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1. Introduction

Multiobjective programming problems consist of more than one objective
function and a constrained set. Their optima are the solution concepts that
appear to be the natural extension of the optimization from a single objective
to multi objectives, called properly efficient solutions, efficient solutions and
weakly efficient solutions. Dantzig, Eisenberg and Cottle [3] first formulated
a pair of symmetric dual nonlinear programs in which the dual of the dual
cqualed the primal one. and established the weak and strong duality for these
problems concerning convex and concave functions. Mond [12] presented a
slightly different pair of symmetric dual nonlinear programs and obtained
more generalized duality results than those of Dantzig, Eisenberg and Cot-
tle [3]. Later on, Mond and Weir [14] gave different pair of symmetric dual
nonlinear programs in which could be applied to the pseudo-convexity and
pseudo-concavity functions, and established the weak and strong duality of
these programs. Recently, Mond [13] introduced the concept of second or-
der convex functions and proved second order duality and symmetric duality
results under the assumptions of second order convexity on functions. And
Mangasarian [11] formulated a second order dual program for a nonlinear pro-
gram and established second order duality theorems under assumption that
was rather difficult to be verified. Afterwards, Mond and Weir [15] introduced
a generalized second order dual and establised the duality results under the

second order pseudo-convexity assumption on the dual objective function and



second order quasi-convexity assumption on the dual constraints. Indepen-
dently, Bector and Chandra [1] established second order symmetric and self
duality results under pseudo bonvexity and pseudo boncavity assumptions.

As a generalization of differentiable convex function, Hanson [6] intro-
duced the weak convex function. where it was shown that the Kuhn-Tucker
conditions were sufficient for optimality of nonlinear programming problems
under the condition of weak convex function. The weak convex function was
called invex function by Craven [12]. Afterwards, the second order invexity
was introduced by Egudo and Hanson [5].

[n multiobjective optimization case. Weir and Nond (16] established the
symmetric and self duality relations in multiobjective programming. Mond
and Weir {15] proved symmetric duality theorems for nonlinear multiobjective
programming. In 1996, Kim, Yun and Kuk [8] suggested another second order
symmetric and self dual programs in multiobjective nonlinear programming
and proved the weak, strong and converse duality theorems under convexity
and concavity conditions. Lee and Kim [10] formulated a pair of generalized
multiobjective symmetric dual nonlinear programs which were unifying sev-
cral known symmetric programs and established the duality theorems. Kim,
Lee and Lee [9] extended the results to second order cases. Very recently,
Jeung [7] proved generalized second order symmetric duality for multiobjec-
tive optimization problems on the basis of efficiency and under second order
invexity and incavity assumptions when the variables were seperated into
two parts. The aim of this paper is to consider Jeung [7]’s results on the
basis of weak efficiency and to give generalized second order symmetric dual-

ity results which can be applied under second order convexity and concavity



assumptions. In this thesis, we formulate a pair of generalized second order
mulitobjective symmetric dual nonlinear programs, which can be reduced to
several known programs and establish the second order duality relations for
our programs on the basis of weak efficiency. Moreover, we will show that
many duality results can be deduced from our second order dual ones. This
paper consists of four sections. In Section 2, we fix mathematical notations
and give definitions for generalized second order invexity. In Section 3, we
consider the pair of generalized multiobjective symmetric dual nonlinear pro-
grams and eatablish duality results (weak duality, strong duality, converse
duality) for the two programs. Finally, in Section 4, we apply our generalized
second order symmetric duality results to the usual (first order) multiobjec-

tive optimization problems and then we will get several duality results for

the problems.

2. Notations and Definitions

In this section, we give notations and definitions which will be used for

next sections. The following conventions for vectors in R™ will be used:

<y <y, t=12,--,m;
rSyem Sy, b= 1,200 m
t<ysr; Sy, i=1,2,--- ,n but zF#y;

x £ y is the negation of z < y; and

z £ y is the negation of =z <y.



Let f be a twice differentiable function from R™ x R™ into R* and N =
{L2,--.n}, M ={1,2,---,m}, ACN. I C M, N\A =B and M\
I = J. Note that A, B, I or J can be empty. We rearrange =,y as z =
(va,zp) and y = (y1,vys), respectively. V. f(z,y) denotes k x n matrix of
first partial derivatives. If A € R*, then A7 f is a scalar valued function.
Let V(AT £)(z,y) and V(AT £)(z,y) denote gradient (column) vectors with
respect to x and y, respectively. Subsequently, let V(AT f} and V,, (AT f)

denote respectively the n xn and m xm matrices of second partial derivatives.
We consider the following multiobjective programming problem.
(M P) Minimize  f(x)
subject to g(x) £ 0,

where f : R” — RF, g: R* > R™ and X = {x € R” | g(z) < 0} is the
feasible set of (M P).

DerFINITION 2.1. (1) A point T € X is an efficient solution (or Pareto
optimal point) of (M P} if there exists no other x € X such that f(x) < f(z).

(2) A point z € X is a weakly efficient solution of (M P) if there exists no
other x ¢ X such that f(z) < f(z).

DEFINITION 2.2. A twice differentiable function f : R® — R s said to be
(i) second order convex if for any x,r.u € R"™,

Fe) — f() 2 (@ =0TV {w) + (@ = 0V () — 2V (),

(ii) second order concave if for any x,u,p € R®,

F@) = Fw) £ (@ = 0TV 5 + (0 — ) V2 ()~ ST O (uip,



DEFINITION 2.3. A twice differentiable function f : R® x R — R* is said

to be

(i) second order convex ([13]} if for fixed y € R™ and for all z,r,u € R",

filz y)=filu,y) 2 (:v“'u}Tfoi('lt-y)+(w—u)Tmei(u,y)r*%?"""vmfi(u,y)ﬂ
foreach: = 1.2, - k.

(ii) second order concave if for fixed x € R™ and for all y,p,v € R™,

e ) =il y) £ o)V fila ) o) i p)p 50T Vg il ),

foreachi =1,2,--- k.

DEFINITION 2.4. A twice differentiable function f : R™® x R™ — R* is said

to be

(i) second order invex ([1],[5]) in = with respect to the n: R™ x R™ — R™ if

for fixed y € R™ and for all xz.7,u € R®,
1 -
fl(T Z/)—fi('lh ZI) ; 77('1:’ U)Tvlfi(ury)_i_n(xv u)Tvmxfi(u: Q)T—grrvu:fv:(’u:y)?",
foreachi =1,2,--- k.

(ii) second order incave in y with respect to the n : R* x R* — R" if for fixed

r € R™ and for all y,p,v € R™,

- 1.
filz,v)=Filz,y) S (v, y)" Vy filz,y)+n(v, )TV gy filz, y)p— §p7 Vg filz, y)p,



foreachti =1,2,--- k.

3. Generalized Second Order Symmetric Duality

In this section we establish generalized second order symmetric duality
theorems. Now we consider the following pair of generalized multiobjective

symmetric dual nonlinear programs.

(GSP) Minimize f(z,y) — (yr” Vy, (A" F){z,y))e
— (y1" Vg, (AT M)z, y)p)e — %(pTVyy(ATf)(w, y)pe
subject to V(AT f)(z,9) + Vi (A )z, )P £ 0,
vy Va, (A (@, 9) + 45 Vg, (M 1) y)p 2 0,

A>0, Me=1, z=0,

(GSDMaximize f(u,v)— (uiVe, (AT f)(w.v))e

~ (AT Ve AT ), v)r)e — = (rT Ve (AT f)(w v)r)e

b

K -

subject to V_,E(/\Tf)(u, o)+ V(AT . v)r 2 0,
up Vi (A ), 0) + 0y Vg s (A F){u,v)r 0,

A>0, Me=1, v20,



where f:R” x R™ - RF, Ae RF and e = (1,--- . 1)T € R¥,

Vas AT (@), Ve W )@, y), Vi, (ATf) and V,, (AT f) are gradient
vectors with respect to x4, =g, y; and y,, respectively. V. f(xz,y) and

Vyyf(x,y) ave respectively the n x n and m xm symmetric Hessian matrices.
Now we establish the symmetric duality theorems for (GSP) and (GSD).

THEOREM 3.1.  (Weak Duality) Let (z,y, X, p) be feasible for (GSP) and
(u,v, A,r) be feasible for (GSD). Assume that f(-,y) is second order invex

for fixed y with ni{x.«)+u = 0 and f(x.-) is second order incave for fixed

x with ma(v.y)+ vy = 0. Then

Fl@y) = (w7 Yy, AT )@ v)e = (1T V 4y (AT Pz, y)p)e

- é—(pTVyy(ATf)(wyy)p)e

£ flu.v) — (Ve , AT lu, v)e — (wa?V or s (AT f)(w, v)r)e

- %(TTVH:x()\Tf)(U, U)?")e.

o=

Proof. Assume that

flz.y) — (yITvyf (’\Tf)(93r y)e - (?JITvyyf ()\’If)('r y)ple
ST N p)e
< flu,v) = (@h Ve, AT ), v))e = (waT Ve, (AT £) (w, v)r)e

TV (AT ), )r)e



‘Then since A > 0, we have

O 1)@w) = 31"V, T ) 9) = 51"V O )00 = 587 Vo (VT ), )
< AN v) =~ wh Ve, V1) 00,0) = 10TV (N ), 07

V(T e (31)

By the second order invexity of f(-,y),

f(.’li,‘l)) - f(’LL,U) Z Th(iL‘; u)Tva(uv U) +m (CI;,U)TVIIf(U, U)T

1
— 3TTVIxf(u, )T,

Pt}

Since ufV, (AT F)(ie,v) + uE Ve, VT f)(u,v)r <0,

T F) (@ w) = (T ), 0) 2 mu e, 0) (AT F) (e, 0) + 11 (6, 10) P 0 (AT F) (0
5 Ve (AT )
2 TV )1 0) = w7 VN (w0 = 577 Vaa N ot )
= Ve (AT ), ) 0 Vi (AT 1) (1, 0) — 6V, (AT ) (a0
Ve N D) w0 — ST (AT ) o

2 —ui Ve (AT ), v) = u Vey , (AT f)(u, 0)r — %TTVxx(/\Tf)(u- v)r. (3.2)
By the second order incavity of f(z,"),

Flx,v) = flz,y) S, 9)" Vi f(@,y) + ma(v,9) TV flz. y)p

]
— 50 Yy flz,u)p.



Since 5 Vy, (AN, y) + ) Vi, A )z, y)p 2 0,

(ATD@ o) = (N Az y) S mv,u)" VAT ) 9) + m2(v, 1) TV AT ) v)p
PV (VT ) )p
< "V )~ 8TV T e — 57T VT ey
= —ur Vo, AT @ 0) —y7 Vi, V(@ y) — ¥ Vi, AT )z v
TV (TN @ )p— 52T V(AT ) )

< —yi Vi, M D@ y) =yl Vi (AT )z, v)p — :i;pTVyy()\Tf)(fﬂ-, v)p.  (3.3)

Substracting (3.3} from (3.2) and rearranging yields

(T ), 0) = 0V, (AT F)(11,0) = GV gy AT )ty 0)r = 507 Voa (AT ), )

o

S (AT H)(x.y) — yi Vi, M ) y) — yE Vi, V), y)p — épTVyy()«Tf)(x, ¥)p,

which contradicts (3.1). Thus

f(TU) - (y['l'vyf(/\'l"f)(m’ y))e - (yITvyyz(’\Tf)(I:y)p)e
LTV )y
# flu,v) = (Wh Vo T e, v))e = (wa? Vau y (N Flu,v)r)e

. %(TTVII AT £ (u,v)r)e.

-

_10_



CoroOLLARY 3.1. (Weak Duality) Let (x,y. A, p)} be feasible for (GSP)

and
(u,v, A, 7) be feasible for (GS D). Assume that f(-,y) is second order convex

for fixed y and f(z,-) is second order concave for fixed x . Then

Fl9) = (Wr 3, T D p)e = (07 3 (A P2 p)p)e
STV OT D e

# flu,v) = (Wa Ve (AT ) (u,0))e = (wa” Ve (N F)(u,v)r)e

STV (T e

PROPOSITION 3.1. (Fritz John optimality Conditions) If (%,7,\,p) is
a weakly efficient solution of (GSP), then there exists («, 3,7, p,0) in R* x
R™ x R x R™ x R* such that

K = o"f = 51V, (7 D)e = (5 Vi, O e — S (57 V0 (37 1)
+ BV AT + Yoy (AT B =155V, (AT ) + 55 Yy, (N 1))
—pfz—5TA

satisfies

VLK > 0.
v, K=0.
v, K =0.
VK = 0.

- {11 -



VK =0,
ﬁT[Vy(/—\Tf) + vyy(j\Tf)lﬁ] =0,

VG5V, AT Y + 55V, AT B = 0,

pTz =0,

stA =0,
(e, 3,7v,p,0) 20,

(. 3.~ p.8) #0.

THEOREM 3.2. (Strong Duality) Let f be a three times differentiable
function from R™ x R™ to R¥. Let (a‘:,gj,j\,ﬁ) be a weakly efficient so-
lution of (GSP). Assume that f(-,y) is second order invex for fixed y
with m(xz,u) + ¢ = 0 and f(x,-) is second order incave for fixed x with
n2{v,y) + v = 0. Suppose that

(i) Vyy (AT £) (2, y) is non-singular,

(i1) Vo, (AT )E,9) + Vi, AT )@ 0D # 0,

(iii) the set {Vy, f(Z,9)},_, ., is linearly independent and

(iv) the matrix %(Vyy(ﬂTf)(:I‘,g)) is positive or negative definite, for
some € [

Then (3‘:,@,5\,17: O) is a feasible solution of (GSD) and (z,y,\,p) is a
weakly efficient solution of (GSD).

Proof. Since (:E,g, :\,ﬁ) is a weakly eflicient solution of (GSP), it follows
from proposition 3.1 that there exist a« € R, 3 € R™, v ¢ R, p € R

..12_



and 6 € R* such that the following Fritz John conditions are satisfied at

(#.5,\p):

Vala ) = Yy W P @Te)dr — VoV, AT H)E(aTe)g)

- V:n( ﬁTvyy(:\Tf)ﬁ(aTe)) + IBTvyI(’\Tf) + VI (BTvyy(:\Tf)p)

B =

- vsz(:\’Ff)’YgJ - Vz(vny (;\Tf)ﬁ(Ang))

(aTe) 5, — B )

= Ve (a'f) = (Viu (ATf) Vyyu (A1) (
YYs — B

1
(aTe)gr + ;(016)171 — 0

- va:(vyy(S\Tf)ﬁ) 1 - P
Yyg + ;(GTG)ﬁJ — B

1A%
<

(3.4)

Vi (o f) = v, AT HHiaTe) - Vi A 0T e)gr — Yy, AT el e)p
. 1 . . -
- vyl(vyy: ()‘I f)f)(aTe)gj) - vy: (§f’Tvyy()\[f)(&Te)ﬁ) + drvyyz ()\Tf)
+ Yy (BT (AT NP) = Yy, (AT v = Yy, (Yo, AT F15(v5,)

( or 7 ((QTE)Z/I — 87 + (GTE)P[)
= (Vg (A f) vnyz()‘ f))

47— 31+ (aTe)p,
1

. _ (Q‘TG)@] + -2-(05’1"6)}_)] — 3y
= Vi {l(Vyy, (A1 1P Vi, ()\Tf)lﬁ) ) }

vy + ;(OTG)ﬁJ — 3,

- 13 -



vyj (O'Tf) o VUI'EI.J (;\Tf)(o‘Te)l-/l - vyJ (Vyyf (’_\Tf)ﬁ(a'Te)?jI)
1 . . o _.
=V, (50" Vau(a” plele)) + BTV, (AT )+ YV, (67 Yy (AT )B)
— ATy, (AT ) = Vs AT F)vis = 7 Vo, M )P

- Vy, (vyyj (:\Tf)ﬁ(’YﬂJ))
(aTe)ir — Br + vbi
- (Ct - ’Yj\)Tv'ny - (Vyzy.r (;\[f) vny-l (S\Tf)) ( )
iy — By +vpJ
7 (w@m g eTem -
- v‘yJ {(vyyr (’\Tf)ﬁ Vny ('\Tf)}'_)) 1 }
vys + §(QT6)25J — B

=10 (3.6)

- Vyyl(:\Tf)(aTe)y“I - (vyy(j\Tf)ﬁ)(aTe) + ,BTvyy(XTf) - Vny (;\Tf)"ﬂ;"]
- (5[ —(aTe)pr — (aTe)f”)
= vyy()\Tf)

B; — (aTe)pr — v4s
= {

S B N 1 —
- Vy,f(aTe)y?’ ~ Vi, f-p(aTe)y[ o ngvyyf(a[ff)p

+ IBTvyf + ﬁjrvyyff) - vyj f(",”ljj) - vyy.f f("f.@J)p — 0
' , 1 .. ,
‘ B — (o e)i; (aTeyyr + 5(a1 c)pr — O;
= (vylf vyJ f) - (vyy[ fp Vny fl_)) {
v+ 5(0F€)fw -0

By —=ys
— 0

=0 (3.8)

_14_



BUVL,(ATF) + Yy, (AT F)B) = 0. (3.9)

Y5 Vs AT ) + 359, AT )p) = 0. (3.10)
plz=0. (3.11)
TN =0, (3.12)
(@, 8,7,p,8) 2 0. (3.13)
(. 8,7, p,8) # 0. (3.14)

Since V,, (AT f) is non-singular, (3.7) yields

Br=(a"e)pr+3) and By = (aTe)p, + vy, (3.15)

From (3.5) and (3.15), we have

S(0Te),, (5794, (T Fp) = 0 (3.16)
Suppose that o = 0.
From (3.6). 4 (Vy, (A" 1) 4V, (N £)p) = 0. Since ¥, (AT )+, (3T f)p #
0, v =0. From (3.15) and (3.8), we have G =0and § = 0. From (3.4), we
have 0 2 p. But since p > 0, p = 0
This is a contradiction to (3.14). Hence # 0 (i.e. a > 0). Using the

hypothesis that %(Vw(:\jﬂf)(i‘, ¥)) is positive or negative definite in (3.16),

we get

....15_



Using (3.4).(3.15) and (3.17), we get

V(@' f)(z,5) 20

From (3.6), (3.14) and (3.16}, we have (o — yA)TV,,, f = 0.

Since {Vy, fi(%,§) }i=1 ... x is linearly independent,

= YA

and substituting (3.19) in (3.18) ,we have
V(AT F)(7.9) 2 0
Using 7 = 0. and (3.20),

Vo(NTf) + Ve (AT )5 2 0,

T8 Ve (ATf) + T8 Ve, M f)p=0 and

Since p = 0,

(ﬁTvLI(:\If)ﬁ)e =0.

Lo =

From (3.21)and (3.22), (z,5, A, p = 0} is a feasible for(G:SD)

...16._

(3.17)

(3.18)

(3.19)

(3.21)

(3.22)



Now multiplying (3.8) by A and using (3.9).(3.10) and (3.12) gives

U1 Vo, N NE 0 + 51 Vg QT IUE 7)P + -

ﬁ‘rvyy(:\Tf)(f:’ij)ﬁ = 0.

SR

By theorem 3.1 (weak duality), (Z,y,\,7) is a weakly efficient solution for

(GSD).

COROLLARY 3.2. (Strong Duality) Let f be a three times differentiable
function from R™ x R™ to R*. Let (i Y. 5\.;3) be a weakly efficient solution
of (GSP). Assume that f(-,y) is second order covex for fixed y and f(x,-)
is second order concave for fixed x . Suppose that

(i) Vyy (AT f) (%, 9) is non-singular,

(i) Vy, NTF)E ) + Vo, AT (@, 5)B # 0.

(iii) the set {V,, fi(T,§)},_, . is linearly independent and

(iv) the matrix %(Vw(ijﬂf)(i,ﬂ)) is positive or negative definite, for
some 1 € [.

Then (z.y,\,p=0) is a feasible solution of (GSD) and (¥.§.\,p) is a
weakly efficient solution of (GSD).

By the similar method of Theorem 3.2, we can prove the following converse

duality theorem.

_17'_



THEOREM 3.3. (Converse Duality) Let [ be a three times differentiable
function from R™ x R™ to R*. Let (&,,A,7) be a weakly efficient solution of
(GSD). Assume that f(-,y) is second order invex for fixed y with n,(z,u) +
x 20, and f(x,-) is second order incave for fixed T with ny(v,y) +v = 0.
Suppose that

(1) Viz (AT f) (4, ©) is non-singular,

(1) V. (VT £)(8,5) + Vi (\F ) (@, 5)F £ 0.

(iii} the set {Vy, fi(@, )}, . 4 is linearly independent and

(iv) the matrix %(VII(S\Tf)(ﬁ, v)) is positive or negative definite, for
some ¢ € 4.

Then (@, 7, A\, 7 = 0) is a feasible solution of (GSD) and (u., A, 7 = 0) is
a weakly efficient solution of (GSD) and (GSP).

CoroLLARY 3.3. (Converse Duality) Let f be a three times differen-
tiable function from R™ x R™ to R¥. Let (4.9, A.F) be a weakly efficient
solution of (GSD). Assume that f(-,y) is second order connvex for fixed y
and f(x,-} is second order concave for fixed x. Suppose that

(i) Vo (AT f) (%, 2) is non-singular,

(i) Vo (A )0, 0) + Voa s AT f) (@, 8)7 # 0.

(iii} the set {V,, fi(&, 'E')}i:1,--- & 18 linearly independlent and

(iv) the matrix %(VTT(:\ff)(&D)) is positive or negative definite, for
some 1 € A.

Then (u,v, A, 7 = 0) is a feasible solution of (GSD) and (&, o, \, 7 = 0) is
a weakly efficient solution of (GSD) and (GSP).

- 18 -



4. Applications

In this section, we apply results in Section 3 to the first order multiob-
Jective symmetric dual programs and the usual multiobjective optimization
problems. If [ = § and A = 0, then our pair of programs (GSP) and (GSD)
is reduced to the following multiobjective second order symmetric dual prob-

lems (M SP) and (M SD), which are Mond-Weir type ones.

(MSP) Minimize f(z,y) — %(p—rvyy(/\zrf)(.r.y)p)e
subject to V, (A" f)(z.y) + V(AT ) (z.y)p £ 0,
yI V(AT D), y) + 5"V (AT F) (2, y)p 2 0,
A>0, Ale=1. z20.
(MSD)  Maximize f(u,v)— %(T-Tvm(,\’f F(u. vdr)e

subject to V(AT f)(w,v) + Vae (A F)(u, v)r 20,

?LTV:I:(/\Tf)(UT l') + UTVIIL‘(/\Tf\}(U” U)T é 0’

A>0 Me=1. v=0.

where f 1 R* xR™ = R* AeR*and e = (1, . 1)7 € R*.
We can easily give the weak, strong and converse duality for (A SP) and

(MSD) from Theorems 3.1, 3.2, and 3.3.

_19...



THEOREM 4.1. (Weak Duality) Let (z.y. ), p) be feasible for (GSP)
and {u,v, A\, r) be feasible for (GSD). Assume that f{-.y) is second order
invex for fixed y with m(z,u) +u = 0 and f(x,-) is second order incave for

fixed x with no(v,y) +vy = 0. Then

Flw9) = 50 Ty (X7 P y)ple £ Flu) = 507 V(3 P(w, v)r)e

=

THEOREM 4.2. (Strong Duality) Let f be a three times differentiable
function from R™ x R™ to R*. Let (a‘:,ﬂ,j\,;‘)) be a weakly efficient so-
lution of (GSP). Assume that f(-.y) is second order invex for fixed y
with m(z,u) + x = 0 and f(x,-) is second order incave for fixed x with
m(v,y) + v 2 0. Suppose that

(i) Vyy (;\Tf) (z,7) is non-singular,

(i) Vo, (AT FUT G) + Vo, AT INZ. 00D # 0.

(1ii) the set {V,, fi(Z,%)},_, . . is linearly independent and

(iv) the matrix %(Vyy(;\Tf)(i',gj)) is positive or negative definite, for
some i € 1.

Then (Z,§, AP = 0) is a feasible solution of (GSD) and (z,4,\,p) is a

weakly efficient solution of (GSD) and f(T.7).

_20_



THEOREM 4.3. (Converse Duality) Let f be a three times differentiable
function from R® x R™ to R*. Let (ﬁ, U, /_\,f) be a weakly efficient solution of
(GSD). Assume that f(-,v) is second order invex for fixed y with n,{x,u) +
r =0, and f(x,-) is second order incave for fixed x with na{v,y) + v 2 0.
Suppose that

(i) Vi (:\Tf) (w2, ) Is non-singular,

(i) Vo (AT £)(12,9) + Vi (AT ) (1, 9)7 0.

(iii) the set {szfi(ﬁ,ﬁ)}i:hm & is linearly independent and

(iv) the matrix 52-(V (AT f)(u,)) is positive or negative definite, for

<=l

somei € A.
Then (i. 0. A7 = 0) is a feasible solution of (GSD) and (.7 N F=0) is
a weakly efficient solution of (GSD) and (GSP).

If I = M and A = N, then our pair of programs {GSP) and (GSD) is re-
duced to the following multiobjective second order syvimmetric dual problems

{(WSP) and (W SD) which are Wolfe type ones.

(W SP) Minimize f(x,y) — (v7V, (AT f)(z.y))e
0V (AT N wp)e — 20TV, (AT F)(wu)ple
abjoct 1o Ty(NT £)(e,y) + T4y (N 1) yip < 0,
AN>0, AMe=1, 220
(WSD)Maximize f(u.v) — (u? V(A" f)(u.v))e
— (Vo (A ), v)r)e - %(u"\"?.m(ATf )(u,v)r)e
subject  to V(A [)(u,v) + Ve (AT f)(;w)r 20,

A>0, Me=1, v=0
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where f:R? x R - RF¥ AcR¥ ande=(1,--- . 1)T ¢ R*.

We can easily give the weak, strong and converse duality for (1V'SP) and

(WSD) from Theorems 3.1, 3.2, and 3.3.

THEOREM 4.4. (Weak Duality) Let (x.y, A. p} be feasible for (GSP) and
(w,v, A, r) be feasible for (GSD). Assume that f(-,y) is second order invex

for fixed y with m(x,u) +u« 2 0 and f(z.-) is second order incave for fixed

x with ne{v,y) +vy 2 0. Then

Sy = W' V(A )z y))e — ! Vi (A )z, y)p)e
- STV 0T ) e
£ flu,v) — (" V. (AT )(u,v))e — (uTVm(/\Tf)(u. v)rie

_ %(MTVII(ATJ‘)(U, e,

THEOREM 4.5. (Strong Duality) Let f be a three times differentiable
function from R™ x R™ to R*. Let {Z.5.A.p)} be a weakly efficient so-
lution of (GSP). Assume that f{-,y) is second order invex for fixed vy
with my (@, u) + @ =2 0 and f(z,-) is second order incave for fixed x with
m2{v.y)+ v 2 0. Suppose that

(1) Vyy (\Uf) (2, 9) is non-singular,

(i) Vo, N ) (@.9) + Vi, T )& 008 # 0.

(i) the set {V,,, fi(Z.9)},_,  , Is linearly independent and
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(iv) the matrix Ey—i(vyy(;\Tf)(:i',g)) is positive or negative definite, for

some 4 € 1.
Then (z.y, \p= 0) is a feasible solution of (GSD) and (T.5. A\, p) is a

weakly efficient solution of (GSD).

THEORENM 4.6.  (Converse Duality) Let [ be a three times differentiable
function from R* x R™ toR*. Let (4.7, A, F) be a weakly efficient solution of
(GSD). Assume that f(-,y) is second order invex for fixed y with ny(z,u) +
v 2 0. and f(r.-) is second order incave for fixed r with (v y) + ¢ 2 0.
Suppose that

(i) Voo (M F) (@, 0) is non-singular,

(i) Vau AT F)(0,8) + Ve, (AT F) (@, 0)7 # 0.

(1ii) the set {V ., fi(u, "7)}:’:1,--- & 18 linearly independent and

(iv) the matrix E%T(VI:,;(:\Tf’)(ﬁ,ﬁ)) is positive or negative definite, for
some 1 & A

Then (ii.%, .7 = 0) is a feasible solution of (GSD) and (1,7, A, 7 = 0) is

a weakly efficient solution of (GSD) and (GSPF).

If p=0and r = 0, then our pair of programs {GSP) and (GSD) is
reduced to the following multiobjective first order symmetric dual problems

{(§P) and (SD).
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(SP) Minimize f(z,y) — (yr* Vy, (AT F)(z.u))e
subject to Vy(/\Tf)(:L',y) <0,
sV, (A ) y) 20,
A>0, ATe=1. 220
(SD) Maximize f{u,v) — (ua’ Ve, (AT f) (. 0))e
subject to V(AT f)(u,v) =0,
up” Vg (N F)(u,v) £ 0.

A0 M e=1. v >0
where f: R* x R™ - R AeR* and e = (1.--- . 1)T € RF.
We can easily give the weak, strong duality for (SP) and (SD) from

Theorems 3.1, 3.2, and 3.3.

THEOREM 4.7.  (Weak Duality) Let (x.y, A, p) be feasible for (GSP) and
(2, v.A.7) be feasible for (GSD). Assume that f(-.%) is second order invex
for fixed y with n;(x.u) +w 2 0 and f(x.-) is second order incave for fixed

v with ma(v,y)+y =2 0. Then

Fle gy = (" Vg, (A )@ e £ f(uv) — (w Ve (AT f)(u,v)e
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Turoren 4.8, (Strong Duality) Let f be a three times differentiable
function from R™ x R™ to R*. Let (:’i.g},;\, p) be a weakly efficient so-
mtion of (GSP). Assume that f(-.y) is second order invex for fixed y
with m(x,u) +x 2 0 and f(x,-) Is second order incave for fixed @ with
r]-_)(z'. y) + v = 0. Suppose that

(1) ¥V, ()\1/) (r.y) is non-singular.

(ii) Vo, A& D) + Vi, M )@ 0D # 0.

(iii) the set {V,, fi(Z, ;ij)}z.zl,“_ . Is linearly independent and

(iv) the matrix %(Vyy(i\ff)(:f,;g)) is positive or negative definite, for
some = [,

Then (Z,3, A\, p = 0) is a feasible solution of (GSD) and (z,y,\,p) is a
weakly efficient solution of (GSD).

THEOREM 4.9.  (Converse Duality) Let f be a three times differentiable
function from R x R™ to R*. Let (ﬁ, &, A, 'F) be a weakly efficient solution of
(GSD). Assume that f(-,y) is second order invex for fixed y with m(x,u) +
r = 0. and f{x.-) is second order incave for fixed v with nz(v,y) +v =2 0.
Suppaose that

(1) Vg (/_\If) (i, ©) Is non-singular.

(i) Vi (AT P, @) + Vi s AT D)1, 0)7 £ 0,

(iii) the set {V ., f.(w. 5)},_, ., Is inearly independent and

(iv) the matrix %(V”()‘\Tj)(ﬁ ©)) is positive or negative definite, for

some 1 e A.
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Then (w. 0.\, 7 = 0) is a feasible solution of (GSD) and (4. 8.\, 7 = 0) is
a weakly efficient solution of (GSD) and (GSP).

Letting f(x.y) = flx) + v  g(z)e, and p = r = 0 where [ : R* — R*, ¢
R — R™ and J = 0, (GSP) and (GSD) collapse to the following vector

optintization problems.

(VP) Minimize f(z)
subject  to g(x) < 0.
xr =0,
(VD) Maximize f(u)+ v’ g(w)e — (h(M'V,, f(u) + 0T Ve g(u))e
subject to M Vo f(u) + 4 Vog(u)) = 0.
wpl (A Vo Flu) + 97 Vigg(u)) £ 0,
A>0, Ale=1, v>0.
where [ R xR™ — RY. A€ R¥ and e=(1.--- . DT & R¥,
THEOREM 4.10. (Weak Duality) Letx be feasible for (V P) and (w, v, A, r)

be feasible for (VD). Assume that f(-) + y? g()e is second order invex for

fixed y with n{x,u) +wu = 0. Then

fle) & flu) + ol glw)e = (uh ATV Fla) + 07V g(u))e

Proof. It is directly deduced from theorem 3.1 {(weak dualty) and defini-

tion 2.3,
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Turorea 411, (Strong Duality) Suppose that f(-) +yT ¢(-)e is second
order invex for fixed y with n(x,u) +u 2 0. If ¥ € X is a weakly efficient
solution of (V P) and a constraint qualification holds at I, then (1.9, \) is a

feasible solution of (VDY and (Z,5.)\) is a weakly efficient solution of (V D).

FProof. DBy the usual Kuhn - Tuker Theorem. there exist

AL Z0 (AL A £ D, 1 20, y=1,--.m. w20(kh=1.--.n)
such that

LAV FLE) T V() b S (0, 1,0,0) =0

;1) =0, (=1, .m), —var=0 (k=1 n).
Thus there exist A7 20 (A[.-- L AD) £0. 15 20.(j=1.---.m), w20

(k= 1,--,n) such that

So.there exist Ay 20, (A}, A) #0, w520, {F=1,---.m),

stich that

[} [Xe3
D ONVE) + 1V (E) 2 0. (4.1)
il i=1
! ’.[ i):l ’\:vfz(f;) + Z;rl1 Foy Vg}( )} = 0. Nj{/j(jf') = 0.
. ‘ . 5 A 13 .
Dividing (4.1) with Zl A, and letting A; = TIT and ——17 =y, we

have
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=1 i=1
P L

_F[Z ’\l\_lfz(-'i}) + Z l/quf(I)] =0
i=1 J=1

B () =0 (=1 m)

Henee

Ay + gl glo)e — (i (N Vo fl) + 9! Vegla)e = fla),

ATV () + 57 Vag(E) 2 0

and ZEN Vo, f(Z)+ 7 Vi, 0(@)] = 0.

Thus (z.4.A) is a feasible solution of (VD). And f(z) = f(z) + v g(2)e —

(e ATV, f(@)+yTV,,g(Z))e. By Theorem 4.10, for any feasible (u. v, A)

tor {(V D),
f(2) £ Jlw) + ol glu)e = WiV Vo, flu) + 07V, g(u))e.

Thus (£.4. A) is a weakly efficient solution of (V D).

Letting flx.y) = f(x) +yTg{x)e. where f 1 R® — R¥ g:R"” — R™. and

J = 0. (GSP) and (GSD) becomes the following generalized second order

vector optimization problems.
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(SV I’} Minimize f(x)

subject to gi(x) = 0i=1,---.m
r Z 0.
(SV D) Maximize f(u)+ 0 glu)e — (Z Auh Vo filu)
i=1
T m
+ Z7/’175fxv:cf\.(h(u))5 - (Z /\i”zlvrl‘f\ fiu)rie
=1 i=1
TR l ) .
B DAY A U U SR AW AT A
r=1 - i=1
1 FI‘ I
— ;(T Z 'lr’f,v:r,:r:,(]i (u)fr)e
- =1
subject to z AV filu) + Z v, Vg (u)
=1 =1

n TrY

“+ Z ANV filuyr + Z UiV g () 2 0,
i 1 i=1

rr m

S ONupVE filu) + > v Vagi(u)
=1

t=1

n m
T - . T .
+ Z ’\iu‘b’v;z;:r;; .fé(u'ﬁ + Z UiUBVJrT. 13 ,Qi('“_)7 g 0:

i=1 i=1

where f:R" x R™ - RF. AcRF and e = (1,--- ., ) ¢ RF
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TnroOREM 4.12.  (Weak Duality) Let . be feasible for (SV P) and (v, v. A v)

be feasible for (SV D). Assume that f;, g; are second order convex. Then

T

f@) £ Fa) 0 glwe — (S Al Vo filw) + 3 ey Vo, gi(w)e

i=1 i=1
— (Z N Vo, filw)r)e — (Z 0V oo, 3:(1)T)E
1=1 =1
1 ) T J T
-- 5(7'F Z ANiVag filt)r)e — §(T‘T Z 1 Ve gi(w)rie
- =1 i=1

Proof.  Since f,(-) and ¢,(-} are second order convex f(-) + vTg(-je is
second order convex for fixed v > 0. f(z) + v¥g(z) is antomatically second
order concave for fixed z with respect to v. So. by Corollary 3.1 we can get

weak duality.

THEOREM 4.13. (Strong Duality) Suppose that f;(-) and g,(-) are second
order convex If & € X is a weakly efficient solution of (SV P) and constraint
qualification hold at &, then (& 4, \) is a feasible solution of (SV D) and

(r.5.A) is a weakly efficient. solution of (SV D).

Proof. By the same arguiment in the proof of Throrem 4.11. we can get

the conclusion.
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