On Vector Equilibrium Problems
with Multifunctions

HotdeE A= WY A A
Al &k A

Adivisor : Gue Myung Lee

A thesis submitted 1in partial Tulfillment o e requirements

for the degree of
Doctor of Philosophy

in the Department of Applied Mathematics, Graduate School,
Pukyong National University

August 2005



2005 8€ 31¢

<
cl
o
o

2

9l



On Vector Equilibrium Problems

with Multifunctions

A dissertation
by
In Ja Bu

Approved by:

(Ch{irmﬁa’f Byung Soo Lee

? M ﬂ/l/l 7% '/
(M’J ber) Do Sang Kim (ember) -~ Jeong Hee Hong
(Member) Glie Myung Lee (Membéf)  Jun Yong Shin

August 31, 2005



CONTENTS

Abstract(Korean) ............ e 1
Chapter 1. Introduction and Preliminaries ...................... .. 2
Chapter 2. Vector Equilibrium Problem (VEP), ................. 12
2.1 Existence Theorems ....................................... 12
2.2 Compactness of Solution Sets ............................ 25
2.3 Random Vector Equilibrium Problems (RVEP); ....... 28
Chapter 3. Vector Equilibrium Problem (VEP); ................. 32
3.1 Existence Theorems ....................................... 32

3.2 Applications to Noncooperative Nash Vector Equilibrium

Problems .......... ... ... . 43
3.3 Random Vector Equilibrium Problem (RVEP); ........ 46
Chapter 4. Affine Vector Variational Inequality .................. 50

4.1 Boundedness and Connectedness of Solution Sets

4.2 Applications to Multiobjective Optimization Problems 70

References ........ ... . 74



2 =20ME M E(noncompact) ZFHAtOIAM HOISlE CIVIESE JHX|e £ i) #E FHA
2R (VEP),, (VEP), 8 CHECL. X HZ F(asymptotic cone)B ALEsto (VEP), of ch2t 8ol

EXNY2 sHEEe] YHEY (compactness)E 20|32 0 HIE A3 Y HWE ZEX =X (random

vector equilibrium problem)Z A8} CH 2|0 HHES @WE X S&o

7t g8 AM33l0
(VEP), o THE! 8o ZRAME =02, o HAB viFZ HE U4 2HH 2 (noncooperative Nash
vector equilibrium problem)Of X Est 2BE Y HAE ZEHY 2= HFSIAUCE LIOPEA, b
HE CiEy NAXEY o ghEEs (EE HX)HEE Fosi= ofF YEH HE FEA(affine
vector variational inequality) 2| S{ZES RA4Y (boundedness)t HZH4A] (connectedness)8 =

AbStal O ZAE OSH ME B4 23BN OSH 25 oAty 2SN HBsiUct.



Chapter 1

Introduction and Preliminaries

In the fifties and sixties, as Giannessi told in the preface of his editing book
entitled “Vector Variational Inequalities and Vector Equilibria ([36])”, many
real problems in physics, mechanics, fluid-dynamics, structural engineering
and economics had shown the need of new mathematical models for studying
the equilibrium of systems. In sixties, such requirements had led to the formu-
lations of variational inequality, which was first introduced in the context of
partial differential equations by Stampacchia, and complementarity problem,
which can be regarded as a special case of variational inequality. Until now,
the variational inequality and complementarity problems have played impor-
tant roles in the formulation and treatment of equilibrium, in particular, in
operation research, transportation and economics. In 1994, Blum and Oettli
(14] coined the terminology “Equilibrium Problem” for giving a unified for-
mulation for optimization problem, variational inequality, Nash equilibrium
in noncooperative games and other problems related to equilibrium. Main
theorems in nonlinear analysis (9, 10, 15, 16, 24, 25, 26], for example, Brouwer
fixed point theorem, Broweder fixed point theorem, Kakutani fixed point the-
orem, Ky Fan’s minimax inequality and Knaster-Kuratowski-Mazurkiewicz
principle (Fan-KKM theorem), have supported strong mathematical tools
for analyzing such equilibrium problems. So many authors have generalized
such main theorems and then applied them to several kinds of equilibrium

problems.



Most of decision making situations require a simultaneous consideration
of more than two objectives which are in conflict or trade-off. For example,
in the panel design problem, it would be reasonable to minimize weight and
maximize strength simultaneously. Such requirements had led to multiob-
jective (vector) optimization problem, which was initiated by Pareto [69]. In
1980, Giannessi [34] first introduced vector variational inequality for study-
ing vector optimization problem. Since then, many authors studied several
kinds of vector variational inequalities (1, 7, 17, 18, 28, 45, 46, 47, 49, 48,
54, 56, 60, 61, 70, 73, 81, 80, 83, 84] and have shown that vector variational
inequality can be efficient tools for studying vector optimization problems
[7, 35, 42, 53, 50, 52, 57, 72, 81, 82, 83]. Many authors have formulated and
studied vector equilibrium problems (2, 3, 4, 5, 6, 8, 13, 20, 21, 23, 27, 29,
30, 31, 38, 40, 41, 51, 55, 62, 63, 67, 68, 74] which are vector versions of the
equilibrium problem and which contain several kinds of vector variational

inequalities and vector optimization problems as special cases.

Now we will introduce two vector equilibrium problems with multifunc-

tions considered in this dissertation.

Let X be a convex and closed subset of R* and ¥V = R™. Let F :
X x X — 2¥ be a multifunction and let C : X — 2¥ be a multifunction such
that C'(z) is a non-empty convex cone in Y with intC(z) # 0 and C(z) £ Y
for all z € X. In this dissertation, we will consider the following two vector

equilibrium problems with multifunctions :



(VEP), Find Z € X such that

F(z,z) CY \ (—intC(z)) for any z € X.

(VEP),y Find Z € X such that

FIZ,z)N[Y\ (—intC(z))] #0 for any z € X.

It is clear that each solution of (VEP), is also a solution of (VEP),.
When C(z) is a constant convex cone for any x € X, the above problem
(VEP); is reduced to the one studied in [74]. Both problems include several

kinds of vector equilibrium problems and vector variational inequalities as

special cases.
If F is singe-valued, then both problems (VEP); and (V EP), collapse to

the following vector equilibrium problem which was studied in [3, 23, 38, 54];
Find z € X such that ¢(z,z) € Y \ (—intC(Z)) for any z € X,

where ¢ : X x X — Y is a function.
Setting ¢(z,y) = T'(z)(y — z), where T : X — L(R",R™) is a function,
we get the following vector variational inequality which was investigated in

(18, 84];
Find 7 € X such that T(Z)(z — z) € Y \ (—intC(Z)) for any = € X.

Setting ¢(z,y) = f(y) — f(z), where f : X — Y is a function, we obtain

the following vector optimization problem which was studied in [43], and

4



it becomes usual vector optimization problem when C(z) is a nonnegative

orthant R% ;

Find z € X such that f(y) — f(z) € Y \ (—intC(z)) for any z € X.

On the other hand, Qun [70] used an increasing sequence of nonempty
compact convex sets to get the existence theorems for a vector variational
inequality defined on a noncompact set. Auslender and Teboulle [11] studied
the compactness conditions of solution sets of scalar optimization problems
and scalar variational inequalities by using asymptotic cones, which is a
generalization of the recession cone in [71]. Very recently, Fabidn Flores-
Bazdn and Fernando Flores-Bazdn [22, 23] have tried to extend the ideas
of Auslender and Teboulle [11] to vector optimization problems and vector
equilibrium problem for vector valued functions. Many authors [40, 41, 43,
55] have studied random vector variational inequalities, which are random
versions of vector variational inequalities. In particular, Kalmoum [41] gave
the existence theorems for random vector equilibrium problem for vector
valued functions. Recently, the connectedness properties for solution sets of
several kinds of vector variational inequalities for vector valued function have
been studied for understanding the behavior of their solution sets ([19, 52,
58, 82, 83]). In particular, the connectedness of solution sets for affine vector

variational inequalities with 2 x 2 monotone matrices was investigated in [58].



The main purposes of this dissertation are as follows;

(1) Using the asymptotic cone of the solution set of (VEP);, we give con-
ditions under which the solution set is nonempty and compact, and then
extend them to a random vector equilibrium problem with multifunctions.
(2) Using an increasing sequence of nonempty compact convex sets, we es-
tablish existence theorems for (V EP), in noncompact settings.

(3) We investigate the boundedness and connectedness of solution sets of
affine vector variational inequalities with noncompact polyhedral constraint

sets and positive semidefinite (or monotone) matrices.

Now we give some definitions and preliminary results which will be used

in the next chapters:

Definition 1.1. Let X be a convex and closed subset of R* and Y = R™.

Let F: X — 2Y be a multifunction and C is a convex cone in Y with C #Y.
(1) ([76]) F is said to be upper (lower, respectively) C-convex on X if for
any z,22 € X, t € [0,1],

tF(z1) + (1 —t)F(z2) C F(tz1 + (1 —t)z0) + C

(F(tzy + (1 — t)zg) CtF(z1) + (1 — t)F(zq) — C, respectively)

holds. If F' is both upper C-convex on X and lower C-convex on X, we say
that F'is C-convex on X.

(2) F is said to be upper (lower, respectively) C-lower semicontinuous

at Z € X if for any open set V in R™ with F(Z) NV # (), there exists a



neighborhood N(Z) of Z such that for any z € N(z) N X

Flz)yn(V+C)#£0
(F(z)N(V = C) # 0, respectively).
If F' is upper (lower, respectively) C-lower semicontinuous at every z € X,
then F is said to upper (lower, respectively) C-lower semicontinuous on X.

If F"is both upper C-lower semicontinuous on X and lower C-lower semi-

continuous on X, then F' is said to be C-lower semicontinuous on X.

Example 1.1. Define a multifunction F : R — 2% by F(z) = [2?, c0) for

any € R. Then F is R -convex, where Ry = [0, 00).

Given any closed set K in R™, we define the asymptotic cone of K as the

closed set
K* ={r €R" | 3t, | 0 and z, € K such that t,z, — z}.
In addition, if K is convex, it is known that for any given z, € K,

K¥={zeR"|zo+tz e K forall t>0}

Moreover, K is bounded if and only if K = {0}.

We give some basic properties of asymptotic cones which will be used in

Chapter 2.



Proposition 1.1 [11]. For closed sets K1, K in R, the following holds:
(1) K, C K, implies (K])oo C (KQ)OO ;
(2) Let {K;}icr be any family of nonempty sets, then (Mier Ko™ C

Nic; (Ki)*®. If, in addition, Nic; K& # @ and each set K; is closed and

convex, then we obtain an equality in the previous inclusion.

Now we recall the definitions of the KKM multifunction and the KKM-

Fan Theorem ([25]) needed for the proofs of our existence theorems.

Definition 1.2. Let X be a vector space and K be a nonempty subset of

X. Then a multifunction G : K — 2% is called a KKM multifunction if for
each finite subset {21, -+, 2.} of K, cof{wy, -, zn} C UL, G(w:).

Theorem 1.1 (KKM-Fan Theorem). Let X be a Hausdorff topological

vector space, K be a nonempty subset of X and G : K — 2% be a KKM

multifunction. If all the sets G(z) are closed in X and if one is compact,

then (), G(z) # 0.

Definition 1.3 ([78]). Let X be a convex and closed subset of R" and
Y =R™ Let F: X — 2" be a multifunction and C' be a non-empty convex
cone in Y with C #Y . Then F is said to be natural quasi C- convex on X
if for any z1, 72 € X and t € [0, 1], there exists u € [0, 1] such that

Ftzy + (1 — t)z9) C pF(z1) + (1 — p)F(z2) — C.

It is clear that if F' is lower C- convex on X then F is natural quasi C-

convex on X. But the converse may not hold.



Definition 1.4. Let X be a convex and closed subset of R® and Y = R™.
Let F': X — 2¥ be a multifunction. Then the multifunction F is said to be
closed if the graph of F', Gr(F) := {(z,y) € X x Y : y € F(x)}, is closed in
X xY.

Definition 1.5. Let X be a convex and closed subset of R* and Y = R™.
Let F : X — 2Y be a multifunction.

(1) F is said to be upper semicontinuous (shortly, u.s.c.) at & € X if for

any open subset O of Y with F(Z) C O, there exists a neighborhood N(Z)
of T such that

forallz e N(Z) N X, F(z) C O.

We say that F' is u.s.c. on X if F is u.s.c. at every point z € X.
(2) F called lower semicontinuous (shortly 1.s.c.) at Z € X if for any open

subset V of Y with F/(Z) NV # 0, there exists a neighborhood N(Z) of Z such
that

forallz € N(Z)N X, F(z)NV # 0.

We say that F' is l.s.c. on X if F' is l.s.c. at every point z € X.

Lemma 1.1 ([9, 77]). Let X be a convex and closed subset of R” and

Y =R™. Let F: X — 2¥ be a multifunction.
(1) If X is compact, and F'is u.s.c. on X and compact valued, then F'(X)

is compact.

(2) If F isu.s.c. on X and compact valued, then F is closed.



(3) Fis Ls.c. at z € X if and only if for any y € F(z) and any sequence
{z.} converging to z, there exists a sequence {y,}, such that y, € F (Zn),
converging to y.

(4) If the multifunction F is closed and Y is compact, then F' is upper

semicontinuous.

This dissertation are organized as follows;
In Chapter 2, the vector equilibrium problem (V E P), with multifunctions

and the following Minty type vector equilibrium problem (MV EP); will be

considered.

(MVEP), Find Z € X such that

F(z,z) Y \ intC(z) for any z € X.

Using the asymptotic cone of the solution set of (V EP),, we will give con-
ditions that the solution set is nonempty and compact, and then extend it to
random vector equilibrium problem with multifunctions. Qur approaches fol-
low ideas and methods in ([23, 40, 41]), in which vector equilibrium problems
with vector valued functions are considered.

In Chapter 3, the vector equilibrium problem (V EP), with multifunctions

and the following Minty type vector equilibrium problem (MV EP), will be

considered.

(MVEP), Find z € X such that

~F(z,z) N [Y \ (—intC(z))] # @ for any z € X.

10



Using an increasing sequence of nonempty compact convex sets, we estab-
lish existence theorems for (VV EP), in noncompact settings, and then apply
our results to a noncooperative vector Nash equilibrium problem. Moreover
we will obtain existence theorems for a random vector equilibrium problem
with vector valued functions in compact settings.

In Chapter 4, we investigate the boundedness and connectedness of solu-
tion sets of affine vector variational inequalities with noncompact polyhedral
constraint sets and positive semidefinite (or monotone) matrices, and then
apply the boundedness and connectedness results to a multiobjective linear
fractional optimization problem and a multiobjective convex linear-quadratic
optimization problem. Moreover some numerical examples clarifying and il-

lustrating the results for affine vector variational inequalities will be given.
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Chapter 2
Vector Equilibrium Problem (VEP),

In this chapter, the vector equilibrium problem (VEP); and its Minty
type vector equilibrium problem (MV EP);, which are introduced in Chapter
1, are considered. Using the asymptotic cone of the solution set of (VEP),
and its related set Ry, we give conditions under whieh the solution set is
nonempty and compact. Our approaches follow ideas of Fabidn Flores-Bazdn
and Fernando Flores-Bazdn ([23]), in which vector equilibrium problems with

vector valued functions are considered.
2.1. Existence Theorems

We will start with assumptions which will be used for next theorems.

(Ho) Let C': X — 2 be a multifunction such that C(z) be a nonempty
convex cone in Y with intC(z) # @ and C(z) #Y for all x € X.

(Hi) Let F: X x X — 2¥ be a multifunction satisfying the following

conditions;
(A1) For all ¢ € X, F(z,2) C [C(z) N (~C(2))].
(A) For all z,y € X,
F(z,y) C Y\ (—intC(z)) implies F(y,z) C Y \ intC(y).

(A3) For all = € X, y — F(z,y) is C(z)-convex and upper C(z)-lower

semicontinuous on X.

12



(Aq) For all z,y € X, the set {£ € [z,y] : F(§,y) C Y\ —intC(€)} is

closed. Here [z,y] stands for the closed line segment joining = and y.

We give existence theorems for (VEP); and (MV EP); in compact set-
tings. We will denote the solution sets of (VEP), and (MVEP), by E,, and

E! , respectively.

Theorem 2.1.1. Let X be a convex and compact subset of R* and Y = R™.
Let C': X — 2¥ be a multifunction satisfying (Hy) and let F : X x X — 2Y

be a multifunction satisfying (H;). Then E, is nonempty and closed, and

E,=E..
Proof. Define a multifunction G : X — 2¥ by for any y € X,
Gly)={z e X : Fly,z) CY \intC(y)}.

By (A;), forany y € X, F(y,y) C —C(y) C Y \intC(y) and hence G(y) # 0.

Let {z,} be a sequence in G(y) converging to some z € X. Then
F(y,zn) C Y\ intC(y). (2.1.1)

Since X is closed, z € X. Suppose to the contrary that F(y,z) N intC(y) #
@. Since F(y,-) is upper C(y)-lower semicontinuous at x, there exists a
neighborhood V' of z such that for any 2’ € V, F(y, 2")N(intC(y)+C(y)) # 0.
Thus for any 2’ € V, F(y,2") NintC(y) # 0. So, for n sufficiently large,

F(y, z,) NintC(y) # 0,

13



which contradicts (2.1.1). Hence F(y,z) C Y \ intC(y), that is, € G(y).
Thus for any y € X, G(y) is closed.

Assume to the contrary that G is not a KKM multifunction on X. Then
there exist a finite subset {y1, 92, --,yx} of X and &; 20, 4 =1,---,k such

that
k

k
Zai =1landy:= Zaiyi &
=1

i=1

k
G(yi)'

1=

Thus we have y & G(yi), ¢ = 1, -k, ie, F(y,y) NintC(y;) # 0, i =
L. k. By (A2), F(y,y:) N (—intC(y)) # 0, i = 1,--- k. Since F(y,-) is
upper C(y)-convex, B := {£ € X : F(y,£&) N (—intC(y)) # 0} is convex,
and hence F(y,y) N (—=intC(y)) # 0, which contradicts (A;) since F(y,y) C
C(y) C Y\ (—intC(y)). Hence G is a KKM multifunction. So, by KKM-

Fan Theorem, there exists £ € X such that € Nyex G(y). Since E;, =

MNyex G(v), E., is non-empty and closed. Let Z € E!,. Then
F(z,z) CY \ intC(z) for any z € X.

Let z € X be fixed. Consider z; := tz + (1 — ¢)z, for ¢ € (0,1). Clearly

xy € X. Since F(xy,-) is upper C(x;)-convex,

tF(z,2) + (1 — ) F (24, ) C F(xy, 21) + C(x4).

Since F(z, z:) C C(x), F(x1,Z) C Y\intC () and C(z,)+Y \(—intC(x:)) C
Y\ (=intC(x:)), we have

F(zy,z) C Y\ (—intC(zy)).

14



By (A4), F(Z,2) C Y\ (—intC(z)). Thus z € E,. Hence E' C E,. By
(A2), E, C E,. Thus E,, = E.,. o

Remark 2.1.1. Looking carefully at the proof of Theorem 2.1.1 one can
realize that the same result holds under the following assumptions (A4}) and

(Aj) instead of (A4;) and (Ap) in (H;).

(A}) Forallz € X, F(z,z) C [W(z)n (-W(2))],
where W(z) =Y \ (—intC(z)).
(A3) Forallz,ye X, F(z,y) C Y\ (—intC(z))
implies F(y,z) C —C(y).
Certainly assumption (A}) is weaker than (A,;), whereas (A}) is stronger
than (As).

Let us consider the following problem of finding

T € X suchthat F(z,y) CC(z) forall ye X.

We denote its solution set by E..

Corollary 2.1.1. Let X be a convex, closed and bounded subset of R"
and Y = R™. Let C : X — 2¥ be a multifunction satisfying (Hy) and
F: X x X — 2¥ be a multifunction such that assumptions (A43) and (A4) of
(Hy) are verified with C(z) instead of Y \ (—intC(z)). Assume, in addition,
that C(z) U (—C(z)) =Y for all z € X. Then E, is a nonempty closed set,
i.e., there exists Z € X such that F(z,y) C C(z) forall y € X.

15



We consider two sets Ry and R; defined as follows.

Ry := ﬂ {veX*® : Fly,z+ M) C Y\ intC(y)

yeX

for all A > 0 and for all z € X with F(y,z) C —C(y)}

Ri:=(({veX® : F(y,y+X)CY\intC(y) for all A > 0}.

yeX

Then clearly Ry C R;.

Proposition 2.1.1. Let X be a convex and closed subset of R” and Y = R™.
Assume that C': X — 2Y is a multifunction satisfying (Ho)and F : X x X —

2¥ be a multifunction such that F (z,-) is upper C(z)-convex and satisfies

F(z,z) C C(z) for all z € X. Then

R, C ﬂ {veX™ : Fly+X,y) Y\ (—intC(y + Av)) for all A > 0}.

yeX

Proof. Let ve [ {ve X*® : F(y,y+ M) C Y\intC(y) for all A > 0}.

yeX

Then for any y € X and A > 0, the upper C(y + Av)-convexity of Fy+v,-)

implies
1 1
éF(y + v,y + Av + W) + 5F(y + Av,y) C F(y + M,y + Xv) + Cy + ).

Then
:F(y+,y) CCy+ M) +Cly + W) + Y\ —intC(y + \v)
CY\ —intC(y + \).

16



Thus F(y+Av,y) C Y\ —intC(y+ Av). Sincey € X and \ > 0 are arbitrary,

we conclude the proof. a

Proposition 2.1.2. Let X be a convex and closed subset of R* and Y = R™.
Let C': X — 2 be a multifunction satisfies (Hp). Assume the multifunction

F: X x X — 2Y satisfies (H;). Then

Ri C (M{zeX:F(z,y)CY\ —intC(z)}>

yeX
C m {ze X F(y,z) Y \intC(y)}>.
yeX

Proof. Let v € X such that F(y,y + M) C Y \ intC(y), for all A > 0
and for all y € X. By Proposition 2.1.1,

Fly+M,y) CY\ —intC(y+ W) for all A > 0.

For any fixed y € X, set zx = y+ kv € X, k € N. Then F(zs,y) C
Y \ —intC(xy). By choosing tx = §,  we have tiay = Y+v —vas
k— oo, ie, ve{reX:Flz,y) CY\ —intC(z)}®. Since y was

arbitrary, Ri C [} {z € X : F(z,y) C Y \ —intC(z)}*. Hence by (A,),

yeX

we have

({z € X : F(z,y) C Y\=intC(x)}* € ({z € X : F(y,z) C Y\intC(y)}™.

yeX yeX

17



In order to consider existence theorems and compactness condition of
solution set in noncompact settings, we consider the asymptotic cone (Ew)™

of the solution set F,, and its related set Ry.

Now we give relationships between (E,,)* and R,.

Proposition 2.1.3. Let X be a convex and closed subset of R* and Y = R™.
Let C': X — 2% be a multifunction satisfying (Hy) and F : X x X — 2¥ be
a multifunction satisfying (42) and (Asz). Then (E,)™ C Ry. If, in addition,
(A4) holds and there exists z* € X such that

F(y,z*) € —=C(y) for all y € X,

then (E,)™ = Ry.
Proof. Let v € (E,)®. Then there exist ¢, | 0 and v, € E,, such that
t,Vn — v. Then we have

F(vn,y) C Y\ (—intC(v,)) for all n € N.

By (A2), F(y,va) C Y \ intC(y) for all n € N. Take any z € X such that
F(y,z) C —C(y). Let A > 0 be fixed. For n sufficiently large, by the lower
C(y)-convexity of F(y,-)

b

Fly, (1= Ma)z + Mavn) C (1= M) F(y,2) + MaF(y,va) = C(v)
C —C(y) +[Y \intC(y)] - Cly)
C Y \intC(y).

18



Since (1 — At,)z + Xnavn — z 4+ Av and F(y, -) is upper C(y)-lower semicon-

tinuous, F'(y, 2+ Av) C Y \ intC(y). Thus v € Ry. Hence (E,)® C R,.
Assume that there exists z* € X such that F(y,z*) ¢ —C(y) for all

y € X. Let v € Ry. Then for all y € X and all A > 0, F(y,z* 4+ M) C

Y\ intC(y). By the same argument as in the proof of Theorem 2.1.1, we
have, for all y € X and all A > 0,

F(z* 4+ Mv,y) C Y\ (=intC(z* + \v)).

Thus for all A > 0, z*+ M € E,,. Hence v € (E,)*. Consequently, (E,)> =
Ry. O

We consider the following set.

o= [J{veX>® : F(y.z+X ) CY\intCly) foral A>0

yeX

and for all z € X such that F(y,z) CY \intC(y)}.
Obviously Ry C Ry C R;.

Theorem 2.1.2. Let X be a convex and closed subset of R® and ¥ =
R™ Let C : X — 2¥ be a multifunction satisfying (Hp). Assume the

multifunction F': X x X — 2¥ satisfies hypothesis (H;) with (A}) instead
of (A3). Then

(EL,)* CRyCRyC R C N{zeX:F(z,y) CY\ —intC(z)}>®

yeX

C N{zeX: Fly,z)C-Cy)}>=.

yeX

19



If, in addition, E,, # 0 then R C (E,)*®. Asa consequence R} = (E,,)™.

Corollary 2.1.2. Let X be a convex and closed subset of R* and Y = R™.
Let C': X — 2" be a multifunction satisfying (Hp). Let F : X x X — 2 be
a multifunction such that assumptions (Az) and (A4) are verified with C(z)
instead of Y\ (—intC(z)). Assume that C(z)U ~C(z) =Y for all z € X.
If E. # () then
(B = m{v €EX” : F(y,z+ M) C —C(y) for all A > 0,

yex

for all z € X such that F(y,z) C —C(y)}.

We are now in a position to establish our first main existence theorem.
Theorem 2.1.3. Let X be a convex and closed subset of R* and Y = R™,
Let C': X — 2" be a multifunction satisfying (Ho) and F : X x X — 2¥ be
a multifunction satisfying (H;). Suppose, in addition, that

(1) for each z € X, y — F(z,y) is lower C(z)-convex.

(2) for every sequence {z,} in X such that ||z,| — oo, Ty — v and

v € Rg and for any y € X, there exists ny € N such that F(z,,y) C
Y\ (=intC(z,)) for all n = n, and there exists u € X such that lull < ||z,
and F(z,,u) C —C(z,) for n € N sufficiently large.

Then there exists Z € X which is a solution of the following vector equi-

librium problem defined by F and X:

(VEP), Find Z € X such that
F(z,z) CY \ (—intC(z)) for any z € X.
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Proof. For every n € N, set
Xni={z e X :|z| £n}.

Then we may assume X, # @ for any n € N. Also, X, is a nonempty convex
and compact subset of R™. So, by Theorem 2.1.1, we can find z,, € X,, which
i1s a solution of the following vector equilibrium problem (V EP),,, defined

by F and X,.:
(VEP);, Find z € X,, such that
F(Z,y) Y\ (—intC(z)) for any y € X,.

If |za| < n for some n € N, then z, is a solution of (VEP);. Indeed,
suppose to the contrary that z, is not a solution of (VEP);. Then there

exists r € X \ X,, such that
F(2n, ) N (—intC(z,)) # 0.

Thus there exists a, € F(xn, ) such that a, € —intC(x,). Since ||z,|| < n,

and X is convex, there exists A € (0, 1) such that
Azn + (1 = Nz € X,
Since F'(z,,-) is upper C(z,)-convex, we have
AF(Zn, Tn) + (1 = N)F(Zn, &) C F(Tn, AT» + (1 = N)z) 4+ C(x,,).
Since F(zn, Tn) C —C(z,), there exists ¢, € F(z,, Az, + (1 — X)z) such that

—Ccn € —(1-=XNa,+C(z,)

C intC(z,).
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Thus F(zn, Arn + (1 — A)z) N (—=intC(z,)) # 0, which contradicts the choice
of z,,.
Now consider the case that [|z,| = n for all n € N. We may assume that

2= v (v#0). So,v € X®. Let y € X be fixed. Then it is clear that

llzall

F(zn,y) C Y\ (—intC(z,)) for n sufficiently large. By assumption (As), we
have

Fly, zn) CY \intC(y)
for n sufficiently large. Take z € X such that
F(y, z) € =C(y).
By the lower C(y)-convexity of F(y, -), for any A > 0 and n sufficiently large,

Ay A
lzall ™ Mzl

F(y,u— x) c - n”>F<y,> Fly,2) - Cly)

L
[l ll
C —C@) +[Y \intC(y)] - C(y)

C Y \intC(y). (2.1.2)
Assume to the contrary that
F(y,z+ M) NintC(y) # 0.

Since F(y, -) is upper C(z)-lower semicontinuous and for any A > 0

¥

)z +

—Z, — Z + v,

|l nll

Tzl

A A
Fly (- + | NintC )
(0= o=+ o) nimc #
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for n sufficiently large. This contradicts (2.1.2). Thus F(y,z + M) C Y\
intC(y) and hence v € Ry.

By assumption (2), there exists u € X such that |lu|| < ||z.| and
F(zp,u) € —C(z,) for n sufficiently large. We claim that for n suffi-
ciently large, z, is also a solution of (VEP);. If not, then there exists
y € X, |lyll > n such that F(z,,y) N (—intC(z,)) # 0. Since ||ul| < ||z.],
we can find « € (0,1) such that

au+ (1 —a)y € X,.

By the upper C(z,)-convexity of F(z,, ")

aF(zn,u) + (1 = a)F(zn,y) C F(zn, au+ (1 — a)y) + C(z,).

Since F(zn,u) C —C(z,) and F(z,,y) N (=intC(z,)) # @, we can easily
check that
F(zn,0u+ (1 —a)y) N (—intC(z,)) # 0,

which contradicts the choice of z,,. Consequently, for n sufficiently large, z,

is a solution of (V EP);. O

Theorem 2.1.4. Let X be a convex and closed subset of R* and Y = R™.
Let C': X — 2¥ be a multifunction satisfying (Hp) and F : X x X — 2¥ be

a multifunction satisfying (H;) with (Aj) instead of (A;). Then the problem
(VEP); has a non-empty closed solution set if and only if the following
property (2) is satisfied,
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(2)" for every sequence {z,} in X such that lznl] — oo, ”;"” — v

and v € Fj and for any y € X, it exists n, € N such that F(z,,y) C
Y\ (=intC(zy)) for all n 2 ny, there exists u € X such that ||ul| < ||z,]|

and F(z,,u) C —C(x,) for all n € N sufficiently large.

Proof. The “if” part is similar to the proof of the Theorem 2.1.3. The
proof of “only if” part is obtained as follows:

Take any sequence {z,} in X such that ||z,|| — oo and any solution Z of
(VEP),.

Then by assumption (A}), condition (2)’ is satisfied by setting v = & and

choosing z, with n sufficiently large such that ||Z|| < ||z.]|. O

24



2.2. Compactness of Solution Sets

Now we give conditions assuring the nonemptiness and compactness of

the solution set F,,.

Theorem 2.2.1. Let X be a convex and closed subset of R® and Y = R™.
Let C : X — 2 be a multifunction satisfying (Hy) and F : X x X — 2Y be a

multifunction satisfying (H;). Assume that Rq = {0}. Then E,, is nonempty

and compact. If, in addition, there exists z* € X such that
F(y,z*) € —=C(y) for all y € X,

then F., is nonempty and compact if and only if Ry = {0}.

Proof. For every n € N, set X, :== {z € X : |jz|| £ n}. Then we may
suppose that X, # 0 for all n € N. Also, X, is a nonempty convex and
compact subset of R". By Theorem 2.1.1, for all n € N, there exists z,, € X,
such that

F(z,,y) CY\ (=intC(z,)) for any y € X,.

Suppose that {z,} is not bounded. Then, up to a subsequence, ||z,| — oo

and“;—fluevforsomeveX. Then v € X* and v # 0. Let y € X be fixed.

Then it is clear that F(z,,y) C Y \ (—intC(z,)) for n sufficiently large. By

assumption (As), we have
F(y,z,) Y \intC(y)
for n sufficiently large. Take z € X such that
F(y,z) c =C(y).
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By the lower C(y)-convexity of F(y, -), for any A > 0 and n sufficiently large,

A A A A
P(00- ot o) © 0 EpFOa) + P2 - O

el
C —C(y) +[Y \intC(y)] - C(y)
C Y\ mntCly). (2.2.1)

Assume to the contrary that
F(y,z+ Av) NintC(y) # 0.

Since F(y, -) is upper C(z)-lower semicontinuous and for any A > 0,

A A
1-— z+ T — 2+ Av,
O et T
F(y (1 A )z + A :C)ﬂth()%@
3 - ¥4 n
ENSRRTS Y

for n sufficiently large. This contradicts (2.2.1). Thus F(y,z + \v) C Y \
intC(y) and hence v € Ry. However, it contradicts the assumption that Ry =
{0}. Hence {z,} is bounded. Therefore, up to a subsequence, z,, — 7 for
some T € X. Let z be fixed in X. Then it follows that for n sufficiently large,
F(zn,z) C Y \ (=intC(z,)), and hence, by (42), F(z,2,) C Y \ intC(z).
Since F(z,-) is upper C(z)-lower semicontinuous, F(z,%) C Y \ intC(x).
We argue exactly same as in the proof of Theorem 2.1.1 to obtain that
F(z,7) C Y \ (—intC(z)) for any z € X. Hence Z € E,. Thus E, is
nonempty. By Proposition 2.1.3, (E,)*® C Rq.
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So, by assumption, (E£,)* = {0} and hence E,, is bounded. Now we will
prove that F,, is closed. Let {z,} be a sequence in E,, converging to some
z € X. Then for alln € N and for all y € X, F(z,,y) C Y \ (—intC(z,)).
Thus, by (Az), for alln € N and for all y € X, F(y, z,) C Y \ intC(y). Since
F' is upper C(y)-lower semicontinuous, F(y,z) C Y \ intC(y) for all y € X.
By same argument as in the proof of Theorem 2.1.1, F(z,y) C Y\(—intC(z)).

Thus z € E, and hence F,, is closed. Consequently, E,, is nonempty and

compact.

Conversely, assume that F,, is nonempty and compact, and that there
exists z* € X such that F(y,z*) C —C(y) for all y € X. Let v € Ry. Then
for all y € X and for all A > 0, F(y,z* + Av) C Y \ intC(y). By same

argument as in the proof of Theorem 2.1.1, we have, for all y € X and for
all A > 0,

F(z* + M, y) CY \ (—intC(z* + Iv)).

Thus for all A > 0, 2* + \v € E,. Since E, is bounded, v = 0. Hence
Ry = {0}. 0
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2.3. Random Vector Equilibrium Problem (RVEP);

In this section, we will extend the first part of Theorem 2.2.1 to a random
vector equilibrium problem with multifunctions. Our approach follows ideas
of Kalmoun ([40, 41]), in which vector equilibrium problems with single-

valued functions are considered.

Let {2 be a set and (£, A) be a measurable space, where A is the g-algebra
of subsets of €. Let E be a topological space and let B(E) be the o-algebra
of all Borel sets of E. Let AQ B(E) be the o-algebra generated by all subsets
of the form of A x B, where A € A and B € B(E).

Definition 2.3.1. Let (2, A) be a measurable space and Y be a topological

space. Let F': 2 — 2¥ be a multifunction. Then F is said to be measurable
if the inverse image of each open set in Y is a measurable set in €2, that is,

for every open subset O of Y, we have

FHO) ={weQ: Flw)NO +£ 0} € A.

Definition 2.3.2 ([10]). Let (Q,.4) be a measurable space and Y be a
complete separable metric space. Consider a multifunction F : Q — 2V,

(1) F is said to have a measurable selection f if there exists a measurable
function f: Q — Y such that f(w) € F(w) for all w € Q.

(2) F is said to have a Castaing representation if there is a countable

family of measurable selections (f;) such that (fi(w))is1 is dense in F(w),

Le., F(w) = Uy, fi(w), for each w € Q.
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Lemma 2.3.1 ([10]). Assume that (£2,.A) is a complete measurable space

and Y is a complete separable metric space. If F': Q — 2V is a multifunction

such that Gr(F) € A® B(X), then F has a Castaing representation.

Let (2, A, ) be a complete o-finite measurable space and X be a nonempty

convex and closed subset of R*. Let Y = R™. Let C : 2 x X — 2Y be a

multifunction such that for any (w,z) € Q@ x X, C(w, z) is a convex cone in

Y with intC(w,z) # 0 and C(w,z) #Y. Let F: Qx X x X — 2¥ be a

multifunction.

Now we consider the following random vector equilibrium problem (RV E P);.

(RVEP), Find a function v : Q@ — X such that

F(w,v(w),y) C Y\ (—intC(w,y(w))) for any (w,y) € Q x X.

As in [41], for each w € Q, v(w) is called a deterministic solution of
(RVEP); and the function = is said to be a random solution of (RV EP),

when it is measurable.

We obtain the random version of the first part of Theorem 2.2.1 as follows:

Theorem 2.3.1. Suppose that a multifunction FF : @ x X x X — 2¥

satisfies the following conditions:

(i) For any y € X, {(w,z) € Qx X|F(w,z,y) CY \ (—intC(w,z))} €
A® B (X).
(ii) For all we Q, z € X, F(w,z,z) C [C(w,z) N (=C(w,z))].
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(iii) Forall we Qand z, y € X, F(w,z,y) C Y\ (—~intC(w,z)) implies
F(w,y,z) CY \ intC(w, y).

(iv) Forall we Qandz € X, y — F(w,z,y) is C(w,z)-convex and
C(w, z)-lower semicontinuous on X.

(v) For all w € Qandz, y € X, theset {£ € [r,y] : F(w,&y) C
Y\ (—intC(w,€))} is closed.

(vi) Foreach w € , Ry := (N {v € X*: F(w,y, 2+ Xv) C Y\intC(w,y)

yeX

forall A >0, forall z€ X with F(w,y,2z) C —C(y)} = {0}.

Then there exists a countable family of measurable functions v; :  —
X (i = 1) such that

(1) Flw,%(w),y) €Y\ (=intC{w, %(w))) for any (w,y) € @ x X.

(2) m ={zeX:Flw,z,y) CY\(-intC(w,z)) for all y € X}
for any w € €.

(3) Uiz, %(w) is compact for any w € €.
Proof. By Theorem 2.2.1, for each w € (2, there exists z,, € X such that
F(w,z,,y) C Y\ (—=intC(w, z,,)) for any y € X.

Since X is separable, there exists v, in X such that

{v1,92,- '} = X

Define a multifunction S :  — X by for any w € Q,

S(w) = ﬂ{x € X|F(w,z,y) CY\ (—intC(w,z))}.

yeX
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Then it follows from Theorem 2.2.1 that for each w € €, S(w) is nonempty

and compact. Now we will prove that
00

(Wz € X : F(w,z,4n) C Y\ (—intC(w, z))} C S(w).

n=1
Indeed, suppose to the contrary that

T € ﬁ{x € X :Fl(w,z,y,) CY\ (—intC(w,x))} (2.3.1)

n=1

but z € S(w). Then there exists y € X such that
F(w,z,y) N (—intC(w, 1)) # 0.

Moreover, for each n there exists a subsequence {y,,} C {y.} such that

Yn, — Y- Since F(w,z,-) is lower C(w, z)-lower semicontinuous,

Fw, z,yn,) N (—intC(w, 2)) # 0
for k sufficiently large. This contradicts (2.3.1). Thus Gr(S) = U, {(w,z) €
Ox X : Flw,z,y,) C Y\ (—intC(w,))}. By assumption (i), Gr(S) €
A ® B(X). By Lemma 2.3.1, S has a Castaing representation, i.e., there

exists a countable family of measurable selections (7;)iz1 of S such that for

any w € Q, S(w) = |, 7i(w). Hence the conclusion of Theorem 2.3.1 hold.
O
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Chapter 3
Vector Equilibrium Problem (VEP),

In this chapter, the vector equilibrium problem (VEP); and its Minty
type equilibrium problem (MV EP),, which are introduced in Chapter 1,
are considered. Using an increasing sequence of nonempty compact convex
sets, we establish existence theorems for (VEP), in noncompact settings
and then apply our results to a noncoorperative vector Nash equilibrium
problem, which is a vector versions of well-known Nash equilibrium problem
([66]). Moreover we obtain existence theorem for a random vector equilibrium

problem with vector valued functions in compact settings.

3.1. Existence Theorems

Now we give an existence theorem for the vector equilibrium problem

(VEP),.

Theorem 3.1.1. Let X be a convex and closed subset of R® and Y = R™.
Let F: X x X — 2¥ be a multifunction and C : X — 2Y be a multifunction
such that C(z) is a non-empty convex cone in Y with intC(z) # @ and
C(z) # Y for all zx € X. Define a multifunction W : X — 2Y by for any
r € X, W(z) =Y\ (—intC(x)), and suppose that X = Un2, X,, where
{Xn}52, is an increasing sequence of nonempty compact convex subsets of
X, and Gr(W) is closed in X x Y. Assume that the following conditions are
satisfied :

(i) For each z € X, y — F(x,vy) is natural quasi C-convex;
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(i) For each y € X, z — F(z,y) is u.s.c. and nonempty compact valued ;

(iii) For each z € X, F(z,z) C C(z).

Then for each n, there exists a solution z € X, of the following vector

equilibrium problem:

(VEP)s, Find z € X, such that for any z € X,,,
F(Z,z) N [Y \ (—intC(z))] # 0.

Moreover, in addition, suppose that

(iv) F(-,y) is Ls.c. ;

(v) x4, is a solution of (VEP),;, for each n where {i,} is a sequence in N
and the sequence {z;,} is eventually contained in X, for some p € N (i.e.,

there exists k € N such that for any n 2 k, z;, € X,,).
Then every cluster point of {z;,} is a solution of (V EP)s,.

Proof. Let n be any fixed natural number. Let us consider a multifunction

G : X, — 2% defined by for any y € X,,,

Gly) ={z € Xn: F(z,y) N[V \ (—intC(x))] # 0}.
Then we have the following;
(1) for each y € X,,, G(y) # 0.
If not, for any z € X,,, F(z,y) N [Y \ (—intC(z))] = O and hence F(y,y) C
(=intC(y)). By assumption (iii), F(y,y) C C(y) N (—intC(y)), which is a
contradiction since C(y) N (—intC(y)) = 0. Indeed, suppose that C(y) N
(—intC(y)) # 0. Then there exists v € C(y) N (—~intC(y)). So, 0 = —v+v €
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iniC(y) + C(y) = intC(y). This implies C(y) = Y because intC(y) is an
absorbing set in Y, which contradicts the assumption that C(y) # Y.

(2) G is a KKM multifunction on X,,.
Assume to the contrary that G is not a KKM multifunction. Then there ex-
ists a finite subset {z1,---,z,} of X,, and a1, - - -, a, = 0 such that Yo =
land z := ) 7", oszs & U, G(x:). So, we have x € G(z;),i =1, -, n, that
is,

F(z,z;)N[Y \ (=intC(z))] =0
ie., F(z,x;) C —intC(z), i=1,---,n.
Let U = {y € Xy, : F(z,y) C —intC(z)}, and let 21,20 € U and « € [0,1].
Then we have

F(z,z) C —intC(z), i =1,2. (3.1.1)

By condition (i), there exists u € [0, 1], we have
F(z,az1+ (1 —a)zy) C pF(z,21) + (1 — p)F(z, 25) — C. (3.1.2)
From (3.1.1) and (3.1.2), we have

F(z,azi + (1 - a)zz) C —intC(z) — intC(z) — C(x)

C —intC(x).

Hence U is a convex subset of X,,, and hence
n
T = E a;z; € U.
=1

34



So, F(z,z) C —intC(x). However by condition (iii),
F(z,z) C C(z) N (—intC(z)) = 0,

which is a contradiction. Hence G is a KKM multifunction.

(3) for each y € X,,, G(y) is closed in X.

Let {z.,} be a sequence in G(y) such that z,, converges to z, € S. Since
Xy is compact, 7. € X,, and F(zpn,y) N [V \ (=intC(zn))] # 0. Then
there exists 2, € F(zm,y) such that z, € W(zy). Since F(-,y) is u.s.c.
and nonempty compact valued and F(X,,y) is compact in Y. So, there
exists {zm, } C {2zm} such that z,, converges to 2., for some z, € F(X,,y).
Moreover, since F(-,y) is closed, zm, € F(Zm,,y) converge to z, € F(z,, Y).
 Therefore G(y) is closed in X.

From (1)-(3), by the KKM-Fan Theorem,

() Gly) #0.

yeXn

So, there exists Z € X, such that for any y € X,,, € G(y). Hence for any
z € Xn,

F(z,z) N [Y \ (—intC(Z))] # 0.

Let {z;,} be a sequence such that {z;,} is a solution of (VEP); . By condi-
tion (v) there exists a natural number k € N such that z;, € X, foralln > k
for some k,p € N. Since X, is compact, we may assume that the sequence
{zi,} converges to some T € X,,. Let z € X be fixed. Since X = [J, X,

and X, is increasing, there exists ip € N such that for any n € N with
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in 2 %9, T € X;,. Since z;, is a solution of (VEP); , for any n € N with
’zn 2 ’[;Oa

F(z;,,x) ¢ W(z,,).

Let z be any point in F(Z, ). By condition (iv), there exists z;, € F(z;,,z)
such that z;, converges to z. Since z;, € W(z;,) and W is closed, z € W (Z).
Hence F(z,z) C W(Z).

Consequently, for any z € X, F(z,2) N[V \ (—intC(z)] +# 0. O

Now we give an existence result for a Minty type vector equilibrium prob-

lem:

Theorem 3.1.2. Let X be a convex and closed subset of R® and Y = R™.
Let F': X x X — 2 be a multifunction and C' : X — 2Y be a multifunction
such that C(z) is a non-empty convex cone in Y with intC(z) # § and
C(z) # Y for all z € X. Define a multifunction W : X — 2¥ by for any
z € X, W(z) ==Y\ (-=intC(z)) and suppose that X = |J°°, X,, where
{X.}52, is an increasing sequence of nonempty compact convex subsets of
X, and Gr(W) is closed in X x Y. Assume that the following conditions are
satisfied:

(i) F is C-pseudo-monotone, that is, for any z,y € X, F (z,y) ¢ —intC(x)
implies —F(y, z) ¢ —intC(z);

(ii) for each 2 € X, y — F(z,y) is natural quasi C-convex;

(iii) for each z € X, y — F(z,y) is u.s.c. and compact valued;

(iv) for each z € X, F(z,z) C C(x).
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Then for each n, there exists a solution z € X, of the following Minty type
vector equilibrium problem:
(MVEP)y, Find 7 € X,, such that for any z € X,,,
—F(z,z) N [Y \ (—intC(Z))] # 0.
Moreover, in addition, suppose that
(v) F(z,-) is Ls.c;
(vi) if 2, is a solution of (MV EP),;  for each n where {i,} is a sequence in

N and the sequence {z;,} is eventually contained in X, for some p € N.

Then every cluster point of {z;,} is a solution of the following Minty type

vector equilibrium problem :
(MVEP)y;, Find ¥ € X such that for any x € X
—F(z,2)N[Y \ (=intC(z))] # 0.

Proof. Let n be any fixed natural number. Let us consider multifunctions

S and V : X,, — 2% defined by for any y € X,,,
Sy) ={z € Xn: —F(y,z) N[V \ (—intC(x))] # 0},
V(y) ={z € Xn: Fz,y) N[Y \ (=iniC(x))] £ 0}.
Then we have the following;

(1) For each y € X,,, S(y) is nonempty and S is a KKM multifunction.
Let z € V(y). Then F(z,y) N[Y \ (=intC(z))] # 0. By the C-pseudo-

monotonicity of F
—F(y,z)N[Y \ (—intC(z))] # 0.
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Thus z € S(y). Hence for any y € X,,, V(y) C S(y). Since V(y) is nonempty,
S(y) is nonempty. By the same argument in the proof of Theorem 3.1.1, the

multifunction V is a KKM multifunction. Therefore S is a KKM multifunc-

tion on X,,.

(2) for each y € X,,, S(y) is closed in X.

Let {zm} be a sequence in S(y) such that z,, converges to z., € X,. Then
z. € X, and —F(y,z,,) N [Y \ (—=intC(z,,))] # 0. Then there exists z,, €
—F(y, m) such that z,, € W(z,,). Since —F(y,-) is us.c. and —F(y, X,,) is
compact in Y. So, there exists a subsequence {2, } C {zm} such that z,,
converges to z,, for some z, € —F(y, X,,). Moreover, since —F(y, -) is closed,
Zme € —F(y,Tm,) = 2. € —F(y,z.). Therefore S(y) is closed in X. Since

Xr is compact, S(y) is compact in X,,. So, by the KKM-Fan Theorem,

) St) #0.

yeX,

So, there exists Z € X, such that for any = € X,,,# € S(z). Hence for any
z € Xy,

—F(z,2)N[Y \ (—intC())] # 0.

By the same argument in the proof of Theorem 3.1.1, we can obtain the last

part of the conclusion. O

Remark 3.1.1. The last assumption (vi) for the sequence in Theorems

3.1.1 and 3.1.2 are related to the “escaping sequence” defined in [15, 70].
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Now we reduce Theorems 3.1.1 and 3.1.2 to the case of vector valued

functions.

Corollary 3.1.1. Let X, Y, C, W, and X, be as in Theorem 3.1.1. Let
f:X xX — Y be a vector-valued function. Assume that the following
conditions are satisfied:

(i) for each x € X, y — f(z,y) is natural quasi C-convex;
(ii) for each y € X, z > f(z,y) is continuous;

(iii) for each z € X, f(z,z) € C(z).
Then, for each n, there exists a solution z € X of the following vector
equilibrium problem:
(VEP), Find z € X, such that for any z € X,,,
f(Z,z) ¢ —intC(Z).
Moreover, in addition, suppose that
(iv) if z;, is a solution of (VEP),, for each n, where {i,} is a sequence in N

and the sequence {z;,} is eventually contained in X,, for some p € N.

Then every cluster point of {z;,} is a solution of the following vector equi-

librium problem:

(VEP) Find 7 € X such that for any x € X f(z,z) € —intC(2).

Corollary 3.1.2. Let X, Y, C, W, and X,, be as in Theorem 3.1.1. Let
f: X xX — Y be a vector-valued function. Assume that the following

conditions are satisfied:
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(i) f is C-pseudo-monotone, that is, for any =,y € X, f(z,y) ¢ —intC(z)
implies — f(y, z) ¢ —intC(z);
(i) for each z € X, y — f(z,v) is natural quasi C-convex;

(iii) for each z € X, y — f(z,y) is continuous and natural quasi C-convex;

(iv) for each z € X, f(z,z) € C(x).

Then, for each n, there exists a solution z € X of the following Minty type

vector equilibrium problem:
(MVEP), Find 7 € X,, such that for any ¢ € X,,, f(z,7) & —intC(Z).

Moreover, if z;, is a solution of (MVEP);, for each n, where {i,} is a
sequence in N and the sequence {z;, } is eventually contained in X, for some

p € N then every cluster point of {z;,} is a solution of the following Minty

type vector equilibrium problem:

(MVEP) Find Z € X such that for any z € X — f(z,%) € —intC ().

Corollary 3.1.3. Let X, Y, C, W, and X, be the same as in Theorem
3.1.1. We denote by L(X,Y) the space of all continuous linear mapping
from X to Y. Let T : X — L(X,Y) be a function. Assume that, for
each y € X, z — (T'(z),y — z) is continuous, where ( , ) denotes the inner
product on X. Then, for each n, there exists a solution z € X of the following

vector variational inequality:

(VVI), Find Z € X, such that for any z € X,,, (T'(Z),z—I) & —intC(Z).
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Moreover, if z;, is a solution of (VV'I);, for each n, where {i,} is a sequence
in N and the sequence {;, } is eventually contained in X, for some p € N then

every cluster point of {z;,} is a solution of the following vector variational

inequality:

(VVI) Find Z € X such that for any z € X, (T'(z),z—z) & (—intC()).

Proof. Putting f(z,y) = (T'(z),y—z) in Corollary 3.1.1, we get the result.
Indeed, it is straightforward to check the conditions (i), (iii) of Corollary 3.1.1

except the continuity of z — (T'(z),y — z), forall v € X,. 0O

Example 3.1.1. Let X =Y = R and C(z) = R2 for any z € X. Let
f1($7y) = ‘r(y - I), fQ(l"y) = _"‘C(y - .’L’) and f(fl'y) = (fl(xay)7f2(‘ruy))
Take X, = [-n,n], n = 1,2,---. Then X = [J22 X, and {X,}, is an
increasing sequence of nonempty and compact convex subset of X, for all

n € N. Then we can easily check that the following:
(i) for any z € X, y +— f(z,y) is R?-convex;

(ii) for any y € X, =+ f(z,y) is continuous;

(iii) for any z € X, f(z,z) = (0,0) € C(x).

Therefore by Corollary 3.1.1, for each n, there is a solution of:

(VEP), Find z € X,, such that for any z € X,,, f(Z,z) & —intC(%).

Actually every point of X, is a solution of (VEP),. Let z, € X be fixed.

Then there exists p € N such that z, € X,. Also, we can find a sequence
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{zn} in X such that {z,} is eventually contained in X, and z, — z,. By

Corollary 3.1.1, z, is a solution of:

(VEP) Find Z € X such that for any z € X, f(z,z) & —intR%.

So, every point of X is a solution of (VEP).
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3.2. Applications to Noncooperative Nash

Vector Equilibrium Problem

Let X := ], X* be a nonempty closed convex subset of a product space
E:=J[L,R% Y = R™and G; : X — Y be vector valued functions,
i=1,--,n Let forany x = (z!,---,2") € X, fori € {1,2,---,n}, 2t =

(ah, -,z at g™ € Hj# X7 and z = (xi,:ri) € X' x H#i X7,

Definition 3.2.1. Let C : X — 2Y be a multifunction such that for each
r € X, C(z) is a convex cone in Y with intC(z) # @ and C(z) # Y.

Then we say that € X is a noncooperative vector equilibrium if for each

i€ {1, --,n}, we have

Gi(v', 7)) — Gi(#, 7)) ¢ —intC(z) for any v € X°.
Theorem 3.2.1. Let C : X — 2¥ be a multifunction such that for any
r € X, C(z) be a convex cone in Y with intC(z) # 0, C(z) # Y and F :
X x X — Y be a multifunction. Define a multifunction W : X — 2Y by for
any z € X, W(z) := Y\ (~intC(z)), and suppose that X = (J°°, X,,, where
{Xn}52, is an increasing sequence of nonempty compact convex subsets of
X, and Gr(W) is closed in X x Y.
Assume that the following conditions are satisfied:
(i) for each z € {1,---,n}, X* is closed and convex;
(ii) for each i € {1,---,n}, the function ¥* — G;(y', z') is C-convex;

(iii) for each ¢ € {1,---,n}, the function G; is continuous.
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Then for each n, there exists a solution z € X, of the following noncoopera-

tive vector equilibrium problem (NV EP),;

(NVEP),  Find I € X, such that for each i € {1,---,n}

b

Gi(y', 1) — Gi(Z, ) & —intC | for any ¥ € X°.

Moreover, if z;, is a solution of (NV EP)™ for each n, where {i,,} is a sequence
in N and the sequence {z;,} is eventually contained in X, for some p € N,

then every cluster point of {z;,} is a solution of (NV EP):

Proof. Define a function f: X x X — Y by for any z,y € X,

13

fz,9) = ) _[Gi(y' 7)) - Gia', 2],
i=1
Then for each z € X, f(z,z) = 0 € C(z). By the condition (i), X is
closed and convex. By the condition (ii), the function y — f(z,y) is C-
convex and hence natural quasi C-convex. By the condition (iii), the function
x — f(z,y) is continuous.
By Remark 3.1.1 and Corollary 3.1.1, there exists Z = (*,#') € X, such

that for any y € X,,
F(Z,y) & —intC(z). (3.2.1)

For each 7 € {1,---,n} and any y' € X!, let us take y = (3, z'). Then from
(3.2.1),

f(@,9) = Gi(§,7) — Gi(&*, 7)) ¢ —intC (7).



Hence we have, for each i € {1,2,---,n}

G:i(5,7) — Gi(#', &) & —intC() for any ' € X,

that is, Z is a solution of (NVEP),. By the same argument in the proof of

Theorem 3.1.1, we can obtain the last part of the conclusion. 0O
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3.3. Random Vector Equilibrium Problem (RVEP),

In this section, we will extend Theorem 3.1.1 to a random vector equilibrium
problem with multifunctions. Our approach follows ideas Kalmoun [40, 41],
in which vector equilibrium problems with single-valued functions are consid-
ered. We apply our results to random vector optimization problems, random

vector variational inequality problems and random vector approximate prob-

lems.
Let (€2, A) be a measurable space where A is a o-algebra of subsets of
2. Let E be a topological space and let B(E) be the o-algebra of all Borel

sets of E. Let A ® B(FE) be og-algebra generated by all subsets of the form
of A x B, where A € A and B € B(E).

Let (92, A, 1) be a complete o-finite measurable space and X be a com-
pact and convex subset of R*. Let Y = R™. Let C : Q@ x X — 2¥ be a
multifunction such that for any (w,z) € Q x X, C(w, ) is a convex cone in
Y with intC(w,z) # 0 and C(w,z) # Y and let P be a convex cone such
that for any (w,z) € 2 x X, PC Clw,z). Let F: Q2 x X x X — 2¥ be a

multifunction.

Now we consider the following random vector equilibrium problem (RV EP)s:

(RVEP),  Find a function 7 : Q — X such that

Flw,v(w),y) N [Y \ (=intC(w,v(w)))] # 0, for all (w,y) € 2 x X.
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As defined in [41], for each w € Q, vy(w) is called a deterministic solution of

(RVEP), and the function v is said to be a random solution of (RV EP),
when it is measurable.

We obtain the random version of the first part of Theorem 3.1.1 as follows:

Theorem 3.3.1. Let F: Q x X x X — 2Y be a multifunction. Assume

that the following conditions are satisfied:
(i) for each w € Q, W(w, ) is closed;
(i) Gr(W) e A®B (X)® B (Y);

(iii) for each (w,z) € Q x X, y — F(w,z,y) is natural quasi P-convex and

u.s.c. and nonempty compact valued;

(iv) for any y € X and C € B (Y),
{wr) e x X : Flw,z,y)NC # 0} € AR B(X);

(v) for each (w,y) € 2 x X, z+ F(w,z,y) is us.c. and compact valued;
and
(vi) for each (w,2) € O x X, F(w,z,7) € C(w, ).
Then there exists a countable family of measurable functions v; : @ — X (1=
1) such that
(1) Fw,(w),y) N Y\ —intC(w, v:(w))] # 0 for any (w,y) € @ x X.
(2) W ={zre X :F(w,zy)NY\-intC(w,z)] # @ for ally € X}

for any w € Q;
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(3) Uisq 7iw) is compact, for any w € Q.
Proof. By Theorem 3.1.1, for each w € (), there exists z,, € X such that
Flw,z,,y) N [Y \ (—intC(w,x,,))] # 0 for any y € X.

Since X is separable, there exists a sequence {y,} in X such that

{yl,y% .. } = X.

Define a multifunction S : Q@ — X by for any w € 2,

S(w) = ﬂ{x € X|F(w,z,y)N[Y \ (—intC(w, z))] # 0}.

yeX

Then it follows from Theorem 3.1.1 that for each w € Q, S(w) is nonempty

and compact. Now we will prove that

e ]

(Mz € X : F(w,2,y.) N[V \ (—intC(w, z))] # 0} C S(w).

n=1

Indeed, suppose to the contrary that

ze (€ X : Flwz,y)N[Y\ (~intC(w, z))] # 0} (3.3.1)

n=1

but z ¢ S(w). Then there exists y € X such that

Flw,z,y)N[Y \ (=intC(w,z))] = 0.
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Moreover, for each n there exists a subsequence {y,,} C {y.} such that

Yn, — ¥. Since F(w,z,-) is upper semicontinuous,
F(w,z,yn,) N (—intC(w, z)) # 0

for k sufficiently large. This contradicts (3.3.1). Thus Gr(S) = ;o {(w,z) €
Qx X : Fw,z,yn) N[Y \ (—intC(w, z))] # 0}. By assumption (iv), Gr(S) €
A ® B(X). By Lemma 2.3.1, S has a Castaing representation, i.e., there

exists a countable family of measurable selections (;)i»1 of S such that for

any w € Q, S(w) = U5, 7(w). Hence the conclusions of Theorem 3.3.1 hold.
O
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Chapter 4
Affine Vector Variational Inequality

In this chapter, we discuss the boundedness and connectedness of solution
sets for affine vector variational inequalities with noncompact polyhedral con-
straint sets and positive semidefinite (or monotone) matrices. We give numer-
ical examples clarifying and illustrating the boundedness and connectedness
results. Moreover, we show that the boundedness and connectedness result
can be applied to the multiobjective linear fractional optimization problems

and the multiobjective convex linear-quadratic optimization problems.

4.1. Boundedness and Connectedness of Solution Sets

Now we formulate affine vector variational inequalities.
LetA:{ﬁz(ﬁl,,fp)ERp|§,gO,z:1,,p, lefizl},and
A:{E:(gla“'agp)eRp|§i>07i:17"'ap7 f:lgi:l}' Let
A={zeR" | Az 2 b}, where A€ R™" and b€ R™ and 0tA = {z ¢
R™ | Az = 0}, i.e.,, 0" A denotes the recession cone of A. Let (-,-) denote

the inner product on R™. Assume that A # (). Let M; € R™" and ¢; € R,
i=1,-,p

Consider the following affine vector variational inequalities:

(VVI) Find T € A such that

(MZ+q, 2-3), -, (MpyT+¢gp, 2—7)) € —RE\ {0} forallze A.
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(vvinv Find z € A such that

(MZ +qi, T ~T), -, (MpT + qp, = — T)) & —intRE for all z € A.

where R} = {z := (z1,---,2,) € RP | 2; 20, i=1,---,p} and intR: is the

interior of RY.

Consider their related scalar variational inequality: let £ = (&1,--,&) € A

(VI)e Find z € A such that
(Z?:l &‘Mi.’f + Zle &-qi, r — f> = 0 for all x € A.

We denote the solution sets of (VVI), (VVI)* and (VI)¢ by sol(VVI),
sol(VVI)* and sol(VI)g, respectively. It is clear that sol(VVI) C sol(VV ).

Consider an affine variational inequality:
(VI) FindZ € A such that (MZ+q, £ —32)>0 forall z € A,
where M € R™*", g € R™.

Proposition 4.1.1 ([59]). (v,Mwv) >0 for all v € 07 A\ {0} if and only

if there exists z° € A such that

(My — Ma°, y — 29
ly—z°|

— +00 as ||y |[— +oo, y € A. (4.1.1)

The condition (4.1.1) is called a coercivity condition for (VI) (see [44]).
By Corollary 4.3 (p. 14, [44]), we have

Proposition 4.1.2. If (v, Mv) > 0 for all v € 0t A\{0}, then sol(VI) # 0.
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Proposition 4.1.3 ([37], p. 432). Let M be monotone on A\, i.e.,
(x—y, M(z—y)) 20 forall z,y € A. Then sol(VI) # § if and only if

there exists T € A such that (MZ +¢q, v) 20 for all v € 0T A.

Let X, Y be two topological spaces and G : X — 2Y be a multifunction.

Definition 4.1.1. The space X is said to be connected if there do not exist
nonempty open subsets V; C X, i = 1,2, such that

VinVeo=0 and ViUV, =X.

Definition 4.1.2. The multifunction G is said to be upper semicontinuous
(shortly u.s.c.) if for every a € X and every open set ) C Y satisfying G(a) C

€2, there exists a neighborhood U of a such that G(a’) C Q foralla’ € U.

Lemma 4.1.1 ([79], Theorem 3.1). Assume that X is connected. If
for every x € X, the set G(z) is nonempty and connected, and G is upper

semicontinuous, then the set G(X) := |J G(z) is connected.
zeX

From Theorem 2.1 in [60], we can obtain the following proposition:

Proposition 4.1.4. sol(VVI) = |J sol(VI)e C sol(VVI)* = |J sol(VI)g.
2 £eA
gek

Theorem 4.1.1. Let M;, i=1,---,p be monotone on A. If (v, M;v) > 0
for every ¢+ = 1,---,p and for every v € 0tA \ {0}, then sol(VVI) and
sol(VVI)" are nonempty, bounded and connected. In particular, sol(VVI)*

is compact.
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Proof. Let £ € A. By assumption, we have

i=1

4
<v, Zf,-.Miv> >0 forall ve0tA\ {0}.

So, by Proposition 4.1.2, sol(VI)¢ # 0. Since > *_ &M, is monotone on A,
by Minty’s lemma ([65]), sol(VI)¢ is connected.

Now we will prove that sol(VVI)¥ is bounded. Suppose to the contrary
that sol(VVI)™ is not bounded. Then there exists ¥ € sol(VVI)¥ such

that || ¥ ||— 400 as k — +oo. By Proposition 4.1.4, there exists £€* € A

such that

z* € sol(VI)er. (4.1.2)

We may assume that % — 9, |o]|=1and & — £ € A.

|z

By (4.1.2),

P P
<Z§1{€Mﬂk + fo(b‘, T — :I:k> =0 forall z€ A (4.1.3)
i=1 i=1

and Az* >b. (4.1.4)
Dividing (4.1.3) by || z* ||? and (4.1.4) by || z* ||, and letting k — oo, we

have

<Zg}Mm, ,~,> <0 and 7€0*A\ {0},

i=1

which contradicts the assumption. Hence sol(VVI)" is bounded. Since

sol(VV 1) is closed, sol(VVI)® is compact. Since sol(VI) # @ for all £ € A,
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by Proposition 4.1.4, sol(VV I) is nonempty. Since sol(VVI) C sol(VVI)¥,
sol(VVI) is bounded.

Now we will prove that sol(VVI) and sol(VVI)¥ are connected. Define a
multifunction H : A — 25 by for all £ € A, H(€) = sol(VI)¢. Then we can

easily check that H is a closed multifunction. Since sol(VV I)¥ is compact, it
follows from Lemma 1.1 that H is upper semicontinuous. Since K and A are

connected, it follows from Lemma 4.1.1 that H( X) and H(A) are connected.
By Proposition 4.1.4, sol(VVI) and sol(VVI)¥ are connected. O

When A is compact, 0" A = {0}, so we can obtain the following corollary

from Theorem 4.1.1;

Corollary 4.1.1. Let M;, ¢ =1,---,p be monotone on A. If A is compact,
then sol(VVI) and sol(VVI)"¥ are nonempty, bounded and connected.

Now we introduce the following well-known fact [12].

Lemma 4.1.2. Let M € R™" be positive semidefinite. If 5T M7 = 0, for

any v € R”, then (M + M7)v = 0, where T denotes the transposition.

From Lemma 4.1.2 and Proposition 4.1.3, we can obtain the following

theorem.

Theorem 4.1.2. Let M; 7= 1,---,pbe positive semidefinite n x n matrices
(and hence, monotone on A). If for any v € 07 A\ {0}, there exists z € A
such that

(Mix +¢q;, v) >0 forallie {1, --,p}, (4.1.5)
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then sol(VVI) and sol(VVI)* are nonempty, bounded and connected.

Proof. Let & = (&,---,&) be any point in A. From (4.1.5), for all v €
0" A\ {0}, there exists z € A such that

<Z§Mx+z&q,, > (4.1.6)

1=]1

By separation theorem ([71], Theorem 11.7), we can prove

Z &qi € int(0FA)* Z &M A

where (07 A)* is the positive polar cone of 0T A.

Thus 37 &g € (0YA)Y — (327, &M;) A and hence there exists z € A
such that (37, &Mz + 30 &g, v) >0 for all v € 0*A. By Proposition
4.1.3, sol(VI)¢ # 0 for all £ € A. So, by Proposition 4.1.4, sol(VVI) #
and sol(VVI)* # §.

Now we will prove that sol(VV ) is bounded. Assume to the contrary
that sol(VVI)" is not bounded. Then there exists z* € sol(VVI)¥ such
that || ¥ ||— +oo as k — +o0. By Proposition 4.1.4, for each k € N, there
exists £¥ € A such that

z* € sol(VI)g. (4.1.7)
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We may assume that ”z:” — 0, || U |[=1, and & — £ € A. By (4.1.7),

(7 &Mzt + 30 &hq;, x—2F) 20 for all z € A. Hence we have

<zp:£fM¢:r’° + ijéfqi, $> > <Zp:§fMim’°, :c’°>
i=1 =1 i=1

P
+ <Z§£"qi, xk> for all z € A. (4.1.8)
=1

Since >°P_ ¢k M; is positive semidefinite, from (4.1.8),
=1 1

P P p
<Z Mt + 3 e :c> pS <Z§fqi, $k> forallz € A, (4.1.9)

Dividing (4.1.9) by || ¥ || and letting & — oo, we have

P P
<Z & M;7, SB> 2> <Z&qi, 17> for all z € A. (4.1.10)
i=1

i=1

Since Az* > b, we have A7 2 0, i.e., ¥ € 0*A. Dividing (4.1.8) by || z* ||2

and letting £ — oo, we have

p
<Z§_iMiz'1, 5> <0.
1=1

Since Y P, €M is positive semidefinite,



Thus, from Lemma 4.1.2, we have
P P
O &M+ > &MIo=0. (4.1.11)
i=1 i=1

From (4.1.9) and (4.1.10), we have

P P
<Z§_iMi$ + Zé‘% 13> <0 forall z € A,
i=1 =1

This contradicts (4.1.6). Hence sol(VVI)" is bounded. Since sol(VVI) is
closed, sol(VVI)¥ is compact. Since sol(VVI) C sol(VVI)¥, sol(VVI) is
bounded. By the similar argument with the proof of Theorem 4.1.1, we can

prove that sol(VVI) and sol(VVI)* are connected. O

Now we give examples clarifying and illustrating Theorems 4.1.1 and

4.1.2.

10 00 0
Example 4.1.1. LetMlz(O 0), M2:<0 1), q1:q2:(0)’

1 -1 -1
A-(_% 1), b_(—l)’ p=n=2
We consider (VVI) and (VVI)¥ for M;, ¢;, (i =1,2), Aand b. Since M;

and M, are positive semidefinite and hence M; and M, are monotone on A.

For any (vi,v2) € 0FA\ {(0,0)}, <(v1,v2),Mi (Z;)> =v2>0 i=12

Thus all the assumptions of Theorems 4.1.1 and 4.1.2 are satisfied. By Propo-

sition 4.1.4, sol(VVI) = | sol(VI)¢. Moreover (Z1,%3) € SOlgeK(VI)E if
geh
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and only if (Z,, Z3) is an optimal solution of the following linear optimization

problem.

Minimize §171Z1 + E22%2

(LP)e subject to T — T = —1, —%xl +x9 = —1.

<= There exist y; = 0, uy = 0 such that

» () i (1) () =

,U,l(~(f1 + .’f‘g - 1) = 0, ﬂg(%fl — f‘g - 1) = 0.

(i) in the case of p; = 0 and py = 0:
§1Z1 = 0,&2 = 0, where (Z),%2) € A. Then the solution of (1) is {(0, 0)}
(ii) in the case of yu; = 0 and py > 0:

&7 + %Mg = 0,&T0 — pp = 0,%.’1’,‘1 — Ty — 1 = 0, where (.fl,.?—?g) € A.

2 —4, . . _ —4,
(szfﬁv 451_522) satisfies three equations of (1). But ps = &7y = ﬁ < 0,

so there does not exist a solution of (1).

(iii) in the case of y; > 0 and py = 0:

§Z1—m =0, &Tr 4+ =0, =%, + T, — 1 = 0, where (%;,Z3) € A. Then
(—&2,&1) satisfies three equations of (1). But puy = —&Ty = —&&; < 0, so
there does not exist a solution of (1).

(iv) in the case of p; > 0 and uy > 0:

T2 — 1+ 5p2 = 0, EsTo+ 1 —pa =0, =Ty +Z9— 1 =0, 5T1—T2—1=0,

where (Z1,Z2) € A. Then (—4, —3) satisfies the latter three parts. But in
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this case (11 = —8& — 3 < 0, pp = —8&; — 6&, < 0. So there does not exist
a solution of (1).
From (i) ~ (iv), we conclude that the solution of (VVI) is {(0,0)}.
Next we consider sol(VV I)*. By Proposition 4.1.4

sol(VVI)* = | ] sol(V )
£eA

So, it is sufficient to consider the cases of (£, = 0 and & = 1) and (& =1
and & = 0).
(v) in the case of & = 0 and & = 1:

@) { —p+ S =0, To+ pu — po =0,
pi(—Z1+22—1) =0, ,ug( Ty —Iy—1)=0.

oy =0, pp=0: Ty =0, where (Z;,73) € A. Hence —1 < 7; < 2. So
sol(VVI)” = {(%,,0)| - 1 < 7, <2}

o (11 =0, po > 0) and (1 > 0,42 = 0): there does not exist a solution
of (2).

o1 >0, pa>0: —p 4 3o =0, To+ pp — o =0,

—Z1+ %~ 1=0,37; — T2 — 1 =0,(%1,22) € A. Then

(—4, —3) satisfies the latter three parts. But in this case u; < 0, pe < 0,

there does not exist solution.
(vi) in the case of £, = 1 and & = 0:

3) Ty — g1+ st =0, gy — ug—O
Ml(—$1-§-$2—1)—0 [,LQ( il','l—xg—].) 0

59



From the second part of (3), we only consider y; = pp = 0 and w; > 0,
2 > 0.

® iy = 0, pp = 0: Z, = 0,(%;,T2) € A. Hence —1 £ 75 < 1 so
sol(VVI)” = {(0,Z,)] -1 < T» £ 1}.

® 3 > 0, pp > 0: Similarly to the case (v), we see that there does not
exist solution of (3).
From (v),(vi), sol(VVI)* = {(£1,0)| -1 £ 7, £ 2}U{(0,Z,)| -1 < Z, < 1}.
Hence sol(VVI) and sol(VVI)¥ are nonempty, bounded and connected.

Consequently, all the assumptions of Theorems 4.1.1 and 4.1.2 are sat-
isfied. Actually, sol(VVI) = {(0,0)}, sol(VVI)* = {(2,,0) e R2 | — 1 <

r1 <2 U{(0,z2) e R? | —1< 7o <1}, O

Example 4.1.2. LetMlz((l) 8), M2:<8 (1)),91=CI2:<:}>7

-1 0 0
A_<O _1>, b—<0>, p=n=2.

We consider (VVI) and (VVI)¥ for M;, ¢, (i =1,2), A and b. Clearly,

M; is monotone on A = {(z1,22) € R? | — 2 =2 0, —zo = 0}. But

for all v = (v;,v5) € 0FA\ {(0,0)}, <(zl> , M, (“)> =220, i=1,2
2

(%]
Since the assumptions of Theorem 4.1.1 do not hold, Theorem 4.1.1 cannot
be applied to this example. But for any v = (vi,v2) € 0YA \ {(0,0)},
there exists x € A such that (M;z + ¢;, v;) > 0, i.e. all the assumptions of
Theorem 4.1.2 are satisfied. By Proposition 4.1.4., sol(VVI) = |J sol(VI).

o

£EA
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Hence (Z1,Z2) € | sol(VI)¢ if and only if (Z;,Z;) is an optimal solution of
geh

the following linear optimization problem.

(LP) Minimize &171%7 + ExoTy — T — Ty
¢ subject to -1 20,—20 2 0.

<=> there exists y; = 0, py = 0 such that

g (6571 v (3) #ra (1) =0

1Ty =0, ppZs = 0.

(i) in the case of y; = 0 and py = 0:
671 — 1 =0, &Iy~ 1=0,(Z1,Z2) € A. In this case (71,72) = (£, 2) ¢ A.
So there does not exist a solution of (4).
(ii) in the case of y; = 0 and py > 0:
671 —1=0,6Ts =14+ =0,Z2 =0, (Z1,52) € A, (Z1,%0) = (&
So there does not exist a solution of (4).
(iii) in the case of y; > 0 and uy = 0:
GZ1+pu =0, £22—1=0,2, =0, (Z1,4) € A, (Z1,22) = (0, %) € A
So there does not exist a solution of (4).
(iv) in the case of y; > 0 and g > 0:
6T — 1+ =0,LT,— 1+ py =0, = 0,52 =0, (T1,72) € A,
(Z1,Z2) = (0,0) € A. Hence the solution of (4) is {(0,0)}.
From (i)~(iv), sol(VVI) = {(0,0)}.
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Next we consider sol(VVI)*. By Proposition 4.1.4

sol(VVI)™ = | ] sol(VI)e.
EeA

So, it is sufficient to consider the cases of (§; = 0 and & = 1) and (£, = 1
and 62 = 0)

(v) in the case of & =0 and & = 1:

(5) —14+pu =0, T2-14pu; =0,
11 = 0, poZy = 0.

From the first part of (5), we only consider p; > 0,

oy >0, pp=0:2, =0,Z,—1=0, (Z1,72) € A, (0,1) € A. There
does not exist a solution of (5).

o >0, up>0: =1, Tp—14+pp =0,7; = 0,3, = 0,(71,7Z2) € A
(0,0) € A. Hence the solution of (5) is {(0,0)}.
(vi) in the case of & = 1 and & = 0:

(6) f1—1+[$1207 —1+M2:0,
’ #1Z1 =0, poTy = 0.

From the second part of (6), we only consider py > 0.

o =0, po>0: 21 —1=0,u =1,Z9 = 0,(Z1,%2) € A. (1,0) &€ A.
There does not exist a solution of (6).

o1 >0, pp >0 T =14+ =0, =1,7; =0,Z2 = 0,(Z1,T2) € A,
(0,0) € A. Hence the solution of (6) is {(0,0)}.
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From (v),(vi), sol(VVI)* = {(0,0)}.

Consequently, Theorem 4.1.1 can not be applied to this example. But
all the assumptions of Theorem 4.1.2 hold and hence Theorem 4.1.2 can be
applied to this example. Actually, sol(VVI) = sol(VVI)* = {(0,0)}. So,
sol(VVI) and sol(VVI)* are nonempty, bounded and connected. O

Example 4.1.3. LetMlz((l} 8), M2=<8 (1)>’q1=q2=<}>,

0= (8 8= (2), e e 0

(VVI)” for M;, gq;, (i =1,2), A and b.

Clearly M; is monotone on A = {(z1,z2)| — 71 = 0,—z, = 0}. But

for all v = (v1,v5) € 0FA\{(0,0)}, <<51> , M, <U1>> =0220,i=1,2
2

V2
Hence all the assumptions of Theorem 4.1.1 do not hold. So Theorem 4.1.1
cannot be applied to this example. And since v = (0,v3) € 0FA \ {(0,0)}
or v = (v1,0) € 0*A '\ {(0,0)}, there does not exist x = (x,z;) such that
(M;z + g;,v) > 0, that is, all the assumptions of Theorem 4.1.2 do not hold.
Hence Theorem 4.1.2 cannot be applied to this example.

By Proposition 4.1.4, sol(VVI) = J sol(VI)e. Hence (Z1,Z2) € | sol(VI)e.

geA el
< (LP)E Minimize 51.1?1.’?71 + §2£L‘2.’f2 + z1 + X9

subject to -1 20,—29 2 0.
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<= There exists g3 = 0, uo = 0 such that

€15 + 1 1 o .
(€2j2+1)+ul (O) +#2<1) =0, ;T =0, upTy = 0.

(i) in the case of uy =0 and py = 0:

glil +1= O’ 5252 +1 = 07 (ilij) € A) then (jth) = (_ - ) € A:

1 _ 1
&' &2

€1+ & = 1. Hence sol(z1,73) 5 y = 5.

(ii) in the case of u; = 0 and py > 0:

§Z1+1=0, &I+ 14+ pp =0, T2 =0, (71,%2) € A, which is impossible.

(iii) in the case of y; > 0 and pe = 0:

§Z1+ 1+ =0, £T2+1=0, 71 =0, (71,T2) € A, which is impossible.

(iv) in the case of 3 > 0 and py > 0:

SZ1+14+m =0, &ETa+1+pp =0, 7, =0, Ty =0, (i‘l,:fg) € A.
(Z1,Z2) = (0,0) = 1 < 0, po < 0, which is impossible.

From (i) ~ (iv), sol(VVI) = {(Z1, To)| To = =2

zi+17°

Next we consider sol(VVI)*. By Proposition 4.1.4,

sol(VVI)Y = | ] sol(V 1)
£eA

So, it is sufficient to consider the cases of (§; = 0 and & = 1) and (& =1
and 52 = 0)
(v) in the case of & = 0 and & = 1:

L+ =0, To+ 14 pe =0, iz =0, peZy = 0, which is impossible.
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(vi) in the case of §&; = 1 and & = 0:

Ty+1+p = 0,14+ p2 =0, 11Z1 = 0, uoT2 = 0. It is not occured since py > 0.
Consequently, all the assumptions of Theorem 4.1.1 and 4.1.2 do not hold.

Actually, sol(VVI) = sol(VVI)* = {(Z1,%2)| T» = =2t}. Thus sol(VVI)

Z1+1
and sol(VVI)* are not bounded and connected. ]
1 0 0 0 0
Example 4.1.4. Let M, = (0 _1> , My = (0 1) L QL =q = (O)’
SRR -
— 2 — —_ —
A= 1 o | b= 0 ,p=n=2.
0 -1 0

We consider (VVI) and (VVI)* for M; and ¢;, (i =1,2), A and b.
First we have A = {(xl,xg)léxl —T9 20, —%xl 4+7920,—-21 20, —29 =
0} = {(z1,z2)|z2 = %xl,xl <0,z £0} forall z = (xl,%xl),y = (yi, %yl)

in A.

_ 1 0 -
Since (y—x)TMl(y—-'L‘)Z(yl—wl,yz“@)(0 __1> <zi—$l>

=y —21)* ~ (y2 — 22)* = (y1 —x1)? - i(yl —z1)* 20,
we have (y — )T Mo(y — z) = (yo — 12)%2 2 0.
So M; is monotone, ¢ = 1,2. For all v = (vy,v2) € 0FA\ {(0,0)},

() ()= () () =2t =ut-pt>o0
() ()= () (2)) =0
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Hence the assumptions of Theorem 4.1.1 are satisfied. Since M; is not pos-

itive semidefinite, Theorem 4.1.2 cannot be applied to this example. By

Proposition 4.1.4,

(fil,iz) e U SOl(VI)g.

£eEA
Minimize 61331151 + (62 e 51)1'211_}2
subject to %xl —x2 20, —%zl +2020,—2120,—2920.

<= there exists 3 2 0,0 =0, u3 =0, 44 = 0 such that

§171 —% % 1 0y
((52—51)532 + 1 + W2 4 + M3 0 + fq 1 =0
1_ _ 1_ _ _ _
/,Ll(—§$1 + $2) =0, /1,2(51'1 — .’L'Q) =0, H3Z1 =0, paZs = 0.

(1) in the case of py = uy = pz = py = O

671 = 0,(& — &)T2 = 0,(Z1,T2) € A, (Z1,%2) = (0,0) € A. Then the
solution is {(0, 0)}

(i) in the case of 3 = s = p3 = 0 and pq4 > 0:

61T =0, (& — &1)T2 + pa = 0, paZs = 0, (T4, T2) € A, which is impossible.
(iii) in the case of 1 = ps = pg = 0 and p3 > 0. This is impossible

(iv) in the case of py = ps = pg = 0 and pp > 0:

L% + %Mz =0,(& — &)Ta — pe = 0, /12(%3_31 —Z3) =0, (Z1,Z2) € ATy =

1= - RIN - . .
5%1, T = 5“5‘—12 > 0. This is impossible.
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(v) in the case of 1 > 0 and pp = s = pug = 0: £71 — Sy = 0, (&2 — &) T +
py = 0, ,ul(—%a_:l + Z2) = 0. This is impossible.

(vi) in the case of p; = pp = 0, w3 > 0 and pg > 0:

§i1%1 + 3 = 0,(& — &)Ta + pa =0, pa®1 = 0, uaZs = 0, (Z1,Z2) € A. This is
impossible.

(vii) in the case of p1 = pg = 0, pp > 0 and pz > 0:

&7 + %,uz +pus = 0,(& — &)To — po = 0, m(%fl — Z2) = 0,371 = 0,
(Z1,%2) € A. This is impossible.

(viii) in the case of u3 = p3 = 0, e > 0 and py > 0:

F1 + o = 0,(& — &)Ta — po + g = 0, (371 — Z2) = 0, %z = 0,
(Z1,Z2) € A. This is impossible.

(ix) in the case of uo = 3 =0, wy > 0 and pg > 0:

&1 — 5m = 0,(& —&)Z2 + pa + py = 0, (=% + Z) = 0, gy = 0,
(%1,Z2) € A. This is impossible.

(x) in the case of pp = gy = 0, 1 > 0 and us > 0:

&1Z1 — 3 +p3 = 0,(& — &)Z2 + = 0, m(—3%1 + Ta) = 0, uaZy = 0,
(Z1,%2) € A. This is impossible.

(xi) in the case of p3 = py = 0, g, > 0 and ps > 0:

&iZ1— 50+ 502 = 0, (& — &) T2 + 1 — g = 0, pi (=571 + Z2) = 0, pa (321 —
T2) =0, (71,72) €A, & = 0,Z, = 0, (0,0) € A. In this case, the solution is
{(0,0)}.

(xii) in the case of g3 =0, pz >0, uz > 0 and pg > 0:
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§Z1 + g2 + 3 = 0,(& — €)Ty — pio + pta = 0, po(331 — F) = 0, paZy =
0, u4Zo = 0, (Z1,T2) € A. This is impossible.
(xiii) in the case of up = 0, gy >0, g > 0 and 4 > O
1 — Lt +ps = 0,(6 — &) T2+ + pg = 0, pi(—3T1 + To) = 0, paZy =
0, 442 = 0, (Z1,Z2) € A. This is impossible.
(xiv) in the case of u3 =0, p3 > 0, pp > 0 and pq > O:
6T — s+ 342 = 0,(& — &)Ta + 1 — pta + pa = 0, pi (=31 + T2) = 0,
p2(3Z1 —Za) = 0, uaZy = 0, (Z1,%2) € A. In this case, the solution is {(0,0)}.
(xv) in the case of ug =0, p; > 0, pp > 0 and pz > 0:
&iZ1— spn + gpe + 3 = 0,(& — &)Ta + n — pro = 0, i (=171 + ) = 0,
ﬂg(%fl —Z9) = 0,431 = 0, (Z1,T2) € A. In this case, the solution is {(0,0)}.
(xvi) in the case of g1 > 0, pp > 0, p3 > 0 and g4 > 0: In this case, the
solution is {(0,0)}.

From (i) ~ (xvi), sol(VVI)={(0,0)}.

Next we consider sol(VVI)*. By Proposition 4.1.4. sol(VVI)* = | sol(VI)e.
e

Enough to solve the cases (§; = 0 and & = 1) and (§; = 1 and &, = 0).
(xvii) in the case of £ = 0 and & = 1:

—%#11‘?%#24'#3 =0, Zo+p — pa+pg = 0, M1(—%f1 +Z3) =0, Nz(%fl*fz) =
0,u3%1 =0, paZz = 0, (Z1,72) € A. In this case, the solution is {(0,0)}.

(xviii) in the case of & =1 and & = 0:
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xy —%Hl + %M2+u3 =0, =T+ 1 — po + pg = 0, M1(—%2—71+5€2) =0,
ug(%il ~Za) =0, 3%y = 0, a2 = 0, (F1,72) € A. In this case, the solution
is {(0,0)}. Hence sol(VVI) = sol(VVI)* = {(0,0)}.

Consequently, all the assumptions of Theorem 4.1.1 hold, but, since M; is

not positive semidefinite, Theorem 4.1.2 can not be applied to this example.

Actually, sol(VVI) = sol(VVI)* = {(0,0)}. So, sol(VVI) and sol(VVI)*

are nonempty, bounded and connected. ]
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4.2. Applications to Multiobjective Optimization Problems

Now we apply Theorem 4.1.2 to a multiobjective linear fractional op-

timization problem and a multiobjective convex linear-quadratic optimiza-

tion problem. Let f; : R* — R, i = 1,---,p be linear fractional func-
. . T i
tions, that is, fi(z) = %5%% for some a; = (ay, --,a:,)7 € R*, b =

(biy, -+, bi)T €ER™, ;€Rand B; €R. Let A ={z e R" | Az > b}, where
A€ R™" and b € R™. Assume that, for every i € {1,---,m} and every
e A, bz + 3 > 0. Define f(z) = (fi(z),---, f.(2)).

Consider the following multiobjective linear fractional optimization prob-

lem:

(FP) Minimize f(x)

subject to z € A.

Denote by E(FP) the set of all the efficient points (Pareto solutions) of
(FP). By definition, z € E(FP) if and only if there does not exist y € A
satisfying f(y) — f(z) € —R% \ {0}. Denote by E¥(FP) the set of all the
weakly efficient points of (F'P). By definition, z € E¥(FP) if and only if
there does not exist y € A satistying f(y) — f(z) € —intR%.

ail (Zil see G’il bil 0 s 0
Let M= | % % 0 G| f 0 by o 0
ai, i, a;, 0 0 - b
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| by bf-g b, | | 0 ag (N
bin bin b‘Ln \ O 0 ain
ai, bil \
Qi, biz .
=5 |-l .|, i=1-,p
a;, bin }

Then we can easily check that M7 = —M; and that (z, M;z) = 0 for any
z € R". Thus for each ¢ € {1,---,p}, M; is positive semidefinite.

Consider problems (VI)¢, (VVI) and (VVI)* by using the above M,’s
and ¢;’s. By the results in [64], E(FP) = UEEK sol(VI)¢ and E¥(FP) =
Ugea s0l(VI)e. Thus we have, by Proposition 4.1.4, E(F P) = sol(VVI) and
E¥(FP) = sol(VVI)¥.

Hence we have the following theorem from Theorem 4.1.2:

Theorem 4.2.1. If forall v € 0FA\ {0}, there exists z € A such
that (Miz +¢q;, v) >0 forallie€ {1,---,p}, then E(FP) and E¥(FP) are

nonempty, bounded and connected. In particular, E*(F P) is compact.

Let f; : R® — R, ¢ = 1,---,p be linear-quadratic functions, that is,
filz) = 32" Mz + ¢Tz + o; where M; € R™", ¢; € R", and o; € R for
t=1,---,p. If M; is symmetric and positive semidefinite, then f; is convex.
Assume that M;, ¢ = 1,---,p are symmetric and positive semidefinite. Let,
A ={z € R"| Az = b}, where A € R™" and b € R™. Define f(z) =
(filz),--, fol@)).
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Consider the following multiobjective convex linear-quadratic program-

ming problem:

(QP) Minimize f(z)

subject to x € A.

By the same manners as in (F'P), we define the efficient point of (QP) and
the weakly efficient point of (QP). We denote by E(QP) the set of all the
efficient points of (QP) and by E“(QP) the set of all the weakly efficient
points of (QP). Also, x € A is called a properly efficient point of (QP) if
z € E(QP) and there exists M > 0 such that for each i € {1,---,p}, we

have

fi(z) = fi(y)
fily) = fi(z) =M
for some j such that f;(y) > f;j(z) whenever y € A and f;(y) < fi(z). We

denote by EF"(QP) the set of all the properly efficient points of (QP).

The quantity %%L:%%% may be interpreted as the marginal trade-off for
the objective functions f; and f; between z and y. Geoffrion ([32]) considered
the concept of the proper efficiency to eliminate the unbounded trade-off
between the objective functions of (QP).

Consider problems (VI)¢, (VVI)and (VVI)* by using the above M/s and

gis. Then by Theorem 2 in ([53]), EP"(QP) = sol(VVI), and by Proposition

5 in ([35]), E¥(QP) = sol(VVI)*. Hence we have the following theorem
from Theorem 4.1.2:

72



Theorem 4.2.2 If for all v € 0t A\ {0}, there exists x € A such that
(Miz 4+ q;, v) >0 forall i€ {1,---,p},

then EF7(QP) and E¥(QP) are nonempty, bounded and connected. In par-
ticular, E¥(QP) is compact.
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