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Chapter 1

Introduction and Preliminaries

Multiobjective programming problems consist of conflicting objective func-
tions and constraint sets, and are intended to optimize the objective functions
over the constraint sets under some concepts of solution. Their optimums
form the solution concepts that appear to be the natural extension of the
optimum of a single objective to one of multiple objectives. In economic
analysis([7]), game ([15]) and system science, such optimums are effective for
treating such a multiplicity of values.

Optimality and duality are very important topics in investigating opti-
mization problems. There are a large number of papers discussing optimality
and duality for optimization problems ([19], [35], [40], [45], [44], [46], [50],
[66] ).

In 1948, John ([31]) gave a necessary optimality theorem for an optimiza-
tion problem with inequality constraints and without any constraint qualifi-
cation, which is now called the Fritz John necessary optimality theorem. In
1961, Kuhn and Tucker ([41]) proved another necessary optimality theorem
for an optimization problem with inequality constraints under a constraint
qualification, which is now called the Kuhn-Tucker necessary optimality the-
orem. Of course, such optimality theorems are closely related. Fritz John and
Kuhn Tucker necessary optimality theorems have been extended to nondif-
ferentiable optimization problems ([49, 81}) and multiobjective optimization
problems. Conditions in two optimality theorems are sufficient ones for fea-

sible points to be optimal under generalized convexity or generalized invexity
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assumptions on functions. Kuhn-Tucker sufficient optimality theorems have
been extended to several kinds of optimization problems under generalized
convexity and generalized invexity. On the other hand, many authors have
studied Fritz John type sufficient optimality theorems for single objective(i.e,
scalar) optimization problems under generalized convexity.

In many aspects of mathematical programming problems including suffi-
cient optimality conditions, duality theorems and alternative theorems, con-
vexity plays a vital role ([1], [12], [24], [25], [27], [34], [50], [52]). Hanson
and Mond ([26]) introduced type-1 and type-2 invexities which have been
further generalized by many researchers and applied to nonlinear program-
ming problems in different settings. To relax convexity assumptions imposed
on the functions in theorems on sufficient optimality conditions and duality,
various generalized convexity notions have been proposed. Vial ([71]), Preda
([63]), Ben-Isral and Mond ([11]), Hanson and Mond ([26]), Jeyakumar and
Mond ([33]), Ye ([77]), Antezak ([2]) and many others have studied some
properties, applications and further generalizations of these functions. Re-
cently, Liang et al. ([46]) introduced (F,a, p, d)-convexity which is one of
such generalizations of invex functions.

Under certain convexity assumptions and suitable constraint qualifica-
tions, the primal and dual problems have equal optimal objective values and
hence it is possible to solve the primal problem indirectly by solving the
dual problem. In 1961, Wolfe ([74]) formulated a dual problem for a single
objective optimization problem on the basis of the Kuhn-Tucker necessary
optimality conditions, which is now called the Wolfe dual problems, and

proved weak and strong duality theorems. In 1981, Mond and Weir ([59])




gave another type of dual problem for a single objective optimization prob-
lem on the basis of the Kuhn-Tucker necessary optimality condition, which
is now called the Mond-Weir dual problem. They also proved weak, strong
and converse duality theorems. Until now many authors have formulated
Wolfe type dual problems and Mond-Weir type dual problems for several
kinds of optimization problems and have studied these problems for duality
theorems. Duality theorems for fractional scalar(single-objective) minimiza-
tion problems have been of much interest in the past ([4], [13], [28], [67],
[68)).

Recently there has been of growing intrest in studying duality for frac-
tional multiobjective minimization problems ([6], [14], [21], [32] [42], [45],
[44], [48], [54], [58], [72], [73]). Also several authors have been interested
in optimality conditions and duality theorms for nondifferentiable mulitob-
jective programming problems ([49], [53], [56], [67], [78], [81]). Bhatia and
Jain ([9]) considered a nonlinear nondifferentiable multiobjective fractional
programming problem in which numerator of each component of the ob-

jective function contains a term involving square root of a certain positive

semi-definite quadratic form. We shall introduce a class of nondifferentiable
mulitobjective programming problems in this paper.

Symmetric duality is one of the major branches approaching to multiob-
jective optimization and it plays a useful role in the theory and computational
algorithm of multiobjective optimization. Symmetric duality in nonlinear
programming in which the dual of the dual is the primal was first introduced
by Dorn ([17]) by defining a symmetric dual program for quadratic programs.

Dantzig, Eisenberg and Cottle ([18]) first formulated a pair of symmetric dual




nonlinear programs involving a scalar function. Recently Suneja et al. ([69])
formulated multiobjective symmetric dual programming problems over ar-
bitary cones and Yang et al.([79], [80]) formulated symmetric duality for a
class of nonlinear, nondifferentiable multiobjective fractional programming
programs under generalized invexity. We consider symmetric dualities for
nonlinear multiobjective programming problems with cone constraints which
are applications of multiobjective optimization.

Now we discuss solution concepts for multiobjective optimization prob-
lems and introduce some fundamental properties of solutions. Optimal so-
lutions to multiobjective optimization are not trivial and in itself debatable.
It is closely related to the preference attitudes of the decision makers ([70}).

We formulate the standard form of the multiobjective optimization prob-

lems.

(VP) Minimize  f(z) := (fi(z), -, fp(z))

subject to x € S,

where f; : X - R, i=1,---,p, are functions and S is a subset of X.

This problem is also called a vector optimization. For multiobjective
optimization problems, there are three kinds of solution. We call them prop-
erly efficient, efficient and weakly efficient solution. The most fundamental
solution concept is that of efficient solutions ( also called parato optimal so-
lutions or noninferior solutions) with respect to the domination structure of
the decision maker.

Optimization of (VP) is finding (properly, weakly) efficient solutions de-

fined as follows:




Definition 1.1. A point Z € S is said to be an efficient solution of (VP) if
for any z € S,

(f1(z) = 1), -, folz) = f(2)) & —REN{O},

where R%, = {y € R? : y = 0} is the nonnegative orthant of R?.

Definition 1.2. A point Z € S is said to be a properly efficient solution of
(VP) if z € S is an efficient solution of (VP) and there exists a constant
M > 0 such that for eachz = 1,--- , p, we have

7(2) - (@)
@)~ @ =M

for some j such that f;(z) > f;(Z) whenever z € S and f;(z) < f;(Z).

The quantity M—l may be interpreted as the marginal trade-off for
fi(=)—fi(z)

objective functions f; and f; between z and Z. Geoffrion ([23]) considered
the concept of the proper efficiency to eliminate unbounded trade-off between

objective functions of (VP).

Definition 1.3. A point Z € S is said to be a weakly efficient solution of
(VP) if for any z € 9,

(fi(@) = [1(@),- -+, fol@) = fo(Z)) & —intRE,

where intR% is the interior of RY.

In this paper we shall use the concept of weakly efficient solution.




Now we introduce notations and theorem that will be used later.

Let R™ denote the n-dimensional Euclidean space. We use the following

notations for vectors z,y in R™ :

<Yy = ;<y;, =12 n

z £y is the negation of z < y;
TSy <= 7, Ly, =12 n;
Ly < 7;<y;, t=12---.n but z#uy;

z £y 1is the negation of z <y.

Next is a generalization of Gordan’s theorem ([51]) to a convex function

over an arbitary convex set in R”.

Theorem 1.1 (Gordan Theorem). Let f be an n-dimensional convex
vector function on the convex set S C R™. Then

I. f(z) <0 has a solution z € S or

II. pf(z) 2 0 for all x € S for some p > 0, p € R™.
but never both.

The purpose of this dissertation is to establish necessary and sufficient
optimality conditions and duality theorems for multiobjective programming
problems under various generalized convexity conditions involving differen-
tiable or nondifferentiable functions. In particular, we prove necessary opti-
maltity conditions, sufficient optimality conditions and duality theorems for
the weakly efficient solution. We show that the weak and strong duality hold

between primal problems and dual problems.

This dissertation is organized as follows :
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In Chapter 2, we introduce the concepts of (F, a, p, d)-convexity and gen-
eralized (F, a, p, d)-convexity of differentiable function ¢ for sublinear func-
tional F'. We formulate necessary and sufficient optimality conditions for
weakly efficient solutions of nondifferentiable multiobjective programming
problem (NVP), in which each component of the objective function con-
tains a term involving the support function s(z|C) of a compact convex set
C of R®. And we formulate the generalized dual Programming problem
(NVD) for weakly efficient solution under generalized (F, a, p, d)-convexity
assumptions. As special cases of our duality results, we give Mond-Weir type
and Wolfe type duality theorems.

In Chapter 3, we introduce the concept of (V,p)-ratio invexity and we
present a nondifferentiable multiobjective fractional problem (NFP), in which
each component of the objective function contains a term involving the sup-
port function of a compact convex set. We obtain the the Fritz John and
Kuhn-Tucker necessary and sufficient optimality conditions for weakly effi-
cient solutions. We formulate Mond-Weir type dual problem and Wolfe type
dual problem of problem (NFP) under (V,p)-ratio invexity assumptions.
Also we introduce weak and strong duality theorems for each problems.

In Chapter 4, we formulate Mond-Weir type symmetric dual problems
and Wolfe type symmetric dual problems with cone constraints. We obtain
duality results under weakly efficient solution involving pseudo-invex func-
tions for Mond-Weir type symmetric duality. Also we obtain duality results
involving K-preinvex functions for Wolfe type symmetric duality. And we
establish the weak, strong, converse and self duality for each symmetric dual

problems.




In Chapter 5, we introduce arcwise connected functions defined on arcwise
connected sets by replacing a line segment joining two points by a continu-
ous arc, and we present some basic properties of arcwise connected sets and
functions. We introduce multiobjective programming problem (MOP) and
its geneal dual (MOD) involving generalized arcwise connected functions.
We obtain the necessary and sufficient optimality conditions for (MOP) and
prove the weak, strong duality theorems for (MOD), based on the weakly ef-
ficiency. Also we obtain the multiobjective fractional programming problem
(MFP) and its general dual (MFD). We introduce parametric multiobjec-
tive optimization problem (MFP), to obtain the optimality conditions and
duality theorems by establishing equivalent relationship between (MFP) and
(MFP),.




Chapter 2

Optimality and Duality for Nondifferentiable
Programming Problems with

(F, a, p, d)-Convexity

2.1. Introduction

Mond and Schechter ([56]) were first to introduce nondifferentiable sym-
metric duality, in which the objective function contains a support function.
Lal et al. ([49]) obtained duality theorems for nondifferentiable static pro-
gramming problem with the square root term. Jeyakumar ([29]) defined p-
invexity for nonsmooth optimization problems, and Kuk et al. ([39]) defined
the concept of V-p-invexity for vector valued functions, which is a gener-
alization of the V-invex function ([33, 55]). Recently, Yang et al. ([78])
studied a class of nondifferentiable multiobjective programming problems.
They replaced the objective function by the support funtion of a compact

convex set. And they have constructed a more general dual model for a

class of nondifferentiable multiobjective programs and established only weak
duality theorems for efficient solutions under suitable weak convexity condi-
tions. Very recently, Liang et al. ([46]) introduced the concept of (F, o, p, d)-
convexity and presented optimality and duality results for a class of nonlinear
fractional programming problems. In this chapter, we introduce (F,a, p,d)-
convexity and generalized (F,a, p, d)-convexity of differentiable function ¢

for sublinear functional F. We formulate necessary and sufficient optimality
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conditions for weakly efficient solutions of nondifferentiable multiobjective
programming problem (N'VP), in which each component of the objective
function contains a term involving the support function s(z|C) of a compact
convex set C of R". We shall formulate the generalized dual programming
problem for weakly efficient solution under generalized (F, a, p, d)-convexity

assumptions. As special cases of our duality results, we give Mond-Weir type

and Wolfe type duality theorems.

Next we recall the following definitions of the generalized (F, p)-convexity

defined by Preda ([63]).

Definition 2.1.1. A functional ' : R® x R® x R®* — R is sublinear if for

any z,u € R",
F(z,uja1 + a3) £ F(z,u;a1) + F(z,u;a9) for all a;,as € R
and
F(r,u;aa) = aF (z,u;a) forala € R, >0, and ae€R"

Let ' : R* x R® x R® — R be a sublinear functional, the function

¢ : R™ — R be differentiable at « € R", a(,-) : R* x R* — R;\{0}, p€ R
and d(:,-) : R* x R® — R ([46]).

Definition 2.1.2. The function ¢ is said to be (F, «, p, d)-convex at u if
¢(x) — ¢(u) 2 F(z,u; 0z, w)Vo(u)) + pd*(z,u) for all z € R™.
Definition 2.1.3. The function ¢ is (F, a, p, d)-quasiconvex at u if

¢(z) < ¢p(u) = F(z,u; oz, u)Vd(u)) < —pd*(z,u) for all z € R™.

11




Definition 2.1.4. The function ¢ is (F, a, p, d)-pseudoconvex at u if

F(z,u;a(z,u)Ve(u)) 2 —pd*(z,u) = ¢(z) = ¢(u) for all z € R™

Remark 2.1.1. (i) When a(z,u) = 1, the concept of (F,a, p, d)-convexity
is the same as that of (F, p)-convexity in [63].

(ii) When F(z,u; a(z,u)Vo(u)) = a(z, u)Vé(u)n(z, u) for a certain func-
tion n: R” X R® — R and p = 0, the same concept appeared in the definition

of V-invex functon in [33].

We consider the following multiobjective programming problem,
(NVP) Minimize  (fi(z) + s(z|Ch), -, fo(z) + 5(z|Cp))

subject to  g(z) = 0,

where f and g are differentiable functions R* — RP and R™® — R™, respec-
tively; C;, for each t € P = {1,2, - ,p}, is a compact convex set of R™ and
s(z|C;) = max{(z,y) |y € C;}. Furtherlet $:={z e R" | gi(z) 20, i =
1,---,m} and I(z) := {7 | gi(z) = 0} for any v € R".

Let hi(z) = s(z|C;), ¢ = 1,--- ,p. Then h; is a convex function and
Bhi(z) = {w € Ci| {w,z) = s(z|C;)}, where Ok, is the subdifferential of h;

([56))-

2.2. Optimality Conditions

In this section, we establish Fritz John and Kuhn-Tucker necessary and

sufficient conditions for weakly efficient solutions of (NVP).
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Theorem 2.2.1 (Fritz John Necessary Optimality Condition). Sup-
pose that fi,9; : R® - R, ¢ = 1,---,p, 7 = 1,---,m, are differen-
tiable. If T € S is a weakly efficient solution of (NVP), then there exist
Ayt =1,---,p, 45,5 =1,--- ,;mand w; € C;, i =1,---,p, such that

()‘17'“ 7)‘117’1‘17"' 7/"Lm)207 (/\13"' 7>\p:M11”' a”m)#o

Proof. Let h;(z) = s(z|C;), i = 1,--- ,p. Since C; is convex and compact,

hi : R® — R is a convex function and hence for all d € R™,

A—0+ A

is finite. Also, for all d € R",

(fi+h)(zd) = lim FEXA) TR A = £(T) ~ hi(3)

A—0+ A
~ lim fi(Z + Ad) — fi(2) + lim hi(Z + M) — hi(Z)
A0+ A A—0+ A

fi(%; d) + hi(Z; d)

= (Vfi(z),d) + hi(Z;d).
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Since 7 is a weakly efficient solution of (NVP),

<Vf1(.’f),d> + hi(jvd) < 07 1= 1) IRy 4
—(Vg;(z),d) <0, j € I(z)
has no solution d € R*. By Gordan Theorem for convex functions, there

exist \; 20, 1 =1,--- ;pand pu; 20, 5 € I(Z) which are not all zero such
that for any d € R™,

P

> N (Vi +Z,\h' = > i (Vgi(@),dyz0.  (21)

i=1 JEI(%)

Let A = {370 M[VA@E) + &) = Xjerm V(@) | & € 0hi(z), @ =
1,---,p}. Then 0 € A. Ab absurdo, suppose that 0 ¢ A. By sep-
aration theorem ([51]), there exists d* € R™ d* # (0,---,0), such that
forall a € A, (a,d") <0, that is, >0 N (V£i(@),d*) + 32, N (&, d*) —
2 jerqe) M (Vg;(T),d") <0, for all & € Gh;(Z). Hence

P p
DoNVAE), )+ DONRUE D) — > w1y (Vi (), dY) <0,
=1 i=1

JEI(Z)

which contradicts (2.1). Letting p; = 0, for all j & I(Z), we have

erWf +Z,\ah }"iu,vgj

and 307, 1395(2) =0, (A=, Apy g, fim) # O

Since 0h:i(Z) = {w; | (wq, Z) = s(z|C;)}, we obtain the desired result. O
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Theorem 2.2.2 (Kuhn-Tucker Necessary Optimality Condition). Sup-
pose that fi,g; :R* > R, ¢ =1,--- ,p,j = 1,--- ,m are differentiable and
assume that there exists z* € R™ such that (Vg;(z),2*) > 0, j € I(z). If
Z € S is a weakly efficient solution of (N'VP), then there exist \; = 0, i =

L yp, p; 20,5=1,--- ;mand w; € C;,i=1,---,psuch that

ZAVL +wa1 Z,uJVgJ(:E—O
(wi, 7) = 5(2(C), i= 1, ,p,
i;ujgj(i“)zt),

(A, ) # (0, ,0).

Proof. Since ¥ is a weakly efficient solution of (NVP), by Theorem
2.2.1, there exists (A1, -+, Ap, pu1, -, ftm) # (0,---,0). Since urge(Z) = 0
and px 2 0, for all k € I(Z), . = 0, for all k ¢ I(Z). Hence

Z)\Vf +wat Z,u]Vg,(x =0 (2.2)

and (w;, Z) = s(Z|C;), 4 = 1,--- ,p. Assume that there exists z* € R™ such
that (Vg;(z),2*) > 0, for all j € I(Z). Then (A1, ,A,) # (0,--- ,0).

Ab absurdo, suppose that (A1, -+, A,) = (0,--- ,0). Since (u1,-- - , ftm) 7
(0,---,0), ie, uj 2 0, forall 5 € {1,---,m} and hence p; > 0 for some
i €{1,--- ,m}. From (2.2), 0 = > e 1V (7).
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However,

0 = <Zuﬁ79ﬂ?’

JjeI(z
= > 1 (Vg(@),2")
Jjel(z)
> 0.
This is a contradiction. Hence (Ay,---, ;) # (0,--- ,0). O

Theorem 2.2.3 (Fritz John Sufficient Optimality Condition). Let

(Z, A\, w, p) satisfy the Fritz John conditions as follows:

ZA Vfi(z +waz Zp,JVg]

(wi, Z) = s(Z|Cy), i =1,--- ,p, w; € C,,

> 1igi(3) =
7=1
()‘17"' a>‘p:u17"' 7,“’771) 207 (Alv"' ,Apau‘lf" aum) #O

If one of the following conditions holds :

(a) fi(-) + (") Tw; is (F, a, p;, d)-pseudoconvex at Z, and — >y Mg (+) is
strictly (F), o, 8, d)-pseudoconvex at Z, with 8+ Y ¢, A\;p; = 0;

(b) 3P N(£:()+()Twy) is (F, a, p, d)-quasiconvex at Z, and — > e 1595()
is strictly (F, e, £, d)-pseudoconvex at &, with 3 + p = 0, then 7 is a weakly
efficient solution of (NVP).

16




Proof. (a) Suppose that Z is not a weakly efficient solution of (NVP).
Then there exists an z* € S such that fi(z*) + s(z*|C;) < fi(Z) + s(E|C;).

Since (w;, Z) = s(Z|Cs), i=1,--- ,p,
fi@?) + 2w < fiz") + s(27|Cy)
< filz) + s(z|Cy)
= fi(Z) + 77w,
By the (F, o, p;, d)-pseudoconvexity of fi(z) 4+ z7w;,
F(z*, & oz™, 2)(V fi(Z) + wy)) < —pid?(z*, T).
By sublinearity, there exists A; = 0,
P P
F(z*,z; a(z", %) Z M(VFA(Z) +wy)) £ - Z \ipid*(2*, 7).
i=1 1=1

Since B+ Y 5 Api =0,

F(m*v z; —a($*> i') Z /j,ngj(i")) 2 —ﬁd2(l'*, j)'

Jj=1

Since — > 7", 1;9;(Z) is strictly (F,, 3, d)-pseudoconvex,
m m
- Z 1;g;(z") > — Z 1395(Z).
j=1 j=1
Since p;g;(z) =0, 5 =1,--- ,m, we have

Y wigi(z") <0,
j=1

17




which contradicts the condition x; > 0 and g;(z*) 2 0. O

(b) Suppose that Z is not a weakly efficient solution of (NVP). Then
there exists an z* € S such that f;(z*) + s(z*|C;) < fi(Z) + s(z|C;). Since
(wi;, ) = s(z|Cy), 1=1,--- ,p,

filz*) + 2Tw; < £i(Z) + 77w

Since A\; = 0, we have

p

Z)\’L(f‘l( +$ wz

=1

) + 2T w;).

i M‘s

By the (F, a, p, d)-quasiconvexity of >_2_, X;(fi(Z) + zTw;),
p
F(z*, z; a(z*, T) Z X(V£i(Z) +w)) £ —pd?(z*, 7).

Since 8 + p = 0,

F(z*, % —a(a",7) Y _ pm:iVg;(3)) = —fd*(a", 7).

=1

Since — > 7", 1;0;(Z) is strictly (F, o, 3, d)-pseudoconvex,

m m
=Y wigi(x) > =) gy (%)
j=1 7=1
Since u;g;(z) =0, j=1,--- ,m, we have

> migi(a?) <0,
=1

18




which contradicts the condition x; > 0 and g;(z*) = 0. a

Theorem 2.2.4 (Kuhn-Tucker Sufficient Optimality Condition). Let

(Z, A\, w, u) satisfy the Kuhn-Tucker conditions as follows:

ZWfl +wat Zu;,VgJ

('(Ui,.f) - S(EIC’L’% 1= 1, » Dy w; € Ci;

> pigi() =

=1

(/\17"' 1Ap7,~1'11"' 7/J’m)_2_ (07 70)7 (>‘17”' ?)‘P) 7& (01 70)

If one of the following conditions holds :

(a) fi(-) + (-)Tw; is (F, a, p;, d)-pseudoconvex at Z, and — Doy 1i95(-) is
(F,a, 3, d)‘quasiconvex at T, with 34+ 3%, \ipi 2 0;

(b) Xi(fi()+()Tw;) is (F, a, p, d)-pseudoconvex at 7, and — > e 13g5()
is (F, o, 8, d)-quasiconvex at &, with 3 + p = 0, then Z is a weakly efficient
solution of (NVP).

Proof. (a) Suppose that Z is not a weakly efficient solution of (NVP).
Then there exists an z* € S such that fi(z*) + s(z*|C;) < fi(Z) + s(Z|Cy).

Since <wi,i> = S(E|Ci)7 1= 17' Y )

fl@?) + 27w £ fi(a*) + s(2*|CY)
< fi(Z) + s(z|Cy)

= fi(@) + 27w

19




By the (F, a, p;, d)-pseudoconvexity of f;(z) + z7w;,

F(z*,z;a(z*, ) (V fi(Z) + wi)) < —pid®(z*, 7).

By sublinearity, there exists A; > 0,
P P
F(@", 3 a(e",2) Y MN(VAE) +wi) < =) hpd* (2", 7).
Since ,8 + Ele /\ipi 20 s
F(z*,z Z w:Vg;(z)) > —Bd*(z*, %).

Since — 3777, p1;9;(%) is (F, av, B, d)-quasiconvex,

- Z 1395 (z") > — Z 14395 (Z).
j=1 j=1

Since p;g;(Z) =0, 7=1,--- ,m, we have
> pigi(z) <0,
=1
which contradicts the condition p; = 0 and g;(z*) = 0. O

(b) Suppose that Z is not a weakly efficient solution of (NVP). Then
there exists z* € S such that fi(z*) + s(z*|C;) < fi(&) + s(Z|C;). Since
<'LU1, > - S($|C), 1= 1a' Y 2

file”) + 27w, < £i(Z) + 2 w;.
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Since A; > 0, we have

P p

Z /\i(fi(fli*) + CE*T’U)i) < Z Al(fz(i) + :T:Tw,-).

i=1 1=1

By the (F) a, p, d)-pseudoconvexity of -7 \i(fi(Z) + z7wy),
P
F(z*,7;0(2",2) Y M(VA(E) +w)) < —pd*(z", 7).
i=1
Since B+ p =0,

F(z*,z; —a(z*, 7) iungj(i)) > —Bd*(2*, 7).

J=l1

Since — Z;’;l #;9;(Z) is (F, o, 3, d)-quasiconvex,

= uigi(a) > — > 1ig;(7).
=1 =1

Since p;9;(Z) =0, 7 =1,--- ,m, we have
D migi(a?) <0,
i=1

which contradicts the condition p; 2 0 and g;(z*) = 0.
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2.3. Duality Theorems

In this section, we introduce the generalized dual programming problem
for a weakly efficient solution under generalized (F, o, p, d)-convexity assump-

tions. Now we propose the following general dual (NVD) to (NVP).
(NVD) Maximize

(Fi(w) +uTwr =Y wgs(w), -, folu) +uTw, — > wigi(u)

i€l i€lp
bi A _
subject to Z)\ (Vfiluw) +w;) -y Vg(u) =0, (2.3)
i=1
Zyzgz éo Cl—l,"‘,'r, (24)
1€l
y >0,

wiECia izl)""p) A:()\lﬂ""AP)EA_*_’

where I, C M ={1,--- ,m}, a=0,1,--- ,rwith U _ I, = M and I,NIg =
Pifa#pP Lee At ={AeRP: 120, Me=1, e=(1,---,1) € RP}.

Theorem 2.3.1 (Weak Duality). Assume that for all feasible z of (NVP)
and all feasible (u, A, w,y) of (NVD), —3%" .., vig(-) (@ = 1,---,7) is

(F, @, (a, p)-quasiconvex at u and assume that one of the following condi-

tions holds:
(a) fi() + () Tw; — > ies, Yigi() is (F, e, p;, d)-pseudoconvex at u, with
Z;:1 lga + Zle ’\ipi =20 ;
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Now suppose, contrary to the result, that (2.5) holds. Since zTw; <
s(z|C;), we have for all i € {1,--- ,p}

(r) + zTw; — Zyigi(x) < fi(x) + 2Tw;
1€lp

< filz) + s(x|C)

< filw) +ulw =) gigi(u).  (2.9)

i€ly

y (a), we get

F(z,u; a(:c,u)(Vfi(u)-i-wi—Z ¥:Vgi(u))) < —pid*(z,u), for alli € {1,---p}.

i€ly
(2.10)
From A € A*, (2.10) and the sublinearity of F', we have
P
F(z,y; a(x,u)(Z)\i(Vfi )+ w;) Z%ng (w))) < (- Z)\ pi)d
=1 i€lo
(2.11)

Since ' Ba+ Y P Nip; > 0, it follows from (2.11) that
a=1 =1

F(z,u oz, u)(Q_N(Viilw) +w) =Y 3:Va(u) < (Z ﬁa)dz(r u),
=1

€1y

which contradics (2.8). Hence (2.5) cannot hold.

Suppose now that (b) is satisfied. From A € A* and (2.9), it follows that

Z i(fi(z) +37 w;) Zyzgz Z (filu "“u wt Zyzgz

i€ly 1=1 i€lg




) Y2 h(H06) + (O)Tw) — > ier, Yigi(+) is (F, a, p, d)-pseudoconvex at

u, with Y ) _ B4+ p 2 0, then the following holds:

fi(x) + 5(2|C) £ filu) +u"wi = ) y;05(w), foralli € {1,---,p}. (25)

j€ly

Proof. As z is feasible for (NVP) and (u, A, w, y) is feasible for (NVD),

we have

Zyigi(m) 202 nygi(U), a=1,---,r

i€la i€la
By the (F, a, 84, d)-quasiconvexity of — > ier ¥igi(u), a=1,--- r, it follows

that

F(z,u; —a(x7u)Zyngi(u)) < —Bad*(z,u), a=1,--- 7. (2.6)

€1y

On the other hand, by (2.3) and the sublinearity of F', we have

F(z,u; oz, u)(z Ai(Vfi(w) + w;) — Z v:iVgi(u)))

+ Z F(z,u; —a(z,u) Z i Vgi(u))
> F(r,u: oz, u)(z X (V fi(w) + wi) — yTVg(w))) = 0. (2.7)
From (2.6) and (2.7)
F(z,u; oz, “>(Z Ai(Vfi(u)+wi)~Z y:Va(u) 2 O Ba)d*(z,u). (2.8)
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Then, by the (F, «, p, d)-pseudoconvexity of
)‘ (ft( ) ( ) w‘t) - Zielo ngj(') at u,

F(a:,u;a(x,u)(z (V filu) + w;) Zszgl N) < —pd*(z,u). (2.12)

i€ly

Since ). _, fa + p > 0, it follows from (2.12) that

F(cc,u;a(ac,u)(z i(V fi(u) + w;) Zy1Vg,(u <(Zﬁa)d T, u
=1 a=1

i€ly

which contradicts (2.8). Hence (2.5) cannot hold. 0

Remark 2.3.1. Theorem 2.3.1 is an extension of Theorem 2.1 in [63] for

weakly efficient solutions under generalized (F, o, p, d)-convexity.

Theorem 2.3.2 (Strong Duality). If 7 € S is a weakly efficient solution
of (NVP), and assume that there exists z* € R" such that (Vg;(%), 2*) >

0, for all j € I(Z). Then there exists A\ € R?, w; € Ci,i=1,--- ,p, § € R™
such that (Z, A, @, §) is feasible for (NVD) and z7w; = s(z|C;), i =1, - - , p.
Moreover, if the weak duality holds, then (Z, X, W, 7) is a weakly efficient
solution of (NVD).

Proof. By Theorem 2.2.2, there exists A € R?, § € R™ and @; € C;,i =
1,--+,p, such that 377 M(Vfi(z) + @) — 37, 9;Vg,(2) = 0, §;0;(%) =
0, j=1,---,m,and w; € C;, i = 1,--- ,p. Thus (%, )\, ,7) is a feasible
for (NVD) and z7w; = s(z|C;), i =1, ,p. Notice that f;(Z) + s(z|C;) =
(@) + 27w = fi(Z) + 270 — Yy, %:0:(T). By weak duality, (fi(z) +
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S(Z[C1), - fp(@) + 5(ZIC)) £ (Filw) +uTwr — Py %igi(w), -, fp(w) +
wwp — 3 p yigi(w)) where (u, A\, w,y) is any feasible solution of (NVD).

Since z7w; = s(Z|C;), we have

(@) + 270 =) Gig(@), -, f(3) + 37w, — Y 5igi(7))

i€lp i€l
£ (fl(u) + UTTUI - Z yiQi(“): T, fp(u) + 'U'Twp - Zyigi(u))'
i€lp i€lp

Since (Z, A, W, 9) is a (N'VD) feasible solution, (Z, A, 0. §) is a weakly efficient
solution of (NVD). Hence the result holds. O

2.4. Special Cases

As special cases of our duality results between (NVP) and (NVD), we
give Mond-Weir type and Wolfe type duality theorems.

If I =0, I, = M, then (NVD) reduced to the Mond-Weir type dual
(NVD) ;.

(NVD))  Maximize (fiw) +uTwi, -, fo(u) + uFw,)
D m
subject to D (Y i(u) +w) = >y Vgs(u) = 0, (2.13)
i=1 j=1
Y wgi(w) <0, (2.14)
j=1

wiECi, Z:]w » Dy A:(Al’ 7AP)€A+’
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where AT ={A€RP: X 20, MTe=1, e=(1,---,1) € RP}.

Theorem 2.4.1 (Weak Duality). Assume that, for all feasible z of (NVP)
and for all feasible (u, A\, w,y) of (NVD)n, —3 70, 4;9;(-) is (F,,3,d)-
quasiconvex at u and assume that the following conditions hold:
(a) fi-)+(-)Twi is (F, e, p;, d)-pseudoconvex at u, with S+ _F_, Aip; = 0;
() 37 M(fi()+()Tws) is (F, a, p, d)-pseudoconvex at u, with f+p = 0,
then the following holds:

filz) + s(z|Ci) £ filu) +uTw;, for alli e {1,---,p}. (2.15)

Proof. As z is a feasible for (NVP) and (u, A, w, y) is feasible for (NVD) 4,

we have
D 9(@) 2023 pig;(u)
=1 i=1
By the (F, a, 3, d)-quasiconvexity of — e Y595 (u), it follows

F(x ZyJVgJ(u < —Bd*(z,u). (2.16)

On the other hand, by (2.13) and the sublinearity of F', we have

F(z,u;a(z,u) Y M(V fi(u) + wi) + F (2,4 —o(z,u) > V()
i=1 j=1
> F(z,u; oz, u) (Y M(V filu) + wi) Zyﬁgg(u (2.17)

=1

=0.
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Combination (2.16) and (2.17) gives

F(z,u oz, u) Z M(Vfiu) +w)) 2 —F(z,u—afz,u) Yy y;Vi(u)

j=1
> [d(z,u). (2.18)
Now, suppose that contrary to the result, (2.15) holds. From (2.15) and
zTw; < 5(z|C;), we have
filx) + 27w, < filz) + s(z|Cy)
< filu) + uTw;. (2.19)

By (a), we get

F(z,u; oz, u)(V fi(u) + w;)) < —pid?(z,u). (2.20)
From, A € A*, (2.20) and the sublinearity of £, we have

p P

F(z,u; a(z,u) Z M(Viu) +wy)) = Z MF(z,u; oz, u)(V filu) + w;))

=1 i=1

< (- Z/\ipi)d2(a:,u). (2.21)

i=1
Since §+ > %, Aipi 2 0, it follows from (2.21) that
P

F(z,u; a(a:,u)Z)\i(Vf,—(u) +w;)) < Bd(z,u),

i=1
which contradicts (2.18). Hence (2.15) cannot hold.
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Suppose now that (b) is satisfied. From, A € At and (2.19), it follows
that

r P

D Alfile) +2wi) < D ON(i(w) + uTwy).

i=1 i=1
Then, by the (F, a, p, d)-pseudoconvexity of Y 7 Xi(f;(-) + (-)Tw;) at u,

P

F(z,u;a(z,u) Z MV fi(w) +wi)) < —pd?(z, u). (2.22)

i=1

Since f 4 p 2 0, it follows from (2.22) that

F(z,u; a(a:,u)z/\i(Vfi(u) +w;)) < Bd*(z,u),

i=1
which contradicts (2.18). Hence (2.15) cannot hold. O

Theorem 2.4.2 (Strong Duality). If £ € S is a weakly efficient solution
of (NVP), and assume that there exists z* € R" such that (Vg;(z), z*) >
0, for all j € I(Z), then there exists A € R?, w; € C;,i = 1,---,p, § €
R™ such that (Z, X, w,7) is feasible for (NVD)y and z7w; = s(Z|C), i =
1,---,p. Moreover, if the weak duality holds, then (Z, A, @, %) is a weakly
efficient solution of (NVD),,.

Proof. By Theorem 2.2.2, there exists A € R?, § € R™ and w; € C;,i =
17 Y such that Zf:} ;\z(vfl(j)+u_)1)_zgn:1 g]v-q.?('i) = O’ Z:ll ng](i‘) =
0, 9,20, 7=1,--- mand w; € C;, i = 1,---,p. Thus (Z,)\,w,7) is a

feasible for (NVD)y and z7w; = s(Z|C;), i = 1,--- ,p. By weak duality,
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(f1(@)+5(ZICr), -, fo(@) +5(2ICp)) # (filu) +uTwr,- -, fo(u) +uTwy) for

any (NVD)y feasible solution (u, A, w, ). Since zTw; = s(Z|C;), we have
(A@) +z"0, -, f(&) + T7@p) £ (filw) +wTw, -, folu) + ulwy).

Since (Z, A, w,7) is a (NVD) )y feasible solution, and (z, X, @, §) is a weakly
efficient solution of (NVD),,. Hence the result holds. O

If Iy = M, I, = 0, then (NVD) is reduced to the Wolfe type dual
(NVD)y.

(NVD)w Maximize

(fi(w) + uw, — Z Y395(w), - s Fow) +uTwp — > y50(u))

j=1
P m

subject to > M(Vfi(u) +wi) — Y 4 Vg;(u) =0, (2.23)
i=1 j=1
ngoyjzl)”'amy

W; EC’iy 7': 1: y Dy )‘: (Alv"' aAP) EA+7

where A" ={ A€ RP: X20, Me=1, e=(1, - ,1) € RP}.
Theorem 2.4.3 (Weak Duality). Let z be a feasible for (NVP) and
(u, A\, w,y) a feasible for (NVD)y . Assume that

(@) £i(-) + ()Twi = 27, 9505() is (F, e, pi, d)-pseudoconvex at u, with

P Aipi 20 0r

(b) 2 N(fil) + ()Twy) — > i1 Y395 () is (F, a, p, d)-pseudoconvex at

u, with p = 0.
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Then the following holds:
filz) + s(z|Cs) &£ filuw) + wTw; — Zy]g] ), foralli e {1,---,p}.

Proof. Suppose contrary to the result, fi(z) + s(x|Cy) < fi(u) + uTw; —
Z;-n:l y;9;(u) holds. Then

filz) + 7w < fi(z) + s(2|C;)

< fi(u +u w; — Zy]g] (2.24)

Since fi(z) + zw; — 371, y395() < filw) + uTw, — YT yi95(w).

By (a), we get

F(z,u; oz, u)(V fi(u) + w; — Zijgj(u))) < —pid*(z, ).

j=1
Sublinearity of F,

P

F(z,u; a(:c,u)(z J{(V fi(w) + w;) Zy]Vg] (u))) Z/\lp1 d*(z,u)

=1
Since 0 > —(3°F_, Aipi)d®(z, u), which contradicts (2.23). Hence the result
holds.

Suppose that (b) is satisfied. From, A € A* and (2.24), it follows that

p

Z X(fi(@) + 2Tw;) - Zngj($> < Z i(filw) +ulw;) Zyygj

i=1 j=1 i=1
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Then, by the (F, o, p, d)-pseudoconvexity of  7_, )\i(fi(~)+(-)Twi)—Z;n=1 v;95(+)

at u,
P
F(z,u;a(z,u)(z J(V fi(u) + w;) Zy]Vg] ) < —pd*(z,u).
i=1

Since 0 > —pd?(z, ), which contradicts (2.23). Hence the result holds. O

Theorem 2.4.4 (Strong Duality). If Z € S is a weakly efficient solution
of (NVP), and assume that there exists z* € R™ such that (Vg;(Z),z*) >
0, for all j € I(Z), then there exists A € R?, w; € Ci,i = 1,---,p, § €

R™ such that (Z, A\, w, ) is feasible for (NVD)y and z7w; = s(z|C;), i =

1,---,p. Moreover, if the weak duality holds, then (Z, A\, w,¥) is a weakly
efficient solution of (NVD)y.

Proof. By Theorem 2.2.2, there exists A € R?, 7 € R™ and w; € C;,1 =
L,--+,p,suchthat 350 M(V fi(Z)+@s) - Y7L, 4;Vg;(£) = 0, SF_) 7,9;(7) =
0,920, j=1--,mand w; € C;, i = 1,---,p. Thus (Z,\,@,7)
is a feasible for (NVD)y and z7w; = s(Z|C;), i = 1,---,p. Notice that
fi(Z) + s(Z|C) = fi(@) + 37w = fi(&) + TTw — Y1, §;9;(T). By weak

duality,

(F1(Z) +s(ZIC), -, f,(T) + s(TICy)

£ (filu) +u"wr =D yi05(w), -, folu) +uTw, =Y yi05(w))

J=1 7=1

where (u, A, w, y) is any feasible solution of (NVD)y, . Since z7w; = s(Z|C;),

we have
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(@) +3T0 = 3 5i9;(@). (@) + 770, = D _5505(2))

Jj=1
£ (f(w) +uTwn =Y yig;(u), -, folwr) + 0w, — Y 05(w)).
j=1 j=1
Since (Z, A\, w,§) is a feasible solution of (NVD)w, (Z,\,@,7) is a weakly

efficient solution of (NVD)w . Hence the result holds. a
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Chapter 3

Optimality and Duality for Nondifferentiable

Fractional Programming Problems

with (V| p)-Ratio Invexity

3.1. Introduction

Duality and optimality for nondifferentiable multiobjective programming
problems, in which the objective function contains a support function was
studied by Mond and Schechter ([56]). Based on this results, Yang et al.
(|78]) studied Wolf type and Mond-Weir type dual problems for a class of
nondifferentiable multiobjective programs. Bector et al. ([5]) derived Fritz
John and Karush-Kuhn-Tucker necessary and sufficient optimality conditions
for a class of nondifferentiable convex multiobjective fractional programming
problems and they established some duality theorems. Following the ap-
proaches of Bector et al. ([5]), Liu ([45, 44]) obtained necessary and sufficient
conditions and derived duality theorems for a class of nonsmooth multiobjec-
tive fractional programming problems involving either pseudoinvex functions
or (F,p)-convex functions. Jeyakumar ([29]) defined p-invexity for nons-
mooth optimization problems, and Kuk et al. ({39]) defined the concept of
(V, p)-invexity for vector valued functions, which is a generalization of the
V-invex function ([33, 55]).

On the other hand Reddy and Mukherjee ([64]) applied a generalized ratio

invexity concept for single objective fractional programming problems and
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Kim et al. ([38]) obtain the necessary and sufficient optimality theorems and
generalized duality theorems for weakly efficient solutions under generalized
(F, a, p, d)-convexity assumptions. Very recently Liang et al. ([47]) estab-
lish sufficient conditions and duality theorems for multiobjective fractional
programming problems, which is for an efficient solution under (F,q, p, d)-
convexity assumptions. Kim and Kim ([36]) present nonsmooth fractional
programming under suitable p-invexity assumptions. Also Kim et al. ([37])
present multiobjective fractional programming with generalized invexity.

In this chapter, we introduce a nondifferentiable multiobjective fractional
programming problem (NFP) with (V] p)-ratio invexity. We formulate the
concept of (V, p)-ratio invexity and establish Fritz John and Kuhn-Tucker
necessary and sufficient optimality conditions for weakly efficient solutions
of this problem, in which each component of the objective function contains a
term involving the support function of a compact convex set. Also we estab-
lish Mond-Weir type dual problem (NFD),, and Wolfe type dual problem
(NFD)w to the primal problem (NFP) and prove the weak and strong

duality theorems.

Now we consider the following multiobjective fractional programming
problem,

L fi(@) + s(z]|Ch) fo@) + (2] Cy)
(NFP) Minimize ( L (@) y (@) )

subject to h(z) £0, =z € X,

where Xo is an open set of R™, f := (f1,-- , fp) : Xo = R?, g:= (g1, ,4p) :

Xo — RP, and h := (hy, - ,hm) : Xo — R™ are continuously differentiable
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over Xo; for each ¢ € P = {1,2,--- ,p}, C; is a compact convex set of R"
and s(z|C;) = max{(z,y) | y € C;}. Further let, S = {z € X, : h(z) < 0}
be the set of all feasible solutions and I(z) := {¢ : hi(z) = 0} for any
z € Xo. Let ki(z) = s(z|C;), 1=1,--- ,p. Then k; is a convex function and
Oki(z) = {w € Ci| (w,z) = s(z|C:)} ([56]), where 8%k; is the subdifferential
of k;. We assume that f(z) 2 0 for all z € X and g(z) > 0 for all z € X,

whenever g is not linear.

We introduce the following definition due to Kuk et al. ([39)).

Definition 3.1.1. A vector function f : X, — RP is said to be (V, p)-invex
at v € Xo with respect to functions 7 and 8 : Xy x Xy — R” if there exists
a; 1 Xo x Xo — Ry\{0} and p; € R, i = 1,--- p such that for any z € X,
and fori =1,2,--- |p

?

os(a,w) | () = fiw)] 2 Vi(wn(e,w) + pillbi(z, w)

The function f is (V, p)-invex on Xy if it is (V, p)-invex at every point in Xj.

Theorem 3.1.1. Assume that f and g are vector-valued differentiable func-
tions defined on X, and f(z) + (w,z) = 0, g(z) > 0 for all z € X,. If
F() + (w,-) and —g(-) are (V, p)-invex at zo € Xp, then ﬂ;zL)wl is (V, p)-

Invex at o, where

iz, x :gi(x)a-zx 9:(z, 7o) = ! 1/2~xx
a(e, o) i(zo0) (=, %0), e, o) (gi(%)) b= o)

Proof. Let ki(z) = s(z|C;), ¢ = 1,--- ,p. Choose w; € Ok;(z¢). Let
r,Zo € Xo. By the (V, p)-invexity of f(-) + (w,-) and —g(-),
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—(fi(x Wy, T gi(z)—_gz(g:—())
(fil#o) + {wi, z0)) 9i(2)gi(zo) ]

1
= 9i(x)

[(Vfi(’IO) + wi)mi(x, To) + pi]|6: (=, 5'30)112]

fi(o) + (wi, To)
9:()gi(z0)

(T gi(z0)m (. z0) + pillos(z, ) 7]

Since g(z) > 0 for all z € X, we see that

(. % filz) + (wi, ) fi(zo) + (wi, zo)
ou( 3 0)|: gl(x) gi(x()) ]

gi(zo) [V ilzo) +wi AR SRR
= 5@ [ IR °>+P1H(gi($0)) 0i(, o) |

_fi($0)+<wi,:co> (2 V(2 _ fi(zo) + {ws, 7o) \1/2 PR
Gty Vo @on(@ o)+l () @ wo)l?)

Thus, we have

filz) + (wi,z)  fi(wo) + (wi, 7o)
0(@) w12

gi(zo) [Vfi(ﬂfo)gi(wo) + wigi(2o) — fi(wo) Vgi(zo) — (wi, To) Vgi(f)n,(x 20)
9:(2) (9:(0))? o

ol (os) B+ il (L T g ]

a;(z, zg) [
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filzo) + (wi, zo)
9i(%o)

gi(z)

_ %lz) {V( )m(x, Zo)

() o ey )

i gi (CCO)

Considering that

we have for all 7,

ai(x,xo)[fi(a:)gj-(gui,x) _ fi(xoz;(-x(oz;i,x@]
= g;i((xa?)) [v<fi(10)g;:xil;i’$0>)m(x, o) + pill (m)lﬂﬁi(m,xo)”‘z].

Therefore, the function &W is (V, p)-invex, where

g9i(z)

&i(x, zp) = gi(xo)ai(l",iﬁo),

0:(z,10) = (gi(io) ) 1/29¢(x, Zo)-

3.2. Optimality Conditions

In this section, we establish Fritz John and Kuhn-Tucker necessary and

sufficient conditions for weakly efficient solutions of (NFP).
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Theorem 3.2.1 (Fritz John Necessary Optimality Condition). If
zo € S is a weakly efficient solution of (NFP), then there exists \;, i =

17"' ' Dy “j: ]:1, ,msuchthat

> w(f "(3”0)9:;3(0’;’“ o) )+ > 13 Vhs(0) =0,

> uihs(zo) =0,
j=1

()\11"' 7Apuu‘l7"' aﬂ/m) 20> (AL"' 7)«;9,#1,"' 7#1".)7’40

Proof. Let ki(z) = s(z|C;), i = 1,--- , p. Since C; is convex and compact,

ki : R™ — R is a convex function and hence for all d € R”,

— lim ]C.,' ($0 + )\d) - ki(l‘o)
A—04 A

ki(zo; d)

is finite. Also, for all d € R™,

fit k' _ 1 I
() @0 = s [0(20) (VAi(a) ) + ax(oa)bi(oos )

~ f(@0) (Vu(0), d) — ki(w0) (Va(o), ).

Since zo is a weakly efficient solution of (NFP),

ot [9:(20) €V (o), d) + gu(mo)Ki (w03 ) — filao) (Vailzo), )
—ki(zo) <vg,-(x0),d)] <0,i=1,--.p

(Vhj(x0),d) <0, j € I(o)
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has no solution d € R". By Gordan theorem for convex functions, there
exists \; 20, i =1,--- ,pand pu; 20, j € I(zp) are not all zero such that
for any d € R,

—ki(zo) (Vgi(ﬂ?o))d)] + Y 1 (Vhy(zo),d) 2 0. (3.1)

F€I(zo)

Let A= {37%, G;(%‘W[gi(wo)(vfi(ﬂio) + w;) — (fi(zo) + ki(:co))Vgi(xo)] +
> jer(zo) MV hi(zo) | wi € Oki(xo), © = 1,---,p}. Then A is a nonempty
closed convex set and 0 € A. Suppose to the contrary that 0 ¢ A. By sep-

aration theorem, there exists d* € R™, d* # (0,--- ,0), such that for all a €
A, (a,d*) <0, that is,

P Gy (96(20)(V filwo) + wi) — (filo) + Ki(20)) Vgi(zo), d*)
+ etz M (VRi(20),d*) < 0, for all w; € Ok;(xo). Hence

=1 m[ i(z0) (Vfi(wo), d*) + gi(wo)ki(wo; d*) — filzo) (Vgi(z0), ")
k(o) (Vgi(o), d*)] +3 e roay 15 (Vhi(@o), d%) < 0, which contradicts (3.1).

Since 0 € A, there exists w; € 0k;(xo), 1 =1,--- ,p, such that

3 94 80) (Y Fiwo) +uwe) = (o) + {wi,20)) Vo)

+ Z 14V hi (o).

jEI(wo)
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Letting u; = 0, for all j & I(xg), we have

fi(zo) + (wi, z0) - o
0= Z AV ( 0 )+ ; 14V h (o)
and Z;‘ll u’JhJ("EO) = 07 ()\17 e a)‘p’ M1, 7um) # 0. Since ak‘l.(xO) = {'LU.,; S

Ci | {wi, zo) = s(z0|C:)}, we obtain the desired result. 0

Theorem 3.2.2 (Kuhn-Tucker Necessary Optimality Condition). If
zo € S is a weakly efficient solution of (NFP), and assume that there exists
z* € R" such that (Vh;(2¢),2*) >0, 7 € I(zp). Then there exist \; 2 0, 1 =
L--,p, 4;20,5=1,--- mand w; € C;,i = 1,--- ,p such that

Z)‘V< (o) + (wi, o) >+§:#th3‘($0)=0,

91(550) j=1

(wi, zo) = s(xo|Cy), w; € Cy, i=1,---,p,

Zujhj(%) =
(Ao Ap) #(0,---,0).

Proof. Since xy is a weakly efficient solution of (NFP), by Theorem 3.2.1,

there exists (Ar,, Ap, i1, fbm) # (0,---,0). Since prhi(zo) = 0 and
pi 2 0, for all k € I(xo), ux = 0, for all k ¢ I(zo). Hence

Z)\ V(fz o) <wi,ico>) + Zuthj(zg) = 0. (3.2)

gz xO)
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and (w;, 2o) = s(2o|C;), i =1, ,p. Assume that there exists z* € R™ such
that (Vh;(zo),2") > 0, for all j € I(zo). Then (Ar,---,X,) # (0,---,0).
Ab absurdo, suppose that (A,---,A,) = (0,---,0). Since (1, , ftm) #
(0,--+,0), ie, pj 2 0, forall j € {1,---,m} and hence i; > 0 for some
i€{1,--- ,m}. From (3.2), 0= 37", 41;Vh;(zo). However,

0 = < Z ﬂthj(CL'o),Z*>

J€l(zo)
= D 1 (Vhi(z), 2*)
jel(z0)
> 0.
This is a contradiction. Hence (A1, -+, ;) # (0,---,0). 0

In the following, we present some sufficient conditions for (NFP) under

appropriate (V, p)-invexity assumptions.

Theorem 3.2.3 (Kuhn-Tucker Sufficient Optimality Condition). Let
zq be a feasible solution of (NFP). Suppose that there exists A = (A, - -+ , )

€ERE,A>0, 32 XN=1landp=(p1, - ,ftm) € R such that

> A,-v(f i(x‘))g:(;il;”" “’O)) 31 Vh(ao) =0, (3.3)

(wi, z0) = s(z0|Ci), wi € Cy, i=1,--- ,p,

> t5h;(wo) = 0.
=1
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If f(-) + (w,-) and —g(-) are (V, p)-invex at zp and k is (V,0)-invex at zq

with respect to the same 7 and "7 A\ip; = 0 and > =105 = 0, where

a;(z, ) = (M)ai(x,xo), 0:(z,20) = (=2+5)0i(z, o).

9i(zo) 9i(xo)

Then z is a weakly efficient solution of (NFP).

Proof. Suppose that o is not a weakly efficient solution of (NFP). Then

there exists z € S such that fiEtsEC) fizo)ts(20lCi)  Gipee (ws, zp) =
gi(x) 9i(zo)

S(EQIC,'), 1= 17 Y 2
f@) + (wi,z)  _ filx) + s(2]Ci)
9i(x) N gi(z)

fi(zo) + s(20|Cy)
9:(Zo)

filwo) + (wi, zo)
9i(wo) '

Since &;(z, zo) > 0, we have

= fi(z) + (wi, z) ~ fi(zo) + (wi, To) .

a; (T, T (—————)<ai x,x ( )’ 121,~--,p,
( ) 9:(x) (& 20) 9i(zo)

By the (V, p)-invexity of f(-) + (w,-) and —g at z, and Theorem 3.1.1, we

have

filzo) + (wi, zo)
V( 9:(o)

)U(%%) + pil|6:(z, z0)||* < 0.

Hence we have

Z/\iv<fi(ﬂ?0)gj('z<:;)i, IO))T](za fL'O) + Z)\wi”@(ﬂf,zo)uz < 0.

=1
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Since Y F_ Aipi]|0;(x, zo)||? + > 93ll6; (2, zo)|* 2 0, it follows from (3.3)

that

> Vhs(zon(z,20) + Y ollf; (z, zo) |2 > 0.

Then by the (V, o)-invexity of h, we have
Zﬂj(ﬂﬂ, Zo) [Hjhj(x) - lijhj(ﬂ«"o)] > 0.
=1

Since p;h;(zo) =0, j=1,-+ ,m, we have ", §;(x, Zo)u;h;(x) > 0, which
contradicts the conditions §;(z, zo) > 0, p; = 0 and h;(z) < 0. Thus x, is a

weakly efficient solution of (NFP). O

3.3. Duality Theorems

In this section, we introduce dual problems for a weakly efficient solutions
based on (V] p)-invexity assumptions. We propose the following Mond-Weir

type dual problem to the primal problem (NFP):

(NFD),; Maximize (fl @+ iy | flw) + (wy, u>>

o (u) 9p(u)
. ww
subject to ZA v( p u) ) + Z 1iVh(u) = 0, (3.4)
Y uihi(w) 20,
j=1

wiECi, t=1,---,p,
(1, i) 20, A= (M-, Ap) € AT,
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where At ={AeRP: A 20, Te=1,e=(1,---,1) € RP}.

Theorem 3.3.1 (Weak Duality). Let z € S be a feasible for (NFP) and
(u, A\, w, 1) be a feasible for (NFD),. Assume that the functions f(-) +
(w,-),—g(-) are (V,p)-invex functions over S, and if h is (V, o)-invex at u
with respect to the same 1 with >7_; Aip; = 0 and 3772, 0; 2 0.

Then the following cannot hold,

f(2) +5(2|C) _ flu) + (w,u)
g(x) glu)

Proof. As z is feasible for (NFP) and (u, A, w, p) is feasible for (NFD)y,
we have 377 pihi(z) < 0 < 37T pshy(u). Since B(z,u) > 0, we have
2 e B, wnshs(z) < 377, By(x, u)pshy (w). By the (V, o)-invexity of h;(u),
j = 17 cer,Mm,

> wiVis(wn(e,u) + Y wo;)0;(,u)|? < 0.
j=1 j=1

Using (3.4), we obtain

Sy (ML) 5 7 ooy (3.5

Now suppose, contrary to the result, since (w;, z) < s(z|C;), we have for all
ie{l,---,p}
fi(z) + (wi, z) fi(x) + s(z|Cy)
gi(z) gi()

fi(u) + (wi, )
gi(u) '

<
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By Theorem 3.1.1,

)[ft(x) + <wi’ $> _ ft(u) + (wi’u>]
9i(z) gi(u)

di(m,u

> v(fi(u);(y’ Dyn(a, ) + o, )P

By using A € A", we have

P ) LICRAIE RV YRR CY
i=1 ' i=1

Since Y%  \ipi||0:(x, u)||? + > ey 1505165 (z, u) | 2 0, it follows from (3.6)
that

g9i(u)

Soay (et ) < S

which contradicts (3.5). O

Theorem 3.3.2 (Strong Duality). If 7 is a weakly efficient solution of
(NFP), and assume that there exists z* € R™ such that (Vhi(z),z*) >

0, 7 € I(Z), then there exists A € R, i € R™ and @ € C such that
(T, X, 10, 1) is feasible for (NFD)y and (w, %) = s(z|C). Moreover, if the
weak duality holds, then (Z, A, w, fi) is a weakly efficient solution of (NFD) .

Proof. By Theorem 3.2.2, there exists A € R?, i € R™ and w; € C;, i =

1,---,p such that > % S\iV(%’;’i—@> + 2 B Vh(T) =0, (w;,z) =

s(z|C;), w; € C;, i = 1,--- ,p and > it (%) = 0. Thus (Z, A, w, &) is
a feasible for (NFD)y, (w;, %) = s(Z|C;), i = 1,--- ,p. By weak duality,
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! (5);;()510) gL (”)Jr w”> for any (NFD),, feasible solution (u, A, w, ). Since

(w,z) = s(z|C), we have f(x)“(L(wz £ f(”LJ(’u;"“). Since (Z, A, W, i) is a fea-

sible solution of (NFD)y and (%, ), w, 1) is a weakly efficient solution of
(NFD),,. Hence the result holds. O

Now we propose the following Wolfe type dual problem to the primal
problem (NFP):

(NFD)y Maximize (fl( (wr, u +Z% ,

fp(u+<wp,u> Zm )

subject to va(f’ w“ ) Zp,Vh ) =0, (3.7)

w,e€Cii=1---p,

(/1‘17"' aﬂ'm)goa )‘:()‘17 >Ap) €A+7
where AT = {AeRP: X2 0,MTe=1,e=(1,---,1) € RP}.

Theorem 3.3.4 (Weak Duality). Let z € S be a feasible for (NFP) and
(u, A, w, ) be a feasible for (NFD)y. Assume that the functions f(-) +
(w,),—g(-) and h(-) are (V, p)-invex functions over S with respect to the
Aipi = 0.

Then the following cannot hold,
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f(2) +5@lC) _ f)+(wu) §~
) < o(0) +Zﬂ1h1( )

Proof. As z is feasible for (NFP) and (u, A\, w, i) is feasible for (NFD)y .

Now suppose, contrary to the result, since (w;, ) < s(z|C;), we have for all

i€ {l,---,p}

film) +wom) o fl) +s(alC)
9i(x) N 9:(7)

< fZ( wh +ZMJ

Since Y7"; pihi(z) <0, and for i =1,--- ,p.

f,(z w,, ZIJ‘] )gl( (w;, u) N ZNJ

Since h is (V, p)-invex at u, it follows from Theorem 3.1.1 that

[ 5 S )]

9 (u)

= [v (") é}mj(w]n(m,u) + (W

By using A € AT, we have

[Z,\v(ﬁ v )+th )|nta. szpzne:cu)n?

(3.8)
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Since Y_P_ A\ipi|6i(z, w)||* 2 0, it follows from (3.8) that

[z_pj Ao (? "(“)g‘;(é;‘”’ “) i Vs () |n(z,w) < 0,

which contradicts (3.7). a

Theorem 3.3.5 (Strong Duality). If T is a weakly efficient solution of
(NFP), and assume that there exists z* € R™ such that (Vh;(z),z*) >
0, j € I(Z), then there exists A € R?, i € R™ and w € C such that
(Z, A\, W, fi) is feasible for (NFD)y and (w,Z) = s(Z|C). Moreover, if the
weak duality holds, then (z, A, w, fz) is a weakly efficient solution of (NFD)y .

Proof. By Theorem 3.2.2, there exists A € R?, i € R™ and w; €

Ci, ¢ = 1,--- ,p such that >F LV(%) + >0, B Vhi(Z) = 0,
(wi,z) = s(z|Ci), w; € Ciy ¢ = 1,---,pand Y70 f;hi(T) = 0. Thus

(Z,\, 0, 1) is a feasible for (NFD)w, (w;,Z) = s(Z|C;), i = 1,--- ,p. By

weak duality, £ (i);;()ilc) ¢ 1 (“LJ{:;"’“) + 370 uihj(u)e for any (NFD)y fea-

; ; ; f@+s@IC) _ f@+Hwa) _ f(@)+(0,5)
sible solution (u, A, w, ). Notice that G IR R C R

E?:l fiih;(Z)e. Since %WLZ;; fiih;(T)e £ ﬂ’—%ﬁ;"—’“WEL pshj(ue.

Since (Z, \, @, i) is a feasible solution of (NFD)y and (Z, X, @, fi) is a weakly
efficient solution of (NFD)y . Hence the result holds. O
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Chapter 4

Symmetric Duality for Multiobjective
Programming Problems with

Cone Constraints

4.1. Introduction

A nonlinear programming problem and its dual are said to be symmetric
if the dual of the dual is the original problem. Symmetric duality in non-
linear programming in which the dual of the dual is the primal was first
introduced by Dorn ([17]). Danzig, Eisenberg and Cottle ([18]) first formu-
lated a pair of symmetric dual nonlinear programs involving a scalar function
f(z,y),z € R*,y € R™ that is required to be convex in z for fixed y and
concave in y for fixed x. Mond and Weir ([59]) have given a different pair of
symmetric dual nonlinear programs requiring f(z,y) to be pseudoconvex in
z for fixed y and pseudoconcave in y for fixed z. Weir and Mond ([76]) dis-
cuss symmetric duality in multiple objective programming. The duals given
there are reduced to those known for scalar valued symmetric programming
and also some more recent results in multiobjective duality. The results were
based on the concept of proper efficiency. Mond and Weir ([60]) presented two
pairs of symmetric dual multiobjective programming problems for efficient
solutions and obtained symmetric duality resutls concerning pseudoconvex/
pseudoconcave functions. Nanda and Das ([61]) also studied the symmet-

ric dual fractional programming problem for arbitrary cones assuming the
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functions to be pseudo-invex. The symmetric duality result was generalized
by Bazaraa and Goode ([8]) to arbitary cones. Kim et al. ([43]) studied a
pair of mulitobjective symmetric dual programs for pseudo-invex functions
and arbitary cones. Devi ({16]) formulated a pair of second-order symmet-
ric dual programs and obtained duality results involving 7-bonvex functions.
Recently, Suneja et al. ([69]) formulated a pair of symmetric dual programs
over arbitary cones. In this chapter, we formulate Mond-Weir type and Wolfe
type multiobjective symmetric dual problems with cone constraints. We ob-
tained duality results under weakly efficient solutions involving pseduo-invex
functions for Mond-Weir model and K-preinvex functions for Wolfe model.
We establish the weak, strong, converse and self duality theorems for these

problems.

4.2. Notations and Preliminaries

We consider the following mulitobjective programming problem.

(CP) Minimize f(z)

subject to —g(z) € Q, z € C,

where f : R* - RP, g: R" — R™ and C' C R", Q) is closed convex cone with
nonempty interior in R™. Let X° = {z € C| — g(x) € Q} be the set of all
feasible solutions of (CP).

Now we define generalized weakly efficient solution with respect to a

closed convex cone K with nonempty interior in R™.
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Definition 4.2.1. A point Z € X° is a weakly efficient soluition of (CP) if

there exist no other z € X° such that f(z) — f(z) € intK.

Definition 4.2.2 ([11]). A differentiable function f : R® — R is pseudo-

invex with respect to the n: C' x C — R™ if for all (z,u) € R™ x R",
Nz, w) Vi) 20 = fz)= f(u).

Definition 4.2.3. The positive polar cone K* of K is defined by

K'={zeRP|27220 forall z€ K}.

Definition 4.2.4. Let f : R* — R be a function. Then f is K-preinvex
with respect to the 7 if there exists a function 7 : C x C — R” such that for
any z,y € R™ and « € [0, 1],

af(z) + (1 -a)f(y) — fly+an(z,y) € K.
When K = R,, the above definition reduced to one of the scalar prein-
vexity ([75]).

Remark 4.2.1. If f : R* — R is differentiable and K-preinvex with re-
spect to 1 then f(z) — f(y) — Vf(y)"n(z,y) € K. Moreover, for all \ €
K*, (AXTf)(z) = (N )(y) = VT F)(y) n(z,y) 2 0.

4.3. Mond-Weir Type Duality Theorems

Now we formulate the following Mond-Weir type multiobjective symmet-

ric dual problems:

92




(MSP)y K — minimize

subject to

and

(MSD),, K — maximize

subject to

f(z,y)

S Cl
—vy()‘Tf)(x)y) € 02*)
y V(X f)(z,y) 20,

A€ K* ecintK, Me=1,

f(u,v)

v ey
VZ(ATf)(u,v) e Cy",

u"' V(AT £)(u,v) <0,

A€ K* ecintK, \e=1,

(4.1)
(4.2)

(4.3)

(4.4)

(4.5)

where f : R" x R™ — RP? is a twice differentiable function, C; and C5 are

closed convex cones in R", R™ with nonempty interiors, respectively. C; and

C3 are positive polar cones of C; and Cj, respectively, K is a closed convex

cone in RP such that intK # 0.

Let V(AT f)(z,y) and V(AT f)(z,y) are gradients of (M f)(z,y) with

respect to = and y. Similarly, V..(A\T f)(z,y) and V(AT f)(z,y) are the

Hessian matrices of (A f)(z, y) with respect to = and y respectively.

We establish the symmetric duality theorems for (MSP) s and (MSD) ;.
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Theorem 4.3.1 (Weak Duality). Let (z,y) be feasible for (MSP),; and
let (u,v) be feasible to (MSD)y. Let (ATf)(-,y) be pseudo-invex with
respect to 7y at u, and —(AT f)(z,-) be pseudo-invex with respect to 7 at y.

If m(z,u) + v € Cy and my(v,y) +y € Co, then
flz,y) — flu,v) & —intK.
Proof. From (4.4) and 71 (z,u) +u € Ci,
(m(z,w) +u)"Va(AT £)(u,v) = 0.

From (4.5), ni(z, u) Vo (AT f)(u,v) 2 0. Since (AT f)(-, y) is pseudo-invex with

respect to n; at u,
W F)(,0) 2 (AT f)(u,v). (4.6)
From (4.1) and ne(v,y) +y € Cs,
(m2(v, ) +9) "V, (AT F)(z,y) <0.

From (4.2), n2(v,9)"V,(AT f)(z,y) < 0. Since —(A\T f)(z, -) is pseudo-invex

with respect to 7 at y,
(W) (=) =2 (N f)(,v). (4.7)
From (4.6) and (4.7),

)z, y) 2 (VT f)(w,v). (4.8)

Suppose to the contrary that

flz,y) — f(u,v) € —intK.
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Since A € K* and XA # 0, (AT f)(z,y) < (AT f)(u, v), which contradicts (4.8).
O

In order to prove the strong duality theorem, we now obtain necessary

optimality conditions for a point to be a weak minimum of (CP).

Lemma 4.3.1([69]). If 2* is a weakly efficient solution of (CP), then there
exist & € K* and 3 € * not both zero such that

@V (@) +87Vg(x))(z—z*) 20, forallz € C

Brg(z*) =0,

equivalently, there exist « € K*, § € Q* and §; € C*, (a, (3, 1) # 0 such
that

ol Vf(z*) + 87Vg(e") - BT =0,
Arg(a") =0,

Tox
12t =0.

Proof. (Sufficiency) Substituting z = 0 and =z = 2z*,
we get (a" V f(z*) + fTVg(z*))z* = 0. Since a7V f(2*) + ATV q(z*) € C*,
Let 51 = "V f(z*) + 37Vg(z*). Then

aTVf(z*) + ﬁTVg(a:*) — AT =0,

Tyt = 0.
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(Necessity) Since oIV f(z*)+ TV g(z*) = 51 € C*. we get (aTV f(z*)+
BTVg(z*))z 20, for all z € C, and fTz* = (T V f(z*) + BT Vg(z*))z* = 0.
Therefore

@IV f(x*) + BTVg(z"))(z —2*) 20, forallz € C

BTg(z*) = 0. 0
Theorem 4.3.2 (Strong Duality). Let (z,7, \) be a weakly efficient solu-
tion for (MSP),s. Assume that

(1) V., (AT £)(Z,7) is positive definite.

(I1) {Vyfi(Z,9), t =1,2,--- ,p} is linearly independent.

Then (Z, 7, A) is feasible for (MSD) s, and the objective values of (MSP)
and (MSD) ), are equal. Furthermore, under the assumptions of Theorem
4.3.1, (z, 7, A) is a weakly efficient solution for (MSD) .

Proof. Since (z,%,)) is a weakly efficient solution of (MSP)y, from

Lemma 4.3.1, there exist o € K*, 01 € Cy, B2 € Ry, B3 € Cf, B4 € K,

(o, Br, B2, B3, B1) # 0 such that for each (z,y) € C; x Cy and X € K*,

oV f(2,9) + (B — Boi) Ve AV f)(Z,9) — B3 =0, (4.9)
(o= BNV, f(Z,5) + (B - B9) V,, OTH)E5) =0, (4.10)
Vyf(Z,7)(Br — B25) — Ba = 0, (4.11)
BIVL,(\Tf)(Z,9) =0, (4.12)
gy v, (N f)(z,7) =0, (4.13)
B3z =0, (4.14)
Bir=0. (4.15)
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Multiplying (4.10) by (61 — f2) and applying (4.12) and (4.13) gives

oV f(Z,9)(B1 = Baf) + (B1 — BoB) Vi W £)(Z,7)(B1 — B27) = O.

Using the result in equality (4.11), we get

o' By + (B — Bai) " Vi (W £)(2,5) (81 — Beg) = 0.

Since € K* and 34 € K, aT3; = 0 and hence

(81 — BaB) " Vo AT £)(Z,9) (61 — Bay) £ 0.

Since V,, (AT f)(%,§) is positive definite, then 3, = 57. By (4.11), By = 0.
From (4.10) and the fact that 81 = Boff, (o — B22)TV,f(Z,9) = 0. Since
V,f(Z,7y) is linearly independent, o = ByA. If a = 0, then §; = 0, f; =
0, B3 = 0, 84 = 0. This is not possible since a # 0, f> > 0. By (4.9) and
the fact that 5, = By, and a = o),

GV (AT f)(Z,9) = 85 € CF. (4.16)

Since 5 > 0, V(AT f)(z,%) € C*. Multiplying (4.16) by Z and using equa-
tion (4.14), we get BT V(AT f)(Z,7) = 0. Since 8> > 0, ZTV (AT f)(,§) =
0. Thus (Z,%,A) is feasible for (MSD); and the objective functions are
equal.

By Theorem 4.3.1, f(Z,7) — f(u,v) € —intK for any (MSD),-feasible
solution (u,v, A). Since (Z,§, A) is a (MSD) -feasible solution, (Z,7, A) is a
weakly efficient solution of (MSD),,. Hence the result holds. a
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Theorem 4.3.3 (Converse Duality). Let (@,7,)) be a weakly efficient
solution for (MSD),s. Assume that V,.(A\Tf)(@,?) is positive definite and
the set {V.fi(%,%), i = 1,2,--- ,p} is linearly independent, then (4,7, ) is
feasible for (MSP)js and the objective values of (MSP)y and (MSD)

are equal. Furthermore, under the assumptions of Theorem 4.3.1, (%,7, }) is
an weakly efficient solution for (MSP) ;.

Proof. Tt is analogus to the proof of the lines of Theorem 4.3.2. O

Assume that m = n, f(z,y) = —f(y,z), that is, f is skew-symmetric
and C; = Cy. It follows that (MSD),, may be rewritten as a minimization

problem:

(MSD')yy K — minimize  —f(u,v)
subject to v e Cy
V(AT f)(u,v) € CyF
uI Vo (AT f)(u,v) <0
re K, ecintK, \e=1.

Since V. f(u,v) = =V, f(v,u), the problem (MSD’), reduces to

K — minimize  f(v,u)
subject to v € Cy
~V,(\T f)(v,u) € Cy*
u"'V, (AT f)(v,u) 20
Ne K*, ecintK, M\Te=1.
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An optimization problem is said to be self-dual if, when the dual is written
in the form of the primal, the new program so obtained is the same as the
primal problem.

Now we establish the self-duality of (MSP),,.

Theorem 4.3.4 (Self Duality). Assume that m =n, f(z,y) = —f(y, z),
C) = C; and the conditions of Theorem 4.3.1 are satisfied, and if (z,9,))
is a weakly efficient solution for (MSP),, and V,,(ATf)(Z,7) is positive
definite and the set {V,fi(Z,7) : « = 1,2, ,p} is linearly independent,

then (7,Z, A) is a weakly efficient solution for both (MSP),; and (MSD) ,,
and the common optimal value is 0.

Proof. By Theorem 4.3.2, (Z, 7, \) is a weakly efficient solution for (MSD) s
and the optimal values of (MSP),; and (MSD)y, are equal to f(Z,7) .

From self-duality, (7, Z, A) is feasible for both (MSP)y; and (MSD),, and
using Theorem 4.3.1 and Theorem 4.3.2, we get that it is optimal for both

problems. Since f is skew-symmetric, we have f(Z,9) = — f(¥,Z). Hence

f(:?:,ﬂ) = f(g’ .1_3) = —f(f’g):

and so

4.4. Wolfe Type Duality Theorems

Consider the following Wolfe type multiobjective symmetric dual prob-

lems:
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(MSP),, K —minimize  f(z,9) — [y"V,(\T f)(z,y)le
subject to z € C
~V,(XTf)(z,y) € &, (4.17)

MeEK* ecint K, NTe=1, (4.18)
and

(MSD),, K —maximize  f(u,v) — [u? V(AT f)(u,v)]e
subject to v € Cy
V(AT f)(u,v) € Cy*, (4.19)
AeK* eecint K, Nle=1,
where f : R® x R™ — RP be a twice differentiable function, C; and C, be
closed convex cones in R, R™ with nonempty interiors, respectively. C} and

C;5 are positive polar cones of C; and C5 respectively, K is a closed convex

cone in RP such that intK # 0.

We establish the symmetric duality theorems for (MSP )y and (MSD) .

Theorem 4.4.1 (Weak Duality). Let (z,y, A) be feasible for (MSP)y and
let (u,v, A) be feasible to (MSD)y respectively. Let f(-,y) be K-preinvex
with respect to n; for fixed y and — f(z, ) be K-preinvex with respect to 7,
for fixed z. If m(z,u) +u € Cy and (v, y) + y € Co, then

(f(z.y) - WV, Pz, y)le) — (Flu,v) — WV, (N £)(u, v)]e) & —intK.
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Proof. Since f(-,y) is K-preinvex with respect to 7, for fixed y, by Remark
4.2.1,

(AN (@,v) = (AT )(w,v) 2 m(z,u) V(X f)(u,v).
From (4.19) and m(z,u) +u € C4,
(m (@, u) + ) Vo (AT f)(x,v) = 0.

Hence

W)@, v) = (N )u,v) 2 —u" Vo (AT £)(u, v). (4.20)
Since — f(z, ) is K-preinvex with respect to 7; for fixed y, by Remark 4.2.1,
()‘Tf)(xvy) - ()‘Tf)(:cﬁ U) 2 - (U’ y)Tvy()‘Tf) (:L'7y)'
From (4.17) and ny(v,y) +y € Co,

(n2(v,y) + )TV, (AT f)(z,y) < 0.

Hence
W (,y) — A )z,0) 2 y"V, (A f)(z,p). (4.21)

From (4.20) and (4.21), we have

N £)(@,y) — AT ) (w,0) +u Vo (AT f)(u,0) — ¢V, (AT f)(z,y) 2 0. (4.22)
Suppose to the contrary that

(f(z,y) = "V, (N (@, 9)le) = (F(u, ) = [ Vo (NT ) (u,v)]e) € —intK.
Then A € K* and A # 0,

AT (@) =y VW )(,y) = W ) (w,0) +u? V(AT f)(u,v) <0,
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which contradicts (4.22). O

Theorem 4.4.2 (Strong Duality). Let (zZ,%, A) be a weakly efficient solu-

tion for (MSP)w . Assume that
(1) V(AT £)(%,9) is positive definite.
(I1) {V,fi(z,9), 1=1,2,--- ,p} is linearly independent.

Then (Z,y, A) is feasible for (MSD)w, and the objective values of (MSP)w

and (MSD)y are equal. Furthermore, under the assumptions of Theorem

44.1, (Z,y,A) is a weakly efficient solution for (MSD)y .

Proof. Since (Z,7,)\) is a weakly efficient solution of (MSP)y, from
Lemma 4.3.1, there exist @« € K*, 81 € Cy, 52 € Ct, 33 € K, (o, B1, Bo, B3) #

0 such that for each (z,y) € C; x Cy and A € K*,

o'V f(2,9) + (61 — (a"e)y) V(N )(z,9) - 65 =0, (4.23)
(@ = (" )NV f(z,5) + (B — (@Te)d) Vi AT f)(7,9) = 0, (4.24)
Vyf(Z,9) (@ e)g - i) + 83 = 0, (4.25)
BIV,(\Tf)(E,9) =0, (4.26)

5T =0, (4.27)
Bix=0. (4.28)

Multiplying (4.24) by (8, — (aTe)y),

(a = (@" )NV f(Z,9)(B1 — (a"e)p)

+(61 — (@' e)g) Vi (AT )(Z,9) (51 — (a”e)g) = 0.
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Using the result in equality (4.25) and (4.28), we get
o’ B3 + (B = (2" e)§) V(A f)(Z,9) (81 — (a"e)g) = 0.
Since a € K* and 33 € K, a3 2 0 and hence
(81— (@"e)y) " Vi (AT F)(B1 = (@Te)y) £ 0.
Since V., (AT f)(z, ) is positive definite, then
B = (a"e)y. (4.29)

By (4.25), B3 = 0. From (4.24), (a— (aTe)\)TV, f(Z,7) = 0. Since V, f(Z, 7)
is linearly independent, o = (a”e)\. This gives a # 0, since if o = 0, then
by (4.23) and (4.29), 81 = O = B3 = 0. This is not possible since a # 0. By
(4.23) and the fact that 3; = (aTe)7 and o = (ae),

(07 V(T )@ 5) = 2 € Ci. (4.30
Since (a”e) = 1, V(AT f)(Z,%) € C;. From (4.27) and (4.30),
TV (AT £)(Z,7) = 0. By (4.26) and the fact that 4, = (a”e)g,
(a'e)g" V,(\ 1)(z,9) =0.

Since (a”e) = 1, §"V, (A" £)(Z,9) = 0. Thus f(z,9) - [§"V,(\ F)(Z,9)]e =
f(z,9) = [Z"V. (") (3, )le.
By Theorem 4.4.1, for any feasible solution (u,v, A) of (MSD)w,
(f(z,9) - 5V, (N NH(E9)e) = (F(w,v) = [WT V(A f)(u,v)]e) & —intK.
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Since TV, (ATf)(Z,7) = 77 V,(AT £)(Z,7) = 0, we have for any feasible
solution (u, v, A) of (MSD)w,

(f(f,??) - [ijz(XTf)(j’ g)]e) - (f(’l.l,, 'U) - {UTVI()‘Tf)(u> U)]e) g —1intK.

Since (Z, 7, A) is a feasible solution of (MSD)w, (Z,7, \) is a weakly efficient
solution of (MSD)yy. Hence the result holds. ]

Theorem 4.4.3 (Converse Duality). Let (@,,)) be a weakly efficient
solution for (MSD)y . Assume that V..(\7 f)(4, 0) is negative definite and
the set {V,f:(%,¥), i =1,2,--- ,p} is linearly independent, then (%, , \) is
feasible for (MSP)y and the objective values of (MSP)y and (MSD)y

are equal. Furthermore, under the assumptions of Theorem 4.4.1, (1, 7, ) is
an weakly efficient solution for (MSP)w .

Proof. 1t is analogus to the proof of the lines of Theorem 4.4.2. O

Now we establish the self-duality of (MSP)w .

Theorem 4.4.4 (Self Duality). Assume that m =n, f(z,y) = —f(y, ),
C; = C, and the conditions of Theorem 4.4.1 are satisfied, and if (%, 7, \)
is a weakly efficient solution for (MSP)yw and V(X7 f)(Z,7) is positive
definite and the set {V,fi(z,9) : ¢ = 1,2, - ,p} is linearly independent,
then (7,7, \) is a weakly efficient solution for both (MSP)y and (MSD)yw,
and the common optimal value is 0.
Proof. By Theorem 4.4.2, (%, 4, \) is a weakly efficient solution of (MSD)w

and the optimal values of (MSP)y and (MSD)w are equal to f(Z,y). From
self-duality, (7, %, A) is feasible for both (MSP)y and (MSD)y, and using
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Theorem 4.4.1 and Theorem 4.4.2, we get that it is optimal for both prob-

lems. Since f is skew-symmetric, we have f(Z,7) = —f(g,Z). Hence

and so
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Chapter 5

Optimality and Duality for Multiobjective
Programming Problems Involving Generalized

Arcwise Connected Functions

5.1. Introduction

Ortega and Rheinboldt ([62]) introduced arcwise connected functions de-
fined on arcwise connected sets by replacing a line segment joining two points
by a continuous arc. Singh ([65]) investigated some elementary basic prop-

erties of arcwise connected sets and functions. Arcwise connected functions

were further extended to arcwise (J-connected and arcwise P-connected func-
tions by Avriel and Zang ([3]). Bhatia and Mehra ([10]) investigated some

arcwise connected functions in terms of their directional derivatives and re-

lated them with invex functions. Recently Davar and Mehera ([19]) studied
fractional optimization problems involving arcwise connected and generalized
arewise connected functions. Very recently Fu and Wang ([22]) introduced
the concept of arcwise connected cone-convex functions in topological vector
spaces. In this chapter, we introduce multiobjective programming problem
(MOP) and its geneal dual (MOD) involving generalized arcwise connected
functions defined on arcwise connected sets by replacing a line segment join-
ing two points by a continuous arc. We obtain the necessary and sufficient
optimality conditions for (MOP) and prove the weak duality and strong
duality theorems for (MOP) based on the weakly efficiency. Also we obtain

the multiobjective fractional programming problem (MFP) and its general
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dual (MFD). We introduce parametric multiobjective optimization prob-
lem (MFP), to obtain the optimality conditions and duality theorems by
establishing equivalent relationship between (MFP) and (MFP),.

Now we present some elemently basic proterties of arcwise connected sets
and functions, and some extended connected functions.
Definition 5.1.1 ([3]). A set X C R” is said to be an arcwise connected
set (in short, AC set) if for every pair of points, z; € X,z € X, there exists
a continuous vector-valued function H, ,,, called an arc, defined on the unit

interval [0, 1] and with values in X, such that

Hzl,xz(o) = I, HI1,12(1) = Z2.

Definition 5.1.2 ([3]). A real-valued function f, defined on an AC set
X C R, is called an arcwise connected function (in short, CN function) if,

for every z; € X, z2 € X, there exists an arc H,, ,, C X satisfying

f(Hz 2,(0)) = (1 = 0)f(21) + 6f(22), for 0<6<I

If the above inequality is satisfied as a strict inequality for 0 < 6 <1 then

the function f is called a strictly arcwise connected (STCN) function.

Definition 5.1.3 ([3]). A real-valued function f, defined on an AC set
X C R", is called a Q-connected function (in short, QCN function) if, for
every 1 € X, zo € X such that f(z9) < f(z;), there exists an arc Hy, 5, C X
satisfying

f(Hzy 2,(0) £ f(z1), for 0<O<L 1L
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Definition 5.1.4 ([3]). A real-valued function f, defined on an AC set
X C R" is said to be a P-connected function (in short, PCN function) if, for

every z; € X,zo € X such that f(x3) < f(z1), there exists an arc Hy, -, C X

and a positive real number 3;, ,, satisfying

f(Hxl,xg(B)) < f(xl) - Hﬁxl,lm for 0<6<1.

Definition 5.1.5 ([19]). Let f be a real-valued function defined on an AC
set X. For zg € X,z € X, the right differential of f with respect to Hy, »(6)

at 8 = 0 is given by

lim f(Hwo,w(g)) - f(l"O)’

6—0+ 9

provided the limit exists. This limit is denoted by df * (zg, Hzoz(0+)).
The following theorem of alternatives for CN functions is proved by

Jeyakumar [30].

Theorem 5.1.1. Let A : X — R* be a CN function defined on an AC set
X C R"™. Then, exactly one of the following systems is solvable.

(i) There exists z € X such that h(z) < 0.

(ii) There exists A € R¥ X > 0 such that ATh(z) > 0, for all z € X.

Theorem 5.1.2 ([10]). Let f be a real-valued function defined on an AC
set X C R" and for all 71 € X,z9 € X, let H;, ,, C X be the arc with

respect to which f possesses a right differential at 6 = 0.

() If f is CN, then f(z2) — f(21) 2 df (21, Hay s (04))-
(ii) If f is QCN, then f(z2) < f(z1) = df (21, Ha, 2, (0+)) < 0.
(iii) If £ is PCN, then f(z2) < f(z1) = df* (21, Hey 2,(0+)) < 0.
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5.2. Optimality Conditions
Consider the following multiobjective optimization problem (MOP):
(MOP) Minimize  f(z) := (fi(z), -, fo(2))
subject to g(z) £0, z € X, (5.1)

where fi :R" - R, i=1,---,p, g :R* >R, j=1,---,m,and X CR"
is an AC set. Let X° = {z € X : g(z) £ 0} be the set of feasible solutions
of (MOP).

Theorem 5.2.1 (Fritz John Type Necessary Optimality Condition).
Let z* be a weakly efficient solution of (MOP) and let f, g be CN functions
with respect to the same arc. Then there exists A;,i = 1,--- ,p, and p;,7 =

1,--- ,m such that

P m
Y N (2 Ho o(04) + > pydg} (27, Hoe o(04)) 2 0, for all ¢ € X,

=1 7j=1

> wigi(z") =0,

j=1

()‘la"' 7>‘p7)u’1>"' nu"m) ZO

Proof. Let ™ be a weakly efficient solution of (MOP). Then the system

fiz) < fz"), i=1,---,p

9i(x) <0, j=1,---,m
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has no solution z € X. Since f and g are CN functions with respect to
the same arc, hence by Theorem 5.1.1, there exists A;, ¢ = 1,--- ,p and

fj, 7 =1,---,m such that

Z)\i [fi(z) — fi(z")] + zm:ujgj(a:) 20, forallze€ X, (5.2)
i=1 j=1

(Al,... ))\P"‘l’l?"' a/—Lm)ZO

Letting z = z* in (5.2), D72, p;9;(2*) = 0. But since u; = 0, g;(z*) < 0,
we also have 77", 11;9;(z*) < 0. Therefore 3" y;g;(z*) = 0. Since X is

an AC set, H;-.(0) € X, for all z € X and for all § € (0, 1]; in particular,

from (5.2), we get

p m
Dl fiHer 2(60)) = fila")] + D s (Her (8)) 2 0,
i=1 j=1

for all 6 € (0,1} and for all z € X, which can be rewritten as

P

D M[filHe o(6)) — filz")] + Z #i[9;(Hoe 2(8)) — 95(z")] 20, (5.3)

=1

for all 8 € (0,1] and for all z € X. Dividing by 6 > 0 and taking limits as
§ — 0+ in (5.3), we get

P m
D oNdf (@, Hoe o(04)) + ) pydg} (2°, Hoe 2(0+)) 2 0, forallz € X. O

i=1 j=1
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Theorem 5.2.2 (Kuhn-Tucker Type Necessary Optimality Condi-
tion). Suppose that f,g be CN functions with respect to same arc and
assume that there exists £ € X such that ¢;(z) <0, j=1,--- ,m. Ifz* is a
weakly efficient solution of (MOP), then there exist A;,i=1,--- ,p, y;,j =
1,---,m, such that

P m
Do Ndf (e, Hae o(04)) + Y pjdgf (2%, Hyr o(0+)) 2 0, for all z € X,

i=1 j=1

m
Z“JQJ =
Aty 3 A B, o ften) > 0, (Mg, -+, Ay) # O

Proof. Since z* is a weakly efficient solution of (MOPY), by Theorem 5.2.1,
there exists (A1, ==+, Ap, i1, -+, ttm) > 0. Suppose that ()i, -- s Ap) = 0.
Then (g1, , ftm) > 0, by Theorem 5.2.1,

Zujdg;'(:r*, Hy« (04)) 20, for all z € X. (5.4)
j=1
Since g is a CN function,
m

Zﬂjgj Z 1ig; () 2 Z 'dgf(x*, H,» ,(0+)), for all z € X.
Jj=1 j=1

Since 370, 1;9;(z*) = 0 and by (5.4), we get i1 #ig5(z) 2 Ofor allz € X.

Since there exists £ € X such that g;(Z) < 0,7 = 1,--- ,m. Therefore
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> i1 #395(2) < Ofor all# € X, whichis a contradiction. Thus (A1, -+, Ap) #

0. O

Now we shall obtain sufficient optimality conditions for a point to be a

weakly efficient solution of (MOP).

Theorem 5.2.3 (Kuhn-Tucker Type Sufficient Optimality Condi-
tions). Let A, ¢ = 1,---,p, pj,7 = 1,---,m, and z* € X, satisfy the

following conditions;

/4 m
D ONdfF (o7, Hee 2 (04) + D pjdgi (2*, Hye 2(04)) 20, V7 € X, (5.5)

i=1 7=1

> uigi(at) =0,
=1

(,\17... ’)\p’#l’... 7lj"m) >0, (/\1’... ’/\p) 7{0
Assume that

(a) f and 377", pg; are CN functions; or

(b) fis PCN and 377", g5 is QCN; or

(c) 3%, Aifi is PCN and > o1 1395 s QCN.
Then z* is a weakly efficient solution of (MOP).

Proof. (a) Suppose that z* is not a weakly efficient solution of (MOP).
Then there exists £ € X° such that f;(z) < fi(z*), ¢ = 1,---,p, g;(Z) £
0, j=1,---,m. Since p; 20, 3777, 1;9;() < 0, we have 37" u;g;(z) <

2 i1 Migi(z*). Thus

fi(@) — fi(z*) <0, i=1,--- ,p, (5.6)
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Y 1 (®) = > pigi(a) £0. (5.7)
j=1 j=1

By the fact that f and Z;nzl 1;9; are CN functions with respect to Hg. z C

X, we have
fi(@) — filz*) 2 dfH (2", Hes 5(04)), i = 1,-- -, p,

D owgi(E) = Y wigi() 2 ) wdgt (z*, Her 5(0+)).
j=1 j=1

j=1

Using (5.6) and (5.7), we get
dfi+(x*7Hx‘,i(0+)) < 07 1= la Dy Z#Jdg;—(x*7Hz‘,z(0+)) < 0.
=1
Since (A, - ,Ap) > 0and (A,---, ) #0,

P m
D NS (2, Hoe 2(04)) + > pjdgf (2%, Hye 2(04)) < 0, for all @ € X,

i=1 j=1

which contradicts (5.5).
Hence z” is a weakly efficient solution of (MOP). O

(b) Suppose that z* is not a weakly efficient solution of (MOP). Then
there exists Z € X such that fi(z) < fi(z*), it =1,---,p, ¢;(Z) £0, j =
1,--+,m. Since p; 2 0, 377", p1;9;(%) < 0, we have > w1 #595(Z) < D77 wig5(7).
Since f is PCN, and Z;"Zl 14595 are QCN functions with respect to Hp« z C X,

we have
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dfit (z*, Hpe 2(04)) <0, i =1, - Zujdg] (z*, Hpr £(04)) £ 0.

Since (A1,-++ ,Ap) 20 and (A, ,Ap) #0,

Zz\ [dfH(z*, He 2(04)) + Zu,dgj z*, Hps 5(04)) <0, for all z € X,

i=1 j=1

which contradicts (5.5).

Hence z* is a weakly efficient solution of (MOP). O

(c) Suppose that z* is not a weakly efficient solution of (MOP). Then
there exists z € X such that fi(Z) < fi(z*), i =1,---,p, g;(T) £ 0, j =
L,---,m. Since \; 20, \; #0, p; =0, wehaved 7 X fi(Z) < D2, Nifi(z*),
D i1 4395(T) £ 0= 377", p;gi(z*). Since 37 Aifi is PCN, and 377", 59,

are QCN functions with respect to H,« z C X, we have

Z Ndf(z°, Hor 2( Z wi0g; (z*, Hee 2(0+)) < 0.
Therefore
P m
D Xdf(z", Hoe 5(040)) + ) gy (37, Hoe 5(04)) < 0, for all z € X,
i=1 j=1

which contradicts (5.5).

Hence z* is a weakly efficient solution of (MOP). a
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5.3. Duality Theorems

We propose the following general dual (MOD) to (MOP),

(MOD)  Maximize  (fi(w) + ) Gygs(u),---, folw) + Y fis05(u))

j€ly j€ly
subject to

D Ndf (u, Huo(04)) + Y fydgs (u, Huo(04)) 20, (5.8)

(All)"' 3Ap7ﬁ17"' >/]'m) 20~ X:(>‘17 7/\p) €A+a

where I, C M = {1,2,--- ,m}, a = 0,1,2,-- ,r with U._,J, = M and
INlg=0ifa# B Let A ={A€eRP: A >0,Me=1,e=(1,---,1) € RP}.
Theorem 5.3.1 (Weak Duality). Assume that for all feasible = of (MOP)
and all feasible (u, A, i) of (MOD), if > jer. 8595 ()(@=1,2,--- ,r) is QON
function at v and assume that one of the following conditions holds: »
(a) fil-) + 3,1, 159;(-) is PCN functions at u with respect to H,,,:
(b) 7 Mfi() +2 jer, Ai9;(+) is PCN function at u with respect to H,, 4,

then the following cannot hold,

f(@) < flw) + ) Aigi(u)e.

j€l

Proof. As z is feasible for (MOP) and (u, A, i) is feasible for (MOD),

we have
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Since zje]a p’]g](u) iS QCN? a = 17 2’ T ,T,

Z ﬂ;dg;_(u, Hu,z(0+)) L£0,a=1, 2’ Cee T

J€la

From (5.8), we have

P
> Ndfi (u, Hue(04)) + Y fijdg] (u, Huo(0+)) 2 0. (5.9)
=1

Jj€lp

Now suppose, contrary to the result, f(z) < f(u) + 3. fi;g;(u)e. Since z

is feasible for (MOP) and i = 0,

f@)+ > Bigi(z)e < flu)+ ) fig;(u)e. (5.10)

jelo i€l
(a) Since f + > ;¢ fijgje is PCN functions at v,

df (u, Hyo(04)) + D tjdg; (u, Huz(04)) < 0.
j€lp

From A € A1, we have

14
> Xdf(u, Huz(04)) + > Bdgs (u, Hyx(0+)) <0,

i=1 jelo
which contradicts (5.9).
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(b) Suppose now that (b) is satisfied. From A € A* and (5.10), it follows,

M=

Nfi(z) + ) Bigi(z) < Z Nfi(w) + ) Bigi(u).

i=1 j€ly j€lp

Il

Then, by the PCN property of >.7_, A fi(*) + > ier, Bi9; () at u,

NE

Ndf i (u, Hue(04)) + D g7 (u, Hya(04)) < 0,

1 Jj€ly

(ﬁ.

which contradics (5.9). O

Theorem 5.3.2 (Strong Duality). Let z* be a weakly efficient solution
of (MOP), and let f,g posess right differentials with respect to H,« . at
6 = 0, forall z € X. Further, assume that f and g are CN functions
and there exists £ € X such that ¢;(Z) < 0, 7 = 1,--- ,m. Then there
exists (z*, A", u*), which is feasible for (MOD). Further, if any one of the
conditions of weak duality holds then (z*, A\*, u*) is a weakly efficient solution
of (MOD).

Proof. By Theorem 5.2.2, there exist A* € RP, u* € R™ such that
(z*, X\*, %) is a feasible solution of (MOD). By weak duality, f(z*) #
fluw) + 3 ey, 95(w)e, where (u, ), u) is any feasible solution of (MOD).
Since p;g;(z*) = 0, we have f(z*)+3_ 1 159;(z%)e £ f(W)+3 cp, 1igi(u)e.
Since (u*, \*, ¢*) is a feasible solution of (MOD), (u*, A\*, u*) is a weakly ef-
ficient solution of (MOD). Hence the result holds. a
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5.4. Special Cases

As special cases of our duality results between (MOP) and (MOD), we
give Mond-Weir type and Wolfe type duality theorems.

If o =0, I, = M, then (MOD) reduced to the Mond-Weir type dual
(MOD) .

(MOD),, Maximize  (fi(u), -, fp(u))

subject to

p m
D Ndff (u, Huz(04)) + > fidg (u, Hug(04+)) 2 0, for all z € X,

i=1 =1

> hgi(w) 2 0,

j=1

(5\1,... ’j\p’ﬁh... 1ﬁm) > (, (;\1,... ,j\p) EA+,

where At ={A€RF: A >0,Ne=1,e=(1,---,1) € RP}.

Theorem 5.4.1 (Weak Duality). Let z be feasible for (MOP) and
(u, A, [z) be feasible for (MOD),;. And let > 1 B;g; () be QCN function at
u. Assume that one of the following conditions holds :

(a) f is PCN functions at u with respect to H, .;
(b) Atf is PCN function at u with respect to H, ..

Then the following cannot hold.
flz) < f(u).
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Theorem 5.4.2 (Strong Duality). Let z* be a weakly efficient solution
of (MOP), and let f, g possess right differentials with respect to H,., at
# = 0, for all z € X. Further, assume that f and g are CN functions and
there exists £ € X such that g;(£) < 0, j = 1,--- ,m. Then there exists
(z*, A*, ) is feasible for (MOD),,. Further, if any one of the conditions of
weak duality holds then (z*, A*, u*) is a weakly efficient solution of (MOD) .

If I = M, I, = 0, then (MOD) reduced to the Wolfe type dual
(MOD)yy.

m

(MOD),,  Maximize  (fi(u) + 3 Aigi(u), -+, folu) + Z 3951

subject to

(u, Hy o (04)) + Zujdgj (u, Ho - (0+)) 20,

7=1

“.M“

()\13"' )\p,ﬂl, ,ﬁm)zoa:\:(j‘la""j‘p)EA—i—v

where AT = {AeRP: A > 0,Xe=1,e=(1,---,1) € RP}.

Theorem 5.4.3 (Weak Duality). Let z be feasible for (MOP) and

(u, A, 1) be feasible for (MOD)yy. Assume that one of the following con-
ditions holds :
(a) fi(") + 2 71 f95(-) is PCN functions at u with respect to H,z; (b)

PoNfi()+ 2 i=1 Fijgj(-) is PCN function at w , with respect to H, ,, then

the following cannot hold.
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Theorem 5.4.4 (Strong Duality). Let z* be a weakly efficient solution
of (MOP), and let f,g possess right differentials with respect to H,. . at
6 = 0, forall x € X. Further, assume that f and g are CN functions
and there exists £ € X such that g;(¢) < 0, 5 = 1,--- ,m. Then there
exists (z*, A*, u*) which is feasible for (MOD)y . Further, if any one of the
conditions of weak duality holds then (z*, \*, u*) is a weakly efficient solution

5.5. Multiobjective Fractional Programming Problems

We shall obtain necessary and sufficient optimality conditions for a point
to be a weakly efficient solution of a multiobjective fractional programming

problem. We consider the problem,

inimize fl(z) fQ(z) fp(x)
(MER) M el )

subject to h{x) <0, z € X,
where fi,9; : X - R, ¢ =1,---,p, h: X - R™ and X C R" is an AC

set. Further, fi(z) 2 0, gi(z) > 0, 2 = 1,--- ,p for all z € X°, where
={zeX: :hj(z)<0, j=1,---,m}.

We associate the following parametric multiobjective optimization prob-

lem (MFP),, for A € R, with (MFP). ([28])
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(MFP), Minimize (fi(z) — Mg1(z), fo(z) — Aoga(z), -+, fp(2) — Mpgp(2))

subject to z € X°.

We establish an equivalent relationship between (MFP) and (MFP),.

Lemma 5.5.1. Let =* be a weakly efficient solution of (MFP). Then there

exist A* € RE such that 2* is a weakly efficient solution of (MFP),-. Con-

versely, if z* is a weakly efficient solution of (MFP),., where \* = ’; éi; )

then z* is a weakly efficient solution of (MFP).

We now establish the following necessary optimality theorem.

Theorem 5.5.1 (Fritz John Type Necessary Optimality Condition).
Let z* be a weakly eflicient solution of (MFP) and let f,—g, and h be
CN functions with respect to the same arc. Then there exists af 2 0, 7 =

1,---,p, ,8;‘ =0, j=1,---,m, such that the following conditions hold:

p
> ap[dfH (@, Ho o(04)) — Ndg (2%, Hor 2(04))]

i=1

+Z Bidh}(z*, Hye 2(04)) 20, for all z € X,

J=1

> Brhi(z*) =0,
j=1

(", 8%) #0,

where A* = &)

g(=*)”

31




Proof. Since z* is a weakly efficient solution of (MFP), it follows from

Lemma 5.5.1 that z* is a weakly efficient solution of (MFP),., where \* =

gi—:;. Then the system

( fz(.’L‘) - )‘:g't(x> < fi(x*) - )‘:gi(x*)v t=1,--- P )

hi{z) <0, 3=1,--- ,m

has no solution z € X. Since f,—¢ and h are CN functions with respect to

the same arc, hence, by Theorem 5.1.1, there exist o = 0, ,8;‘ 2 0, such that
P m

Yo arlfide) = Ngie) — film) + Xgi(@)] + Y Bhiw) 20, (5.11)
i=1 j=1

(o, 5%) #0.
Taking z = z* in (5.11), we get

j=1

But since §; 2 0, h;(z") < 0, we also have ) °°) f7h;(z") < 0. Therefore
> imq Bihi(z*) = 0. Moreover, X is an AC set, Hy» 2(6) € X, for all z € X,

and for all § € (0, 1]; in particular, from (5.11), we get
, .
> i [filHa 2(6)) = fi(@™) = X (9:( Her (8)) — 9:(a")]
i=1

+ 05 (hi(Hae 2(6)) — hj(2%)) 2 0. (5.12)
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Dividing by # > 0 and taking limits as § — 0+ in (5.12), we get

)
Z o [df+(:1:*, Ho« 2(0+)) — Aidg (a7, Hx*’I(O—}-))]

1=1
+ 3" Brdht (2%, Hye 2(04)) 20, forall ze X. O

Theorem 5.5.2 (Kuhn-Tucker Type Necessary Optimality Condi-
tion). Let z* be a weakly efficient solution of (MFP), and let f, —g, and h
be CN functions with respect to the same arc. Further, assume that there
exists Z € X such that k(%) < 0. Then there exist o* € R? and §* € R™
such that the following conditions hold:

P
> arldff(a", Hee o(04)) = Nidg] (z", Hae +(0+))]

i=1

+> Brdht (2", Hy 2(04)) 2 0, forall z € X,

J=1
> Bihi(zt) =0,
j=1

a*>0,0"=0,

where \* = M
g(z*)

Proof. Since z* is a weakly efficient solution of (MFP), by Theorem 5.5.1,
there exist (aj, -, 05,07, +,0,) > 0. Suppose that (a7, ,0p) = 0.

Then (57, ,0%) > 0, by Theorem 5.5.1,

> Brdhi (2", Hee 2(04)) 2 0, for all z € X.

j=1
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Since h is a CN function, we get
> " Brhi) = Brhi(z*) 2 Y Bidh} (z*, Hye o(04)), for all z € X.
j=1 j=1 j=1

Since 371, Bihi(z*) = 0, weget Y577, fih;(z) 2 0, for allz € X. Since there
exists € X such that h;(Z) < 0,7 =1,--- ,m. Therefore Z;"zl Brh;(%) <0

for all Z € X, which is a contradiction. Thus (of, - -, a;) # 0. O

Now we shall obtain sufficient optimality conditions for a point to be a

weakly efficient solution of (MFP).

Theorem 5.5.3 (Kuhn-Tucker Type Sufficient Optimality Condi-
tion). Let z* € X° and assume that there exist af =2 0, i = 1,---,p

By =20, j=1,---,m, such that

P
S [dfi (27, Hor 2 (04)) — A dgyt (2%, Hae 2(04))]

=1

+ 3 Brdhf(z*, Her o(04)) 20, forall z € X, (5.13)
jel(z)

Zﬁ;hj(x*) =0,
=1
(qu"' 10;)) 7é0

where \* = ’;J(;—:%, I(z*) = {i | hi(z*) = 0}
Assume that

(a) f,—g, and hy are CN functions ; or
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(b) 327, o (fi — A"gs) is PON and 3¢ p(,) By is QCN.
Then z* is a weakly efficient solution of (MFP).

Proof. (a) Suppose that z* is not a weakly efficient solution of (MFP).

8 0 fi(z) filz®) . _ :
Then there exists x € X" such that ﬂz—) < ey v T 1,2--- ,p. Since

g'l(x) >0 fori= L, p, we have ft(l‘) - )\:91(37) < fi(m*) - )\:gi(l‘*), 1=

1,2,--- ,p. Since f, —g, and h; are CN functions, we have

f1(517) - fi(x*) = dfi—k(x*a Hm‘,x(0+))’ (5'14)
(—gi)(x) = (=) (z") 2 d(—g:)* (2", Har 2(04)), (5.15)
hi(z) — hr(z*) = dhj(z*, He - (0+)). (5.16)

Multiplying (5.15) by Af = 0 and adding it to (5.14), we get

(fi(z) = Na:(z)) — (filz") — A gi(z"))

> df(z*, Hes 2(04)) — Midgf (2%, Hpr - (04)).
Thus, we have
dfH (2%, Hor 2(0+)) — Xrdgf (2%, Hpr »(04)) <0, i =1,2--- ,p. (5.17)
Since z is feasible for (MFP), it follows from (5.16) that
dhf (z*, Hys (04+)) < 0. (5.18)

Now, as " > 0 and §* = 0, multiplying (5.17) by o and (5.18) by 85,5 €

I(z*) and adding, we get
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p
D o [dfi (2%, Hoe o(04)) — Nedgi (27, Hae 2(04))]

i=1

+ Y Brdhf (a7, Hae 2(04)) <0,

JEI(z*)

which contradicts (5.13). O

(b) Let z* be not a weakly efficient solution of (MFP). Then there exists
z € X° such that

Since gi(z) > 0 for ¢ = 1,--- ,p, we have fi(z) — Mgi(z) < fi(z*) —
Aigi(z*), i=1,2,--- ,p. Moreover, o > 0; hence > 7_, o (fi(x) — Mgi(z)) <

L, 0 (fi(e) ~Ngi(a*)). Since Y7, o (fi—Xgi) is PON, we get d(S2_, o
(fi = Argi))t(z*, Hov - (04)) < 0, which gives

>0 [dff (&7, Hoe o(04)) — Aidg] (2°, Hae 2 (04))] < 0. (5.19)
=1

Also, as z € X° we have 2jer@) Bihi(z) <0 = ng(z*) Bihj(x*). Since

gives that

> Bidhf(z, Hee 2(04)) £ 0. (5.20)

jel(z*)

Adding (5.19) and (5.20), we get
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> i [dft (@, Har o(04)) = Nidgi (a7, Hor 2(04))]

1=1

+ Y Bdhf(a, Hee 2(04)) <0,

JEI(=*)
which contradicts (5.13). O

Now we formulate a Mond-Weir type dual problem for (MFP), and show
that duality theorems hold.

(MFD) Maximize (Ay, Az, -+, Ap)

subject to

P

D an[df (u, Hue(04+)) = g (u, Hua(04))]

1=1

—I—Zﬁjdh;"(u, H,-(0+)) >0, forall z€ X (5.21)

7=1
f’L(U’) - )‘zgl(u’) g 07 t= ]-1 25 Y ) (522)
f: Bihj(u) =2 0, (5.23)

j=1
a€RPL.BeRT"ANER,, 0; 20,0 # 0,320, >0.
We establish weak and strong duality theorems between (MFP) and
(MFD).

Theorem 5.5.4 (Weak Duality). Let z be feasible for (MFP) and let
(u,a, 3, A) be feasible for (MFD). Assume that any one of following condi-

tions holds:
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(i) f — Ag and h are CN functions with respect to H, ,; or
(i) 2%, @a(fi—Xigi) is PCN and 3 7, B;h; is QCN with respect to Hayg.
Then the following cannot hold:

fi(x)
9:()

<N, foralli=1,---,p.

Proof. (i) Suppose contrary to the result of the theorem that for some
feasible « for (MFP) and (u,a,8,)) for (MFD), &8 < ) for all i =

1,---,p. Since g;(z) >0, i =1,--- ,p, we have
filz) — Nigi(z) <0, 1 =1,2,--- ,p. (5.24)
Since z is feasible for (MFP) and 3; 2 0,5 = 1,2,--- ,m, we have
Bihi(z) <0, j=1,2,--- ,m. (5.25)
Further, as h is CN, we have, using Theorem 5.1.2,
hs() = hy(w) 2 AR (u, Hoe(04)).
Multiplying by 8; = 0 and using (5.23) and (5.25), we get
Bidh} (u, Huz(04)) £0, j=1,2,--- ,m. (5.26)
Moreover, f; — A;g; is CN functions; hence we have

(filx) = Xigi(2)) = (fi(u) — Migi(w)) 2 df;" (u, Huz(04)) — Nidg;’ (v, Huz(0+))-
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Multiplying by a; > 0 and adding, we get
P P
D alfil@) = Mgi(@)) = Y ol filu) — Nigi(u)
i=1 i=1
P
> oi[dfi (u, Hua(04)) = Nidg;t (u, Hoe(04))].
i=1

This along with (5.22) and (5.24) gives

p
1=

> o [dfi (u, Huw(0+)) — Aidg;t (u, Hyo(0+))] < 0. (5.27)

1
Adding (5.26) and (5.27), we get

P m
> ai[dft (u, Huz(0+)) — Aidg;t (u, Huz(04))] + > BidhT (u, Hyo(0+)) < 0,
i=1 =1
which contradicts the feasibility of (u, o, 8, \) for (MFD). o

(ii) Suppose contrary to the result of the theorem that for some feasible z

for (MFP) and (u,a, 3, A) for (MFD), !’;’8 <X foralli=1,---  p. Since

gi(z) >0, ¢ =1,--- ,p, and from (5.22) we have

filz) — Nigi(z) <0< fi(u) — Aigi(u), i=1,2,--- ,p.

As a > 0, we obtain

Zaz fi(z Aigi(x Zaz fi(u Zgl( ))
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Since > *_, ai(fi — Aigi) is PCN, we have

Z oi(fi = Xigi)) T (u, Hyz (04)) < 0;
that is,
P
D oudf (u, Huw(04)) = Aidgi (u, Huz(04))] < 0. (5.28)
i=1

Also, from primal feasibility of z and the fact that B; 20, j=1,2,--- 'm
it follows that

> Bihs(x) < Z Bihs ().

Since 37", B;h; is QCN, we get

Zaj (u, Hy - (04)) < 0;
that is,
Zﬁjdh (u, H, - (0+)) < (5.29)

Adding (5.28) and (5.29), we get

Z a; [dfiF (u, Hyz(04)) = Aidgit (w, Huz(04))] + i Bidh (u, Hu e (04)) < 0,

j=1

which contradicts the feasibility of (u,a, 3, ) for (MFD). O
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Theorem 5.5.5 (Strong Duality). Let z* be a weakly efficient solution
of (MFP), and let f,g possess right differentials with respect to H,- . at
§ = 0, forall z € X. Further, assume that f,—¢ and h are CN func-
tions and there exist £ € X such that A(Z) < 0. Then there exists o* =
(@3, ,03), a* >0, 8* = (6}, -, By) such that (z*,a*, 8%, \*) is a feasi-
ble for (MFD). Further, if any one of the conditions of weak duality holds,
then (z*, a*, 8*, X*) is a weakly efficient solution of (MFD).

Proof. By Theorem 5.4.2, there exists o* = (of, - ,a;), a* >0, 0* =
Bi,---,By,) such that (z*, o, 3* A*) is a feasible for (MFD), where A\* =

(
f(=z*)
g(z*)"

exists a feasible solution (z, o, 3, \) of (MFD) such that

If (z*,a*, #*,X*) is not an optimal solution of (MFD), then there

AT < (5.30)

Since A* = £2) from (5.30), it follows that

g(z*)’

f(z*)
g(z*)

3

which contradicts weak duality theorem. Hence the result follows. O
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