j),x

hx
jmh̄

x
jm � (c− a0) + (

c

2
− a)(n− 1)

by (4.14), from which together with the Ricci curvatures it follows that

Sjj̄ � a0 + a(n− 1).

Given constants a and a0, we obtain

Sjj̄ >
c

2
n

for any index j. By Theorem B, it completes the proof. �

Remark. We should here remark that c
4(n2−1)n(2n− 1) < c

2 for n � 3 and
c > 0.

As a direct consequence of Theorem 4.4 combined with the equation (4.2),
we can prove

Corollary 4.5. Let M = Mn be an n(� 3)-dimensional complete Kaehler
submanifold of an (n + p)-dimensional complex space form M ′ = Mn+p(c) of
constant holomorphic sectional curvature c(> 0). If every sectional curvature of
M is greater than c

8(n2−1)
n(2n− 1), then M is totally geodesic.
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