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On primitive /Seifert-fibered construction of
twisted torus knots K{(p,q,p +q,n)

1 INTRODUCTION

Alter Max Dehn’s discovery of an ingenious methed of representing a 3-manifold,
so called Dehn surgery, a great, deal of efforts have been devoted to understand
it. Thanks to Thurston’s positive solution of geometrization conjecture on Haken
3-manifolds, any (prime)} knot in S§* are classified as the following three types;
(H) a knot K whose exterior admitting a complete hyperbolic strucure

(T) a knot K whose exterior admitting a Seifert-fibered structure

(8) a knot K whose exterior admitting an essential torus

A knot in S* of type (H), (T) and (S) is said to be hyperbolic, torus and satellite
respectively. Morcover, he showed that hyperbolic knots ,which are most abun-
dant in the above three categories of knots in S*, admit only finitely many non-
hyperboic Dehn surgeries (which are referred as exceptional surgeries). And, his
famous geometrization conjecture implies that those non-hyperboic Dehn surg-
eries are of the following three types;

(R:reducible) a 3-manifold admitting an essential sphere S

(T:toroidal) a 3-manifold admitting an essential torus 77

(SSF: small Seifert-fibered) a 3-manifold admitting a Seifert-fibered structure
with a base space S2, the 2-sphere and at most three exceptional fibers { f1, f2, f3}.
Furthermore, it is conjectured that any hyperbolic knot has no surgery of type R
which is referred as the cabling conjecture. Although reducible or toroidal surg-
eries have been extensively investigated with for instance, the famous Gordon-
Luecke’s combinatorial tool (see [16]), relatively little was known about SSF surg-
eries until Gabai came up with so called I-bridge braid knots or more generally,

Berge came up with so called doubly primitive knots for cyclic surgeries-SSF
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surgeries with two exceptional fibers. Then, Dean generallized Berge’s concept of
doubly primitivity to primitive/Seifert-fibered property. For definitions of these
terms, see section 3. These tools show a nice interplay between topology and al-
gebra(a comninatorial group theory). For instance, a tunnel number 1 knot in 53
corresponds to a primitive word in F/(s, 1), a free group of rank 2. Moreover, most
of known examples of SSE surgeries are interpreted as Dean’s primitive/Seifert-
fibered construction {{10]), although very recently ([19}) and Song([24]) showed
that there are SSF surgeries which do not arise from such construction.

Miyazaki-Motegi introduced a family of knots K(p,q,p+¢,1n),2 <|p| <gncZ
obtained by n-full twisting of torus knots t(p, ¢) with respect to unknots u with
k(t(p,q),u)] = p + q. Recently they showed that these knots admit Dean’s
primitive/Seifert-fibered property([21}). Their clegant proof is based on another

result that K{(p,q,p +q,0) Uu(pg,00) is D*(|p

,q), a Seifert-fibered space with a
hase space D?, the 2-disk and two exceptional fibers of index |p|,g. The purpose
of this thesis is to provide more rudimentary proof for primitive/Seifert-fibered
property of K(p,q,p + q,n) by following Dean’s algebraic approach. This thesis
are organized as follows;

Section 1. Introduction.

Section 2. Dehn surgery of a knot K in S*.

In this section we deal with some known general aspects of Dehn surgery.
Section 3. Primitive/Seifert-fibered constructions.

In this section we mainly reproduce Dean’s work on primitive/Seifert-fibered
constructions, though in section 3.2 we provide a little details of necessary alge-
braic theorems regarding primitive worlds of F(s,t) and generating systems of
<z, y| XMy >

Section 4. primitive/Seifert-fibered constructions of K(p,q,p+ q,n)

“This section is the heart of the thesis. In section 4.1 we describe K(p,¢,p+q,n)
as double torus knots. In section 4.2 we reproduce Miyazaki-Motegi's proof for
primitive/Seifert-fibered property of K (p, ¢, p+¢, n) for comparison with our rudi-

mentary proof. Section 4.3 contains the statement of our main theorem and its



proof.

2 Dehn surgery of a knot K in S°

[he surgery operation is a two-stage construction. First a tubular neighbourhood
of a knot is removed from the ambient 3-manifoid (drilling), and then it is reat-
tached (filling). Let us consider the second stage more closely. Take 7" to be a toral
houndary component of an orientable 3-manifold M. Given any homeomorphism
F:8 (S x D¥) — T, from the identification space M (T’ f) = (s' x D*)U; M
obtained by identifying the points of (S x D?) with their images by f. We refer
to M(T : f) as a (Dehn) filling of M along 7. A Dehn surgery on a knot K 1s
then a filling of Mg along & N(K).

In this section we introduce the notion of a slope on a torus, the basic pa-

rameter of the filling operation.

2.1  Fillings and slopes

Fix a 3-manifold M and a torus T C OM. By the nature of its construction,
afilling M(T; F) depends only on the isotopy class of the attaching homeomor-
phisim f : 8(S' x D?) — T). In fact the dependence on f is much weaker, for
if Cy = {pt} x OD* C A(5' x D?), then M(T’; f) dependsonly on the isotopy
class of the curve f{(Cy) in T. To see this. let Dy = {pt} x D? < S x D? and
observe that S x D? splits into two pieces A and B, where A is a closed tubular
neighbourhood of Dy and B is the 3-ball S' x D*\ A. Now think of M (T’ f)
as being built in two stages. In the first we formm A U M, which amounts to
attaching a 2-handle to M along a tubular neighbourhood of f(Cy) € T. Now
a manifold obtained from such an attachment depends only on the isotopy class
in T of the attaching 1-sphere, which in our case is f(Cy). In the second stage
we from M(T; f) = BU (AU M) by attaching the 3-ball B to AU M along its

2-sphere boundary. As any homeomorphism of a 2-sphere extends over the 3-ball



{ e.g.. by coning), M(T'; f) is completely determined by A U M, and hence by
the isotopy class of f(Cy) in T Figure L depicts a possible f(Cy) in the case
where A7 is the exterior of the righthanded trefoil knot. This analysis indicates
the importance of understanding the isotopy classes of simple closed curves on a
torus. In fact these classes are particularly well-behaved, as the following lemma
indicates. Proofs of its assertions may be found in Chapter 2. C of Rolfsen’s text
127].
LEMMA 2.1.1 Let T be a torus.

(1) A scparating simple closed curve on T bounds a 2-disk in T.

(ii) For any essential, simple closed curve C' on T there is a dual simple closed
curve C which intersects C exactly once and transversely.

(iii) Disjoint essential, simple closed curves on T are parallel, that is they

cobound an annulus embedded in 7.

U

av-TrbaE(K)

E(K)

Fig. 1
(iv) Two oriented essential simple closed curves on T" are isotopic if and only

if the 1-cycles they define are homologous.
(v) A homology class in H{{T) is represented by the fundamental class of an

oriented, eaaential, simple closed curve if and only if it is primitive, that is if and



only if it is an element of some basis of Hy(T').

(vi) Given any two cssential, simple closed curves C,C7 on T', there is an
orientation preserving homeomorphism f : 7" - T such that f(C) = C".
DEFINITION 2.1.2 A slope on a torus 1" is the isotopy class of an essential,
nnoriented, simple closed curve on T'. The set of slopes on T will be denoted
Ly Slope(T). Two slopes 71, 72 on T are called dual if they have representative
curves which intersect exactly once and transversely. Finally if K is a knot in a
3-manifold W, then a slope of K is any slope on ON(K).

We summarize the discussion above in the next proposition.

PROPOSITION 2.1.3 A Dehn fulling of M along a torus T' C dM is de-
termined, up to orientation preserving homeomorphism, by a slope on 7. Fur-
thermore, any slope on T arises as the slope of a Dehn filling of M. Denote by
M(T;r) any Dehn filling of M along T corresponding to a gliing homeomrphisim
f for which f(Cy) represents the slope r. When T' = 0M we shall abbreviate this
notation to M(r). There is one distinguished slope determined by any knot. A
meridian for a knot K C W is any essential, simple closed curve on ON(K) which
is homologically trivial in N(K) (such curves actually bound 2-disks in N(K)).
Meridians are well-defined up to isotopy (c¢f. Lemma 2.1.1) and so determine a
slope 4 of K, called the meridional slope of K. The trivial Dehn surgery on
a knot K C W is the surgery corresponding to the meridional slope. Evidently
My() = W, for in this case we can equate S' x D? with N(K) and then choose
the gluing map sc that its effect in attaching S' x D* to My is just to return
N(K) to W. There is another distingnished slope for knots in the 3-sphere, or
more generally for null-homologous knots in an arbitrary orientable 3-manifold
W. A null-homology of a knot K C W can be realized by a compact, connected,
orientable, smooth subsurface of W whose boundary is K. Such a surface, called
a Seifert surface of K, may be isotoped to intersect N(K) in an annulus whose
houndary consists of K and an essential, simple closed curve lying on ON(K).

The latter curve, called a longitude of K, is characterized up to isotopy on ON(K)



by the fact that it is essential on ON(K') while homologically trivial in the ex-
terior of £ (¢f Lemma 2.1.1). The longitudinal slope of K, denoted by Ak, is
the slope of any longitude of K It is evident that ji and A; are dual slope (cf.

Definition 2.1.2).

2.2 Parameterizing slopes

It follows from Lemma 2.1.1{(iv),(v) that the set of slopes on a torus T corresponds
bijectively to the set of 4 pairs of primitive classes in H,(T). Explicitly, if we
choose any representative for a slope 7 and orient it, the fandamental homology
class of this oriented circle determines a primitive homology class a € Hq(T).
Changing orientation changes the sign of . We shall call o the homology
classes carried by r. These observations lead to a parameterization of the set of

slopes.

PROPOSITION 2.2.1 Let T be a torus and set PY(Q) = QU {3}. Each
choice of ordered basis for H(T) determines a hijection between the set of slopes
Slope{T) on T and PY@Q). If K is a null-homologous knot in the interior of
an oriented 3-manifold and T = 8N(K), then the correspondence can be made

canonical.

Proof. Fix an ordered basis {«, 3} for H,(T"). Any slope r on T determines a pair
of relatively prime integers p, ¢ such that the homology classes in Hy(T') carried
by 7 are +(pa + ¢08). This correspondence gives rise to the desired bijection
Slope(T) < PYQ) via r & L(pa + gB) < p/q. Suppose now that K is a
null-homologous knot in the interior of an oriented 3-manifold W and note that
the induced orientation on N(K)} C W determines an orientation on T'. Choose
classes o uk)a(Ak) € Hy(T) carried by px, Ax. Since gy and XAy are dual slopes,
the algebraic intersection a{uk) - a(Ak} is either {41} or {—1}. If we require that
this intersection be +1, then up to a simultaneous change of sign, {a(u)a(Ae)} is
a well-defined ordered basis of F;(7"). Thus the correspondence r « %(pa(pr) +

qa(A)) ¢ p/q becomes canonical.



We shall always assume that S” is given its usual orientation based on the
right-hand rule. Thus slopes of knots in the 3-sphiere are canonically identified

with P((Q).

DEFINITION 2.2.2 Let K be a knot in S*. For a slope r of K corresponding
i1 the fraction p/g € PHQ), My(r) will also be denoted by Mc(p/q). An integral
slope of K is a slope corresponding to an integer, and an integral surgery on K
is a surgery whose slope is integral.

Figure 1 depicts a representative curve for the 9/2 slope of the right-handed

trefoil knot.

EXAMPLE 2.2.3 Let K C S° be the trivial knot. We determine the manifolds
Mi(p/q), p = 0. There is a canonical identification M, = S' x D? for which
St x {1} < &My represents gy and { 1} x 9D* < @My represents Ay Hence
M(p/q) is the nnion S' x D? Uy S* x D? where the meridian {1} x 0D” of the
first, S x D? is identified vis f with a curve on the boundary of the second S§* x D?
which is homologous to the sum of p copies of S' x {1} and ¢ copies of {1} x 8D?
. Thus if L(p, q) denotes the (p, ¢) lens space
Sl 5?2 if p—=20,

Mg(p/q) = ¢ S? if p=1,
L(p,q) otherwise.

3 Primitive/Seifert-fibered Knots

In this section we will describe a way to construct knots in S% that have a Dehn
surgery that is a Seifert-fibered space with base 5% and three or fewer critical
fibers. The construction is a generalization of Berge’s construction of knots with
lens space Dehn surgeries [2] . From the dafinition of the construction, it is
not clear that any nontrivial non-Berge examples arise, hence we will describe a
simple family of nontrivial examples that arise from the construction. We begin
with the definitions of some relevant concepts. We will consider only crientable

3-manifolds throughout.



3.1 Knots in separating surfaces, the surface slope, and
2-handle addition

We begin by defining the notion of 2-handle addition for a 3-manifold with bound-

ary.

Definition 3.1.1 Let v be a simple closed curve in the boundary of 3-manifold
M, and let A be a regular neighborhood of v in 93 . Then M Uy (D? x [} is the

result of 2-handle addition along +, where A and &D? x I are identified.

Next we define the surface slope for a knot contained in a surface in a 3-manifold,
and show how Dehn surgery at this slope is related to 2-handle addition when

the surface is separating.

Notation M (K, v) denotes the manifold obtained from Dehn surgery on K with
slope v. N{K) is a regular neighborhood of a knot .

Definition 3.1.2 If K is a knot embedded in a surface F' in a 3-manifold then
the isotopy class in ON{K) of the curve(s) in ON(K) N I is called the surface
slope of K with respect to F.

Lemma 3.1.3 Let K be a knot contained in a separating surface F' in a 3-
manifold M, i.e. M =V Up V', and let ¥ be the surface slope of K with respect
to F. Then M(K,v) = W UzW’ where W(resp.W') is obtained from Viresp. V")
by attaching a 2-handle along K, and F = (F — N(K)) U (D? x {0,1}).

Proof Let A (resp. A') be the annulus 9(N(K)) NV (resp. HN(K))NV’), and
let ¢1 and ¢z be their (shared) boundary curves. Denote the Dehn surgery solid
torus by U, and let h : OU — 9(S* — N(K)) be the attaching map for the Dehn

surgery.



Figure 2: Surface slope Dehn surgery

Since we are considering surface slope Dehn surgery, the curves h'(¢;) and
h~%(cy) bound disks Dy and D» in U. We may cut the Dehn surgered manifold
along (F— N(K))UD;UD,. The resulting pieces (see Figure 2) are homeomorphic
to W =V U, 2-— handle

and

W=V, 22— handle.

3.2 Special elements in a free group and curves on han-
dlebodies

Let G,,b denots the group <a:, v ;1;‘Lyb>. When ¢ and b are coprime this group
is the fundamental group of the (a,b) torus knot. More generally, G,,b is the
fundamental group of a Seifert-fibered space over the disk with two critical fibers

of multiplicity a and b. Recall that a basis for a free group is set of elements that



freely generates the group.

Definition 3.2.1 An clement in a free group is primnitive if it is part of a basis.

Lot F(s,t) denote the free group of rank 2 with the free gencrators s and ¢,
A(s, 1) the abelianized group, and ¢ : F(s,t) — A{s,t) the canonical abelianizing
homomorphism. An element w; € F(s, 1) is called a primitive if there exists a
wy € F(s,t) such that wy,w; generate F(s,t);wy and wy are called associated
primitives. From a nice result of Nielsen [26] it follows easily, that two primitives
w,w' of Fs,t) are conjugate if ) (w) = 4 (w'), 1,e, the primitives are characterized
(up Lo conjugation) by the abelianized clement. In this paper we give a simple
procedure for finding the unique (up to a conjugation) primitive corresponding
to the abelianized expression s™t". Further, we give a geometric interpretation,
which is fundamental for our proof, and describe some symmetry properties of
primitives. The characterization of primitives arose naturally in the study of
certain methods of generating simple closed curves on the genus 2 surface by the
frist author [28]. The geometric interpretation is due to Engmann and the second
author.

Let Z2 be the points in R? with integral coordinates. Each point (m,n) in
7?2 corresponds to an element s™t" of A(s,#). Let 2 be the set of all lines in R?
that are parallel to one of the coordinate axes of R* and pass through a point
of 7% A directed line segment in R? not containing a point of Z? determines a
word in F(s,t) obtained by traveling along the segment and writing s whenever
we cross a vertical line of Z from left to right and writing ¢ when we cross the
horizontal lines of = from below. Write {s7'} or {¢~1} if the crossings appear in

the opposite direction.
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Example

-
>
4 s
3 i
z +*
N ¢
! » -
ol z 3 3 5 6 7 8

Wg 5 = (st)stsststssts~ s?tstsZtsts?t

Fig. 3
Definition of the Osborne-Ziechang’s primitive word W, ..(s,t) 3.2.2
Assume that m,n = 0 and (m,n) = 1. Then the open segment from (0,0) to
(m,n) contains no point from Z% hence, it defines a word( Ablesung ) V;, .(s,t).

If 7n,n > 0 then we define V., ,, by
Winnl(s, t) = stV (s,1).

In addition, Wy, (s,t) = ¢, Vig(s, 1) = sand W_, n(s,1) = Won(s718), Wi n(s,t) =
Won(s, t 1.

Theorem 3.2.3([29]) A set {W,,.(s,{)|m,n € Z.(m,n) —= 1} forms all prim-
itives of F'(s,t) up to cojugation.

REMARK. Conzalez-Acuna and Ramirez 3.2.4 ([14]) pointed out
that the last relation in the above definition should be modified to Wy, _n(s,t) =

w-l

—.—n

{s,1) in order for the above theorem to hold for m, n, p, and ¢ containing

negative integers.

Definition 3.2.5 An element w in the free group on = and v is (a, b) Seifert-fiberd

11



if {o y|w) = G for integers a and & both non-zero.

Note that a primitive element in {z,y} is Scifert-fibered.
Theorem3.2.6([34], [8})
(a) Any pair of generators of a gronp < s,1 | st > a,b > 2 (for ged(a,b) =

1 a torus knot group) is Nielsen equivalent to exactly one of the following pairs :
{(s*,¢°): 1 <2< fa,1 <20 < ab,

ged(a, ) = ged(b, ) — ged{cr, 3) = 1}.

For all these pairs there are presentations with one or two defining relators. If
one of the numbers «, 3 equals 1 then one relator suffices, [34].

(b) The last condition is necessary, [8]. Hence, there are only finitely many
Nielsen equivalence classes of one-relator presentations for the torus knot groups,
although there are infinitely many Nielsen equivalence classes of generating pairs.

Combining the above two theorems , we have following description of Seifert-
fibered words up to Nielsen equivalence which often helps us to recognize Seifert-

fibered words.

Theorem3 2 7(|34], [8]) The Nielsen equivalent classes of generating sets
that define one-relator presentation of the groups G, =< z,ylz™y" > corre-

spond to the generators in the following presentations:

< -’I:,y”{/m.a(m? yn) >
< o, y|Wen (=™ y) >

where (a,m) = (b,n) =1,0 < 2a <m and 0 < 2b <n.

Let v be a simple closed curve contained in the boundary of a genus two han-
dlebody H. Since 7 represents an element (defined up to conjugacy) of m(H),

which is a free group of rank two, we say that v is primitive with respect to H if it

12



represents a primitive element in 7y (H). We define Seifert-fibered simple closed

curves on the boundary of a genus two handlebody similarly.

The following lemma establishes the link between Seifert-fibered curves on a genus

two handlebody and Seifert-fibered spaces.

Lemma 3.2.8 Let v be a curve in the boundary of a genus two handlebody H
that is (a,b) Seifert-fidered with respect to H. Then the manifold M obtained
by adding a 2-handle to H along v is a Seifert-fibered space over D?* with two
critical fibers of multiplicities a and b. In paricular,

M= D? xS & gorbequals 1 < 7 is primitive.

Proof The fundamental group of M is G,,, which has a non-trivial center. M
is irreducible and Haken, hence by [31], is a Seifert-fibered manifold. It is known
that a Seifert-fibered manifold with such a fundamental group is a Seifert-fibered
manifold space with base space a disk and critical fibers of multiplicity a and b.

By considering when G, is isomorphic to Z, the last part follows.

3.3 Primitive/Seifert-fibered knots

Putting the these definitions and lemmas together, we describe a property of a

knot that ensures that the knot will have a Dehn surgery that is a small Seifert-

fibered space or a connected sum of two lens spaces.

Definition 3.3.1 Let K be a knot contained in a genus two Heegaard surface F
for §3 thatis, §% — HUz H', where H and H' are genus two handlebodies. Then
K is primitive/Scifert-fibered with respect to Fif it is primitive with respect to

H and Seifert-fibered with respect to H'.

Proposition 3.3.2 If a knot K in S? is primitive/Seifert-fibered with respect
to a genus two Hecgaard surface, then Dehn surgery at the surface slope is either

a small Seifert-fibered space or a connected sum of two lens spaces.

13



Proof By Lemma 3.1.3 and Lemma 3.2.8 the Dehn surgered manifold is the nnion
along a torus of a Seifert-fibered space over the disk with at most two critical fibers
and a solid torus. Thus surface slope Dehn surgery on a primitive/Seifert-fibered
knot results in a manifold that is a Dehn filling of a Seifert-fibered space over the

lisk with two critical fibers.

Since any non-meridinal simple closed curve on the boundary of a solid torus
can be extended to a Seifert fibration of the solid torus, only one Dehn filling on
such a Seifert-fibered manifold may fail to be Seifert-fibered. This occurs exactly
when the slope is an ordinary fiber. For any other filling, a new critical fiber
appears with multiplicity equal to the algebraic intersection number of the slope
with the ordinary fiber. So for any Dehn filling but one, the resulting manifold
is a Seifert-fibered space over the sphere with at most three critical fibers, i.e. a

small Seifert-fibered space.

A Seifert-fibered space over the disk with two fibers is the union of two solid tori
glued along an annulus. When each fiber is non-trivial, this annulus intersects
a meridian of each solid torus algebraically more than once. A curve parallel
to the annulus is an ordinary fiber. When a solid torus is attached with slope
equal to the ordinary fiber, the resulting manifold can be cut apart into two solid
tori, each with a 2-handle attached along a curve which intersects the meridian

more than once algebraically. Thus each piece is a punctured lens space, so the

manifold is a connected sumn of two lens spaces.

Boileau, Rost, and Zieschang have classified those curves v on the boundary of
an abstract genus two handlebody H that are Seifert-fibered [4]. An embedding
of such a pair (H,7) into §* such that H is unknotted and ~y is primitive with
respect to S* — H would give a P/SF knot. However, it would be defficult to
consider all possible unknotted embeddings of such pairs, and to determine which

are primitive on the “outside” handlebody.
Remarks

14



e According to cabling conjecture, only cabled knots have reducible Dehn surg-

cries [15]. In particular, the conjecture implies that a hyperbolic primitive /Seifert-

fibered knot would always have a small Seifert-fibered surgery.

e One could define a knot to be primitive/Seifert fibered in any 3-manifold of

Heegaard genus less than or equal to two and the proposition would hold.

e When the knot is primitive/primitive (doubly primitive), a lens space results
from the surface slope Dehn surgery (this is Berge’s construction mentioned

above).

e Surface slope Dehn surgery on a doubly Seifert-fibered knot results in the union
along a torus of two Seifert manifolds over the disk, each with two critical fibers.
Such a manifold is either a graph manifold or a Seifert manifold with base §*
and four critical fibers. No example is known of a hyperbolic knot with a Dehn
surgery of the latter type. However, there are satellite knots with such Dehn

surgeries [22].

Note that any primitive/Seifert-fibered knot has tunnel number 1. In fact, any
knot that is primitive with respect to one side of a genus two Heegaard surface
has tunnel number 1. This is ture since, by [33], there is a homeomorphism of

the handlebody after which the knot K appears as in Figure 4. If one pushes A

Figure 4 : Primitive on one side implies tunnel number one

slightly into the handlebody, removes a regular neighborhood of K, and then

removes an appropriate tunnel ¢, then what remains in the handlebody is the

15



product of a surface and an interval {see Figure 4). Thus the complement 53

is a handlebody, so the knot has tunnel number 1.

3.4 Known examples of Primitive/Seifert-fibered knots

It is not clear from the definition of a primitive/Seifert-tibered knot whether any
non-trivial examples exist. We do not consider torus knots that arise from the
construction to be interesting since Dehn surgery on torus knots is completely
nnderstood. Berge's work shows that, in fact, there are a plethora of interesting
knots that are doubly primitive, many of which are known to be hyperbolic. In
particular, they include Gabai’s 1-bridge braid knots as illustrated in figure for a

pretzel knot p(—2,3,7).

L
|

\\.
“
~~
~
<]
K(7.4,2) K(8.3.2)

[ two 1-bridge braid forms of D(—2,3,7)|

Fig. 5-Example 1. twist 2-bridge knots

Lot b, be a twist 2-bridge knots obtamed by n-full fwisting of one component
of the right-handed Whitehead link with respect to the other. Brittenhem-Wu([6])
showed that the Seifert fibered manifold b,(2) (resp. b,(3)) can be obtained by
2-surgery of fy (resp. 3- surgery of f), the exceptional fiber of index 3 (resp. 2) in
Dehn surgery of the right-handed trefoil, #(3,2)(—1/n + 2) (resp. #(2,3)(—1/n +
3)). And, Dean([10]) has shown that b,(2) (resp. b,(3)) can be represented by
a primitive/Seifert-fibered construction with (2,4n + 1) (resp. (3,3n + 1)) as a
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type of exceptional fibers corresponding to Seifert-fibered part.

DEFINITION 3.4.1 Let p, ¢ be a pair of integers such that 2 < |p| < ¢ and
(p,¢) = 1. For a positive integer 1 < v < |p| + ¢, We take an unknot u in the
exterior of a torus {(p,¢) so that r- parallel strands of t(p, q) may transversally
intersect a spanning disk of v and [lk(t(p,q)},n)| = r. Then, A knot obtained by
n— [l twisting of £(p,q) with respect to u is denoted by K{p, ¢,r, n) and said to
be a twisted torus knot.

Example 2. Dean has detected many twisted torus knots admitting primitive/Seifert-
fibered structures under the conditions; 2 < p < ¢, r < gand n = 4+1.

For examples, he has shown that

Theorem 3.4.2([10])
b K{(p,q,2p—q1) with (g + 1)/2 < p < qis (2,2q — p)— Seifert-fibered.
2. K(p,g,q—kp,1) with | < p < g/2and 2 <k < (q—2)/pis(k,q— kp)-
Seifert-fibered.

4 Primitive/Seifert-fibered constructions of K(p, g, p+
q,n)

4.1 embeddings of K{p,q,p+ ¢,n) into a genus-2 Heegaard
surface of S°

In this thesis, we shall investigate primitive/ Seifert-fibered property of twist
torus knots K(p,q,p + a,n), 2 < |p| < ¢ and (p,q) = 1. In a recent work
of Miyazaki and Motegi([21]), they have shown that K(p,q,p + ¢,n) admits a
primitive/ Seifert-fibered construction with (g,n) Seifert-fibered part and the
third exceptional fiber of index |p|. For comparison with our elementary method,
their proof will be reproduced in a next section. In this section, we shall show
how to describe K(p,q,p + ¢,n) as a double torus knot for investigation of its

primitive/ Seifert-fibered property.
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CASEL 0 <p

Consider the standard plane model of a 2-torus 7' = S' x St A pair of vertical
cdges, denote the left edge (resp. the right edge) by m (resp. m™), represent
the meridean m = S' x 1 of T after identification of them (m = m* = m7).
Likewise, a pair of horizontal edges, denote the top edge (resp. the bottom edge)

S of T after identification of

hy {7 (resp. [7), represent the longitude — 1 x|
them (I = {* =17). Along m (resp. ) , we take p- (¢-) number of equally spaced
points {my,ma, - ,m,} from the top to the bottom (resp. {l, {2, - g} from
the left to the right. For each 1 < ¢ < p, join m; on m~ with ; on {7 by an arc
v, on T and m, on m™* with [, ,4; on {7 by an arc §; on T. Finally, for ecach
| < j<g—pjoinlonl with {,,; oni" by an arc v; on T. Further, we assume
that the arcs a, 3, and «; are chosen so that they may be mutually disjoint.
"Then, a simple closed curve a; U3 U~y; on T form a torus knot t(p, g) as depicted
in figure 6 . Now, we choose a pair of peints {P, @} on T so that they may be
disjoint from t(p,¢) and an arc joining them may transversally intersects t(p, q)
at p + g-number of points. Attaching an orientable handle on T after removing
the small regular neighbourhood of P and @, we have an embedding of T'(p, q)
on H, a genus-2 Heegaard surface of S° such that t(p, q) transversally meets the
meridian of the attached handle, say it n, at p + g-number of points as illustrated

in figure 6 for £(3,5).

L0 s [—
_ [
7 i
m‘l
m, $1 /
7o ~
I1I2|3I‘|5 -
t{(3.5) on T t{(3,5) on H
Fig.b
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('ASE2. p < 0
Note that ¢(p,q) is the mirror image of ¢(—p,q). In this case we can embedd
H{p,q) on T so that the arc joining P and @ may transversally intersect tHp, q) at
4 g = (g — |ph-mumber of points by taking diagonally opposed embeddings of
the ares of case 2 as illustrated in figure for t(—3,5). Figure 7-(b) represents an

explicit embedding of t(—3,5) to H, a genus 2 Heegaard surface of S
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] ] I
m3 m [ ] I I
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O U A I
= 11 RERREEE
|1|2 3 “5 E : I : : ; : : 1 :
(I ' L |
1 I [
t(-3,8) on T : ! : \\\\\\\\\ -~ ,/_J,f:///f’/ ; : !
T .
i i N
_ |1 RN o
Fia.7-(a) N . I i
e d E
L e e e e e e — - — — — — — o — J—_—
t(-3.5) on H
Fig.7-(b)
Fig.7

Now, taking n-full twisting of £(p, ¢) on H with respect to the meridian of the
attached handle, we get the desired twisted torus knot K(p, ¢, p+¢,n) embedded
o H as illustrated in figure 8 for K(3,5,8,1).
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Fig.8

4.2 Miyazaki-Motegi’s proof for primitive/seifert-fibered
property of K(p,q,p+q,n)

Let Vi be a standardly embedded solid torus in 5* and Va the complementary
solid torus S* —int V4. Let A be an annulus on dV; which winds around p times
meridionally and ¢ times longitudinally (g > |p| > 2), and set A’ = V) —int A
Now we take a trivial knot 7 in S* as depicted in Fig.9, and put ; = + NV, for
i =1,2. Take a tubular neighbourhood N(7) of 7 such that N(r}) N A = 0. Let
V = 8% —int N(7), an unknotted solid torus. Then the core curve (', of A
is a knot in V. It should be noted that a meridian of N(7) is a longitude of V
and windy(C,,) = lk(7,Cp,) = p + ¢q. Furthermore, we can observed that the
minimal geometric intersection number of C,, with a meridian disk of V' also

equals p+ q.
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Fig.9

Lemma 4.2.1 The surgered manifold V(C,,;pq) is a seifert fibered man-
ifold over the disk with two exceptional fibers of induces |p| and g. Further-
more, a longitnde of V' is a regular fiber of V(C4;2¢). Proof. Choose a tubular
wb.d. N(C,,) of Gy, so that N(C,, NOV; = A. We identify V(C)4; pg) with
the union of two manifolds, which turn ont to be soild tori. Firstly, note that
V—int N(Cp,) 22 (Vi—int N(1))U(Va—int N(m)) — M , say, where V; —int N(7;)
are pasted along A" — int N(7), an annulus with two holes; then the component
of @M corresponding to ON(C,,) is the union of two copies of A. Since a com-
ponent of 8A(C ON(C,,)) has the slope pg in terms of a meridian-longitude
pair of C,,, in V(Cpyipg) = (V — int N(Cpq) U (S' x D?) the components
of 94 bound two disjoint meridian disks of the attached solid torus St x D2,
The disks decompose S' x D? into two 3-balls h% 2 = 1,2, each of which is at-
tached to V; — int N(7;) along a copy of A as a 2-handle. Hence, we can regard
V(Cpq;pq) as the natural union of two manifolds U = (Vi —int N{7)) Ua hi and
U, = (Vo —int N(m))Uah% Since each 7; is an unknotted arc in V;, V; —int N(7;)
is a handlebody of genus 2. Furthermore, U; is a sloid torus. This can be ex-
plained for U; as follows. Firstly,”expanding” N(m U A’} by an ambient isotopy
of Vi, we can see Vi — int N(r U A') = N{A)U ', where h; is a 1-handle de-
picted in Fig 10-(b). Clearly Vi — int N(7) = Vi —int N(ry U A’), hence U, is
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homeomorphic to N{A) U, AT U LY which is a solid torus. A meridian disk ot Uj
can be viewed as in Fig 10 . We remark that a meridian of N(7;) intersects that
of Uy algebarically ¢ times (g > 2).

Let us see how the solid tori U} and Uy are glued together. Set T = N () —
iV, Then T is an annulus on dUp, and Uy N Uy is the complementary annulus
AU, —int T. Since a meridian of N (7} intersects that of {/; ¢ times, the annulus
{7y MUy also winds 9U; around g times longitudinally. The same argument works
for U, and shows that U} N U; winds around dU, p times logitudinally. There-
fore, V(C,q;pq) =2 Uy U U, is a Seifert fibered manifold over the disk with two
exceptional fibers of indices |p| and ¢. from the construction, a longitude of V(=

a meridian of N(7) is a regular fiber of V{(C} 4 pg).
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N - - > : ———
Ny : - N .
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=) = —
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| — N -
ﬁ , - o . A
= A2 N A
t.-'l" F _:5 t'._lh ------ "/n.
s /- \ :j -
X =Y  a=3 L =

Fig. iB-a

J""“"’*\-meridian disk of U

— 1
. W
—_—
a— —_—
-—— ———

] par—y g=3
Nz
) Fig. 10-b
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proposition 4.2.2([21)) K{p,q.p + q.n) is prinative/Seifert-fibered  with
surlace slope pg + (p + ¢)*n.

Proot.

Set V| — W and V, = §° — intVy; V] are solid tori. By the choice of T,
H, = Vi —intN(7) and Hy = Vo —int N(7) are genus 2 handlebodies, and K, lies
on OV; — mtN(r). Let A; be the annulus H; NMA@N(7), whose core is a meridian of
7. Let V obe the solid torus ghied to S* — intN(7) to construct (7; —1/n). Then,
Hy and V are pasted so that A,(C 0H)) is identified with an annulus in 0V whose
core is the (1,n)-cable of V. Since a core of 4, is primitive with respect to Hj,
Hy = H, UV is also a handlebody of genus 2. We have (7;~1/n) = H; U H,,
a Heegaard decomposition of genus 2. The twisted torus knot K(p,q,p + q,n)
lies on the Heegaard surface 9H; as the image of K, , € 0H,. For simplicity, we
denote the simple loop K, = K(p,q,p + ¢,n) by K. As shown in Lamma 4.2.1,
H([K] is a fibered solid torus over the base orbifold D?(q) with a core of A; a
fiber, and Hy|K] is a fibered solid torus over D?*(|p|) with a core of Ay a fiber.
It follows that H|[K] = H,[K]| UV is a Seifert fibered manifold over D*(q, |nl).
Therefore K (p, q,p+ ¢, n) is primitive with respect to Hs and Seifert-fibered with
respect to ;. Since a meridian of 7 is a regular fiber in H][K] and H,[K], surgery
on K along the surface slope of K C Hj produces a Seifert fibered manifold with
base orbifold S%(|p|,q, |n|), as stated in Proposition 4.2.2. The surface slope of
K,, = K(p,q,p+4q,0) in OH; is pg, and the image of the slope after —1/n-surgery
on 7 is the surface slope of K(p,q,p + ¢q,n) C 0H;. The linking number of K, ,
and 7 is p + ¢, so that the surface slope of K{(p,q,p+q,n) is pg+ (p+q)*n. This

completes the proof.

4.3 Main Results

Now we take a view of a torus T = R?/Z? as the quotient group of R? by the

planar lattice group Z* = {(m, n)|m, n € Z} under the ususual addition operation
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of vectors. Then, T can be described as
T = I*(5,0) ~ {5, 1) and (0,1) ~ (1, t),s,t ¢ T = [0,1]

by taking the unit scquare I? as the fundamental domain of the translation action
of Z* on R%. Let 7 : R? = T be the associated universal covering projection For
each lattice point (m,n) € Z2 with (m,n) = 1, let (m, n) be the straight line seg-
ment joining (0,0) and (m,n). Then, it is easy to see that w((m, n)) ((m,n) = 1)
is a torus curve of type (n,m) where we take m = w({1,0)) and I = 7{(0,1))
as the meridian and the longitude of T' respectively. Let Z,, € F(m,{) be a
word defined by the intersection patten of a torus curve (p, ¢) with the merid-
ian m and the longitude [ ; we write m (resp. 1) for each intersection point
of t{p,q) and m (resp. [). . Recalling the intersection patten of (m,n) and
the two axes of R? with the occurence patten of words s, ¢ in the Oshborne-
Ziechang’s primitive word, we have; Lemma 4.3.1 For a torus curve (q,p)
on T = I*/(5,0) ~ (s,1) and (0,t) ~ (1,¢),s,t € I = [0, 1] with the merid-

ian m = w((1,0)) and the longitude m = #((1,0)), Z,,(s,t) is the Osborne-

Zieschang’s primitive word W, ,,.
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t - 1 _bre
[~ o -~ S~
T el r’l a
cj de -
-~ -
P-f’ o
r o
¢ b

Fig. 11

Theorem 4.3.2 K = K(p,q,p + ¢q,n) admits an embedding to a genus 2
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Heegaard surface H of §% such that

(L[] p € m (Wi, #) Is a primitive word Wy, ,(x, y), and

(2)[Ksp € m (W, #) is a Seifert-fibered word W,,, .(a", b)

(3) the Seifert fibered word is Nielsen equivalent to is A" B?.

.where W} are genus 2 handlebodies in the Heegaard decomposition, S* = W, Uy

Wy and Wi, ,, is a Oshorne-Zieschang’s primitive word.

Proof. Note that H in figure 6 (or equivalently figure ) determines a genus 2

handlebody W, with a pair of meridian disks corresponding to the meridian of T
and that of the attached handle. On the other hand, H determines another genus
2 handlebody W> —= S* — Int(W)) with a pair of meridian disks corresponding to
the longitude of 7" and that of the attached handle as deficted in figure . Then,
Two free generators a,b (resp. x,y) of m (W, %) = F(a,b) (resp. m (Wi, *) =
F(x,y) are represented by the meridian (resp. longitude) of the attached handle
and the meridian {resp. the longitude) of 7" .
Since K is uniformly oriented in one direction, we may take the free generators
a,b (resp. x,y) of m (W3, %) = F(a,b) (resp. m(Wh,*) = F(x,y)) so that [K]
T (Wi, ) (resp. [K] € m(W,, %)) may always have positive exponents a, b (resp.
r,y).

For computation of the Seifert-fibered word [K|sp € m(W,, *), it is conve-
nient to consider the embedding of ¢(p, q) on T and the diagonal arc d joining P
and @ as illustrated in figure 12 for K(5,8,13, n).
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K(5,8,13,n)

a™b a®b a™b a?b a®™b a™ b az»b anb

Fig.12
Note that whenever {(p,q) meets d , K travels along the attached handle
while transversally intersecting with the longitude of the attached handle n—
times, which contributes word a”, and p + ¢ is the total number of occurences of
o™ in [K]sp. On the other hand, K transversally intersects with the longitude of
T g— times and hence ¢ is the total number of occurences of b in [K|sp.

Then by lemma 4.3.1 Z, ;1 ,(a,b) is a Osborne-Zieschang’s primitive word W, ,.
On the other hand [K|sr € m (W2, *) can be obtained by substituting a™ into @ in
the word Z, ,14(a, b), where the word Z,,,(a, b) is obtained by considering a torus
curve t(p, q) on T cut by the diagonal edge d. Thus we have [K| = W, (a",b).
By the similar argument, we see that [K]p € m(Wi,*) is a primitive word
Wyigp(2,y). Tinally claim (3) in the theorem is obtained by applying theo-
rem 3.2.7 to the fact that Wy, ,(a", b) is Nielsen equivalent to W,_, ,(a™, b)(resp.

Wiiola®, b)) if g < 2[p| (resp. ¢ > 2|p[ )
References
(1] I. Agol, Topology of hyperbolic 3-manifolds, Ph.D. thssis, University of Cal-

26



2]

8]

9]

[10]

11

12}

ifornia, San Diego (1998)

J. Berge, Some knots with surgeries yielding lens spaces, unpublished

manuscript

S. Bleiler, C. Hodgson, Spherical space forms and Dehn filling, Topology
35 (1096) 809-833

M Boileau,M Rost, H Zieschang, On Heeqaard Decompositions of Torus
Knot Exteriors and Related Seifert Fibre Spaces, Math. Ann. 279(1988) 553-
Hh81

S Boyer,X Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc.
9(1996) 1005-1050

Mark Brittenham, Ying-Qing Wu, The classification of exceptional
Dehn surgeries on 2-bridge knots , Comm. Anal. Geom. 9(2001) 97-113

M Cohen, W Metzler, A Zimmermann , What Does a Basis of F(a,b)
Look Like, Math. Aun. 257(1981) 435-445

DJ Collins, Presentations of the Amalgamated Free Product of two Infinite
Cyeles, Math. Ann. 237(1978) 233-241

M Culler, C McA Gordon, J Luecke, PB Shalen, Dehn surgery on
knots, Ann. of Math. 125(1987) 237-300

J Dean, Hyperbolic knots with small Seifert-fibered Dehn surgeries,
Ph.D.thesis,University of Texas at Austin (1996)

M Eudave-Munoz, On hyperbolic knots with Seifert fibered Dehn surgeries,
preprint

M Eudave-Munoz, Non-hyperbolic manifolds obtained by Dehn surgery on
hyperbolic knots, from: "Proceedings of the Georgia International Topology
Conference” (1993} To appear

27



113]

[14]

|16]

17]

18]

19)

120]

21]

22]

R Fintushel, R Stern, Constructing lens spaces by surgery on knots, Math.
7. 175(1980) 33-51

F Gonzalez-Acuna,A.Ramirez, A composition formula in the rank fwo

free group Math. Proc. American. Soc. 127(2779-2782)

F Gonzalez-Acuna,H Short, Knot surgery and primeness, Math. Proc.

Cambridge Philos. Soc. 99(1986) 89-102

CMcA Gordon, JLuecke, Knots are determined by their complements,
J.Amer. Math. Soc. 2(1989) 371-415

Marc Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140(2000)
243-282

WBR Lickorish, A persentation of orientable combinatorial 3-manifolds,

Ann. of Math. 76(1962) 531-540

T Mattman, K. Miyazaki and K. Motegi, Small Seifert-fibered surg-

eries do not arising from primitive/Seifert-fibered constructions, preprint,

T Mattman, K Motegi, Seifert fibered surgeries which do not arise from

primitive Seifert-fibered constructions, preprint

T Mattman, K Motegi, On primitive/Seifert-fibered constructions,

preprint

K Miyazaki, K Motegi, Seifert I'ibered Mnifolds and Dehn surgery, Topol-
ogy 36 (1997) 579-603

Katura Miyazaki, Kimihiko Motegi, Seifert fibered manifolds and Dehn
surgety I, Comm. Anal. Geom. 7 (1999) 551-582

Katura Miyazaki, Song Hyun Jong, Dehn surgeries of knots yielding

casson-harer’s homology 3-spheres, (2003)

28



25

26]

|31]

[32]

133]

[34]

L Moser, Elementary surgery along a torus knets, Pacific J. Math. 38(1971)
734-745

J.Nielsen, Die Isomorphismen, unendlichen Gruppe mit zwei Erzeugenden,
Math. Ann. 78,385-397(1918)

D.Rolfsen, Knots and Links, 2nd edn, Publish or Perish(1990)
RP.Osborne, On Seifert fibered spaces that are not sufficiently large,
preprint

RP Osborne, H Zieschang, Primitives in the Free Group on Two Gener-

ators, Invent. Math. 63(1981}) 17-24

J Stallings, Constructions of fibered knots and links, from: 7 Algebraic and
geometric topology”, Proc.Sympos.Pure Math.32 Amer. Math. Soc, Provi-
dence,R.I1.(1978) 55-60

F Waldhausen, Gruppen mit Zentrum und 3-dimensionale Mannig-

faltigkeiten, Topology 6 (1967) 505-517

AH Wallace, Modifications ond cobounding monifolds, Canad. J. Math.
12(1960) 503-528

H Zieschang, On simple systems of paths on complete pretzels, Amer.

Math. Soc. Transl. 92(1970) 127-137

H Zieschang, Generators of the Free Product with Amalgamation of two
Infinste Cyclic Groups, Math. Ann. 227(1977) 195-221

29



	표지
	목차
	요약
	1. Introduction
	2. Dehn surgery of a knot K in S
	2.1 Fillings and slopes
	2.2 Parmeterizing slopes

	3. Primitive/Seifert-fibered Knots
	3.1 Knots in separatin surfaces, the surfaces slope, and 2-handle addition
	3.2 Special elements in a free group and curves on han-dlebolies
	3.3 Primitive/Seifert-fibered knots
	3.4 Known examples of Primitive/Seifer-fibered knotsI

	4. Primitive/Seifer-fibered constructions of K(p,q,p+q,n)
	4.1 embeddings of K(p,q,p+q,n)into a genus-2 Heegaard surface of S
	4.2 Miyazaki-Motegi's proof for primitive/seifert=fibered property of K(p,q,p+q,n)
	4.3 Main Results

	References

