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1 Introduction

Let a be a properly embedded arc in the 3-ball B, namley a N 8B = da.
Then an arc a is said to be trivial if and only if there exists a disk D
embedded in B so that 9D consists of two arcs a and b with da = 9b and b
on dB. Here such a disk is said to be a spanning disk of a trivial arc. More
generally, a set {a;, - .an} of n-number of arcs properly embedded in the
3-ball B is said to be a n-trivial tangle if and only if each arc a;,1 <i <n
has a spanning disk which is disjoint with the others.

Let K be a knot in the three sphere S®. We say that K admits a
n-bridge decomposition if and only if (S*. K) is decomposed into a union
(B, B* N K)Ugs_pp+—op- (B~. B~ NK) of two trivial n-string tangles so
that (B¥.B*NK)N(B~.B"NK) = SNK consists of 2n-points.

The 2-sphere S in the above discussion is said to be a n-bridge decom-
posing sphere of K. It is easy to see that every knot K admits a n-bridge
decomposition and the minimal such a number n is said to be a bridge in-
dex of K (denote b(A)). And, K is said to be a n-bridge knot if and only
if b(K') = n. Using a smooth embedding of K in S3, we have a following
description of a n-bridge decomposition which is equivalent to the above
piece-wise linear description. Let I = [~1,1] be a closed interval. With-
out loss of a generality we may assume that any knot K is embedded in
REx1CS*=R*x RU {oc}. For the projection map n: R2x I — I, K is
embedded in R? x I so that each plane 771(t) transversely meets K except
finitely many critical points with either local maxima or local minima. We
sec that K admits a n-bridge decomposition if and only if K is embedded
in B2 x I C 8% = R?*x RU{co} so that each local maximum appears in the
above of all local minima where n is the number of all local maxima which

1s equal to that of all local minima. It is easy to see that any 1-bridge knot



is an unknot which bounds a disk in S*. Fig. 1(a) shows one of well-known

2-bridge knots;

A\
a g-curve
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The connected sum (or composition) of the knots K; and K>, de-
noted by K;#K>, is an oriented knot obtained from the disjoint union
of the manifold pairs (S® — Int(B?). K, — Int(B}))(i = 1.2) by past-
ing their boundaries along an orientation-reversing homeomorphism v
(0B3.0B}) — (0B;,0B}) as illustrated in Fig. 2. In this definition the
2-sphere S = 9B} = 0B3 is said to be a prime decomposing sphere if and
only if both K and K3 are non-trivial knots.

A knot K is called prime if and only if it does not admit a prime decom-
posing sphere, namely suppose we have a decomposition K = K, #K,, then
one of K| and K5 must be a trivial knot. It is well known that any 2-bridge
knot is prime whereas there are non-prime 3-bridge knots. For instance, by
using Schubert theorem, namely b(K#K,) = b(K;) + b(K,) — 1. we see

that a connected sum of two 2-bridge knots is a 3-bridge non-prime knot.
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For a circle S' = {(z,y) € R? : 22 + y? = 1}, take a graph § = STUNS
with two vertices and three edges where NS is the edge joining N = (0,1)
and S = (0,—1). Then an embedding i(6) of § in S* is said to be a é-
curve. Thus a f-curve can be thought of as a natural generalization of a
knot. We may introduce a concept of a bridge decomposition and that
of prime decomposition as we did on a knot. In [6] and [11] they showed
that it plays a crucial role in investigating a tunnel number one knot. For
more details. sec section 2.3. Goda[3] claimed that a f-curve with a 2-
bridge decomposition is prime but Motohashi[7] provided counterexamples
to the Goda’s claim. Moreover she showed that they are a complete set
of non-prime 2-bridge #-curves. The purpose of this paper is to show that
the Motohashi’s non-prime 2-bridge f-curves arise from equivariant prime

decompositions of 2-bridge knots.



2 Preliminaries

2.1 2-bridge f-curves

Now we introduce a concept of a §-curve which naturally arises from study
of either a strongly invertible knot or a tunnel number one knot. A #-curve
is a graph in S which consists of two vertices and three edges joining the
two vertices. A labeling of a f-curve is a total ordering on the set of the
edges and a choice of one of the vertices. The ith edge in the ordering is
denoted by e,;, and the vertex of our choice is denoted by v; and the other
va. All our f-curves will be labeled. Two #-curves are eguivalent if there
exists an orientation preserving self-homeomorphism of S* taking one to the
other which respects the labelings. A f-curve T is trivial if there exists a
2-sphere in S® which contains ['. For a concept of bridge decomposition of
a 0-curve, we slightly extend the well known term “tangle” for a knot to
that for a @-curve as follows;

The pair (B, t) is called a tangle if B is a 3-ball and each component of
t i1s a graph properly embedded in B. A tangle (B, t) is trivial if there is a
union A of mutually disjoint disks A; properly embedded in B such that A
contains ¢ and each A; contains just one component of t. We call A trace
disks of the tangle. A trivial tangle (B, t) is k-bridge if ¢ is a union of one
star of 3-degree and & — 1 arcs, see Fig. 3(a).

Let I be a f-curve and T a 2-sphere in S®. We call T a bridge decom-
posing sphere of I' if (B;. B;NI") is a k-bridge tangle for i = 1, 2. where B; is
a 3-ball in S® bounded by 7" which contains v;. Then we say that I' has a &-
bridge decomposition and denote it by (S?.T') = (By, B, NT')U(By. B,NT).
The bridge number b(T') of T is the smallest integer k for which ' has a
k-bridge decomposition. If b(I') = k. then I is said to be k-bridge. Note

that any @-curve I' has a A-bridge decomposition for some integer k, see

o



(a) (b)
Fig. 3

(3, Proposition 2.1], and that b(I') = 1 if and only if T is trivial, see 3,
Proposition 2.2].

Let T" be a f-curve and S a 2-sphere in S3. We call S a decomposing
sphere of I if S does not contain a vertex of I' and .S meets each edge of
I' transversely at exactly one point as illustrated in Fig. I(b). Let B; be a
3-ball in S* bounded by S which contains ¢,. We construct a new f-curve I
(respectively I'y) from I' by replacing (B,. BoNT) (respectively (B, B, NIY)
by a 1-bridge tangle. The labeling of I'; is defined to be the one induced
from I'. Note that T’y (respectively I';) is equivalent to a @-curve which
is obtained from I' by contracting B, (respectively By) to v, (respectively
v1). Then we say that I' is decomposed into 'y and I, and denote it by
I' = IN#T2. A decomposition I' = [} #I'; by a decomposing sphere S is
efficient if each I'; is nontrivial, and then we say that S is efficient. A f-curve
I' is prame if T is nontrivial and does not have an efficient decomposition.

A O-curve I' is (1. j)-rational (or rational) if T' is nontrivial and there
exists a Z2-sphere which bounds two 3-balls B, and B, in S® such that
(Bi. By NT) is a trivial tangle as in Fig. 3(b) and (By, BoNT) is a trivial
tangle with two arcs contained in e; Ue,. Note that a (7, j)-rational -curve
[' contains a nontrivial knot e; Ue;. For. if ¢;Ue; is trivial, then I is trivial,
see [4].

The following theorem is proved by Motohashi[7].
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Theorem 2.1.1([7, Theorem1.1]) A 6-curve I' is non-prime and 2-bridge
if and only if I' is decomposed into a (i, j)-rational f-curve and a (j, k)-

rational #-curve, where {i.j, k} = {1,2,3}.

2.2 Equivariant prime decompositions of 2-bridge 6-
curves

For given two strongly invertible knots (K, h:)(i = 1.2), we define their
equivariant connected sum (K75, hy)#(Ks. ho) as follows. Let z; be a point
of Fix(h,)NK; and B, be an equivariant regular neighbourhood of z; for each
¢ = 1,2, and let f be an orientation-reversing equivariant homeomorphism

from O(By. B1 N K) to J(Ba, Bo N K3). Then the manifold pair
{(53, ](1 ) — (I?If(B} ), jllf(Bl)m[<1 )} Uf {(S; I(g) — (Inf(Bg) IT?,t(BQ) ﬂKg)}

is homeomorphic to (5% K1#I;), and the involutions hy and hy naturally

determine an inverting involution h of (S?. Ki1#K;). We want to define

-1



(K1 hy)#(Ko, ho) to be (K # Ko, h). But there remains the following am-

biguities in this “definition”.
(1) The choice of the point 2; € Fix(hy) N K, = S° for each i = 1,2
(2) The choice of the equivariant homeomorphism f.

To remove these ambiguities, we attach the following additional informa-

tions to each strongly invertible knot (K. h).
(1) An orientation of Fix(h).

(ii) A “base point” oo of Fix(h), which lies in one of the components of
Fix(h) — K.

We call these additional informations a direction of (K, k), and a strongly
invertible knot with a direction is said to be directed. We can now de-
fine the equivariant connected sum of two directed strongly invertible knots
(Ki h;)(i = 1.2). This indication clearly resolves the ambiguity (1). Con-
cerning the ambiguity (2), it specifies the restriction of f to 9B; N Fix(h;).
Let g be another orientation-reversing equivariant homeomorphism from
d(By. By N K,) to 9(Ba, By N Ky) of which restriction to dB; N Fix(hy)
is equal to that of f. Then g is equivariantly isotopic to either f or
(helap,) o frel. 9By M K. [Proof. The equivariant homeowmorphism go ft
on d(B;, BoN K3) induces a homeomorphism v on 9B, /he which is identitv
on the subset P = {9B,N(Fix(hy) UK>3)}/ho. Note that P consists of three
points. Then, by Theorem 4.5 of [1], ¢ is isotopic to the identity map rel.
P. This isotopy lifts to an equivariant isotopy between g o f~! and either
the identity map or hglgp,.] Moreover, f and (hs|gp,) o f determine the
equivalent strongly invertible knots. Thus the equivariant connected sum is

well-defined for directed strongly invertible knots.



Definition 2.2.1

(1) (K. h) issaid to be trvial, if K is a trivial knot and % is the standard

Inverting involution.

(2) (K R) is said to be prime, if it is not trivial, and is not equivalent to

a sum of two nontrivial strongly invertible knots.

(3) For an oriented knot k = (S% k), D(k) denotes the strongly invertible
knot (k# — k, h), where —k denotes the knot (S®. —k) and A is the

inverting involution which interchanges the factors & and —k.

(4) For a finite sequence {(K;, h;)|1 <4 < n} of directed strongly invert-
ible knots, #!, (K. h;) denotes the directed strongly invertible knot
(O ) # (Ko ha) ) (Ks ha) ) # - ) # (K ).

The set S of all directed strongly invertible knots together with the op-
eration # forms a non-commutative semi-group. It is easily seen that D(k)
(with any direction) belongs to the center of the semi-group. (Furthermore,
by the unique decomposition theorem stated below. the center consists only

of D(k)’s.) We have the followings.

Lemma 2.2.2 (1) (K. h) is trivial, iff K is trivial.

(2) (K, h) is prime. iff K is prime or (K. h) = D(k) for some prime knot k.

Theorem 2.2.3 (1) Any nontrivial. dirccted. strongly invertible knot
(K, h) has an equivariant prime decomposition. Any prime decomposition is
equivalent to a decomposition (K, h) = {#_,(K,./ ) }#{#- D(k;) } where
]\-(1 <1 <7)and k(1 < 5 < s) are prime knots.

) Let {#7_, (I, ha) Y#{#5,D(k;)} and {#1 (K. 1)) )HE{# 1 D(K})} be
prime decompositions of a directed strongly invertible knot. Then the fol-

lowing hold.



(a) r=r"and (K; h;) = (K! h}) for each i(1 <1 < 7).
(h) s = 5" and after a permutation D(k;) = D(k}) for each j(1 <5 < s).
Here, & denotes the equivalence as directed strongly invertible knots.

To prove Lemma 2.2.2(2) and Theorem 2.2.3, we need the following:
For a strongly invertible knot (K, &), let 6(K, h) = p(Fix(h)) Up(K), where
p is the projection S® — S3/h = S3. We call it the 0-curve associated with
(/. h). 6(K. h) is said to be prime, if it is “nontrivial”, and if every 2-sphere
intersecting (K, h) transversely at three points bounds a 3-ball B such that
(B. BNO(K. h)) is homeomorphic to the cone over (B, BN(K, h)). (K, h)
is said to be srreducible, if it is prime, and does not contain a local knot.
Note that the 2-fold branched cover £(K) of K is homeomorphic to the
L & Zy branched cover of (K, h). Let 7 be the covering transformation of
S(K). and A be a lift of A to Y(K'). Then using known results, we obtain

the following equivalences. For more details, see [9].

(1) K is trivial. SY(K) =S
S G(K, h) is trivial.
(i) K is prime. S E(K') has no essential 2-sphere.

= ¢(K, h) is irreducible.
(ii1) (K. h) is prime. < %(K) does not have Z, @ Z, invariant
essential 2-sphere.
= O(K.h) is prime.
(iv) (AL h) is prime, but & is not prime.
S 2(J) contains an essential 2-sphere S, such that
7(S) = S and h(S)NS = 0.
= 0(K, h) is prime, but not irreducible.
S (K h) = D(k) for some prime knot k.

[n particular, we obtain Lemma 2.2.2(2). The first half of Theorem 2.2.3
follows from Lemma 2.2.2 and the existence of the prime decomposition of a

knot. The above observations say that we have only to show the uniqueness
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of the “prime decomposition” of a f-curve to prove the latter half of Theorem
2.2.3. But this can be done by a standard cut and paste method; so, we omit
it. We note that the prime decomposition of a #-curve mentioned here may
be considered as the prime decomposition of it as an orbifold [A #-curve is
viewed as the branch line of a Z, @ Z, branched cover.|, and the existence
and the uniqueness of the prime decomposition of a “pseudo-good” orbifold

are claimed by Bonahon-Siebenmann.

2.3 Dihedral branched coverings of 2-bridge §-curves

A knot K in S? is said to be strongly invertible if there is an involution A
(called a strong inversion) of the pair (S*, K) such that Fix(h) is a circle
intersecting A" in two points. Considering the double covering projection
p: S — S3/h(= S* branched over a trivial knot p(Fix(k)). we have a
f-curve 6( K. h) = p(Fix(h) U K) induced by the pair (K, h).

Let K be a knot with a n-bridge decomposition (53, K,8) = (B;.t,) U
(Ba.t3). where S = 9B, N 9B, denotes the associated bridge decomposing
sphere. Then a strong inversion A of a knot with a n-bridge decomposition
(S®. K. S) is said to be bridge-preserving (respectively bridge-exchanging) if
and only if h(B;. ;) = (B,.t;) for ecach 7 = 1 and 2 (respectively h(B,,t,) =
(Bs.ty) and vise versa).

Recall from section 2.1 that a f-curve is said to admit a 2-bridge de-
composition, if and only if (S®.8) is a union of (By.#,.a;) and (Ba, ts. a3)
along their boundary S; = 0B = 0B,. where (B,.t;) (respectively a;) is a
Z-strand trivial tangle (respectively a trivial arc in (Bi.t;)) for i = 1,2 as
illustrated in Fig. 5(a), and it is said to admit a 3-bridge decomposition, if
and only if (S*.6) is a union of (B).#,.a) and (B,.t,.0) along their bound-
ary Sy = 0B = 0B,. where (B;,t,) is a 3-strand trivial tangle for 1 = 1.2

and a is a trivial arc in (B,.t;) as illustrated in Fig. 5(b).

11



Fig. 5

In the above definition S, is said to be a bridge decomposing sphere and

a #-curve admitting bridge decomposition sphere S, is denoted by (4, Sy).

Remark. With replacement of the 3-strand trivial tangle by a 2-strand
trivial tangle in the definition of (6. .53), we have a rational 6-curve as studied

by Harikae[4].

In the sequel, we assume that g = 2 or 3 otherwise it is stated explicitly.

The following lemma immediately follows from the definition of (8.S,).

Lemma 2.3.1 A f-curve with a bridge decomposition (6, S,) induces those
of its three constituent knot C, = 6 — Int(e;) such that

(i) for ¢ = 2, C; has a I-bridge decomposition and Cy. C3 have 2-bridge
decompositions,

(ii) for g = 3, C1.Cs and Cs have 1. 2 and 3-bridge decomposition, respec-

tively.

Lemma 2.3.2 For each pair (#.S) of a §-curve and its g-bridge decompos-

ing sphere S(= S,). we have a triple (K. S. h) of a knot K, its (g+ 1)-bridge

12



decomposing sphere S and a bridge preserving strong inversion h.
Conversely a bridge preserving strong inversion of a knot with a (g+1)-

bridge decomposition induces a #-curve with a g-bridge decomposition.

Proof. Consider the double covering projection 7 : S3 = B, U B, —
5% = B, U B, branched over a 1-bridge constituent knot C; where each B,
is the 3-ball covering B;. Since C) is a trivial knot, so is 7 HC}) in the
covering 3-sphere S3. Then 7 !(ey), the lifting of the edge e; = 6 — C is a
knot in 53 with a bridge decomposition (.S?, 7 er)) = (B, 7 (e,NBy))U
(B, 7 (e1 N By)) where 7~ (e, N B;) consists of g + 1 trivial arcs for each
¢ = 1.2 as illustrated in Fig. 5. Moreover 7~ !(C)) forms the fixed circle of a
bridge preserving strong inversion for a pair (K. = 77} (ey), S = 771(9)).

By tracing the above argument backwards, we have the converse. [

We call the knot K in Lemma 2.3.2 the characteristic knot of (6, Sy)
and denote it by K.

Remarks. There are strong inversions of 3-bridge knots which may not be
bridge preserving. For instance, a 3-bridge knot 949 has a strong inversion A
such that (6, ) has a constituent knot 8y = M(1;(2,1),(3.2).(3,2)). Thus
h cannot be bridge preserving by Lemmas 2.3.1 and 2.3.2. On the other
hand, each of 3-bridge knots 10,55 and 10,57 with the antipodal (i.e., 2-
freely periodic) symmetry has two strong inversions such that one is bridge

preserving and the other is bridge exchanging.

A pair of f-curves with bridge decompositions (6;,S;), i = 1 and 2, is
said to be homeomorphic, if and only if there exists an orientation preserving
homeomorphism W : % — S% such that W(6,,S,) = (6, S,). On the other
hand a pair of bridge preserving strong inversions h; of K; with a bridge

decomposing sphere S;. ¢ = 1 and 2, is said to be homeomorphic. if and

13



only if there exists an orientation preserving homeomorphism I1 : S3 —
S? such that (K1, S1) = (K2.S) and hy = ITo hy o I17!. Under these
concepts of equivalences, we can easily see that each §-curve with a bridge
decomposition (6. S) uniquely corresponds to a triple (K. S. h) up to their

homeomorphic types.

The Zy & Zo-branched covering of (4, Sy)

Denote the dihedral group Z, @ Zy by D,. It is well known that for any
f-curve in S*, we have the D, covering projection 7p, : M — S* branched
over # which is induced by a monodromy map from the fundamental group
of 8 to Ds.

If a f-curve admits a bridge decomposing sphere S,. then we shall see
that the branch set upstairs ’/T;); (#) can be realized by fixed point circles of
three (orientation preserving) involutions of M which preserve each handle-
body in a Heegaard decomposition of M with genus g. Hence restriction of
Tp, on the associated Heegaard surface F, induces the covering projection

T\, + £y — S, branched over 8 N S,.

£ R, ()

Fig. 6

Let S!. S} and S} be a triple of circles in $° = R? U {oo} each pair of
which meets orthogonally at S! NSl NS [1, Then 7-rotation with respect
to S}, S} and S} induce involutions €, o and p of S? respectively such that
p=rcoog=ococ Let Dy = (¢,0:c00 =0o0e). Then S* has Dy symmetry

with a pair of global fixed points S! NS} NS}

14



Now, we consider a handlebody H, of genus g standardly imbedded in
S? so that the Dy-action of S2 can be restricted on H,. Here we assume that
one of involutions in Dy, say ¢, is alwavs taken as the standard involution
of Hy so that S!' N H, may consist of (g + 1)-arcs.

Then we have a set M, of (g+1)-meridian discs of H, with the following

action of a non-trivial involution 7 € D, on each meridian disc D € M,
(1) if Fix(Z) N D = @, then I(D) is another meridian disc E € M,;

(2) if Fix(I) N D is a single point (and hence a global fixed point of Dy),
then /(D) = D and I preserves the orientation of D;

(3) if Fix(I)N D is an arc, then I(D) = D and [ reverses the orientation
of D.

We call M, a system of D,-equivariant meridian discs of H,. Let M,
be a system of Dy-equivariant meridian discs of H) = S* — Int(H,). Since
a non-trivial involution I € Dy, I # €. has the action of type (1) on each
weridian disc in M, or M which does not contain any global fixed point
of Dy, we have:

Case g = 2. Each global fixed point of Dy should lie on each handlebody
Hy and Hj, respectively. For a meridian disc Dy in My (respectively Dy.
in M3) containing a global fixed point f (respectively f*), two involutions

which have the action of tvpe (2) on Dy and D;. must be the same. We

15



take such an involution as o. Then o transposes the two meridian discs of
My —{Dy} and those of Mj — {Dy.} as illustrated in Fig. 6.

Case g = 3. Both global fixed points f;, fo of Dy should lie on one of
the two handlebodies, say H;. And, two involutions which have the action
of type (2) on Dy, and Dy, must be the same. We take such an involution as
o. Then S} forms a core of Hj transversely meeting the meridian discs D f
and Dy,, and o transposes the two meridian discs of My — {Dy,, Dy, }. On
the other hand, o acts freely on H} and pairwise transposes two meridian
discs of M3 as illustrated in Fig. 7.

Since an orientation-preserving involution of S® is conjugate to an or-
thogonal transformation, we see that a Dy-symmetry of H, o with its standard
involution in D, is uniquely determined.

If we can choose a gluing homeomorphism ¢’ of the two handlebodies
Hg and Hj so that it may be compatible with € and o, i.e.. €09 = 1yoe¢ and
ooy = yoo, then we have a 3-manifold with a Heegaard decomposition
M, = HyUy H; on which the dihedral group Dy acts so that it may preserve
each handlebody. We call such a Heegaard decomposition of a 3-manifold
Ds-symmetric.

Further we assume that the gluing homeomorphism % is chosen so that
M may be a Zj-homology 3-sphere, which is necessary for M to be the
double branched covering of a knot K in S or the D,-branched covering
of a f-curve in S®. Then by classification of a D, action on a Za-homology
3-sphere, it is guaranteed that the fixed point sets of all three involutions
of M form three circles intersecting in exactly two points.

If we denote the fixed point set of each involution I € {e.o,p} of M
by Fix(I) and the union of them by Fix(Z). then we have the Dy-covering
projection mp, : M — M/D,(2 5%) branched over a §-curve 7p,(Fix(Z))

with a bridge decomposing sphere 7, (F,) where F, is a Heegaard surface

16



associated with the Heegaard decomposition of M. And, for each I ¢
{¢,0,p} we have the double covering projection 7y : M — M /I branched
over a knot K; = m(Fix(/)) in M/I whose Heegaard decomposition of
genus g7, M/I = H,/I' U; H; /I, naturally induces a (¢*, b)-decomposition
of K7 in M/I where 1 = 770 o (m) L

Details of such decomposition of K7 is given in the following proposition

which can be easily read off given the Dy-action on the handlebodies.

Proposition 2.3.3 Let M be a Z,-homology 3-sphere admitting a Dy-
symmetric Heegaard decomposition of genus g. Then we have:

Case g = 2.
(i) K. is a knot in S% with a 3-bridge decomposition and with a bridge
preserving strong inversion A, such that Fix(h.) = 7. (Fix(¢) U Fix(p)).
(i) Ko (respectively K,) is a (1.1)-knot in a lens space M /o (respectively
M/p). And 7,(Fix(e) UFix(p)) (respectively 7,(Fix(e) U Fix(0))) form the
fixed point set of the standard involution of the lens space M /o (respectively
M/p) intersecting each unknotted string once in the (1,1)-decomposition of
K, (respectively K,,).

Case g = 3.
(1) K is a knot in S® with a 4-bridge decomposition and with a bridge
preserving strong inversion h, such that Fix(h.) = 7.(Fix(o) U Fix(p)).

(if) K, admits a (2.0)-decomposition in M/c;
(M/o,K,) = (Hs/o. Ky) Uy, (Hi/o.0).

Further. 7, (Fix(¢) U Fix(p)) form the fixed point set of the standard invo-
lution of M /o intersecting K, twice.

(ili) A, admits a (1.2)-decomposition in a lens space M/p. And 7,(Fix(e) U
Fix(c)) form the fixed point set of the standard involution of the lens space
M /p intersecting each of two unknotted strings once on one side of a solid

torus of the (1.2)-decomposition of K.
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Remark. All lens spaces (including S*) in Proposition 2.3.3 must be of
odd type, i.e., L(p,q). p =1 (mod 2) because they are the double branched

coverings of constituent knots of the f-curve with 2-bridge decompositions.
Conversely we have:

Theorem 2.3.4([11, Theorem 4]) Let (K, S,;;,h) be a triple of knot
K with a (g + 1)-bridge decomposing sphere S,;, and a bridge-preserving
strong inversion h. Then the double branched covering space of (S3, K )

admits a Dy-symmetric Heegaard decomposition of genus g.

Proof. Taking a gluing homeomorphism ¢ of the two handlebodies H,
and H; provided by the (g + 1)-bridge decomposition of K through the
method in [2], we have the double covering projection 7 : A = Hy Uy Hy —
S® branched over A'. Thus we have a set M, (respectively M) of (g + 1)-
meridian discs of H, (respectively H;‘) such that they may doubly cover
the spanning discs of (g + 1)-trivial arcs in the bridge decomposition of K.
And, we have an involution € of M with 7~!(K), the lifting of K as the fixed
circle. Since h is a bridge-preserving strong inversion of K, there are a pair
of involutions /. 1, of M such that hor — 70 B, (2=1,2), 7 YFix(h)) =
Fix(h1) UFix(hs) and 7~1(K 0 Fix(h)) = Fix(h,) N Fix(hs).

In the case of g = 3. both points of 7 ' (K N Fix(h)) lie on one side of
the two handlebodies, say Hs. Then one of the two circles, say Fix(izl), n
7~ (Fix(h)) transversely meets a pair of meridian discs in M3 which are de-
termined by the two spanning discs of the trivial arcs containing & NFix(h).
Thus, Fix(h,) forms a core of Hs and hy is equivalent to . In the case of
g =2, 7 '(K NFix(h)) consists of a pair of points {p.p*} such that p € H,
and p* € Hj. respectively. Then, one of the two circles, say Fix(ih), in
7' (Fix(h)) transversely meets a meridian disc in M, (respectively M3)

which is determined by the spanning disc of the trivial arc containing p (re-
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spectively p*) in the given bridge decomposition of K. Thus h; is equivalent

to o. ]
By Lemina 2.3.2 and Theorem 2.3.4, we have:

Corollary 2.3.5 Let (8,.5;) be a f-curve with a bridge decomposing sphere
Sy. Then the Dy-branched covering of (6. S,) admits a D,-symmetric Hee-
gaard decomposition of genus g such that the associated Heegaard surface

covers S.

By considering the Dy-branched covering of (6. Sg). we have a refinement

of the Morimoto-Sakuma-Yokota’s method of studying tunnel 1 knots.

Theorem 2.3.6([6, Theorem 1.2 (1) and (2)]) A knot K in S% is a
(1.1)-knot (respectively a tunnel-1 knot). if and only if there exists a strong
inversion h of K such that

(1) f-curve O(K, h) admits a 2 (respectively 3)-bridge decomposing sphere
Sy (respectively S3) and

(i) p(Fix(h)) forms a trivial constituent knot of (#(K, %), S,) (respectively
({K.h). S3)) with a 2-bridge (respectively 3-bridge) decomposition where
p is the projection S% — S®/h.

3 Main Results

This section contains a main result of this paper which shows that nomn-prinie
2-bridge 6-curves in Motohashi’s theorem are induced by strong inversions of
2-bridge knots. For more precise statement of our result, we briefly recall the
following classification theorem of the strong inversions of 2-bridge knots;

Let b(p.q) be the 2-bridge knot of tyvpe (p.q), 1 < lg| < p, namely for the
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unique continued fraction expansion

p/q = by + 1
bo +

[)3+ 1
b4+'--+b—n

where b;, 1 <4 < n and n are non-zero even integers(see [9]), we have a
following 2-bridge presentation of b(p, q) which naturally reveals its strong
inversion o;

Since b(p, q) and b(p.q’) with ¢- ¢’ = 1 (mod p) represents the equiva-
lent 2-bridge knot, we have another strong inversion of b(p, ¢) through the
continued fraction expansion of b(p.¢™') if ¢> # 1 (mod p). But it is more
convenient to express both strong inversions of b(p, ¢) through so called a
trisymmetric projection diagram of b(p.q) as illustrated in Fig. 8(a). On
the other hand. if ¢> = 1 (mod p), then there is another strong inversion
p whose axis. namely the fixed point circle Fix(p) lies on the 2-bridge de-
composing sphere of b(p. ¢) as illustrated in Fig. 8(b) ; The strong inversion
of type h; is said to be bridge-preserving whereas that of ¢ is said to be
bridge-exchanging.

Now we recall the following classification theorem for strong inversions

of 2-bridge knots, which is refined for forthcoming application.

Theorem 3.1([9, Proposition 3.6]) (1) If ¢> # 1 (mod p). then b(p.q)
has two non-isotopic strong inversions h; and hs such that 8(K, h;) (resp.
O(K, ha)) is a rational f-curve of type p/2q (resp. p/2¢™') .

(2) If ¢ = 1 (mod p). then b(p. ¢) has two non-isotopic strong inversions ks
and g such that 6(K, hs) is a rational f-curve of tvpe p/2q whereas 8(K, g)
is not. a rational #-curve.

(3) h; are bridge preserving whereas g is bridge exchanging and Fix(g) lies

on the bridge decomposing sphere of b(p. q).
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h : bridge preserving

g @ bridge exchanging

Fig. 8

a? Z 1 mod p
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Remark. Harikae[4] called Fix(p) Un,(K) a pseudo-rational #-curve.

Although there is only one way of composing two knots (up to its knot
type), this is not true of the equivariant composition of two strongly invert-

ible knots as illustrated in Fig. 10.;

== ECE %ﬂ%%

2

—K&/ﬁ/F Sod- F:/_F/
(O o =

Bl

a non—prime 3-bridge knot with

L LU —_— J bridge presrvinag str.-inv. h
(=] " ;

¥
o | o) I —=r
ISP ]

a constituent knot : t(2.,5)# t(2.5) a non—prime 2-bridge 6 -curve

Fig. 10

In Fig. 10(a) we have an equivariant connected sum of two copies of
(b(5.2).0) the associated §-curve 6y = 6(b(5,2)#b(5.2). h;) of which has
b(5,1)#b(5, 1) as one of its constituent knots whereas in Fig. 10(b) we have
another equivariant connected sum of two copies of (b(5.2).¢) the associ-
ated f-curve 8, = 0(b(5,2)#b(5.2), hy) of which has two copies of (b(5,1)
as its constituent knots. Note that the strong inversion hy of b(5. 2)#b(5. 2)
is bridge preserving and hence by Lemma 2.3.2. #, admits a 2-bridge de-
composing sphere whereas ; cannot admit a 2-bridge decomposing sphere

by Theorem 2.3.6. Indeed we claim that all of the Motohashi’s non-prime
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2-bridge #-curves are obtained by taking equivariant connected sums of
2-bridge knots (b(p, ¢)#b(r,s),h) so that the strong inversion A may be

bridge-preserving. This example is generallized as follows;

Theorem 3.2 An equivariant connected sum (b(p. q), a;)#(b(r, s), 0,) =
(b(p. q)#b(r, s), h) with a bridge-preserving strong inversion 4 induces a non-

prime 2-bridge 6-curve of type (p/2q*,7/2s7) where i,j € {+1, —1}.

Proof. From Fig. 11, we have an equivariant connected sum (b(p, q), o) #
(b(r,s).0;) = (b(p. q)#b(r. s), k) with a strong inversion A which preserves a
3-bridge decomposing sphere of b(p, ¢)#b(r, s). By Lemima 2.3.2 and Theo-
rem 2.2.3 6(h), the f-curve induced by h is non-prime and admits a 2-bridge
decomposing sphere. Moreover, it is easy to see that the two non-trivial con-
stituent knots of () determine type of the Motohashi’s non-prime -curve

as claimed in the theorem. O

Combining Theorem 3.2 and Motohashi’s theorem(Theorem 2.1.1), we

have;

Corollary 3.3  Let b(p;. q1) and b(ps, g2) be 2-bridge knots with strong

inversions h; and h, respectively. Then an equivariant connected sum

(b(p1.q1), h1)#(b(p2. ¢2). ha) = (b(py, q1)#b(p2, g2). h) vields a 3-bridge non-

prime knot with a bridge preserving strong inversion £ if and only if both

strong inversions iy, hy are bridge preserving.
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equivariant connected sum of 2-bridge knots

a non-prime 2-bridge 8 —curve

Fig. 12
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