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1 Introduction and Preliminaries

Quadratic optimization problems consist of quadratic objective functions and
affine constraint functions. The main research topics for the problems are
existence criteria of optimal solutions, properties of optimal solution sets,
stability and sensitivity properties and numerical methodologies for find-
ing optimality solutions. Affine variational inequality problems and linear
complementarity problems are closely related to the problems. We say the
quadratic optimization problem as a convex quadratic optimization problem
when the quadratic objective function is defined with a symmetric positive

semidefinite matrix.

On 1956, Frank and Wolfe [10] gave a very famous existence theorem for
a quadratic optimization problems, which says that if a quadratic function
is bounded from below on a nonempty polyhedral set, then the problem
of minimizing the function on the set must have an optimal solution, and
informed that the problem of minimizing a polynomial function of degree
greater than 2 on a nonempty polyhedral set may not have optimal solutions
even in the case that the function is bounded from below on the set. Blum
and Oettli [4] presented direct proof of the existence result of Frank and
Wolfe. Eaves [9] established existence criteria for quadratic optimization

problem, and Lee, Tam and Yen [15] proved the criteria by using arguments

of Blum and Oettli [4].

Recently, Mangasarian [17] initially presented simple and elegant char-

acterizations of the optimal solution set of a convex minimization problem



over a convex set when one optimal solution is known, which are very use-
ful for understanding of the behaviour of optimal solution methods when
the problem has multiple optimal solutions. In recent years, many authors
[5, 8, 13, 14, 11, 12, 18] extended the Mangasarian’s results to several op-
timization problems. Jeyakumar, Lee and Dinh [13] gave simple Lagrange
based characterizations of solution set of a convex minimization problem with
a geomeric constraint set and cone ineqaulity constraints by using Lagrange

multipliers.

It is the purpose of this thesis to induce an existence theorem for optimal
solutions of a convex quadratic optimization problem from Eaves theorem, to
give a direct proof for Lagrange based characterizations and a boundedness
condition of the optimal solution set of the problem when its one optimal
solution is given, and to apply such results to a linear optimization problem
and a linear complementarity problem. Moreover, we give examples illustrat-
ing our Lagrange based characterizations for a convex quadratic optimization
problem, a linear optimization problem and a linear complementarity prob-

lem.

This thesis is organized as follows; In Section 1, we give definitions and
preliminary results which will be used in next sections. In Section 2, we
introduce Frank-Wolfe Theorem and Eaves Theorem, which are fundamen-
tal for existence of optimal solutions of a quadratic optimization problem.
From Eaves Theorem, we induce an existence theorem for optimal solutions
of a convex quadratic optimization problem. In Section 3, we directly prove
Lagrange based characterizations and a boundedness condition of optimal so-

lution set of a convex quadratic optimization problem when its one optimal



solution is given, and give an example which illustrates the characterization
result. In Section 4, we apply our results in Sections 2 and 3 to a linear opti-
mization problem and a linear complementarity problem, and give examples

ilustrating results in Section 4.

Now we give definitions and preliminary results which will be used in
next sections. For two vectors z = (z1, -~ Zn), ¥y = (¥1, --- ¥n) € R”, the

inequality r 2 y means z; = y; foralli =1,--- | n.

Definition 1.1 Let D be an n x n matriz. Then D is said to be positive

semidefinite if for any z € R™, 27 Dx = 0.

Remark 1.1 If D is an n X n symmetric positive semidefinite matriz and

c € R", then f(z) := %mTDx + cTz is conver on R™.

Definition 1.2 [19] Let S be a closed convex set in R™. The recession cone
of S is defined as the following set ;
S ={veR" | z4+aves Yzes Vaz=0}.

Now we give examples of recession cones.

Example 1.1 (1) Let A be an m x n matriz, b € R™, C an s X n matriz
and d € R® and let S := {x € R* | Az 2 b, Cx =d}. Then S® = {v ¢
R™ | Av =20, Cv=0}.

(2) Let A be an m x n matriz, b€ R™ and let S:={z € R" | Az =b, ==
0}. Then S*:={veR" | Av=0, v=0}.

(3) Let D be an n x n matriz and c € R* and let S:={z € R* | Dr+c =
0, 220}. Then S*:={veR* | Dv=20, v=0}.
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Theorem 1.1 [19] Let S be a closed convex set in R™. Then S is bounded
if and only if S> = {0}.

Definition 1.3 Let S be a set in R™. Then S is called a polyhedral set if it

18 the intersection of finite number of closed half-spaces, that is,
S={zecR" | aTz2b, i=1,---,m}

where a; € R" and b; € R fori=1,--- ,m.

Example 1.2 All the sets S in Example 1.1 are polyhedral.

Remark 1.2 [19] Let S be a nonempty set in R*. Then S is polyhedral if

and only if there exist finite elements in R™, x1,--- , xx, dy,- -+ ,d; such that

S:{Zle)‘ixi+2fj:1“jdj [ )\1‘20, Z:L 7k1 Zf:l/\izl’

Definition 1.4 Let S be a nonempty closed convex set in R™.

(1) A vector x € S is called an extreme point of S if x = Azy + (1 — \)zo
with T1, x2 € S and A € (0,1) implies that z = x; = .

(2)d € S®\{0} is said to be an extreme direction if d = A\ydy+Xada, di, dp €
S\ {0} and \; >0, Ay > 0 implies that d; = ady for some a > 0.

Theorem 1.2 [2] Let A={z € R* | Az =b, x 20} where Aisanmxn

matriz and b € R™ and assume that A # 0 and rankA = m.



(1) A point z is an extreme point (a basic feasible solution) of A if and only
if A can be decomposed into (B, N) such that

where B is an m X m invertible matriz satisfying B™'b > 0.
(2) A nonzero vector d is an extreme direction of A if and only if A can be

decomposed into (B, N) such that B~*a; < 0 for some column a; of N and

_ —B7la;
d s a positive multiple of d = ’ where e; 1s an n — m vector of
€5

zeros except for a 1 in position j.

Theorem 1.3 [1](Representation Theorem) Let A = {x € R" | Az =
b, * = 0} be a nonempty set. Then the set of extreme points is not empty
and has a finite number of points, say x1,--- ,xr. Furthermore, the set of
extreme direction is empty if and only if A is bounded. If A is not bounded,
then the set of extreme directions is nonempty and has a finite number of

vectors, say dy,--- ,d;. Furthermore,

A={Y Az + 0 widy | A=0, i=1- &k S5 A=1,



2 Existence Theorems

In the following, we consider the following quadratic optimization problem;
1
(QP) Minimize f(z) = ExTD:C +cTz
subject to zeA:={zeR" | Az 2b, Cz=d},

where D is an n x n symmetric matrix, ¢ € R", A is an m x n matrix,

be R™ Cisan s X n matrix and d € R?.

Now we introduce Frank-Wolfe Theorem and Eaves Theorem, which are

fundamental for existence of optimal solutions of (QP).

Theorem 2.1 [10] [Frank-Wolfe Theorem] If 0 := inf{f(z) | z € A}
s finite, that is, f(x) is bounded below on A, then (QP) has an optimal

solution.

Theorem 2.2 [9] [Eaves Theorem| (QP) has an optimal solution if and
only if the following hold;

(i) A #£0Q;

(i7) If Av =0 and Cv = 0, then vTDv = 0;

(i) If Av 2 0, Cv =0, vTDv = 0, Az = b and Cx = d then (Dz+c)Tv =

Now we induce an existence theorem for a convex (QP) from Theorem

2.2.



Theorem 2.3 If D is an nxn symmetric positive semidefinite matriz, then
the following are equivalent;

(i) (QP) has an optimal solution.

(1)) A#£Q and if Av 20, Cv =0, v"Dv =0, Az 2 b and Cx = d, then
(Dz + ¢)Tv 2 0.

(1) A #0 and if Av 20, Cv =0 and Dv =0, then cTv > 0.

Proof. By Theorem 2.2, (ii) implies (i). Now we will prove that (iii) implies
(i1). Let v € R™® and z € R™ be such that Av > 0, Cv = 0, vT"Dv = 0,
Az 2 b and Cz = d. Since (yTDv)? < (y"Dy)(vT Dv) for any y, v € R",
then y"Dv = 0, for any y € R™ and hence Dv = 0. By assumption (iii),
v 20. So, (Dz +¢)Tv = 2T Dv + cTv = cTv = 0. Hence (ii) holds.

Now we will prove that (i) implies (iii). Since (QP) has a solution, A # 0.
Let v € R™ be such that Av = 0, Cv = 0 and Dv = 0, and let z; be a
solution of (QP). Then for any t > 0, A(z¢ + tv) = Az + tAv = b and
C(xo+ tv) = Cxo + tCv = d. Hence for any t > 0, zo + tv € A. Since z; is

a solution of (QP), we have, for any ¢t > 0,
1 T T 1 T
5(:130 +tv)" D(xo + tv) + ¢ (xo + tv) = 5%0 Dzo + ¢ zo.

Thus for any ¢ > 0, $t>vTDv + tzf Dv + tc"v 2 0. Since Dv = 0, ¢Tv 2 0.

Hence (i) holds. 0

Remark 2.1 The condition (iti) in Theorem 2.3 can be found in [3], but our

proof is quitely different from one in [3].
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For the completeness, we give a proof for a necessary and sufficient opti-
mality theorem (Lagrange multiplier theorem) for a convex (QP), which can

be found in [15].

Theorem 2.4 Let D be an n X n symmetric positive semidefinite matriz.
Then xo € R™ be an optimal solution of (QP) if and only if there exist
A € R™ and p € R® satisfying the following Kuhn-Tucher system:

Dzg+c—ATAN-CTp =0,
M (Azy —b) = 0,
Az0, (2.1)
Azo 2 b,
Czo=d.

Proof. Let zo € R™ be an optimal solution of (QP). Let I := {z | A;zo =
b;} and I := {i¢ | A;zo > b;}, where A; is the i-th row vector of A. Let v be
any point such that A;v 2 0foranyi€ L and Cjv =0, j=1,---,s. Cj is
the j-th row vector of C. Then there exists § > 0 such that for any ¢ € (0, d),
and any ¢ € Iy, A;(xzo+tv) = b;. Moreover, for any t € (0,6), for any 1 € I,
Ai(mo + tv) = Ao + tAv 2 b; and C(xg + tv) = Cxo + tCv = d. Hence for
any t € (0,6), zop + tv € A. Since z¢ is an optimal solution of (QP), for any
t € (0,0)

1
(zo + tv)T D(zo + tv) + T (zo + tv) = §a:OTon + Tz

B =



and hence t*v" Dv+¢(Dzo+c)Tv 2 0. So, for any ¢ € (0, 6), 3tvT Dv+(Dzo+
c)Tv 2 0. Letting t — 07 we have (Dxzo + ¢)Tv = 0. Thus (Dzo + ¢)Tv 2 0
foranyve {veR*" | Aw =20, i€l and Cju =0, j=1,---,s}. By
Farkas Theorem in [16], there exist \; € R, i € I1, p; €R, j=1,---,m
such that
Dxy + ¢ — Z/\iAi - Z,uiCj =
i€l j=1
and A\; 20, ¢ € [;. Letting A\; = 0 for any ¢ € I then we have
Dxg+c— ATXA - CTu =0,

M (Azo — b) =0,
and A = 0.

Conversely, that (2.1) holds, For any z € A,

-QI-LL'TD.’E +cTr — %ngxo — Tz

= 3z —20)"D(x — o) — z{ Dzo + 28 Dz + Tz — Tz

v

(Dzo + ¢)T(x — o) (since D is positive semidefinite)
(ATA+ CTp) (@ — z) (by (2.1)

M A(z — zo) + pT'C(z — o)

M Az — N Azg + pTCx — pT Cxy

MTh—2Th  (by (2.1))

0.

v

It

Thus for any x € A,

1 1
§xTDx +clz > EngxO + Tz
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and hence zg is an optimal solution of (QP). O

3 Characterization of Solution Sets of Con-

vex Quadratic Optimization Problem

In this section, we directly prove Lagrange based characterizations and a
boundedness condition of optimal solution sets of a convex quadratic opti-
mization problem when its one solution is given, and give an example which

illustrates the characterizations.
Let S be the optimal solution set (the set of all optimal solutions) of (QP)

in Section 2 and assume that S # @. Let a € S. By Theorem 2.4, there exists
(A, 1) € R® x R® such that

Da+c=ATA\+CTu, XT(Aa—b)=0
and A = 0.

(3.1)

We call (A, ) the Lagrange multipliers corresponding toa. Let I = {1,--- ,m},
L(a)={i | Aia=0b; N\ >0}

Theorem 3.1 Let D be an n X n symmetric positive semidefinite matriz.

Then we have,

(i) S ={zxeR" | Az 2b, Cx=d, \T(Az —b) =0, Dz = Da}
={reR"” | Az 2b, Cz=d, \T(Az —b) =0,
Dz +c= ATX+ CTu}.

11



(’LZ) S :{.'L'ERn lAiLE:bi, Viefl(a),
Az =2 b, Vie I\ I (a), Cx=d, Dz= Da}.

(ii) S s polyhedral.
() S is bounded if and only if

{veR* | Aw=0, Viel(a), Aw=20, Yie I\ L(a), Cv=0, Dv=0)}
= {0}.

Proof. Now we firstly prove that S is convex. Let z;, z2 € S and « € [0, 1].

Since A is convex, az; + (1 — a)zz € A. By Remark 1.1, we have,

(az1 + (1 — @)z2)"D(az1 + (1 — @)z2) + T (az1 + (1 — @)z2)

I

al32T Dz + cTz1) + (1 — @) (32 Dzy + ¢ x5

= —;—aTDa + cTa.

Thus az; + (1 — a)z2 € S and hence S is convex.
(i) Let z € S. Then Az 2 b, Cx = d and a+t(r—a) € S for any t € (0, 1]

since S is convex. Moreover, for any ¢ € (0, 1},

0 =1(a+t(z—a)"Da+tz—a))+c (a+t(x—a))—3a"Da—c"a
t

2z —a)TD(z — a) + t(x — a)TDa + tcT(z - a).

1
2
1
2
Hence for any t € (0,1],

Stz — )" D(z — a) + (Da + 9z —a) = 0.

12



Letting t — 0%, we have

By (3.1) and (3.2),

(Da + C)T(:c —a)=0.

0 =ATA+CTw)T(z —a)
=MNAz ~ MTAa + pTCz — T Ca
= AT'(Az —b).

For any y € R”, we have,

2

T
U Dy +c'y —3a"Da—c'a—(Da+c)'(y — a)
3y Dy + 30" Da — a” Dy
5(y—a)’D(y —a)

0 (since D is positive semidefinite).

Hence for any y € R,

1 1
inDy +cly — iaTDa —cfaz(Da+c)"(y—a).

Moreover for any y € R™,

Il

1%

f

sy Dy + Ty — 527Dx — "

sy"Dy + Ty — 3a"Da — cTa
(Da+c)"(y —a)

(Da+c)"(y — )+ (Da+c)'(z - a)
(Da+c)T(y —x) (by (3.2)).

13
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Furthermore for any y € R”,
1 T T 1 r T T
§(x+ty) D(z +ty) + ¢ (z:+ty)—§ac Dz —c'z2t(Da+c)'y.

Thus for any t > 0 and y € R,

- ;@ +ty)"D(z + ty) + T (z+ ty) — 227Dz — Tz
t—0+ t

> (Da+c)Ty.

Since the left-hand side in the above inequality, becomes (Dz + ¢)Ty, (Dx +
c)Ty =2 (Da+c)Ty for any y € R, i.e., (Dz—Da)Ty = 0 for any y € R”. Thus
Dz = Da. Consequently, S C {z e R* | Az 2 b, Cx=d, \T(Az —b) =
0, Dz = Da}.

Let z be a point such that Az = b, Cz = d, \T(Az—b) = 0 and Dz = Da.
Then it follows from (3.1) that Dz +c = ATA + CTu. Thus

{reR* | Az 2b, Cx=d, \T(Az—~b) =0, Dz = Da}
C {zeR" | Az 2b, Cz=d, NT(Az—b)=0, Dz +c= ATX+CTu}.

Moreover, by Theorem 2.4,
{zeR* | Az 2b, Cz=d, NT(Az—b) =0, Dx+c=ATA+CTu} C S.

Therefore,

S= {z€eR" | Az=2b, Cx=d, \T(Az~b) =0, Dz = Da}
= {zeR" | Az 2b, Crx=d, NT(Az—b)=0, Dz +c=ATA+C%u}.

14



(i) Az = b and AT(Az — b) = 0 if and only if Az = b; for any i € I\ I(a)

and A;x = b; for any i € I;(a). Thus from (i),

S={zecR" | Az=>~, Viella),
Az 2b;, Vie I\ L(a), Cx=d, Dz=Da}.

(iii) By (ii), S is polyhedral.

(iv) It follows from (ii) and Example 1.1 that S* = {v e R"* | Aiv =0, Vi €
fl(a), Av =0, Vie I\fl(a), Cv =0, Dv=0}.

So, by Theorem 1.1, S is bounded. a

Remark 3.1 Theorem 3.1 is a slight extension of Corollaries 2.3 and 2.4 in
[13], which are induced from Lagrange based characterizations of solution set
of cone-constrained conver program (see Theorem 2.2 and Corollary 2.2 in
[13]). Here we give a direct proof for Theorem 3.1 only with matrices D, A

and C (without using subgradient or gradient of conver functions).

Now we give example illustrating Theorem 3.1.

Example 3.1 Consider the following convexr quadratic optimization prob-

lem:
(QP) Minimize f(z) == =(z1, z2) + (1, 0)
2 00 T2 )
=2l +m
subject to €A :={x= (21, 2)7 | 2120, 20}

15



Let S be the optimal solution set of (QP). We can easily check that S =
{(0,22)" | z2 2 0}.
Now we identify the solution set by Theorem 3.1. Let a = (0,0)T. Then

a € S. We consider the Kuhn-Tucker system corresponding to a in (3.1) :

(1,0)T — A (1,07 — Ap(0,1)T = (0,0)7,
A =0, A 20

Then A\, = 1, Ay = 0 and hence I;(a) = {1}. So, by (ii) of Theorem 8.1, we

have,

20 z 0
S= {zeR? | z;,=0, 70 20, == }
00 ) 0

= {z€R? | z, =0, z2 20}

4 Applications

Now we apply our results in Sections 2 and 3 to a linear optimization prob-
lem and a linear complementarity problem, and give examples illustrating

obtained results.

4.1 Linear Optimization Problem

Consider the following linear optimization problem:
(LP) Minimize f(z):=c’z
subject to z€ A:={z €eR" | Az=10b, =20},

16



where ¢ € R, A is an m X n matrix and b € R™.

By Theorem 2.3, we can obtain the following corollory.

Corollary 4.1 The following hold:
(LP) has an optimal solution if and only if A = {r e R* | Az = b, z 2>
0} #0, and if Av =0 and v = 0, then cTv > 0.

Let S be the optimal solution set of (LP) and assume that S # @. Let

a € S. Then by Theorem 2.4, there exsits (A, u) € R™ x R™ such that

c=ATX+y,
pTa =0, (4.1)
n=0.

We call this (A, p) the Lagrangean multiplier for (LP) corresponding to a.

Let I ={1,---,n}, L{a)={iel | a;=0, >0}
Applying Theorem 3.1 to (LP), we get the following corollary:

Corollary 4.2 The following hold:

(1) S ={z€eR* | 220, Az=0b, pTz =0}
={zeR* | 220, Az =0b, pfz=0, c=AT) +u}.

(1) S={z €R™ | z;=0, Vie I,(a), z; 20, Vie I\ L,(a), Az =b}.

(1) S is polyhedral.
(i) S is bounded if and only if

{zeR" | 2;=0, Ve 1(a), 2,20, ViecI\I(a), Az =0} = {0}.

17



Now we give examples showing the meaning of Theorem 4.1

To illustrate Corollary 4.1, we give an example of which the optimal

solution set is bounded.

Example 4.1 We consider the following linear optimization problem:

(LP) Minimize  f(z):=x
subjectto xz€A:={zcR' | 2,20, 2,20, 23>0, x4 =0,

—T + Ty + 13 =6, 1'1-£C2+(E4:5}.

Then A = {(z1, z9, T1 —22+6, —z1+22+5)7 | 2,20, ,29>0, z; —
T2 =6, ,—x1+ 322 —5) = {z:1(1,0,1,—1)T + 25(0,1, -1, 1) | z; =
0, 220, 6+2,—2220, 5—x21+x220}+(0,0,6,57. Thus f(A) =
{1 |21 20, 2020, 6421 —2220, 5—2;+x0 20} = [0,5].
So, the optimal value is 0, and hence the optimal solution set of (LP) is

S = {1'2(0, 17 _17 l)T + (07 0v6) 5)T ' 0 § Z2 < 6}

Now we identify the optimal solution set S by Corollory 4.2. Let a =

(0,0,6,5)T € S. We consider the Kuhn-Tucker system corresponding to a as
in (4.1):

(1a 0) 07 O)T + )‘l(_la 17 17O)T + /\2(17 _1: 07 1)T - (u’lv M2, NS,N4)T = (0,0, 07 O)Ta

i3 + Spq = 0,
p1 20, pe =20, uz 20, pg 20,
)\1, )\QER,

18



that is,

I+A == =0,
—A1L+ Ay — g =0,
—A1 —p3 =0,
—A2 — pg =0,
120, pup 20,

pu3 =0, pg =0,

A1, A €R.

Hence Ay, Mo=0, uy =1, up =0, u3 =0, pg = 0 and f(0,0,G, 5) = {1}.
Thus, by Corollay 4.2,
S = {(x1, Zo, 23, 24) ER* | 2, =0, 2220, 2320, 4 =0,
—ZT1+ 22+ 23 =06, 1 — T2+ x4 =5}
= {(0, zo, 6—22, 5+22) | 2220, 6 —2220, 5+ 22 20}
= {(0, z2, 6—x2, 5+ x3) | 0< 13 <6}
= {z2(0, 1, =1, )T+ (0, 0, 6, 5)7 | 0 < 2, < 6}.
To illustrate Corollary 4.1, we give an example of which the optimal
solution set is unbounded.
Example 4.2 Consider the following linear optimization problem:
Minimize  f(x) :=x, — z9
subject to €A :={z€R*| 2,20, 2,20, 2320, z4 >0,

T, — 2T9 + 3 = 4, —$1+$2+$4:3}7

19



Now we find extreme points and extreme direction of A by using Theorem
1.2.

1 =210
Let A = and b=
-1 1 01 3

Extreme points : 7o find extreme points of A, we find 2 X 2 submatrices

B's of A with linearly independent row vectors of A as follows;

0 G Y O ol M Y B

Now we check whether B™b is nonnegative or not as follows;

(2 0-C2)0-(2)

20



Thus, by Theorem 1.2, extreme points of A are

(4, 0, 0, 7T, (0, 3, 10, 0)T and (0, 0, 4, 3)T.
Extreme directions : To find extreme directions of A, with the above 2 x 2
submatrices B's of A and ajs, which is a row vector of A (but which is not a

row vector of B), we check whether B™'a; is nonpositive or not as follows;

oo
[
[
N
~——
N
—_ O
~—
i
Ve e
L
~—






Now from the above we get vector ~Be where e; is an n —m vector
€j
of zeros except for a 1 in position j as follows,
(1, 1, 1, 0), (2, 1, 0, 1), (1, 3, 0, 3).
Thus, by Theorem 1.2, extreme directions of A are (1, 1, 1, 0)T, (2, 1, 0, 1)T.
So, by Theorem 1.8, A = {\ (0, 0, 4, 3)T+X2(4, 0, 0, 7)T+X3(0, 3, 10, 0)T+
wi(l, 1,1, 0T 42, 1, 0, DT [ A 20, A 20, A3=20, A + Ao +

A3=1, w3 20, ps 20},
FIA)={0- A1 +4X —3Xs+ O-pu+1-p2 | A1 20, 220, A3 20,
AMA+X+A=1, u =20, pup =0}
={4x -3+ | 2220, A320, o+ A3 <1, pp 20}

= [-3, +00).

Note that f(4, 0, 0, 7) =4, f(0, 3, 10, 0) = =3, and £(0, 0, 4, 3) =
0.

So, we see that the optimal solution set is

S={(0, 3, 10, 0T +¢(1, 1, 1, 0)T | t = 0}.
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Then (0, 3, 10, 0)T € S and there exists (A, p) € R? x R* such that

1
-1
0
0
1 -1 1 0 0 0
-2 1 0 1 0 0
=X\ + A2 + 1 + p2 + U3 + g
1 0 0 0 1 0
0 1 0 0 0 1
3ug 4+ 10pus = 0,

iy 20, pp 20, uz =20, py 20,

that is,
== Ao+,
—1 = =2A\; + Ao + po,
0: A1 +u’37
O:)\2+,LL4,
Mo = M3 = O)
1251 g O) H4 g 07
A1, A €R,
that 1is,

/\1 =0, A2= —‘1?

po=pp=p3 =0, pg=1
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Thus I,(0, 3, 10, 0) = {4}.

S= {reR'| z4=0, 2,20, 2020, 2320, 7, — 277+ 23 =4,
—1 + T2+ 24 = 3}
= {(z1, 3+z1, 71 +10, 0)T | 1, 20}
= {=(1, 1, 1, 0)"+(0, 3, 10, 0)T | z; = 0}.

Let z1 =t. Then

S={(0, 3, 10, 00T +¢(1, 1, 1, 0)T | t = 0}.

4.2 Linear Complementarity Problem

Consider the following linear complementarity problem,;

(LCP) Find Z € R™ such that 2= 0, Di+c¢>0, z7(DZ+¢) =0,

where D is an n X n matrix and ¢ € R".

Notice that if D is an n X n positive semidefinite matrix, then D + DT
is symmetric and positive semidefinite and that 3z (D + DT)z = 2”7 Dz for

any z € R™.

For the completeness, we give the proof of the following theorem, which

can be found in {7], [20]
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Theorem 4.1 Suppose that D is an nxn positive semidefinite matriz. Then
Z is a solution of (LCP) if and only if T is an optimal solution of the following

quadratic optimization problem;

(QP), Minimize -;—a:T(D + DNz + "z

subject to zeA:={zeR" | Dr+c=20, 20}

Proof. Necessity: Let T be a solution of (LCP). Then Z 2 0, Dz +c =0

and z7(DZ + ¢) = 0. For any z € Ay,

22T(D + DTz + Tz
2Dz + Tz

zT(Dz + ¢)

0

zT(Dz +¢c)

1z7(D + DTz + Tz

v

Hence 7 is an optimal solution of (QP);.

Sufficiency: Suppose that Z is an optimal solution of (QP),. By Theo-
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rem 2.4, there exists (A, 1) € R” x R™ such that

(D+ DTz +c=D"x+y,
M(Dz +¢) =0,

u'z =0,

A20, p=0,

Dz +c¢=20,

=0.

From (4.5) and (4.6),
i:T(D:T: +¢)=0.
From (4.1) and (4.3),

FT(D+ DNz +c— D7) =0,

that is,

T (Dz +¢) +zTDTz — zTDT X = 0.

From (4.7) and (4.8),
DTz - ) 0.

From (4.1) and (4.4),
A(Dz +¢)+2TDT(z — \) = 0.

Thus, by (4.2),
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From (4.9) and (4.10),

(z-NTDT -\ <0
Since D is positive semidefinite,

(z-NT'D(E-)=0. (4.11)
From (4.9), (4.10) and (4.11),

0= (z—-NTDz=(z-NTDx>0.
Hence (z — A\)TDz = 0. So, from (4.8),
2 (Dz +¢c) = 0. (4.12)

Thus (4.5), (4.6) and (4.12) imply that Z is a solution of (LCP). O

Applying Theorem 2.3 to (QP);, we obtain the following corollary:

Corollary 4.3 The following conditions are equivalent;

(i) (LCP) has a solution;

(i) A # 0.
Proof. It is clear that (i) implies (ii). Suppose that (ii) holds. Then there
exists zg = 0 such that Dzg + ¢ = 0. Assume that Dv = 0, v = 0 and
(D+ DT)v = 0. Since Dv + DTv = 0 and Dv = 0, tnen DTv < 0. Since
v 2 0and 2l DT + ¢ 20, then ¢Tv = —2I'DTv 2 0. So, if Dv >0, v >0
and (D + DT)v = 0, then v = 0. Thus, it follows from Theorem 2.3 that

(QP); has an optimal solution. So,by Theorem 4.1 (LCP) has a solution. O
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Remark 4.1 The condition (i) in Corollary 4.2 can be found in [6, 7]. But

our proof is different from one in [6, 7).

Let S be the set of solution of (LCP) and assume that S # . Let a € S.
Then, by Theorems 2.4 and 4.1, there exists (A, u) € R™ x R™ be such that

(D+DT)a+c= DT+,
M'(Da +c) =0,

( ) (4.13)
aTp =0,

Az0, p20.

Let D; be the i-th row vector of D, ¢; the i-th component of ¢, I = {1,--- ,n},
L@)={i€l | Dia+c;=0 A\>0and Ji(a)={j€l|a;=0, p; >
0}.

Applying Theorem 3.1 to (QP);, we can obtain the following corollary.
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Corollary 4.4 The following hold;
(i) S={z€R"| Dx+c=20, 220 M(Dzx+¢)=0, pfz=0
(D + D"z = (D + D")a}
={z€R" | Dz +c20, 220, N'(Dz+c¢)=0, uTz=0
(D+ DTz +c= DX+ pu}.
(i) S={z€R"| Dix+c; =0, Vieca), z; =0, Vj € Ji(a),
Diz+¢,20, Vie I\ ILi(a), z; 20, ¥Yj eI\ Ji(a)
(D + DTz = (D + DT)a}.
(i5i) S is polyhedral
(iv) S is bounded if and only if
{veR" | Dw=0, Vi€ l(a), v; =0, Vj € J(a),
Div =0, VieI\La), v; 20, Vj€ I\ Ji(a), (D+ D")v =0}
= {0}.
Now we give an example illustrating Corollary 4.4:
1 0 -1 0

Example 4.3 Let D= |0 0 0 | andc= | 0|. Consider the following
1 0 0 0

linear complementarity problem with the above D and c:

(LCP) Find © € R® such that
220, DZ4+¢=0, 2 (DT +¢)=0.
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Notice that D is not symmetric, but positive semidefinite. Let S be the solu-
tion set of (LCP). Then, clearly, a = (0, 0, 0)T € S. Now we consider the

Lagrange multipliers for a in (4.13).

M(L, 0,=1)T +X2(0, 0, 0)T + Ag(1, 0, 0)T + (1, paa, p3)” = (0, 0, 0)7,
Algo’ /\2‘20, )\3207
Aul%o’ u220: ,u320

Then Ay = A3 = w1 = po = p3 = 0 and Ay = 1 satisfies the above equations
and inequalities, and hence I (a) = {1} and Ji(a) = 0. Thus, by Corollary
4.4, we have,
S = {z2€R® | Diz4+c, =0, Doz +¢2 20, D3z +c3 =0,
£20, (D+ D7)z =0}
= {(z1, T2, 13) ER? |21 —23=0, 2; 20, 2220, 23 20, 2z; =0}

= {(0, X9, 0) ERs | $220}
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