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1. INTRODUCTION

This paper is concerned with the existence, uniqueness and norm es-
timations of solutions for a class of partial functional integrodifferential
systems with delay terms:

’

%u(t, ) + Alz, Doult, ) + A (x. Do yult — b, 7)

(1.1) A +/ha(S)AQ(I’Dm)U(tJrS,:E)ds

t

= F(t,ult ~ h,z), / k(t,s,uls — h,z))ds) + f(t, x),
40

[ 0<t<T, zefl

Here, £ € R"™ is a bounded domain with smooth boundary 02, A(x, D),
Az, Dy)u, ¢+ =1, 2, are second order linear differential operators with
real coefficients, and A(xz, D,) is an elliptic in Q. The function a(s) is
a real scalar function on [—h, 0], where k > 0 is a delay time and f is a
forcing function. The boundary condition attached to (1.1) is given by
Dirichlet boundary condition

(1.2) u]aQ =0, 0<t<T
and the initial condition is given by
(1.3) w(0,2) = ¢, u(s,z)y=g'(s,z) —-h<s<0.

Set .
G(t,u) = F(t,u(t — h),/o k(t,s,u{s — h))ds).

The nonlincar term G(%,-), which is a Lipschitz continuous opera-
tor from L2(—h,T;V) to L?(—h,T; H}, is a semilinear version of the
quasilinear one considered in Yong and Pan [1]. Precise assumptions
are given in the next section.

The abstract formulations of many partial integrodifferential equa-
tions arise in the mathematical description of the dynamical processes
with heat flow in material with memory, viscoelasticity, and many phys-
ical phenomena (See [2,3]). When F' = 0 in (1.1), this linear type of
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equations is studied extensively by [4], Tanabe [5} and Jeong, Nakagiri
[6,7].

In order to prove the solvability of the initial value problem (1.1) we
establish necessary estimates applying the result of Di Blasio, Kunisch
and Sinestrari [4] to {1.1) considered as an equation in a Hilbert space.
In this paper, we give preliminaries on linear equations, and then prove
the local existence and uniqueness for solution of (1.1)-(1.3) by using
the contraction principle. Finally, we establish the norm estimation of
solutions by using the regularity for solutions associated with the linear
part of the given equations and the global existence of solutions by the
step by step method.



2. PRELIMINARIES AND LOCAL EXISTENCE

Let H and V be two complex Hilbert spaces such that V' is a dense
subspace of H. The norm of H(resp. V) is denoted by |- | ( resp. |}-]])
and the corresponding scalar product by (-, )(resp.((*,-))}. Assume
that the injection of V into H is continuous. The antidual of V is
denoted by V*, and the norm of V* by || - ||*. Identifying H with its
antidual we may consider that H is embedded in V*. Hence we have
V C H C V* densely and continuously.

We realize the operator A(r,D.), A (x,D;), + = 1, 2, in Hilbert
spaces by

Aov = —Alz, DYy, Av=-A(x,Dy)v, t=1,2, veV

in the distribution sense. The mixed problem (1.1)-(1.3) can be formu-
lated abstractly as
(SLE)

’ o

%u(t) =Apu(t) + Aju(t — h) + / a(s)Asu(t + s)ds
/ “h

t
+ F(t,u(t — h),] k(t,s,u(s — h)ds) + f(t), 0<t<T
0

L ow(0) =4, u(s)=g'(s) —h<s<O

Let b(-, ) be a hounded sesquilinear form defined in V' x V and satisfying
Garding’s inequality

(2.1) Re b(v,v) > co||vl]* — e1|v]?, o> 0, ¢ >0.
Let. Ay be the operator associated with the sesquilinear form —b(-,-):
(Aguy.ve) = —bluvy,v2), v, v2 € V.

Ag is a bounded linear operator from V to V*, and its realization in H
which is the restriction of 4g to

D(Ag) ={ve V:Awwe H}

is also denoted by Ag. Then Ay generates an analytic semigroup in
both of H and V*.



The operators A7 and A; are bounded linear operators from V to
V* such that their restrictions to D{Ap) are bounded linear operators
from D{Aq} equipped with the graph norm of Ag to H. The function
a(-} is assumed to be real valued and belongs to L%(—h,0).

First we consider the fundamental results on the following linear
functional differential initial value problem:

d 0
—u(t) =Aou(t) + Aju(t — h +/ a(s)Azu(t + s)ds + f(t),
gy | 30 =Aout) + vt = 1)+ [ a(s)Asult +)ds + ),
w(0) =, u(s)=g'(s) —h<s<o.
By assumption there exists a positive constant My such that
(2.2) lo] < Mo|lv]|.

Then, for any f € H we have

(2.3) 1f1[+ < Molfl.
It follows from (2.1) that for u e V

Re ((¢ — Ao)v,v) > colv|®
Hence there exists a constant Cjp such that

1/2
(2.4) 1ol < Collulligdy,, vl

for every v € D(Ap), where

ol pag) = (Aov]? + [u]?)H/?2

is the graph norm of D(Ag).

If X is a Banach space and 1 < p < oo, LP(0,T; X'} is the collection
of all strongly measurable functions from (0,7') into X the p-th powers
whose of norms are integrable and W™ P(0, T X} is the set of all func-
tions f whose derivatives D® f up to degree m in the distribution sense
belong to L?(0,T; X).

By virtue of Theorem 3.3 of [4] we have the following result on the
corresponding linear equation of (LE).



Proposition 2.1. Suppose that the assumptions stated above are sat-
isfied. Then the following properties hold:

1) Let X = (D(AO),H)%,2 where (D(zflo),H)%’2 is the real interpola-
tion space between D(Ag) and H (see [8; section 1.3.3]) and G(-,u) = 0.
For (g%, ¢') €X x L?(—h,0; D(4y)) and f € L*(0,T; H), T > 0, there
exists a unique solution u of (LE) belonging to

L2(—h,T; D(A)) n W20, T, H)  C{[0,T]; X)
and satisfying

(2.5) [l L2 (- 1.0 w200y < Ci(|16°]1x
+ ']

12 (~h0:0(40)) + 220,y

where () is a constant depending on T'.

2) Let (¢°,¢%) € H x L2{(—h,0;V) and f € L?(0,T;V*), T > 0. Then
there exists a unique solution v of (LE) in case G(-,u) = 0 belonging
to

L*(—h, T; V)0 Wb 0, T;vV*y c C([0,T); H)
and satisfyving

(2.6) [ull Lo nrvyinwrzo.rvey < Ci(lg”

+ g N p2(-novy + Nl z20.mv ),
where (7 is a constant depending on 1.
For a given u € L?(0,T,V) we extend it to the space L?(—h,T;V)
by setting u(s) = g'(s) for s € (—h,0).

We assume the following hypotheses on the nonlincar mappings F,
k in (SLE):
(A1) F:[0,7) % L?(0,T;V) x H — H is a nonlinear mapping such
that for ¢ € L2(0,7,V) and « ¢ H, F(t, &, ) is strongly measurable
on [0,T] and there exist positive constants Ly, L, Le and Lz such that

|F(t,(}51,3€1) —F(t-,(bQ,TEQ)' é L1||¢51 — (DQH -|—L2|.’E1 —5132|, te [OT]

(A2) Let Az ={(5,t):0<s<t<T}. Thenk:Ap x L?0,T;V)—



H is a nonlinear mapping such that for ¢ € H, k(t,s, x) is strongly
measurable on A7 and there exists positive constant Lz such that

lk(tasa'rl) - k(t,S,ZEz)' < L3HJ§1 - 'I2||7 (S:t) € AT'

(AB) ‘F(t,O;O)l é LO: |k(t33=0)$ < LO-

Remark 2.1. The above operator F' is the semilinear case of the non-
linear part of quasilinear equations considered by Yong and Pan [1].

For w € L?(—h,T; V), T > 0 we set
t

Gt u) = F(t.ult — h),/ k(t.5.u(s — h))ds).
0

Lemma 2.1. Letu € L*(—h, T, V)T > 0. Then G(-,u) € L*(0,T; H)

and

(2.7) HG(,w)l|p20.mm) < LoVT + (L1+
LQLgT/ﬁ)HlLl

L2(—h,T—h:V)-
Moreover if uy, uy € L*(=h,T; V), then

(2.8) NGCour) = GCoua)l 20,1
< (L1 + Lo LaT/v/2)||lur = wallpe(prnvy-

Proof. For u ¢ L2(—h,T;V), since
T t ‘ T t
/ |/ k(t,s,u(s—h))ds\zdtgLgf (/ s — B)||ds)2dt
0 0 0 0

T gt
< L%f t/ Nu(s — h)||*dsdt
o Jo

2T2 T 2
<L35 [ lhuts = h)IPds



from (Al) and (A2), it is easily seen that

1G ) o7y = { / Fltult - h), ] Bt 5 uls — h))ds)Pde} /2
ﬂ{f F(t ut — h /ktsusw h))ds) — F(£,0,0) + F(t,0,0)[2dt}}/?
<{] |F(t,u(t — h), / k(t,s,u(s — h))ds) — F(t,0,0)|?dt}'/? + LovVT

T t '
SL'D\/T+L1||UI|L2(~F1,T}L;V)+L2{£ Ifo k(t,s,u(s-—h))ds|2dt}l/2.

The proof of (2.8) is similar. [

Now we are ready to give the following result on a local solvability
of (SLE).

Theorem 2.1. Suppose that the assumptions (Al), (A2) and (A3)
are satisfied. Then for any (¢°,¢g') € H x L?(—h,0;V) and f €
L*(0,T; V™), T > 0, there exists a time T, > 0 such that the functional
differential equation (SLE) admits a unique solution u in L2(—h, Ty; V)N
W20, To; V*).

Proof. Let us fix Ty > 0 so that

(2.9) Cﬂcl(Ll+L2L3\/~)(\/‘

where Cp and €| are constants in (2.4) and (2.5) respectively. Let w
be the solution of

)1/2 1,

(2.10)
jt (t) =Aow(t) + Ayw(t — h)
+ / a(s)Aaw(t + s)ds + G(t,v) + f(t),
—h
(2.11) w(0) =g%  w(s) = g'(s), s € [—h,0).

We are going to show that v — w is strictly contractive from L2(0, Tp; V)
to itself if the condition (2.9) is satisfied. Let w;, wy be the solutions



of (2.10), (2.11) with v replaced by v, vy € L?(0,Tp; V), respectively.
From (2.5) and {2.8) it follows that

[l — wall 120, 70; 0 A0} W1 2(0, To: H)

< GGG o) = GCyva)lleo,10;m)

To
< Ci(Ly + L2L3\/§)HU1 — V2l 120,70,V

and hence in view of (2.4) we have

(2.12)
1 1
[lwr — wal|L2¢0, 10,7y < Collwr — u’Q‘[fz(o,To;D(Ao))le - WZHIQJZ(OTD;H)

1 0.1 e
S COle - w2l|22(0,T0;D(Ao))(ﬁ) 2 Hu)l - w2||€V1v2(O,TD;H)

T
< 00(705) Hwr — wall£2¢0,70: (A0 ) AW 2(0,T0: 1)

< Colh (14 +L2L3-\/%)(702)1/2||'U1 —vall 20,19y

Here we used the following inequality

To
1
o wellesto = [ fun6) = watt P!

To
-{f [ i (7) — y(r))dr 2t}
<wj%w/mmT—uZNdmuz

< ““HU’I*wzHWW 0. Ty H
NG (0,To; H)-

So by virtue of (2.9) the contraction mapping principle gives that the
equation (SLE) has a unique solution in [~h, Tp]. O



3. (GLOBAL EXISTENCE AND BEHAVIOR OF SOLUTION

In this section we give a norm estimation of the solution of (SLE)
and establish the global existence of solutions with the aid of norm
estimations.

Theorem 3.1. Suppose that the assumptions (Al), (A2) and [(A3)
are satisfied. Then for any (¢°,¢') € H x L?(—=h,0;V) and f ¢
L2(0,T;V*), T > 0, the solution u of (SLE) exists and is unique in
LA(—=h,T; V)N Wh2(0,T; V"), and there exists a constant Cy depend-
ing on T such that

(3.1) ullr2 (—n vy 2oy < Co(1+ |g°

+ Hgl||L2(~h,O;V) + 1 f1 200,157 4))-

Proof. Let u(-) be the solution of (SLE)} in the interval [—h, Ty] where Ty
is a constant in (2.9) and w(-) be the solution of the following equation

d 0
_d?“)(t) =Aow(t) + Ayw(t — h) + f als)Apw(t + s)ds + f(1),

~h
w(0) =¢°,  w(s) = g'(s), —h <5 <0.

Then in view of (2.5), (2.7)
lu = wilr2(0, 10 p AW 20, Ty < Crl|G G w)| L2 0,740
< Cr{LoVTo + (Ly + Lo LsTo/V2)([Jull 120,75
+ qu HL2(—-h,O;V))}-
S C] {L()\/To + (Ll -+ LQL:;To/ﬁ)(Hu — wHLQ(O,TO;V)
+ ||'wHL2(O,TQ;V) + ||91||L2(—h,0;\/))}'
Thus, arguing as in the proof of (2.12)
||u - wHLQ(OjTO;V)

Ty .1
< CO(_ﬁ) = wliL200,10: D0 A0 )W 2(0,T0: H)

T .1
< 00(7;) 2C{LoVTo + (L1 + LoLsTo/V2)(|Ju — w12 (0,70:v)

+ el 201y + g z2—n 0y }-



Therefore, we have

CoC1(To/V2)H/?
1— CoCi(Ly + LaLsTo/V2)(To/V2)1/2
x{LoVTo + (Ly + LaLaTo/V2) ([l 2o, mum) + 11 |2 o)}

u — wl| 20,15y <

and hence, with the aid of 2) of Proposition 2.1

(3.2)
[l z2(0,76:v)
< CoC1LovTo(To/v2)1/?
1= CoCi (L + L2L3T0/\/§)(T0/\/§)1/2
w1200, 70:v) + 9 || 22(= R0
1 - CoCi(Ly + LaLsTo/vV2)(To/V/2)1/2
CoCy Lo To(To /v/2)1/?

: 1 — CoCr(Ly + LaLsTo/V2)(To/V/2)1/2
1

+
T CoCr(Ln + Lol To/v/2) (T VD) /2
+ H.f“LQ(O,TmV*)) + HQIHLQ(—.‘L,O;V)}-

{C(1g° + H91||L2(fh,0;V)

On the other hand using (2.6), (2.3), (2.7) we get

(3.3)
]|u|ILZ(7h,’1'0;V)F1W1x2(O.TQ;V*)
< Cr(lg° + ”ngL"’(—hSO;V) + GG w) + fllez,10v+))
= (g% + gt Lz (n0vy + MollG )|z 0,19;8) + 20,109 ))
< Cillg° + llg'| L2(-novy + [ fllLz o rv ey
+ Mo{LoVTo + (Ly + LaLyTo/V2)(|[ul| 20, 1w
+ g |2 =m0y}

Combining (3.2), and (3.3) we obtain

(3.4) lull 2 -, mevynwr 201 vy < C(1+ g0
+ g L2 —novy + 1l L2 10v))



for some constant . Since the condition (2.9) is independent of initial
values, the solution of (SLE) can be extended to the interval [—h, nTg|
for every natural number n. An analogous estimate to (3.4) holds for
the solution in [—h, nTy], and hence for the initial value {(u(nTy), unt,)
in the interval [nTy, (n + 1)Tp]). O

Theorem 3.2. Suppose that the assumptions (Al), (A2) and (A3) are
satisfied. If (9°, ¢') € X x L%*(—h,0; D(Ag)) and f € L?(0,T; H), then
u € L2(—h,T; D(Ao))NWL2(0,T; H), and the mapping (¢°, ¢*, f) —
u € L*(—h.T; D(Ag))NWE2(0,T; H) is continuous.

Proof. Tt is easy to show that if (¢°,¢') € X x L?(—h,0; D(Ag)) and
f € L*(0,T; H), then from Proposition 2.1 it follows that u belongs to
L2(—h, T: D(40))W12(0,T; H). Let (g9, g1, £:)€ X x L2(—h,0; D(Ag))
x L*(0,T; H), and u; be the solution of (SLE) with (¢?, ¢}, f;) in place
of (g%, ¢!, f) for i = 1, 2. Then in view of Proposition 2.1 and Lemma
2.1 we have

(3.5)
w1 — s

L2(=h,T;D{Ao))NW1-2(0 T, H) = Cl{Hg(lJ - ggHX

+ lig1 — 93 L2(—h,0:0(Ag)) T G ) — Gl oua)ll 20,7 1)

+1f1 = Fallizo 0y}

< Cifile? = 98llx + gt = a3llr2(—n.o:nca0y + 111 — follrzco. )
+ (L1 + L2L3T/\/§)(Hu1 —uzl|p200,7:v) + gt — Q%HLQ(—h,O;V))}-

Since

¢
() ua(t) = 6 — g%+ / (itr () — din(s))ds.

0

we get,

T
[Jur —~ UzHL?(o,T;H) < \/ﬂgé - 9g| + —=|lu1 — 'U»2HWl»2(0,T;H)-

V2

,‘]2_



Hence, arguing as in (2.12) we get

(3.6)
1/2 172
[lur = wallzz(o,7,v) < Colluy — “2HL/2(0.T;D(A0))H”1 N U’QHL/Q(O’T?H)
1/2
< Co||U1 - U2HL/2(0,T;D(AU))

T 1/2
x T 40 — g9 /2 + (:/—i)wllul = el o1y}

2
< CoT*1g? = 681" ?Ilwr — walli%0 7ipgacyy

T
+ Co(ji)l/zﬂm — uz||L2(0,7;D(A0))N W2 (0,75 H)
<27 Colg? — 9.
+ QCO(E)I/QHUI - u'2||L2(0‘T;D(Ao))ﬂW%2(O,T;H)-

Combining (3.5), and (3.6) we obtain
(3.7)
Jur = wallL2(—n.1:D(aoprwr 20,00 < Crfllgl — 93| x
ot = gallez-noneagy + 11 — fllrzorm
+ (Ly + Lo LsT/V2)|la1 — 93l nony)

T
+27CyC{ Ly + LaLsT/V2)|gY = g3 + 2CoCy (==

1/2
5

* (Ly + Lo LsT/V2)|wg — szl 120, 7.0 A0y W 200, T, H ) -

Suppose that (g%, g1, fn) — (9% ¢, f) in X xL?(—h,0; D(Ag))x L?(0,
T H), and let u, and u be the solutions (SLE) with (¢2,g., f.) and

(g%, ¢, f) respectively. Let 0 < Ty < T be such that
20001 (T /V2) YA (Ly + LaLsT /V2) < 1.

Then by virtue of (3.7) with T replaced by T\ we see that u,, — u in
LA(=h,Ty; D(A))NWE2(0, Ty; H). This implies that (u,(7%), (un)T,)
= (u(Ih),ur,) in XxL?*(—=h,0; D{Ap)). Hence the same argument

shows that w,, — u in

LA(Ty, min{2Ty, T}; D(Ag)) N WH2(Ty, min{ 2Ty, T}: H).

Repeating this process we conclude that w, — w in L2(—=h,T; D{Ap))

W20, 7, 7). O



Theorem 3.3. For f € L*(0,T; H} let s be the solution of equa-
tion (SLE). Let us assume the natural assumption that the embedding

D(Ag) C V is compact. Then the mapping f — uy is compact from
L*0,T; H) to L2(0,T; V).

Proof. If f € L?(0,T; H), then in view of Theorem 3.1

(3.8) [yl

L2 (—h, Tiv)ow 20Ty < Ca(l + |g°)
+ g 12 nowvy + Mollfll L2 o my)-
Since uy € L*(0,T,V), G(-,uy) € L?(0,T; H). Consequently u; €

L20,7; D(Ag))NW2(0, T; H) and with aid of Proposition 2.1, Lemma
2.1, and (3.8),

(3.9)

!‘Uf|IL%O,T;D(AO))mWLz(0,’1’;11)

< Cllg®lx + 1l 2 —n0spiaey + 1GC ) + fllpzcoran)

< Cu{ilg®llx + 19" 12— nom(a0) + LoVT

+ (L1 + LQLBT/\/QHIU‘HLQ(fh,’I‘*h;V) Al zco, 1,y }

< Cilllg®llx + o' 22 —n0.pia0)y + LoVT

+ (L1 + Lo LaT/V2) {l|g" | 12 -0y + C2(1 + Molifllz20,7.01))}
+ ALz c0,rm))-

Hence if f is bounded in L2(0,T; H), then so is us in L#(0,T; D(Ag)) N
W12(0, T H). Since D(Ay) is compactly embedded in V by assump-
tion, the embedding L2(0,7; D(Ag)) N W12(0,T; H) < L2(0,13V) is

compact in view of Theorem 2 of J. . Aubin [9]. [

_14_
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