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Chapter 1
Introduction and Preliminaries

Several authors have been interested in duality theorems for multiobjective
variational problems. Bector and Husain [2] proved duality results for a multi-
objective variational problem with convexity functions. Various generalizations
of convexity have been made in the literature. Bector and Husain [2] proved du-
ality results for a multiobjective variational problem with convexity functions.
In {25], Mishra and Mukherjee discussed duality for multiobjective variational
problems involving generalized (F, p)-convex functions. Also, Nahak and Nanda
[33] proved Wolfe type and Mond-Weir type duality results for a multiobjective
variational problem with pseudo-invexity functions.

Parallel to the above developinent in multiobjective programming there has
been a very popular growth and application of invexity theory which was origi-
nated by Hanson [15] but so named by Craven [9]. Later Hanson and Mond [14
introduced type-I and type-II invexities which have been further generalized by
many researchers and applied to nonlinear programming problems in different
settings.

In Kaul, Suneja and Srivastava [18] considered a multiobjective nonlinear

programming problem involving type I functions to obtain some duality re-
sults, where Wolfe and Mond-Weir duals are considered. Recently, Hanson,
Pini and Singh [16] extended a (scalarized) generalized type I invexity into a
vector invexity ( V-type I} and they provided some duality results.
Introducing the concept of proper efficiency of solutions of multiobjective pro-
grams, Geoffrion [12] proved an equivalence between a multiobjective program
with convex functions and a related parametric (scalar) objective program. Us-

ing this equivalence, Weir [38] formulated a dual program for a multiobjective

Typeset by ApS-TEX



program having differentiable convex functions. Subsequently, Egudo [10] and
Weir [38] proved duality results for a differentiable multiobjective program with
pseudo convex/ quasi-convex functions. Kim, Lee and Kuk [20] proved dual-
ity results for a multiobjective fractional variational problem with generalized

invexity functions.

A number of duality theorems for the single-objective control problem have
appeared in the literature; see [13,19,26,31,35]. In general, these references
give conditions under which an extremal solution of the control problem yields
a solution of the corresponding dual. Mond and Hanson {28] established the
converse duality theorem which gives conditions under which a solution of the
dual problem yields a solution of the control problem. Mond and Smart [29]
extended the results of Mond and Hanson [28] for duality in control problems
to invex functions. It is also shown in Mond and Smart [29] that, for invex
functions, the necessary conditions for optimality in the control problem are
also sufficient. Also, Lee et al. [22] proved a sufficient optimality theorem for a
multiobjective control problem and established the weak duality theorem and
the strict converse duality theorem for Mond-Weir type dual problem under
invexity conditions.

Bhatia and Kumar [5] extended the work of Mond and Hanson [28] to the con-
tent of multiobjective control problems and established duality results for Wolfe
as well as Mond-Weir type duals under p-invexity assumptions and their gener-
alization. Recently, Mishra and Mukherjee [27] obtained a pair of multiobjective
control problems for Mond-Weir type duals under V-invexity assumptions and
their generalization. Very recently, Zhian and Qingkai [40] discussed some du-
ality results for multiobjective control problems with generalized invexity due

to Mond and Smart [29].

Optimality conditions and duality in muitiobjective fractional programs have
been of much interest in the recent past {4, 7, 11, 23, 24, 32, 36, 37]. Following



the approaches of Bector et al. [3], Liu [23, 24] obtained necessary and sufficient
conditions and derived duality theorems for a class of nonsmooth multiobjective
fractional programming problems involving either pseudoinvex functions or (F,
p)-convex functions. In [17], Jeyakumar and Mond have defined generalized in-
vex functions, called V-invex functions, and have applied them to the fractional
programming problem.

Kuk et al. [21] obtained the generalized Karush-Kuhn-Tucker necessary and
sufficient optimality theorems and proved weak, strong and strict converse du-
ality theorems for nonsmooth multiobjective fractional programs involving V-
p-invex functions.

Mond and Hanson [28] established the converse duality theorem which gives
conditions under which a solution of the dual problem yields a solution of the
control problem. Mond and Smart {29] extended the results of Mond and Han-
son 28] for duality in control problems to invex functions. It is also shown
in Mond and Smart [29] that, for invex functions, the necessary conditions for
optimality in control problem are also sufficient. Recently, Mishra and Mukher-
jee [27] obtained duality results for multiobjective control problems under V-
invexity assumptions and their generalizations. In 2001, Zhian and Qingkai [40]
discussed some duality results for multiobjective control problems with gener-

alized invexity due to Mond and Smart [29].

We recall some basic definitions and results pertaining to multiobjective prob-

lems. First. we need a consistent notation for vector inequalities.

For z,y € R™, the following order notation will be used:

r<ysr; <y, t=12- n;
'Tgy":z}’l:lgyh 7':17277717
r<ysr, Sy, i=1,2,---,n but z #y.



The following problems is called a multiobjective variational problem (MVP):

(MVP):
Minimize [ f(t,x, x)dt

/f(t:v:c ffpfa:m)dt>

subject to z(a) = ty, z(b) =1y,

g(t,z,2) <0, tel

Let 7 = [a,b] be areal interval, f : IXR*xR™ — RPand g : I xR"xR"” — R™

are continuously differentiable functions.

Let Xy := {x € C(I,R")| z(a) =to, z(b) =ts, g(t,x, &) < 0} be the set
of feasible solutions of problem (MVP}.
Optimization of (MVP) is finding efficient solutions defined as follows;

Definition 1.1. A point z* € Xj is said to be an eflicient solution of the
problem (MVP) if there exists no other x € X such that

b b
f Fit, x, 2)dt < / it x*, &*)dt, Yi=1,---,p
and

b v b
f fm(tamnit)dt < / fm(t,:c*,j:*)dt? for some ig =1, - ,p.

Definition 1.2. A point z* € Xj is said to be a weak efficient solution of
the problem (MVP) if there does not exist x € X such that

b b
/ f’i(t,q:,:i;)dt < f fi(t’w*,,:b*)dt, Yi=1,---,p.
e a



Definition 1.3 (Geoffrion [12]). A point * € Xj is said to be a properly
efficient. solution of (MVP) if there exists a scalar M > Osuch thatVi=1,--- ,p

b b b b
/fi(t,m*,i«*)dt—/ fi(t,sc,a':)dth{/ fj(t,:r,j:)dtm/ fj(t,:x*,d:*)dt}

for some 7, satisfying f: fi(t, xz, x)dt > J‘; Fi(t,z*, 3" )dt whenever z € Xg and
fb fHt x, &)dt < ff Fi(t, x>, &*)dt.

The multiobjective dual variational problem (MMVD)(: Mond-Weir multi-
objective dual variational problem) for (MVP) can be expressed as the following

form:

(MMVD) Maximize

b
f f(t,y,q)di
b b
:(f fl(tvyry)dt))/ fp(tzyy)dt)
a [
subject to yla) =ty, y(b) =ty,
P , d .
im1
m . d .
+ D N4ty 9) - 2okt 9)} =0,
1=1 )
b .
/ )\j(t)g‘?(t,y,y')dtz{), ijl,--‘,m,

TE€RP 720,

ME) € R™ A1) 20, tel,

where A(t) is a function from I into R™.



Efficient solutions of (MMVD) can be defined analogously in definition 1.1

as follows;

Definition 1.4. A feasible solution (z*,7*, A*) of (MMVD) is said to be
an efficient solution of the problem (MMVD) if there does not exist a feasible
solution (x, 7, A) of (MMVD) such that

b b
fit, 2", a%)dt < /f?"(t,a;,q,‘-)dt, Vi=1,--,p

and

b b
/ fr(t,z*, 2%)dt < / fo(t,x, &)dt, for some ig =1, p.
a 4 Q

The control problem is to choose, under given conditions, a control vector
u(t), such that the state vector x(¢) is brought from some specified initial state

x(a) = tp to some specified final state x(h) = tp in such a way as to minimize a

given functional.

The following problem is called a multiobjective control problem (MCP):

(MCP)

b b
Minimize (/ fHt,z,u)dt, - ,/ fP(tz,u) dt)

subject to  x(a) = to, z(b) =1,

(
g(tjmru)g(L tEI,
(



Each f' : IXxR*"xR™ - R fori =1,---,p, ¢ : I xR*"xR™ —
R(j=1-- ,k),andh" : IxR*"xR™ - R (r=1,---,n) isa continuously

differentiable function.

Let X := {z € C(I,R")| z(a) =1y, z(b) =tf, g(t,z,u) <0, h(t,z,u) =
iz} be the set of feasible solutions of problem (MCP).
Optimization of (MCP) is finding efficient solutions defined as follows;

Definition 1.5. A feasible solution (z*,«*) of (MCP) is said to be an

efficient solution of (MCP) if there does not exist a feasible solution (x,u) of
(MCP}) such that

b b
/ it x,u)dt < / fit, " ut)dt, forall i=1,--- ,p

and

b b
f foo(t, z,u)dt < ] fio(t,z", u*)dt, for some ig=1,---,p.

The multiobjective dual control problem (MMCD)(: Mond-Weir multiobjec-

tive control dual problem) for (MCP) can be expressed as the following form:

(MMCD)

b b
Maximize (/ frt, x,wydt, - -, fe(t, =, u)dt)
a a

subject to  x(a) = to, x(b) =t;,

+ Zyﬂr(t)h;(t, z,u)+a(t) =0, tel,

r=1



P k n
S i) £ 3 A ez ) + S (R 2 ) = 0,
i=1 j=1

r=1
tel,

/ Z“r (R (t,zu) - &()}dt >0, tel,

/ ¢ (t,x,w)dt >0, tel,

\/

0, tel

P
T, = 0, ZTi:L
1

1=
where A(t) is a function from I into R™ and pu(t) is a function from I into R".
Here A(t) and p(t) are required to be continuous except perhaps at points of
discontinuity of u(t).

We can define efficient solutions of (MMCD) is ways similar to the case of

(MCP):

Definition 1.6. A feasible solution (z*,u*, 7%, A*, u*) of (MMCD) is said
to be an efficient solution of (MMCD) if there does not exist a feasible solution
(r,u, 7, A, 1) of (MMCD) such that

b b
f Fit, @, u)dt 3/ Filt,x*, u*)dt, forall i=1, --,p
a Q

and
b

b
/ folt,z,u)dt > / fo(t, z*, u*)dt, for some ig =1, - ,p.

a

In this paper, we formulate the multiobjective variational problem and con-

trol problem for generalized invex functions. We obtain sufficient optimality



theorems and duality theorems for multiobjective variational problem involv-
ing generalized type I invex functions. Also, we obtain sufficient optimality
theorems and duality theorems for multiobjective control problem involving

generalized V-p- invex functions.
This thesis consists of five chapters.

In Chapter 2, a multiobjective variational problem with equality and inequal-
ity constrained are considered. We introduce vector type invexity along the
lines of Jeyakumar and Mond [17] extending the pseudo, quasi, quasi-pseudo,
pseudo-quasi type-I invexity of Kaul et al. [18]. Some sufficiency results are
established. We formulate the Mond-Weir type dual and general Mond-Weir
type dual problems and prove the duality theorems under generalized V-type I
assumptions. As special case of our duality results, we obtain the Wolfe type

duality theoremns.

In Chapter 3, we consider a multiobjective fractional variational program-
ming problem. For sufficient conditions, we define the generalized V-type 1
invex functions. We obtain the generalized Kuhn-Tucker sufficient optimality
theorem and prove weak and strong duality theorems for the multiobjective

fractional variational problem.

In Chapter 4, we obtain duality results for multiobjective control problems
under V-p-invexity ( V-p-pseudo invexity, V-p-quasi invexity) assumptions. The
results of the present section extend the work of Mishra and Mukherjee [31]
to more generalized V-p-invex functions. It is also shown that for V-p-invex
functions, the necessary conditions for optimality in the control problem are
also sufficient. Moreover, we formulate Wolfe type dual (WMCD) and Mond-
Weir type dual (MMCD) for (MCP}), and then establish their duality relations.

_10...



In Chapter 5, we consider a multiobjective fractional control problem. Using
parametric approach Wolfe type and Mond-Weir type duality theorems are
established under V-p-invexity ( V-p-pseudo invexity, V-p-quasi invexity) on the
functions involved. Tt is also shown that for V-p-invex functions, the necessary
conditions for optimality in the control problem are also sufficient. The concept
of efficiency is used to state sufficient optimality theorems and some duality

results.

- 11 -



Chapter 2
Multiobjective Variational Problem with Generalized Type I Invexity
2.1. Introduction

The following problems is called a multiobjective variational problem with

equality and inequality constraints:

(MVP):
b
Minimize f ft,z, z)dt
b
= [ it z,&)d , fp(t,:c,:i;)dt)
subject to (a) = tg, x(b) = ty,
g(t,z, &) <0, tel,
(MVPE):

b
Minimize f f(t, z,x)dt

Flt z, )dt fo(t,z, &)dt
([ P [ s na)

subject to z(a) = to, z(b) =ty,
g(t: Z, 33) S 03
hit,z,t) =0, VE€ I,

where f i IxR"xR* - RP, g:IXxR"xR" - R™and h: IxR"xR" — RY,

are assumed to be continuously differentiable functions. Let I = [a, b be a real

- 12 -



imterval. In order to consider f(t,x,z), where z : I — R™ with derivative 1,
denote the partial derivative of f with respect to ¢, x, and &, respectively, by
fi. fz. and f;, such that

_or o or
Y T 'Oz,

The partial derivatives of other functions used will be written similarly.

af of
fi:: [—.1”' 1—.]-
0%, Oty
Let. C'(I, R™) denote the space of piecewise smooth functions x with norm
llz|l = ||z||cc + || Dxl|oo, where the differentiation operator D is given by
t

u= Dz & z(t) =ty +f u(s)ds,

a

in which « is a given boundary value. Therefore, D) = % except at discontinu-

ities.

In this chapter, we are concerned with the multiobjective variational problem
with equality and inequality constraints. We introduce new classes of general-
ized V-type I vector valued functions for variational problems and consider mul-
tiobjective variational problems (MVP) and (MVPE). A number of sufficiency
results are established using Lagrange multiplier conditions under various types
of generalized V-type I requirements. Duality theorems are proved for Mond-
Weir and general Mond-Weir type duality under the above generalized V-type

I assumptions and their generalizations. As special case of our duality results,

we obtain the Wolfe type duality theorems.
2.2. Definitions and Preliminaries

Let us now denote by Xy be the set of all feasible solutions of the problem
(MVP) given by

-13 =



{x € C(I,R")| z{a) =tg, z(b) =ts, g(t,z,z) <0}

and X; be the set of all feasible solutions of the problem (MVPE) given by

{x € C{I,R™)} z{a) =ty, x(b) =t5, g(t,x,2) <0, h{t,x, &) = 0}.

Following Aghezzaf and Hachimi [1] we define generalized type I invex func-

tions for variational problems as follows.

Definition 2.2.1. (f,g) is said to be V-type I invex with respect to
n. o; and B; at z*¥ if for all ¢ = 1,---,pand 7 = 1,---  'm there exist a
differentiable vector function n € R™, and real-valued functions «,; € R, \{0}
and 3; € Ry \{0} such that

[ft:z:xdt fft:c , T )dt

fa,t(rr &, 7 )t z, 2%, &, 27 fL(t, x* :c)——tf;(t,l‘*,rb*)}dt

23

(2.1)

and

b
— / g (t, 2%, 2*) dt
a

Lol a7t

b
> [ Byl 2,8t 0,07 5, (g 1,27 5) = &

(2.2)

for every x.

- 14 -



If in the above definition, (2.2) is a strict inequality, then we say that (f, g)

is semistrictly V-type I invex at x*.

We now define and introduce the notions of weak strictly-pseudoquasi V-type
I invexity, weak quasistrictly-pseudo V-type I invexity and weak strictly-pseudo
V-type I invexity for (MVP).

Definition 2.2.2. (f,g¢) is said to be weak strictly-pseudoquasi V-type
I invex with respect to 1, «; and §; at x* if there exist differentiable vector
functions n € R™ and a; € R\{0} and 8, € R{\{0}, such that for some

vector 7 € RP 7 > 0 and piecewise smooth function A : I — R™ A(f) > 0,

L P b P
/ Zﬁm(ﬂ:,ac*,:i:,:b*)fi(t,m,jc)dt < / Zﬁai(:ﬁ,m*,i,:i?*)fi(t,a:*,i*)dt

i=1 a
:>/ZTZ (t,z,x*, @, ) fr(t ' ——f’(t,z*,i*)}dt<0
an
/ ()3 (x, 2%, &, #%) g’ (t, 2%, 2% )dt < 0
d ; kX
/}:)\(t (t,z, 2", &, %) {gl{¢, ,‘)—ﬁgi(t,a:,a:)}dtgo.

This definition is a slight extension of that of the weak strictly-pseudoquasi-

type I functions [1].

Definition 2.2.3. (f,g) is said to be weak quasi strictly-pseudo V-type I
invex with respect to 1, o; and §; at «* if there exist differentiable vector
functicns n € R™ and o; € R.\{0} and 3; € R.\{0}, such that for some
vector 7 € RP 7 > (0 and piecewise smooth function A : I — R™ A(¢) > 0,

_15_



/ ZT’QI 2%, &, 2% it @, 3)dt < / ZT,;ai(cc,ar*,:t,:t*)fi(tjm*,:b*)dt
a =1 =1

b P
. d .
= A t~)*1.:.* Ita *,'**“;t:'*y-* dt <0
[ttt i) ity <
and

E m
—/ SN (08 (x, 0" &, 87 (b2, 5 < 0

i=1

b m
:>/ Z)\j(t)n(t,:z:,a:*,j:,:i:*){gi(t,a;*,:1';*) (t, 2%, 2%)}dt < 0.
42 jrl

e

Definition 2.2.4. (f,g) is said to be weak strictly pseudo V-type I invex
with respect to 1, «a; and [§; at x* if there exist differentiable vector functions
n € R" and o; € Ry\{0} and §; € R;\{0}, such that for some vector 7 €
R?, 7 > 0 and piecewise smooth function A: I — R™ A{t) > 0,

b P bH P
/ Zﬂal x x”d, BT UL @, 2)dt < / Zﬁ-ai(m,:c*,j:,:'c*)fi(t,:n*,j:*)dt
va =1

) d .
S f me(t,x;:c*,:t}fb*){.fé(t:v*,ﬁ?*)*&fé(t,w*,i*)}dt<0

b m
/ ()3 (z, % &, 8 ¢! (¢, 2%, &% )dt <0

d
dtg’“(t ¥, ") }dt < 0.

fa n(t,z, x*, &, &) {gl (¢, 2*, &%) —

Following Hanson, Pini and Singh [16] we define vector type I mnvexity for

variational problems as follows.

_16_



Definition 2.2.5. (f, g} is said to be quasi V-type I invex at ¥ with respect
ton, a; and (3; at x* if there exist differentiable vector functions n € R and
a; € R\{0} and 8; € R \{0}, such that for some vector 7 € RP, 7 > 0 and

piecewise smooth function A : I — R™ A(t) > 0,

b P

/Znall‘:r i, &%) fi(t, z, #)dt < [ZT,QZLI &, &%)t 2, 2% )dt

]a Z'rm T A T 2 Al I jtffn(t,x*)d:*)}dt <0 (2.3)
and

fZA(tﬁJLQ: &, %) g% (t, z*,3%)dt > 0

d gx(t ¥, &)t < 0. (2.4)

:>/ (Ot z,x*, &, 0*) {gl(t, 2", i) - L

If (f,g) is quasi V-type I invex at each z*, we say (f, g) is quasi V-type I invex
on I x R™ x R™. If the second (implied) inequality in (2.3) is strict { * # x*)
(f,g) is semi strictly quasi V-type I invex at * or on I x R™ x R™ as the case

may be.

Definition 2.2.6. (f,g) is said to be pscudo V-type I invex at z* with

respect to 7, «; and F; at x™ if there exist differentiable vector functions n €
R™ and o; € R4 \{0} and 8; € R, \{0}, such that for some vector 7 € RP 17 >

0 and piecewise smooth function A : I — R™, A(¢) = 0, the implications

metm X A ~—f(trc Li*) > 0

/ Z riog(m, %, 2, %) f1 (¢, w0 dt
a =1

_17_



b P

> / 2 micala, o, &, @) £t o, 27t (2.5)
¢ 4=1

and

b m d .
fZ)\ (On(t,z,z* &, &) {gl(t, x", &%) - igi(t,a:*,:ic*)}dtzi}

/ (t)B;(z, 2%, ,2%) g’ (t, 2™, 2%)dt <0 (2.6)

hold. If (f, g} is pseudo V-type I invex at each x*, we say (f, g) is pseudo V-type
[ invex on I x R™ x R™. If the second (implied) inequality in (2.5) (Eq. (2.6))
is strict, (f,g) is semi strictly pseudo V-type I invex in f (in g) at = or on
I x R™ x R™ as the case may be. If the second (implied) inequalities in (2.5)
and (2.6) are both strict we say that (f, g) is strictly pseudo V-type I invex at

™ oron I x R™ x R" as the case may be.

Definition 2.2.7. (f,g) is said to be guasi pseudo V-type | invex at z*
with respect to 7, «; and f3; at z* if there exist differentiable vector functions
n € R™ and o; € R.A\{0} and 3; € Ry\{0}, such that for some vector 7 €
RP, 1 > 0 and piecewise smooth function A : I — R™, A(t) > 0, the implications

b P b P
fZmi(m,x*,sﬁ:,:e*)f*‘(t,ar,:t)dts fan(:fs,x*,ox,ér*)f%t,a:,j:)dt
a =1 ¢ =]

5 P
. d .
= [ Y mlt st 5N ) - St E <0 @)
¢ =1
and

/Z)\ (Ot x,x*, 3, 5°){gl(t, 2", :L)—dqj(t:r ,E¥) it >0

a@

b m
/ (x, 2%, &, 2%)g" (t, %, #%)dt <0 (2.8)

_18_



hold. If (f, g) is quasi pscudo V-type I invex at each x*, we say (f, g) is quasi
pseudo V-type I invex on I x R™ x R™. If the second (implied) inequality in
(2.8) is strict, we say that (f, ¢) is quasi strictly pseudo V-type I invex at z* or
on I x R" x R™ as the case may be.

In order to prove the strong duality theorem we will invoke the following
lemmmas due to Changkong and Haimes [8].

Lemma 2.2.1. A point z* € Xj is an efficient solution for (MVP) if and
ounly if z* solves Vk = 1,--- | p,
MV Py(z*) :

b
Minimize f oz, 2) dt
subject to z{a) =to, z(b) =ty,
g(t, z,&) <0,
b . b .
[ feesas [ praaa,
v JE {1 7p}:]#k
Lemma 2.2.2. A point z* € X, is an efficient solution for (MVPE) if and
only if 2* solvesVk =1, -, p,

MV PEg(z") :

Minimize /b FE(t e, ) dt
subject to T(aa) = oy, :r(b) = fo,
g(t,z,x) <0, A(t,z,z) =0,
f fi(t, z, ) dt < ]b F(t, x*, &%) dt,
) ' viel{l--phi#k
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2.3. Sufficient Optimality Theorems for (MVP)

We establish some sufficient conditions for an #* € X3 to be an efficient
solution of problem (MVP) under various generalized type I invexity conditions

specified in the definitions given above.

Theorem 2.3.1 (Sufficiency). Suppose that

(i) =" € Xo;

(i1) there exist 7% € RP,7* > 0, and a piecewise smooth function A* : I —
R™, A*(t) > 0 such that

P
(a) ; Ti*{f;;(t’ v, 3%) — jtfi(t, ™, &%)}

- * ] * .k d ; ¥ xok
+§)\j(t){g%(t,l‘ » T )* Egi(tvfr v L )}:()7

b ™M _
(b)/ SN (2t a%) dt = 0;
a j=1

(iii) (f, g} is quasi strictly pseudo V-type I invex at * with respect to n, 7*, X*

and for some positive functions «;, 3;, fori =1,--- ;p,s=1,--- m.

Then z* is an efficient solution for (MVP).

Proof. Suppose x* is not an efficient solution of (MVP). Then there exists

a x € Xy such that

b b
/fl(t,a:,i)dt < /fi(t,.z*,j:*)dt, Vi=1--,p

and

b b
/ fo(t,r,p)dt < f fo(t,z*, 2%)dt, for some i =1, --,p
a

a
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which implies that

b P b P
/ZTi*ai(w,m*,j:,i*)fi(t,I,:i;)dt < /ZTi*ai(:!;,;U*,:j:,:t*)fi(t,:n*,j:*)dt.
¢ =l & =1

From the above inequality and the hypothesis (iii), it follows that

b P
/ E it o, a™, &, 2 fi(t, 2™, &%) — %f;(t,;z:*,j;*)}dt < 0. (2.9)
Ja i=1

By the inequality (2.9) and hypothesis (ii)(a) we have

b m
* * = =k i * ok a * -k
f Z)\j(t)n(t,:xja: L&, e ) gl (t, %, %) — &gi(t,x L&)}t > 0.

From the above inequality and hypothesis (iii) it follows that

BH m
/ SN (08 (x,x" @07 (¢, 7" @) dE < 0. (2.10)
a ]:1

Now from hypotheses (i) and (ii)(b) it follows that f; AS(t)g? (t, &%, &%) dt = 0,

for every j, which further implies that

L m

/ D OX 0By, 2, &, 27 ) gl (8,2, 27 ) dE = 0.
a

j:‘.l

The last equation contradicts the inequality (2.10) and hence x* is an efficient

solution of (MVP). O

Theorem 2.3.2 (Sufficiency). Suppose that
(i) =* € Xo;
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(i) there exist 7" € R? 7 > 0, and a piecewise smooth function A* : I —
R™, A*(t) > 0 such that

p
: d .
(@)D At @) - Shi )
=1

- * ] * .k d i %
TN gl 2 — o glt et ) = 0,
i=1

p om

®) [ Y Ni{tgi(t, 2", &%) dt = 0;
j=1

a

(iii) (f, g) is pseudo V-type I invex at z* with respect to n, 7*, A* and for

some positive functions «;, 3;, fori=1,--- \p,j=1,--- ,m.

Then x* is an efficient solution for (MVP). If, further, there exist positive real
numbers 7;, m; such that n, < a,(z,z* ,2%) < m,, for all z € Xy and for all

t=1,---,p, then =¥ is properly efficient for (MVP).

Proof. Suppose z* is not an efficient solution of (MVP). Then there exists
a x{# x*} € Xq such that

b b
/ fz(t7T$)df§f fi(t,l'*,i'*)dt, Vz:l: ' P

and
b b
/ f”’(t,.r,:t)dt<[ fro(t,x", &*)dt, for some ig=1,--- ,p

which implies that

v P
/ ZTi*cizi(m,CC*,fi:,d?*)fl(t,:r,jc)dt
@ 4=

b P
< / ZTi*ai(m,:z:*,i',a';*)fi(t7:1:*,$*)dt. (2.11)
|
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Next, by the hypotheses (i) and (ii)(b), it follows that jab A (t)g? (¢, z*, 2%) dt =

(0, for every 7, which further implies that

E m
/Z)‘;(t)/@j(in,l'*,C'L‘,:E*)gj(t,:z:*7;i;*)dt~0_
a j=1

From the above equality and the hypothesis (iii), it follows that

b m
. d .
/ Z A (Ot x, 2 &, 2" ) {gl(t, ", i") — agi(t,m*,jﬁ*)}dt <0. (212)

Now by (2.12) and the hypothesis (i1)(a), we have

b P
Z'ri*n(t, z,xt, &, &) Lt ", %) — ;ﬁf‘;(t’ ¥, &%)}t > 0. (2.13)
=1

a

Finally, by {2.13) and the hypothesis (iii), we have

b P
/ZTi*ai(”“'*x*ai‘:j?*)fi(t,as,,:b)dt
a i—1
b P |
- fZTi*ai(maiﬂ*zfff:i*)fl(t,x*,a%*)dt. (2.14)
a i

Since (2.11) and (2.14) contradict each other, we have the conclusion that «* is
an efficient solution of (MVP).
Next let for p = 2

(m;7)
(7))
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Suppose z* is not properly efficient for (MVP) Then there exists an zy € X
such that for some 7 with f Frt x*, 2% dt > f (¢, o, 2o )dt,

b b
/fi(t,:v*,rb*)dt-—/ FH{t, zo, 2g)dt
b b
>M{f fj(t,xg,:bo)dt—] f](t,:l:*,:t*)dt}

b b
Yj such that/ ¢, xo, To)dt >/ At z*, 2")dt. (2.15)

From (2.15} it follows that

b b
/ fl(t,a:*,:'c*)dt—/ [t zy, Eo)dt
% b b
> {(p—1) ((m]—Ti)) {/ fj(tvl“o)-’i?o)dt—/ fj(t,:c*,:b*)dt} Vi # J,

(ni7})

which implies that

b b
/f"(t,a;*,z*)dt—/ Fi(t, zo, dg)dt

(g:(%u {/f ti?oxodt—/f]t:c m)dt}\/z#J,

which further implies that

1 b b
__1 aiT: {/ fi(t "'E*’ ‘T*)dt o [ fl(t,l‘o?(to)dt}
P a a
b ] b
> o7y {/ fI(t, o, 2o)dt */ f"(t,x*,:b*)dt}. (2.16)
a a
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Summing (2.16) with respect to j, we have that

b b
al'ri*{/ fi(t,m*,:i:*)dt—f fi(t,;vg,:'co)dt}

> Y ay J{f Fi(t, zg, &g dt/ Ft,a* @ )df}

JFi

that is,

/ Zaj It o, Zo df</ ZQJTJ At 2%, &%)dt. (2.17)

Now (2.17) contradicts (2.14) and hence z* is a properly efficient solution for
(MVP). 0

Theorem 2.3.3 (Sufficiency). Suppose that
(i) ¥ e Xy
(i1) there exist 7 € RP,7* > 0, and a piecewise smooth function A\* : I —

R™, X*(t) > 0 such that

14 ‘ d .
a) ZT;‘{f;(t,.’L’*,i*) - E-f}r(tvx*:i‘*)}

+Z)\ (O{gl(t, x* &%) — —gl(t, 2% 2*)} = 0,

a’e
(b) f S At (", ) dt = 0
a ]:1

(iii) ( f, ¢) is semi strictly quasi V-type I invex at o™ with respect to 7, 7%, A*

and for some positive functions a;,3;, fori =1,.-- |p,j=1,--- ,m,
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Then x* is an efficient solution for (MVP).

Proof. Suppose that there exists a (£ 2*) € X, such that

b b
/ fz(t,CE,fE)dtS\/\ fi(t7$*7i*)dt7 vz:l* y P

and

b b
/ fio(t,.r,i)dt < / fio(t,g;*jj;*)dt., for some ig =1, ,p,
Ja a

this implies that

b P
/ Yo rras(w,at &, 5 fH(t 3, ) dt
@ =1
b P |
< / Zri*a,;(:c,:c*,:i:,:i:*)f"(t,ac*,:i:*)dt. (2.18)
4 =1

From inequality {2.18) and the hypothesis (iii), it follows that

6 P
_ d .
/ E ot z, 2™, 2, 2% fi(t, z%, 2%) — Ef;:(t,x*,j:*)}dt<0. (2.19)
@ =1 ¢

Since jab Yo (g’ (t,27,2%) dt = 0 implies that f: AH(t)g? (b, 2", 2% ) dt = 0
for all 5 and /3; > 0 for all j, we have

b m
/ Z/\’]'-“(t),@j(:t:,m*,:ir,if*)gj(t,w*,:J'c*)dt =0. (2.20)
a le

Now (2.20) and the hypothesis (iii) imply that
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b m
: d
/ SN it e at 55 ok (6,27, 87) — Sgl(tam i <0, (221)

Adding {2.19) and (2.21) we see that the hypothesis (ii)(a) is contradict. Hence
x* is an efficient solution of (MVP). O

Theorem 2.3.4 (Sufficiency). Suppose that

(i) z* € Xp;

(ii) there exist 7* € RP,7* > 0, and a piecewise smooth function A\* : ] —
R™ X*(t) > 0 such that

P ' d .
a) ZT;{f;(t,a;*,g:*) - azf;(t,fr*?:t*)}

+Z)\* Hol(t, z*, q:)—%q(tat )} =0,

]ZA* I, z*, 2% dt = 0;

(iil) (f, g) is strictly pseudo V-type I invex at z* with respect to n, 7%, A*

and for some positive functions o;, 3;, for i = 1,--- ;p,j=1,--- ,m.

Then z* is an efficient solution of (MVP). If, further 7* > 0 and there exist
positive real numbers n;, m; such that n; < oz, 2%, 2,12%) <my, forall z € X,
and for all 7 = 1,--- | p, then x* is properly efficient for (MVP).

Proof. By hypothesis (ii}(b) it follows that

b m
/ YN OB, " b, i) (1 B dE = 0,
Jo &=
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which implies by the hypothesis (iii} that

b m
_ d .
/ ZA;(t)n(t,a:,:n*,i,i*){gi(t,x*,fb*) — agi(t,x*,i*)}dt <0,

7j=1
which in turn implies by the hypothesis (ii)(a) that

b P
. d .
/ZTz-*n(t,:z:,a:*,:b,:b*){f;(t,a:*,:'L'*)—Ef;(tja:*,i*)}dt>0. (2.22)
@ i=1

Now from (2.22) and hypothesis (iii), we have

b P
ZT@*%(% &, %)t &) dt
=1

b P
>/ Z’rl-*ai(az,a:*,j:,m'*)fi(t,:L'*,:b*)dt. (2.23)
& =1

Next if z* is not an efficient solution of (MVP}), then there exiats an = € X

such that

b b
/ fi(t,zr,j:)dtS/ fit,z*, &%)dt, Yi=1,---,p

and
b b

/ fet,z, o)dt < ] fet,z*,2*)dt, for some ig =1, - ,p,
a a

which implies that

b P
/ Y oz, an, a8 it @, ) de
@ =1

b P
</ ZT:ai(m,m*,.r',:"c*)fi(t.:1:*,:£:*)dt. (2.24)
¢ =1
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Since (2.23) and (2.24) contradict each other, the conclusion follows.

To establish the proper efficiency of z* (MVP), we follow the same argument
as in the prootf of Theorem 2.3.2 except in the end we appeal to the inequality

(2.24) for a contradiction. U
2.4. Formulations of Four Pairs of Variational Dual Problem

We formulate four pairs of the following multiobjective variational dual prob-

lems.

(MVD): Maximize

b
/ {£Gy,9) + > Aa(tgalt,y,p)e} dt
b
= ([ e+ T as0oaty i) it
b
f {f”(ty,y')+Z/\A(t)g/a(t,y,y)}dt)

subject to y(a) =to, y(b) =1y,
P . d .
d_nlfiltwd) ~ 2 iy}
i=1

+ 2N {lt v 9) ~ Sal(ty.4)} =0,
Jj=1

b
f A(8)gn(t, v, 0)dt > 0,
a
TERP,T>0,

Aty € R™ A1) >0, tel,

where e = (1,1,--- 1)) € RPand AUB = {1,--- ,m}.
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When A = @ and B = {1,--- ,m}, our dual problem (MVD) is reduced as

follows:

(MMVD): Maximize

/  flt)dt
ff (ty, ) d /fp(tyy)dt)

subject to y(a) = ty, y(b) = ty,
P

. d .
Zﬁ{f};(t:%y) o %f;(tﬂyay)}
i=1

*ZA {ngyy)—% Aty 1)} =0,

b
[ Ai()g (ty,9)dt >0, ¥Y§=1,--- ,m,
Te R, T2>0,

Alt) € R™ A1) >0, tcl.

We let Yy be the set of feasible solutions of problem (MMVD);

= {(y, A | yla) =to, y(b) =tr,
Yo rdfitty. ) - wf (t, v, 9 }+2/\ Hailty,9) - ;tgz(t v, 9)} =0,
171

b
/ /\J(t)g](tay;y)dt Z D: VJ - 1: B L

TeRP, 7>0. At) € R™, A(f) =0, te[}.
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Analogous to (MMVD) and (MVP), the following problem (MMVDE) is a

dual to (MVPE).

(MMVDE):

b
Maximize / flt,y,9)dt
" b b
/ fl(t)y:y)df'ﬂ Y [ fp(tayay)dt
subject to  y(a) =ty, y(b) =1y,

14
ZTz{f t U, y - Ef;(tvy:y)}

=1

S’

m

d ; .
+Z)\a el (t,y,9) — 9Ly )}

+Zm {h’fyy)-—h[(tyy)} 0,

i=1

b
] )\j(t)gj(t,y,y')dt >0, ¥Vi=1,---,m,

b
[ m@h ey g =0, =1, g
a

Alt) =0,

P
7 > 0, Z’rizl, tecl
i=1

We let Y] be the set of feasible solutions of problem (MMVDE);
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(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)



v, = {(y,r,x,m (@) = to, y(b) =t

>l ity ) - f (6,9.9)) +Z>~ IR
=1
- % } Z {hl t Y, y) - E{hi(tayy)} = 0’

/)\ Hty,9)dt >0, Vj=1, n,

/ wth Ly, dt =0, Yi=1,---
A(t) =2 0,

P
T = 0, Zﬂ“—‘l, tEI}.

i=1
We consider the following general Mond-Weir [30] type dual problem:

(GMMVDE): Maximize

/{ffuy+z>\(t)gtyy + > w(OR Y, 9 dt,

j€Jo e Ko
e - A0 G+ 3D R ) )
jedo e Ko
subject to yla) = to, y(b) = ty, (2.31)
r
P P
;ﬂ,{fz(t,y,y) - Fi . 8)

+ZA (t)1{gl(t,y, ) — igm(t v}

b WO ) - L) = o, (2.32)
I=1
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b
f { Z Aj(t)gj(tayay) + Z ﬂ’l(t)hl(t:yv y)}df >0, a=1,--- 77",(2‘33)

a

€T eKqa
Alt) = 0, (2.34)
P
7 2 0, ZTi =1, (2.35)
i=1

where J, C {L,---,m},a=0,1,--- ;rwith J,NJg=0,a# Band . _, J, =
{l,--,m}and K, C{l,-- -k}, a=0,1, - ,r with K,NKg = 0,0 # 3
and U_g Ko = {1,-- k).

2.5. Duality Theorems

Now we establish some duality theorems between the multiobjective varia-

tional problem (MVP) and its dual problem (MMVD).

Theorem 2.5.1 (Weak Duality). Suppose that

(l) T & X();

(ii) (y,7,A)eYyand 7 >0,

(iii) (f,g) is pseudo V-type I invex at y with respect to 7,7, A and for some

positive functions o, 85, for e =1, - p,j=1,--- m.

Then the following cannot hold:

b b
/ fi(t,z,i)dtgf filt,y,g)dt, Yi=1, - ,p, (2.36)

and

b b
/ fotz,d)dt < / frolty,g)dt, for some i =1, ,p. (2.37)
a v a
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Proof. By hypothesis (ii} we have f; Nt (L y,p)dt >0, ¥j =1, m,

which implies that

b m
/ZAj(t)ﬁj(cc,y,:b,y)gf(t,y,g)dt20. (2.38)
o3 F=1

By the hypothesis (iii) and (2.38) it follows that

b m
. g : d ; .

=1

Using the inequality (2.39) and the hypothesis (ii) we have

b P
. _ d ., ,
/ E Tin(t’m’yyxay){fm(tayay) - afm(tayay)}dt 2 0. (240)
@ 4=—1

Hypothesis (iii) and (2.40) give

b P b P
> meu(zy, &,0) fi(t,z, 5)dt > f > o miadlm,y, &, 9) £t v, p)dt.
=1 a 4=

o A_‘
(2.41)
Suppose contrary to the result that (2.36) and (2.37) hold. Then since each
a; >0 and 7 > 0, we have

b P b P
Znai(m,?,i',z))fl(f,m,i)dt < fZnai(m,y,:i:,z))fz(t,y,@))dt,
i=1 T 4=

a ‘A

which contradicts (2.41). Hence the conclusion follows. u

Theorem 2.5.2 (Weak Duality). Suppose that
(i) z € Xo;
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(ll) (Ua 7, )‘) € YO:
(iii) (f, g) is semi strictly V-type I invex at v for some positive functions

g, ﬁ: for ¢« = 17 ' Py .7:17 I
Then (2.36) and (2.37) cannot hold.

Proof. By the hypothesis (ii) we have f; A(Dg (ty,)dt > 0, Y5 =

1,---,m, which implies that

/ (t)3;(z,y, &, 9)¢’ (t,y,y)dt > 0. (2.42)

By (2.42) and the hypothesis (iii) it follows that

d
/ Ont, z, y, 2, gLt v, §) - gx(t Y, ¥)pdt < 0. (2.43)

Using the inequality (2.43) and the hypothesis (ii) we have

b P
[ Znn(mﬂf,y,dz,y){fi(t,y,y)——fl ty,)tdt 2 0. (2.44)
4 =1

By (2.44) and the hypothesis (iii), we have

b P
/ D mon(z,y, £,9) 7 (@, d)dt >/ va @y, &,9) 7 (Y, g)dt.
¢ =1

(2.45)
Suppose contrary to the result that (2.36) and (2.37) hold. Then since each
a; > 0 and 7 > 0, we have

b P b P
fZnaz(w,y,i-,y)”fﬂ(t,x,a's)dts/ Y o mon(ey ) ity g)dt
a =1 M|
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which contradicts (2.45).
L

Corollary 2.5.1. Assume that weak duality theorems (2.5.1, 2.5.2) hold be-
tween (MVP) and (MMVD). If (y*, 7*, \*) is feasible for (MMVD) such that y*
is feasible for (MVP), then y~ is an efficient solution for (MVP) and (y*, 7%, A*)
is an efficient solution for (MMVD).

Proof. Suppose that y* is not efficient for (MVP). Then there exists some
feasible « for (MVP) such that

b b
/fi(t,:zct,jt)dt</fi(t,y*,-y*)dtj Vi=1---,p

and

b b
/ fo(t,z, &)dt < f fleft,y™, v )dt, for some ig =1, - ,p.
Ja a

This contradicts weak duality. Hence y* is an efficient for (MVP). Now sup-
pose {y*, 7", A*) is not an efficient for (MMVD). Then there exist some (i, T, \)
feasible for (MMVD) such that

b &
/fi(t,x,i:)dtzf fitys 95 de, Yi=1,--,p
a a

and

b b
ffiﬂ(t.,m,:t)dwf fe(t,y,9)dt, forsome ip=1,--- p

This contradicts weak duality. Hence (y*, 7%, A*) is an efficient for (MMVD).
d

Theorem 2.5.3 (Strong Duality). Assume that
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{i) z* is an efficient solution for (MVP);
(ii) forallk =1,--- p, £* a constraint qualification for MV Py(z*) at z* is
satisfied.

Then there exists 7% € RP,7* > 0, and piecewise smooth function A\* : I —
R™ X*(t) > 0 such that (z*, 7%, A*) € Y,. Further, if the assumption of weak
duality theorems (2.5.1 or 2.5.2) are satisfied, then (z*, 7%, \*) is an efficient for
(MMVD).

Proof. Since z” is an efficient solution of (MVP), then from Lemma 2.2.1,

x” solves MV Py(x*) foreach & = 1,--- | p. From Kuhn-Tucker necessary condi-
tions for each k = 1,--- | p, we obtain 7F > 0 for all i # &, and N()(=0)e R™
such that

{f;(t,fl!*,j: )__—f t $ LE }+§;7—k{fk T T 1" )—%fﬁ(t,m*,i*)}

ZAI Wol(t, z*,4%) — ;’tgm(t ¥, %) =0, (2.46)

[ Z/\i It 2, &%)dt = 0. (2.47)

Summing (2.46) over ¢ = 1,--- ,p, we have
1 1 1 *  x d 1 * .k
(1+T2 ++Tp){fa:(tix y L )_ ;i—ffz(tzr s & )}
m . d
1 * ek
+ DMl - & ollea®, ")
2 2 2 ¥ % d 2 e x
U+ 24 S 2" 2 )—Ef,r(t,:c L)}

+Z)‘?(t){gi(t,$*,:&*) (;igx(t 252 )+
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d
+ (Tip +T2p +--+ 1){ff(t*$*7$*) - Efg(tam*,i‘*)}

P kK * ok —_
+1§4jAj(t>{g;(t,m &%) - (bt @)} =0

[2
Lyt /\g?(t) = A{6), 7 =1,---,m, A{(t) = (A{(£), -+, AL(t)). Then we

have

Let 7f =1+ 74 4+ -+ 7}, T5:T12+1+"-+T§, ---77';:7'{)—}-'7“2;)—’--'--}—

P
* i * e % d q * -k
ZTi {fm(Trm » T )_&—tf:c(t1w y L )}
=1
- * 7 x vk d 7 % -k
+) Mgt 2", a%) — To(ta" i)} =0.
j=1

Summing (2.47) for i = 1,--- ,p, we have fab Z?Ll /\;‘(t)gj(t] x*, z*)dt = 0. We
conclude that (z*,7*, A*) is feasible for (MMVD). Efficiency of (z*,7*, A*) for
(MMVD) now follows from Corollary 2.5.1. O

Theorem 2.5.4 (Converse Duality). Suppose that

(i) (y*, 7", A") € Yo with 7" > 0;

(ii) »* € Xo:

(iii) (f, g) 1s V-type I invex at y* for some positive functions «;, B;
fOri:l)...’py‘j:lj...’m"

Then y* is an efficient solution of (MVP).

Proof. It follows by the hypothesis (i) that

b
/ AT (Y g% )dt 20, Vi=1,--- m. (2.48)
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By hypothesis (iii), for any z € X, we have

b b
ffi(t,m,i)dt—/ it y*, y)dt

zf it oy, 6 9 (it g y)—“f Ly, 3%}, (2.49)
b
—/ q](tvy*7y*)dt

b
* e ek j kK d
[ oty g el w5 el iy (250)

Now by the facts that a; > 0, 8; > 0 V¥ 4,7 and 7% > 0, \*(t) > 0, it follows
by (2.49) and (2.50) that

* * b ™ *
T . . ox ;
/ E f t,x,&)dt — / E ——a"fl(t,y L) dt — / fy ,y7)dt
a 87) —1 (3

=1

2 / I(tﬂf,y*7i;y*)(ZT:{fi(ta?}*:?)*)* &;f;;(ty*ay*)}
a i=1

> * j * ek d ; * ek
TN (O{adty i) — Sty i} )de
= 0. (2.51)

From (2.48) and (2.51) it follows that

(2.52)
Now suppose that y* is not an efficient solution of (MVP). Then there exists
an r € Xy such that
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b b
ff"(t,a:,a'c)dts/ Fity* g5)dt, Yi=1,.-,p

and
b b
] fet, z, o)dt </ Fe(t,y*,y")dt, for some ig=1,---,p

which implies that

b P .

T .

: t:c:l:dt<f fe(e,u*, g™ )dt.
/a;ai(:r?y*,- ") ) a az(ly &2 Y) hy"97)

(2.53)
Now (2.52) and (2.53) contradict each other. Hence the conclusion follows.

O

Theorem 2.5.5 (Converse Duality). Suppose that
(1) (¥ 77 %) e Yo
() y* € Xo;
(iii) (f, g) is strictly pseudo quasi V-type I at y* with respect
to 7, A* and for some positive functions o, Gijfori=1---pj=

1,--- m.

Then y* is an efficient solution of (MVP).

Proof. It follows by hypotheses (i) and (ii) that f Aj(t ) g’ (t,y*, g™)dt >

0, Vj =1, - ,m, which implies that fa 2 A OB (T oy, E, ) (b yT gt )dt
> (1. From the above equality and Definition 2.2.6, we have

b m
d x ek =
/ ota " 5 0 edy5) — okl y i) <0, (250
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Combining (2.54) with hypothesis (i) and appealing to Definition 2.2.6 again

we have

b P b P
[ 3 raile gt a, gt fit x, d)de > f Y rroaytE ) £y, R

e =1 @ =1
(2.55)

Next, if * is not an efficient solution of (MVP), then there exists an = € X

such that

b b
/ fi(t,.r,j:)dtgf fHt oy, gN)dt, Yi=1,- - p
a a

and

b b
/ fo(t,x, o)dt < f flo(t,y*, 9%)dt, for some ig=1, .- ,p,
a a

which implies that

b P b P
/ ZTi*ai(a:,y*,d:,,i)*)fz(t,sz:,:t)dt<f ZTi*ai(:c,y*,i,y*)f’(t,y*,y'*)dt.
@ =1 ¢ =1

(2.56)
Since (2.55) and (2.56) contradict each other, it follows that y* is an efficient
solution for (MVP). O

Now we establish some duality theorems between the multiobjective varia-
tional problem (MVPE) and its dual problem (MMVDE).

Theorem 2.5.6 (Weak Duality). Assume that for all feasible z for
(MVPE) and all feasible (y, 7, A, 1) for (MMVDE), any of the following holds:

(i} (f, g+ h) is weak strictly-pseudoquasi V-type I invex at y with respect
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to 7 and 7 > 0 and for some positive functions «;, 5; for i = 1,--- | p,
j o= 17 e
(ii) (f, g+ h) is weak strictly pseudo V-type I invex at y with respect to 7

and 7 > 0 and for some positive functions o, g, fori =1, | p,j =

1, ,m.

Then the following inequalities cannot hold:

b b
[ Fi(t, d)dt < / Pty g, V=1, p (2.57)
a a

and

b b
/ flo(t,z, 2)dt < / felt y,g)dt, for some g =1, ,p. (2.58)

Proof. Suppose contrary to the result that (2.57) and (2.58) hold. Then

since cach «; > 0 and 7 > 0, we have

P

b
/Znazxy,:ry (tmmdt</ Znal:ty,l Nt y,9)dt. (2.59)

Since (y, 7, A, p) is feasible for (MMVDE), it follows that

f ()85 (z,y, 2, 9)g° (t,y, )dt > 0

/ ZM e,y @, 9)R' (6, y, 5)dt = 0.
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Hence

b m q
-/ {Z MO8, 9,8,0)0 (0 3) + S ult)ule, v, y)h’(t,y,m}dt <0
a i 1=
1 (2.60)

By the hypothesis (i) i.e; {f, g+ h) is weak strictly-psendoquasi V-type I invex,
(2.59) and (2.60) imply,

b P
N . d ‘
/ ZTin(tvm)y::an){fx(t7yvy) - afm(tryyy)}dt < 01

[ n(t,z,y,&,9) (ZA (tH{git, v 9) - dgz(t ¥, 9}

7=1

-+—Z,u[ (ALt y, ) — dih (t,y, q)})dtg().
=1

The above inequalities give

b P
/ T)(ta‘r:y:i)y)(ZTi{fi(tvyay) - %f;(t,y,y)}

=1

+ZA Mol (v, 4) — dfgz(t v U}

S O ) - @ h ey )t < 0, (2.61)
=1

which contradicts (2.26).

By we have the hypothesis (ii) i.e; (f. g + h) is weak strictly pseudo V-type
I invex, (2.59) and (2.60) imply
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b P
[ Xt i< (2.62)

f(Z/\ Hol(t.,5) — ol (t,v,9))

d
l —
b WO (00) — S0t < 0. (2.63)
(2.62) and (2.63) imply (2.61), again contradicting (2.26). a

Corollary 2.5.2. Assume that weak duality holds between (MVPE) and
(MMVDE). If (y*, 7", A*, u*) is feasible for (MMVDE) such that y* is feasible
for (MVPE), then y* is an efficient solution for (MVPE) and (y*,7*, A*, u*) is
an efficient solution for (MMVDE).

Proof. Suppose that y* is not an efficient for (MVPE); then there exists
a feasible x for (MVPE) such that (2.57) and (2.59) hold. But (y*,7* A*, 1*)
is feasuble for (MMVDE), hence the result of weak duality is contradicted.
Therefore, y* must be efficient for (MVPE). Now suppose (y*,7* A*, p*) is
not an efficient for (MMVDE). Then there exist some (x, 7, A, i) feasible for
(MMVDE) such that

b b
/ fi(t’x’f”)d’?/ Filty™, g5 dt, Yi=1,---p
“ a
b b
and / flo(t,;r,i:)dt>f [y, v dt, for some ig=1,---,p.
@ a

This contradicts weak duality. Hence (y*, 7%, A*, u*) is an efficient for (MMVDE).
U
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Theorem 2.5.7 (Strong Duality). Assume that

(1) x” is an cfficient solution for (MVPE);
(if) forallk =1,--- p, ™ aconstraint qualification for problem MV PEy(z*)

is satisfied at z*.

Then there exist 7* € RP, 7* > 0, and piecewise smooth function \* : I —

R™ A*(t) > Oand p* : I — R7such that {x*, 7%, \*, i*) is feasible for (MMVDE).

Further, if also weak duality holds between (MVPE) and (MMVDE), then
(x*, 7%, A%, u*) is an efficient solution for (MMVDE).

Proof. Since z* is an efficient solution of (MVPE), then from Lemma 2.2.2,
x* solves MV PEg(x*) for each ¥ = 1.---,p. From Kuhn-Tucker necessary
conditions for each ¢ = 1,--- ,p, we obtain 7F > 0 for alli # k, A¥(t) >0€ R™

and p*(t) € RY such that

{f;(t,.’)?*,.’t )"‘ ——fl t, z” CE }+H£ZA k{f (t z” iy ) tfg(tv'r*ai*)}
* LN Ol - galle i)
+Em () {BL (4, 2" x)—ihl(m, ) =0, (2.64)

/ Z)\" (Yo' (t, x*, &%) dt = 0. (2.65)

Summing (2.64) over ¢ =1, - | p, we have
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(1+ T% +o it ar) - if;(t,a:*,dﬂ}

; A ko
+Zuz (O{ha(t,2%,37) — —hy(t,2",27)}

d
+ (Tl2 +14+---+ sz){frz(tx*vr*) - Efg(t,l*,.lf*)}

FYR0{el et ) - L at)

+ ) Rk (a7, a7) ii-hl Lt a ) + -

FY MO0 ) - gl e, a))

=1

FY WO a5 LR, d) = 0

dt =+
=1
Let ¢ =1+T21+"-+T:;, TS :'r12+1+--~+7'§, T =TTy e+
11 }\;(t): i:l )\_];(t) ]:1> , 11, A*(f):()\:{(t)'j TTL( )) p 1:u’l.' (f)
=pr(t), L=1,-- gand p*(t) = (p(t), -, pu3(t).

Then we have

n'Mw

+ Zuf(t)
(=1

Ltz 1)—~f’trm}+ZA () {gl(t,z*, &%) -

dt

d
{PL(t,x* 2%y — —RL(t,z*, &%)} = 0.

dt
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Summing (2.65) for ¢ = 1,--- ,p, we have f: Z?;l A5(t)g? (t, 2%, a*)dt = 0. We
conclude that (z*, 7%, A*, u*) is feasible for (MMVDE). Efficiency of (z*, 7, A*, 1*)
for (MMVDE) now follows from Corollary 2.5.2. ]

Theorem 2.5.8 (Converse Duality). Suppose that

(i) {y=, 77, A" u") €Yy

(i) y* e Xy;

(iii) (f+20 rlt)hy, g) is V-type l invex at »* with respect ton and 7* > 0

and for some positive functions «,, 3; for i =1,--- |p,j=1, - m;

Then y* is an efficient solution of (MVPE).
Proof. It follows by the hypotheses‘(i) and (ii) that

b
[a N (" 9Vt =0, Vi=1,-- m. (2.66)

By hypothesis (iii), for any = € X, we have

b b 4
f fz(ta Il,l')dt - / {fl(t’y*jy*) + Z/if(t)hl(t y*’ y*)}dt
a a =1

b 3 - % d i * ek
= / 063‘(337y*;iay*)"’?(ta@y*ai'ay*)({fi(t,y*,y )— E‘ifm(tay ' Y )}
q
.  x d . x .
+ Oy 07 — ALy )dE Vi=1, (2.67)
=1
b
W\/ gj(try*y*)dt
’ * ek L A | * -k d] * ok
> / i,y gt 2. y" 29" oz (6 y™ %) — —an (b ", 97) e,

Vi=1,---,m. (2.68)
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Now by the facts that a; > 0, 8; > 0 ¥V 4,7 and 7* > 0, A*(¢¥) > 0, it follows
by {2.67) and (2.68) that

b P

i=1 ¢ =1

b m )\*
f 1‘ 7ty dt
p d .
> * ,* 1 * kY ; *. .k
__LMMmewgﬂMﬁwm)d#w%yﬂ
- * 7 P d
+Z)\j(t){g$(t,y YT) - dth(t v i)}

d -
+§}u{ﬁtyy)—§M%Mwﬂﬁhﬂ- (2.69)

From (2.28), (2.66) and (2.69) it follows that

t dt> ?:t*-* )
fzal(my ny) =) /uzalxy ﬁcy)f(’y’y)dt

(2.70)
Now suppose that y* is not an efficient solution of (MVPE). Then there exists
an r € X such that

b b
/ fl(t;:E;-i)dtS/ fi(t’y*,y*)dt: VZ:]-" >p
and

b b
ffio(t:ﬂ?z-’t)dt < / fro(t.y*,¢")dt, for some i =1,---,p

which implies that
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/Zwy &) ““"d“f 2 o zu)fi“’y*’y*)dt'
(2.71)

Now (2.70) and (2.71) contradict each other. Hence the conclusion follows. [

Now we establish some duality theorems between the multiobjective vari-
ational problem (MVPE) and its generalized Mond-Weir dual problem (GM-
MVDE).

Theorem 2.5.9 (Weak Duality). Assume that for all feasible x for
(MVPE) and all feasible (y, 7, A, p) for (GMMVDE), any of the following holds:

(1) 7> 0,and (f+325c 5 A OF+2 e w, ()R ey M0F+3 k.
(#)hY) is weak strictly-pseudoquasi V-type I invex at y with respect to 7
for any a,1 < a < r and for some positive functions a;, fori =1,--. |p

and f;

(i) (f+ ZJEJO t)g? + Zlng ,ul(t)hl Zje,]u Aj (t)g’ + ZleKa Hl(t)hl)
is weak strictly pseudo V-type I invex at y with respect to n and for

some positive functions «,, for ¢ = 1,--- ,p and £;

() (F+ X e MO + Xiege, R, Ties X + Y i ()R
is weak quasistrictly-pseudo V-type I invex at y with respect to n and

for some positive functions a;, fori =1,--- ,p and 2.

Then the following inequalities cannot hold:
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b
/ fi(t, =, @) dt

f (Fltu i) + 3 N0t + 3 by, 9) de,
jeds leKy
Vi=1-,p

and

b
/ Fo(t, 2, 2) dt
/ {72y, 9) + > N by, o) + > mbhi(ty,9)) dt,

]EJ() lEK’U
for some iz =1, ---,p

(2.72)

(2.73)

Proof. Suppose contrary to the result that (2.72) and (2.73) hold. Since z

is feasible for (MVPE), and A(t) > 0, (2.72) and (2.73) imply

[{f (t,z, ) +Z)\(t Yo (t,x, %) + Zm(t)hl(t}a:,j:)}dt

]EJO lEKO
/{f (ty )+ D> N0 by g) + > w(OR (ty, 9} dt,
JE€Jo le Ky
v i=1,- P
and
/ {fo(t, x, &) Z Ni()g? (t, x, 2) E (YRt &)} dt
EJO =Ky

/ {Foy. )+ D N0 Ly w) + > mh!(ty,9)) dt,

j€Jn €Ky
for some g =1,---  p
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Then since a; > 0, (2.35) we have

/Znazmy,wy){ftma: Z)\ It x, &) Zm(t (t,z, )} dt

jE Ja IEKD

onalmyxy{ftverZ)\ Wty 9)+ Y (DR (g, §)} dt.

jEJy e Ky
(2.74)

Also, from (2.33) and 8 > 0 we have

b
—/ {D M08y, &,9)¢ Ly )+ D w()B(z,y,a,9)k (t,y,9)}dt <0,

¢ jeda €Ky
forall 1 <o <r. (2.75)

Using hypothesis (i), we see that (2.74) and (2.75) together give

b P ‘ d
/ ZTI'I'](‘IS,IJ,Q)'E, y) ({f;:(t y’y) - ng;:(t:y:y)}
@ g=1

3 Mt ) - Lol i)

= di
d
> )Rty ) ~ ah;(t,y,y)}) dt <0,
lEKo
d ] .
tryTy(Z/\ {sz’yv)*a ACRIENE

jEJL

d
+ J{hE(t — —hL(t,y, N} dt <0, VI <a<r.
g{:m Lty ) = SRty 9)}) dE <0, VI <a <

Since (2.35), the above inequalities give
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b p
f n(t,:my,:t;y)(zn—{fi(t,y.-y - —f (t.y, ¥ HZA ) {g2(t,y,9)
d { d 4
gx(tyy}ﬂLZm Hhe(ty,9) = 2ha(ty, y)})dt<0-
=0
(2.76)

Since Jp, J1,- -+, J, are partitions of {1,--- ,m} and Ky, K1, - , K, are parti-
tions of {1,---,k}, (2.76) is equivalent to

b P
/ n(t,wyy,:b,y)(Zn{fl(t Y. 9) — ~J” {t.v,9) }+Z)\ (t){g2(t,y,9)

i=1 j=1
d .
dtgx (ty, }+l§;m(t Wh () — @hi(tyy,y)}) dt <0,
(2.77)
which contradicts (2.32).

Suppose now that (ii) is satisfied. Again from (2.74) and (2.75) it follows
that

y P
/ _Znn(t,w,y,a‘s,y)({f:;a,y,y) - At y)

+ > N0 {elt 9 — 91(1 v. 1)}

Jjedo
+ 3t {hl(fyy)—~hl(tyy)})dt<0,
€Ky
’ d
/ (6089 ( 20 M(O1ekty.9) - Lokt i)
“ Ji€Ja
! *il
+1§M Wizt y,9) dh(fyy)})dt<0, Vl<a<r
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Since (2.35), the above inequalities give

b p
]n(txyy,:ifyz'f)(Zﬂ{fi(t,y,y)— yy}+_z/\ {gztyy)

;%<yy}+§;uwwwtyw—§ﬂuyynyu<m

(2.78)

and then again we have (2.77). Also we obtain a contradiction.

Using hypothesis (iii), we see that (2.74) and (2.75) together give

b P
/ ZTiT](t7J;: y;SU,'U) ({f;:(t*ywy) - af;(fayvy)}

=1

+ > A {elty ) - dgr(t v 1)}

j€dy

d .
+ 30 Oty ) — Sty 9)}) de <0,
le Ky

b
/ntxy:vy(ZA {gz(fy’u)—%gf(tyy)}
Ja =

. d .
+ Z ;J,g(t){h,;(t,y,y) — ahé(t,y,y)}) dt <0, V1 <a <
lEK(J

and then again we have (2.77). Also we obtain a contradiction. 0
Corollary 2.5.3. Assume that weak duality holds between (MVPE) and
(GMMVDE). If (y*, 7", A", ") s feasible for (GMMVDE) with 3., A(f)g’

(t,4",9%) = 0 and y* is feasible for (MVPE), then y* is an efficient for (MVPE)
and (y*, 7%, A*, u*) is an efficient for (GMMVDE).
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Proof. Suppose that y* is not an efficient for (MVPE). Then there exists
a feasible = for (MVPE) such that

b b
/fi(t,a:,jc)dtgffi(t,y*;y*)dt, Vi=1,---,p (2.79)

and

b b
/ Fo(t,z, z)dt < / ot y*, ")V dt,  for some ig =1, - P {2.80)
Q a

By hypotheses 3. ;. /\;f(t)gj(t,y*,y'*) =0 and Y0, pr(O)RHt, v*,9*) = 0, so
(2.79) and (2.80) can be written as

/f(tfﬂwdt</{fztu + ST X0y 5

i€ o

+Zm Wity 9" kdt, Vi=1,-p

and

[f““t:rq4dt<f{f"“tyy+2)x S CRTARTA
i€do

+Z“k Htyt, g") ) dt,  for some ig=1,---,p.

Since (y*, 7", A", #™} is feasible in (GMMVDE) and x is feasible for (MVPE),

these inequalities contradict weak duality.

Also suppose that (y*, 7%, A*, u*) is not an efficient for (GMMVDE). Then
there exists a feasible (y, 7, A, i) for (GMMVDE)} such that

- 54 -



f{ftnyrZA Ity 9) + Z“t Yt y,9)} dt

jeJy leKy
b
> [Arew 0+ X 00y 5 + 3 iyt db
a JEJy le Ko
Vi=1,--,p (2.81)
and
f{fﬂo(tuu Y MOy + Y kMt y,9)}dt
jeJy IE Ko
/{f”tyy VD AWMyt i) + D e (R Y 9 dt
]EJ() lEKO
for some iz =1,--- | p, (2.82)

and since 3 . ; A% (t Vgl (ty*, 9% =0, 2 e Ko (Rt v*,9*) = 0, (2.81) and
{2.82) reduce to

b
/ i)+ Y NOF g + S mOh'(ty.g)}dt

]G«JO lEKO
b .
>/ fz(tay*ag)*)dta \7/2:1,“’0
and
/ {Fotmm) + > MO Ly + Y wlt)hi(ty, i)} dt
1€ Jy e Ky

b
>/ fo(t,y*, 4*)dt, for some ig=1,---,p.
JaQ

Since y* is feasible for (MVPE), these inequalities contradict weak duality.
Therefore y* and (y*, 7%, A*, u*) are an efficient for their respective problems.
O
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Theorem 2.5.10 (Strong Duality). Assume that

(i) «* is an efficient solution for (MVPE);

(i) forallk =1,---,p, z*aconstraint qualification for problem MV PE; (x*)

is satisfied at z*.

Then there exist 7* € R¥,7* > 0, and piecewise smooth functions A* : I —
R™ A*(t) > 0 and p* : T — RY such that (z*, 7%, A%, p*) is feasible for (GM-
MVDE) and }_. Ni(t)g? (8, %, %) + > e Ko (O, 2%, 2%) = 0.

Further, if also weak duality holds between (MVPE) and (GMMVDE), then
(x*, 7%, A%, p*} is an efficient solution for (GMMVDE). 0

Proof. Similar to the proof of Theorem 2.5.7 and Corollary 2.5.3 above.

2.6. Special Case

As a special case of our duality results between (MVPE) and (GMMVDE},
we give Wolfe type duality theorems.

I Jy = {1, mhJo = 0,Ko = {L, -k}, Ko = 0, then (GMMVDE)
reduced to the Wolfe type dual [2).
(WMVDE): Maximize

m
=1

([ twn + S A06 i)+ 3 m@h v}

7 1==1

b m 4
T 7/ {fp(t,y,:l)) + Z)\j(t)gj(tay:y.) + Zul(t)h’l(t:yuy)} dt)

j=1 =1
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subject to  y(a) = y(b) = ty,

Zn{f (t.y,9) — %f};(t,m)}
+Z/\j(t){gi<t,y,y) igz(t v, 9)}

+Zuz et y,9) — s +(tu,9)} =0,

=1 dt
A(t) > 0,
P
7 = 0, Zn =1
i=1

Now we establish some duality theorems between the multiobjective varia-

tional problem (MVPE) and its Wolfe type dual problem (WMVDE).

Theorem 2.6.1 (Weak Duality). Assume that for all feasible x for
(MVPE) and all feasible (y, 7, A, u) for (WMVDE), any of the following holds:
(1) (f+ 2270 M(t)g? + 321, m(t)h!, 0) is weak strictly-pseudoquasi V-
type I invex at y with respect to » and for some positive functions «,.
fori=1,---,p;

(i) (f+ Z;n:l (t)g" + 327, mu(t)h!, 0) is weak strictly pseudo V-type
I invex at y with respect to 7 and for some positive functions «, for

1’:1: » Ps

(i) (f+ 2270, A0 + 200 (k! 0) is weak quasistrictly-pseudo
V-type I invex at y with respect to 1 and for some positive functions «;,

fori=1--- p.
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Then the following cannot hold:

b
] fi(t,z, &) dt
b m q
/ {FPy9) + 2 MO Gy + > mthi(ty, 0} dt,
a j=1 =1
Vi=1,,p (2.83)

and

b
] fo(t,z, &) dt

/{f“’tvarZ)\(fq(tywaZm (¢, 9)} dt,

for some ¢ =1,---,p. (2.84)

Proof. Suppose contrary to the result that (2.83) and (2.84) hold. Since
is feasible for (MVPE), and A(t) > 0, (2.83)} and {2.84) imply

b m q
f {f (t,x, &) + Z (g (¢ @, 2) + Zm(t)h‘(t, x, 1)} dt

[=1

/{f(tay+z)~(t fyy+2m(t)hltyy}dtV2~1 P

J=1

b
/{fz‘o(t,:r,,d:)JrZ D (8, ) +Zm Nt o, )} dt

b
</ {fo(t,v,9) +§:/\j(t)gf'(t,y,y) + Zm(t)h‘(t,y,y)}dt,
a jIl

=1

for some ip=1,---,p.
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Then since a; > 0, (2.35) we have

b P m q
] Z rei(w, g, 2, ) f{t, 2, 3) + Z NG (3, 2) + > (Dbl (o, £)} dt

=1

]Z'rzazrywy{f tyy+2/\(t tyy+>:uz oy, )} dt.

(2.85)

Using hypothesis (i), we see that (2.85) give

b P
] Z'rm(t,fr,y,:t,y)({fi(ty,z'/) - —Jity, y)}+2>\ Hai(t v, 9)

d ; '
—d—tgm(tuyH;m Mty 3) - &;w,y,m})dmo.

Since (2.35), the above inequalities give

b P
a i=1

d ) d )
— =Gy D mO{RL (G §) - dt hi(t, y, y)}) dt < 0,
=1

which contradicts (2.32).

(ii) and (iii) are similar to the proof of (i). O

Corollary 2.6.1. Assume that weak duality holds between (MVPE) and
(WMVDE). If (y*, 7%, A%, 1"} is feasible for (WMVDE) with 377" | A%(¢)g7(t, y*,
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y*) = 0 and y* is feasible for (MVPE), then y* is an efficient for (MVPE) and
{y™, 7%, X*, p*) is an efficient for (WMVDE). 0

Theorem 2.6.2 (Strong Duality). Assume that

(i) 2* is an efficient solution for (MVPE) ;

(i) forallk =1,---,p, 2" aconstraint qualification for problem MV PE}(z*)

1s satisfied at o*.

Then there exist 7 € RP,7* > 0, and piecewise smooth functions A* : ] —
R™, X*(t) > 0and p* : I — R?such that (z*, 7%, \*, u*) is feasible for (WMVDE)
and 3°70, N (8¢ (8, 2%, &%) + Yo, gy (£)hH(t, =%, 2*) = 0. Further, if also weak
duality holds between (MVPE) and (WMVDE), then {(z*, 7%, A\*, u*) is an effi-
cient solution for (WMVDE). O
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Chapter 3

Multiobjective Fractional Variational Problem

with Generalized Type I Invexity
3.1. Introduction

The following problem is called a multiobjective fractional variational prob-
lem (MFVP):

(MFVP):

2 f(t,z, @) dt
f;g(t,x,j:)dt
B (f:fl(t,a;,jc)dt j:f”(t,x,i")dt)

NPl )t [P gp(tx, w)dt
subject to x(a) = ty, x(b) =ty,

Minimize

hWit,z,@) <0, te€l,

where f*, g 1 IXR*"xR* - R, i=1,--- pand W/ IxR"xR*"— R, j=
1,---,m, are continuously differentiable functions. I = {a,b] is a real interval.
We assume in the sequel that f*(t,z,&) > 0 and g*(t,x,%) > 0 on I x R™ x R"
fori=1,---,p

In this chapter, we consider a multiobjective fractional variational problem.
For sufficient conditions, we define the generalized V-type I invex functions.
We obtain the generalized Kuhn-Tucker sufficient optimality theorem and prove
weak and strong duality theorems for the multiobjective fractional variational

problem,
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3.2. Definitions and Preliminaries

Let us now denote by X be the set of all feasible solutions of problem

(MFVP) given by
{xe C(I,R™)| z(a) =ty, z(b)=1tf, h{t,z,1) <0}

Definition 3.2.1. A point v € X; is said to be an efficient solution of
(MFVP) if there does not = € X, such that

fflta:su)dt< f fe(t,u, w)d
fgtx:r:df fa Yt w, u)d
and

fbfi"(t:c.r ff"o(tuu)
fg (t,x, ;rdt f gt (t, u, u)dt

forall e=1,--- p

for some g =1, - ,p.

In order to prove the strong duality theorem we will invoke the following

lemma due to Changkong and Haimes [8].

Lemma 3.2.1. wu is an efficient solution of (MFVP} if and only if u solves
(MFVP), k=1, - ,p, where (MFVP),, is the following problem:

(MFVP) :

fabfkfmm)df
faqkt:cg:)df

z(a) =to,z(b) = ¢y,
[f‘(tx:cdt ff’tuu
fgtm;n)dt fg(tuu)
R (t,z,2) <0, j=1,--- m.

Minimize

B

subject to

for all i # k,
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3.3. Sufficient Optimality Theorem for (MFVP)

Theorem 3.3.1 (Sufficient Optimality Conditions). Suppose that

(]) u < Xg;

(i1) there exist 7 € R?, 7 > 0, and a piecewise smooth function A : [ —
R™, X(t) > 0 such that

) 32U ) 0w i) — (w8 gl ()

i=1

+Z)\ (t){R, (tuu)—ih (tuu)}):(),

/ B (t,u, ) dt = 0;

(iii) (f —wvg, h) is quasi strictly pseudo V-type I invex at v with respect to

n, 7, A and for some positive functions o, 3;, fort=1,--- |p,j =1, --
R Pugdt o
m, where vz_m 1=1,---,p

Then u is an efficient solution for (MFVP).

Proof. Suppose that « is not an efficient solution of (MFVP). Then there
exists ¢ € X5 such that

fo P, d)de [ i, a)dt

b i , forall i=1,---p
Ry R

and
fgb fio(t,it,.’b)dt fb fm(t‘u,'lL)dt |

b < % - , for some ip=1,--  p.
fa gz.o (t,L’,SL‘)dT fa gzo (t,U,U)dt
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Since g'(t,z,&) >0 foralii =1,---,p, we have

b b
f {fi(t,z, &) — v, g'(t,z,2) }dt < / {2t u, @) — vigt(t, w, @) }dE,
forall 2=1,--- p

and

b b
/{J“'“(t,x,:t)—wog“(t,x,i)}dt < f{fi"(t,u,ﬂ)~viog"°(tauaﬂ)}dt,

for some p=1,---,p

Since 7; > 0 and a; >0 foralle=1,.--,p, we have

A Zm(r w0 (t,3,8) — g (1, 2,0)

<] Zﬂ-ai(:c,u,:b,ﬂ){fi(t,u,ﬂ)—Ul-gi(t,u,u)}dt.
& =1

From the above inequality and the hypothesis (iii}, it follows that

b P
} . d ) .
/ Zﬂ'n({f&(t,u,ﬂ) —oigy(tu )} — 2 {filtu @) - vz-g;,.(t,u,u)})dt <0.

By the inequality (3.1) and hypothesis (ii){(a) we have o
/ t:Lu:zu){hj(tuu)——hj(tuu}dt>0
From the above inequality and hypothesis (iii) it follows that
/ Jw, &, WA (¢, ) dt < 0. (3.2)
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Now by hypotheses (i) and (ii)(b) it follows that f: A (ORI (¢, u,w) dt = 0, for

every j, which further implies that

b TrL
f ()B;(z, u, &, WA (t,u, @) dt = 0.

The last equation contradicts the inequality (3.2) and hence u is an efficient

solution of (MFVP). ]

3.4. Formulation of Fractional Variational Dual Problem

Following the parametric approch of Bector et al. [4], we formulate the

following multiobjective variational dual problem for (MFVP).

(MFVD):
Maximize (v1, -, vp)
subject to z(a) = to, z(b) = ty, (3.3)
P
; : i i - d . : i -
Zri({f;(t,u,u) —v'gL(t,u,a)} — (—ﬁ{fi(t, U, ) — v gﬁ(t,u,u)})
i=1
m ] ) d J ) B )
+ ]2:; Aj(t){h‘;:(‘t’uv“) - E{h‘x(t:u:u)} - 0) (34)
b . -
[ {fit,u, i) —vg (tu,u)fdt >0, i=1,---,p, (3.5)
S
/ N (ORI (tu,0)dt >0, j=1,---,m, (3.6)
Te REAt)e RMve RP 7, >0, Mt) >0, tel (3.7)
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3.5. Duality Theorems
We establish weak and strong duality theorems between (MFVP) and (MFVD).

Theorem 3.5.1 (Weak Duality). Assume that for all feasible z for
(MFVP) and all feasible (u, 7, A, v) for (MFVD), any of the following holds:

(i} (f — vg, h) is weak strictly-pseudoquasi V-type I invex at u with respect

to n and for some positive functions a;, 8, fori = 1,--- p,j=1,--- ,m:

(it) (f —vg, h) is weak strictly pseudo V-type I invex at u with respect to 7

and for some positive functions a,, 3;, for i =1,--- p,j=1,--- ,m,

Then the following inequalities cannot hold:

Jo £t @)t

, v, Vi=1,--,p (3.8)
f;gz(t,m,ds)dt '
and
Yotz d)di
Jo 1 (42, 2) Vi, for some ig=1,--- p. (3.9)

f; g (t,z, a)dt

Proof. Suppose, contrary to the result of the theorem, that for some fea-
sible x for (MFVP) and (w, 7, A, v) for (MFVD),

[ fit, o, i)
f; g (t,x, &)dt
and

2 fio(t,x, &) dt
fab go(t,r, x)dt

v, Vi=1-p

vi,, for some ip=1,--- p.

Then, we have
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b
/ {f1(t2,8) —vig'(t,z, @) }dt <0, Vi=1,---,p (3.10)
and

b
/ {fo(t, 2, &) — viyg™(t,z,4)}dt <0, for some ig =1, -, p. (3.11)

Hence, from (3.5) and (3.7), we obtain

/ Znal (z,u, o, ) {f'{t,x, &) — v;g'(t, z, 2) }dt

P
</ Zriai(:c,u,:ic,u){fi(t,u,u)*vigi(tju.:t},)}dt. (3.12)
T =1

Since (u, T, A,v) is feasible for (MFVD) and each §; > 0, it follows that

/ () B (x,u, &, W)h (t,u, W)dt < 0. (3.13)

By the hypothesis (i) i.e ( f —wvg, h) is weak strictly-pseudoquasi V-type I invex,
(3.12) and (3.13) imply

/ ZTsz {f f U 'LL) Uigi(tauaﬂ)} - %{f;(t>u7u) - U’ig;r(t:ulil’)})dt < Oa

v d -
/ Ay (kg (8w, ) = =it u i) bt < 0.
The above inequalities give

/: T)[iﬁ({f;(t?%ﬂ) - l’lg;:(t7uaﬂ)} - %{f;(tuu} - Uig;:;(tru:la)})

i=1

i GHCACRTRAES g—h” (t.u, U)}]dt <0, (3.14)
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which contradicts (3.4).
By the hypothesis (ii) i.e (f —vg, h) is weak strictly pseudo V-type I invex,
(3.12) and (3.13) imply

b P
[ om0, =il 6, ,)
¢ 4=1

d _
- S ) - mg;(t,u,u)})dt <0, (3.15)
m ' d .
> O n(Om{hi(tu, ) - I (tu i)}t < 0. (3.16)
Jj=1

(3.15) and (3.16) imply (3.14), again contradicting (3.4). O

Corollary 3.5.1 may be merely stated since its proof would run analogously

to that of Corollary 2.5.1.

Corollary 3.5.1. Assume that the condition of weak duality theorem
(3.5.1) hold. If «* is feasible for (MFVP) and (u*,7*, A*,v*) is feasible for
(MFVD), with v = %%, t=1,---,p, then x* and (u*, 7%, \*, v*)
are an efficient solutions of problems (MFVP) and (MFVD), respectively. 0

Theorem 3.5.3 (Strong Duality). Let z* be an efficient solution of
(MFVP) and assume that a constraint qualification for problem (MFVP), is
satisfiedat x*. Then there exist 7 € RP and piecewise smooth function A* :
I R™ X(t) > 0, and v € RP such that (z*, 7%, A*,v*) is a feasible solution
for (MEF'VD). If the assumptions of weak duality theorem (3.5.1) also hold, then
(x*, 7%, A*,v*) is an efficient solution for (MFVD).

Proof. Since z* is an efficient solution of (MFVP), then from Lemma
3.2.1, 2" solves (M FV P} for each k = 1,--- . p. From Kuhn-Tucker necessary
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conditions for each i = 1, -+ ,p, weobtain 7F 2 O for alli # k, \(t)(>0) € R™
and v;(t) € RP such that

. . d . i
((Fite,a%) -~ wighlt, o™ 390} = ZASi ") — vughlt, 2%, 4}
d
+ Z ( t z* CL‘ ) Uig:(t:$*ai'*)} - a{ff(t,.f*i‘*) - vigf(t,x*,i*)})

iZ£k
LA . d
AN (W RL(t, x*, &%) — =Rl (t,z*, ©*)} =0, _
+Z OB x"57) — Zh(tat,87)) =0, (3.17)
p m
/Z,\z tYhI (t, ¥, & )dt = 0. (3.18)
Summing (3.17) over i = 1,--- , p, we have

(g (e 2 —gh(t, 2", 2}
B a) —vabnan, 7)) + YA O e, 8)

j=1
- SRl A} (0 L+ ) (A ) gt 5))
L2085 - el 1Y) + 3OO a)

j=t1
I DI +(frf+7-5’+---+1)({f£(t,:c*,:t*)~vp.q£(t,x*7r*)}
-&E{ff(t,:c*,i*)—vpgi’(t,x*,:t*)}) Z/\p(t It 2t @)

— g-h Tt x*. 2%} = 0.

dt *

Let i =l4m+- 47, m=rf+l4-+75 =l +rf+ 4
LX) = S0 AR, 5 =1, ,m, A(t) = (M(£), -, A5 (t)). Then we
have

-~ 69 -



M’ﬁ

() —wgh(e et 8} - At 8 - vt et 8)))

.
I

s

+

* 3 x - %k d y vk
Akt 2", 2%) - Ehi(t,m , %)} = 0.

It

=1

Summing (3.18) for i = 1,-- - ,p, we have f S AR (t, 7, 2 )dt = 0. We
conclude that (2%, 7%, A*, v*) is feasible for (MFVD) and v} = %,
i =1, -, p. Efficiency of (z*,7%, \*,v*) for (MFVD) now follows from Corol-

lary 3.5.1. O
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Chapter 4
Multiobjective Control Problem with Generalized V-p Invexity
4.1. Introducton

The following problem is called a multiobjective control problem (MCP):

(MCP):

Minimize (/ itz u) f fP(t,z,u) dt)

subject to z{a) = to, x(b) =ty, (4.1)
g(t,x,u)y <0, tel, (4.2)
hit,z,u) =2, tel. (4.3)

Here R™ denotes an n-dimensional Euclidean space and I = [a,}] is a real
interval. Bach f*: IX R"x R™+— R for i=1,---,p, g= (g%, ,¢"), ¢’ :
IXR*"xR™ >R (j=1,---,k),and h = (h!,--- \A"},A" : I x B" x R™ —
R (r=1,---,n) isa continuously differentiable function.

Let x : I — R"™ be differentiable with its derivative &, and let w: I — R™ be
a differentiable function. Denote the partial derivatives of f by f:, f., and f,
that is,

of af af

B af af
a: fr -

dat e S lgr gl

where the superscripts denote the vector components.

fo=

Similarly, we have g;, g., gu, and h, ks, h,. X is the space of continuously

differentiable state functions x : I — R™ such that z(a) = ¢t and z(b) = t;
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and is equipped with the norm ||z|| = ||#||s + || Dz||oc; and Y is the space of
piecewise continuous control functions w : I — R™, and has the uniform norm
Il ]ico- The differential equation (4.3) with initial conditions expressed as z(t) =
z(a) + f(f h'(s,x(s),uls))ds, t € I may be written as & = H"(z,u), where
H : X xY — C(I,R"), C(I,R™)} being the space of continuous functions
from I to R™ defined as H" (x,u)(t) = h" (¢, x(t), u(t)).

In this chapter, we will define generalized V-p-invex functions for optimal
control problems and consider a multiobjective control problem (MCP). The
sufficient optimality conditions of the Kuhn-Tucker type for (MCP) are given
under generalized invexity condition. Moreover, we formulate Wolfe type dual
(WMCD) and Mond-Weir type dual (MMCD) for (MCP), and then establish

their duality relations.
4.2. Definitions and Preliminaries

Definition 4.2.1. Let A* be a function from [ x R® x R® x R™ into
R and let H'(z,u) = f: Ri(t,x, &, u) dt. Let therc exist differentiable vector
functions 7(t,z,z*, &, 2%, u,u*) € R® with n = 0 at ¢t if z(f) = z*(¢), and
Et,z, %, 2, 2%, uw,u*) € R™, {{z,z% 2,25, u,u*) € R"™ Let ||{(z,z*, &, 1",
u,u*)|| = sup, e ||{{x, 2%, &, 2%, u,w*)]| and p; real numbers.

(1) A vector function H = (H',--- | H™) is said to be V-p-invex in z*, i*,
and «* on I with respect to n, £, ( and « if there exist differentiable vector
functions n € R™, £ ¢ R™, { € R", a;{z,z* &,2* v,u*} € R;\{0}, and

pi € R, i=1,- - ,n such that, for each z,z* € X and u,u* €Y,
. . b . dr]T )
H(z,u)y— H(z",u") > f {nT okt (t, 2%, 2%, u*) + ?aihg(t,m*,a}*,u*)
a

+ & ashy (2%, &7 ) i+ p[¢])P
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(2) The vector function H = (H',---, H") is said to be V-p-pseudo-invex
in z*, 2%, and u* on I with respect to n, &, ( and 3 if there exist n, ¢, ¢ as
above, GB;(x,x*, &, 2% u,u*) € Ry\{0} and p; € R, ¢ = 1,--- ,n such that, for
each r,2* € X and u,u* €Y,

/ Z{ﬁThl (t,z%, % u )+%—h“(t x*,x u’)
+ TRt 2" 2w Y dE+ meuz >0
f Zfihz (t,x,@,u dt>/ Zﬁih*’(t,m*,g&*,u*)dt
=1
(3) The vector function H = (H',--- | H™") is said to be V-p-quasi-invex in
¥, 2%, and v* on I with respect ton, &, ( and +yif there exist n, &, ( as above,

the vector ~v;(x,x*, &, %", u,u*) € Ry\{0},and p; € R, 7 = 1,--- ,n such that,
for each z,2* € X and uv,u™ € Y,

f Z% (t,x, %, u dt</ Z%hi(t,x*,j:*,u*)dt

::>/ Z{?)TH (t,x™, 2", u*) + ———hz (2™, 2", u)

+€TH (2™, 2% u) Yt + Zpiuguz <0

i=1

Lemma 1 of [34] states that (2*,u*) is an efficient solution for (MCP) if and

only if (z*,u*) solves

MC Py (") -
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b
Minimize / FE(t, zw) di
a
subject to  x(a) = to, 2(b) = ty,
g(t,r,u) <0,

hit,z,u) = &,

b b
/f](t,:t,u)dt</ F(t, ", u")dt,

Chandra, Craven, and Husain [6] gave the Fritz John necessary optimality

conditions for the existence of an extremal solution for the single objective
control problem (CP):

(CP):

Minimize / flt,z,u)dt
subject to z(a) = 1o, x(b) = ty,
g{t,x,u) <0,

hit,z,u) =,

where f) g, h are as defined earlier.

Mond and Hanson [28] pointed out that if the optimal solution for (CP) is

normal, then Fritz John conditions reduce to Kuhn-Tucker conditions.

Lemma 4.2.1 (Kuhn-Tucker Necessary Optimality Condition). Let (z*, u*)
€ X x Y be an efficient for (MCP). If the Fréchet derivatives [D— H:(z*,u*)] is

surjective and (z*, ") is normal for MC Py (x*, u*) at least one k € {1,--- ,p},
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then there exist 7* € RP, piecewise smooth functions \* : I — R*, and u*

I — R™ satistying the following equalities; for all ¢t € [,

P

ZT fztaj +Z)\ gmta: u* —I—Z“ hrt{E U)-I—,u*(t):(),
i=1

iff(f”r +Z/\* Vgl (t, a*, u* “*”Z“r (ho(t, 2", w*) =0,

11

Z/\ It u*) =0,

4.3. Formulation of Control Dual Problem

We formulate two pairs of the following multiobjective dual control problems.
The Wolfe type dual [39]:

(WMCD): Maximize

b k
/{fl(t,m,u)+2)\( Tt x, u +Z,ur YR (t, z,u) — )} dt,

b k
/{fp(tlm,u)w%z:)\( I, x,u) +Zpur h™(t,x,u) — )} dt
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subject to z(a) = ty, x(b) =ty, (4.4)

S nfitm )+ S (et o, u)

i=] j=1

+ Y ORIz, u) + Aty =0, tel, (4.5)
r=1

an t:cu)+Z,\ Vgl (t, ) u)

i=1

+i,ur () (t,z,u) =0, tel, (4.6)
r=1
b

/ Z,ur( WA (t, z,u) —2(t))dt >0, tel, (4.7)

A(t) g 0, tel, (4.8)

>0, zp:ﬁ =1. (4.9)

The Mond-Weir type dual [30]:

Maximize (/ Atz u)d / Pt x, u)dt)

subject to x{a) =to, z(b) =ty, (4.10)
k
ZTif;;(t,i?,U) + Z)\j(t)gi(t, T, u)
=1 =1

+ 3 (OML (L u) + () =0, tel, (4.11)

r=1

(MMCD):
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P k n

Y omfit w4 Y N Bt rw) + > pe (R 2 u) = 0,

i=1 j=1 r=1
tel (4.12)
/ Z,J,T (W (t,z,u) —&(t))dt >0, t €], (4.13)
/ Ht,x,u)dt >0, tel, (4.14)
A(t ) >0, tel, (4.15)
7 >0, Zn =1 (4.16)
1=1

4.4, Sufficient Optimality Theorem for (MCP)

We obtain a Kuhn-Tucker type sufficient optimality theorem of (MCP} as

follows:

Theorem 4.4.1. Suppose that (x*, u*) is feasible for (MCP) such that there
exist 7 > 0, A*(¢) and p*(f) such that

P k

ZTi*f;;»(t,m*)u*) +Zx\j (gt z*, u* +Z,ur tyho(t, ", u’) + p*(t) = 0,
=1 1=1 r=1

(4.17)
P
>t +Z/\ "(tgi(t 2 U)+Zur (OhL(E, 2", u") = 0, (4.18)
=1 Jj=1
k
SN0 (" ut) =0, (4.19)
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D (O (2w — 27 (E) =0, (4.21)

r=1

A™(t) =0, | (4.21)

20, Y =1 (4.22)
hold through a < ¢ < b (except that at t corresponding to discontinuities of
u*(t), (4.17) holds for right and left limits). If f: fidt, i=1,---.,p, f: Njg! dt,
j=1,---,k and f: pr(h™ —&*ydt, r = 1,--- ,n, are all V-p-invex with

respect ton, &, ¢, cand ) 7mpi+>.pi+>. pr > 0, then (z*, u*) is an efficient
solution of (MCP).

Proof. Suppose that (z*,«*) is not an eflicient solution of (MCP). Then
there exists (z,u) # (z*, u*) such that (r,u) is feasible for (MCP}, and

b b
/ fit,z,uydt < / Fit,z* u)dt, forall i=1,---,p
a a

and

b b
/ frolt,z,u)dt < / fr(t,z*, u") dt, for some ip=1, --,p.
[«3 S

Since f; fidt is V-p-inxex,

b
/{nTcxif;(t,;E*,u*)—i—{Toz@'fé(t,a:*,u*)}dt-iupinﬂzSO,for all i=1,---,p,

and

b
/ {(nfasfo(t, e ) + eTag fo(t, 2%, w*) } dt + p;||C||2 <0, for some  4p = 1,

- ,p. Since 77 >0 for all 7,
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b P
fZa{ P 2t ) + €T (2 }dt+zfm|¢|12<o
a 4=1

=1
(4.23)

From the feasibility conditions, Z?:1 X (g (t,z,u) <0 = 2?21 Aj(t)g? (¢, at,
u*). By the V-p-invexity of f; Ar(t)g’ dt, we have

bk k
[ S a0 0ate ) + 000wt e+ Yl <o
a J=1 =1
(4.24)

From the feasibility conditions, > " | i ($)(h" (¢, z,u) — &) — S (£ (R (¢,
¥ u*) —2*) = 0.
By the V-p-invexity of f; pr(h” — 3*)dt, we have

T

nyr{n pr(tyh? (6, %, u”) — di,u (t) + €T (R (£, 2", u") } dt
i dt

+ Zprllan <0. (4.25)

r=1

dn

By integrating =—u*(t) from a to b and applying the boundary condition, we

have

d * ’ .k
gt () dt = — / T i* (1) dt. (4.26)

a

Using (4.26) in (4.25), we have
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L n
/Zm (OB (8, 2%, 0t + 0T (1) + €T (ORE (1, 27 ")} d

=1

+ Zprw <0, o (a27)

Since (4.23), (4.24) and (4.27) hold the same o, we have

k

b P T
/ (nf oD T ) + >N (B)gl(t T w) + ) i (hL(E ot u)
a i=1

j=1 r=1

@ (t) }+£TC€{ZT Fit, z* +Z/\*(t gt z* u¥)

+Z.U )byt x” U)}) df+ZT PzHCH2+ZP1HCH2+ZPr||€H2

< 0. (4.28)

From (4.17), (4.18) and the fact that Y7 p; + > p; + 3. p. > 0, we have

r=1

b P k n
/ (’I']TCE{Z THFL(E, 2% u*) + Z )\;gi(t, 5 u*) + Z Bt ™ ut)
e =1 j=1
P k
() + £Ta{z Lt 2 u*) + z Nigl(t,z* u*)
i=1 j=1

P k 7
+ Zu*h’" bt ) dt+ 3 piCIE+ D0 psllcl + Y erllC® = 0,
i=1 =1 r=1

which contradicts the inequality (4.28). Hence {z*,u*) is an efficient solution
of (MCP). O
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4.5. Duality Theorems

Now we establish some duality theorems between the multiobjective control
problem (MCP) and its Wolfe type dual problem (WMCD).

Theorem 4.5.1 (Weak Duality). Assume that, for all feasible {(z*, u*)
for (MCP) and all feasible (x,u, 7, A, 1) for (WMCD),

(i) (/:fl(-,-,-)dt, ./:f”(n-,-)dt),
(i) ([ab/\lgl(-,-,-)dt, ]:/\kg’“(-,-,-)dt),

and

b b
(i) ([ U COD RS ]un(h"(‘~'r)~i)dt)

are all V-p-invex with respect to the same functions 7, £, ( and o and

. k
(IV) Z?:l Tipi + Zj:l pj+ Z:-erl pr 2 O,
then the following inequalities cannot hold:

/(;b FHt, ¥ u*) di

b k _ g
< f {Fit, x,u) + Z A (g (t, x,u) + Zpr(t)(hr(t,m,u) — )} dt,

Jj=1 r=1
forall ¢=1,--,p (4.29)

and

b
/ foft, z* u*) dt

b k q
< f (o z,u) + ) X0 (te,u) + Y (8 (B7(t 7,u) — £)}dt,
a j=1 r=1

for some g =1,---,p. (4.30)
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Proof. Suppose contrary to the result that (4.29) and (4.30) hold.

Then, since 7; >0 and Y7 7 =1,

k

b P boP
/ an*(t,:c*,u*)dt</ {ZTifi(t,a:,u)+Z)\j(t)gj(t}3:,u)
a ;3 -

j=1

+Z“T (A" (t,x,u) — &)} dt.

By (i), we have

b b
/fZ(t,x*,u*mt_/ Pt o) df

b
> [ (T o fi(t o, u) + €70 fi(t, 2, )} dt + pal ]|

Since 7; >0 and 3 ¥ . 7, =1 we can get

6 P ‘ b P _
'/Zﬂfz(tjﬂf*,u*)dt~/ Zﬂ-fz(t,a:,u)dt
T =1 a =i

b P P
> f Z(Lé{fryy'rif;(t,m,u) + T it x,u) ) dE+ Zﬂ'PiHCHZ-
] i=1

By (ii}, we have

/,\ Vo (£, 2% ) dt — /b)\j(t)gj(t,:c,u)dt

/{77 a] gx(t I, U)+E aJ (t)gi(t,z.u)}dt—|—pJ|fC|I2

Using (4.2) and (4.8), from (4.33), we have
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b
—f (g (t, x,u) dt
ab | |
2[ {n" ;X (Dol (t, v u) + €A (1) gl (t, 2, u)} dt + pslIC]I7,

which implies,

/ZA t*rudf

[ S o A ()0 () + €700l v }dt+ZpJH<H2

i=1
(4.34)

By (iii), we have

b
/ (R (t, 2% u” / V(R (t,z,u) — ) dt
dnr .
f (T o (DR (L, 2, u) + —— ” o (— () + T o (OB (t, x,u) ) di
+ prllC]?. (4.35)

Using (4.2), we have

T

b b
- / p Y (ATt o u) — 2ydt > | T e (ORL(E, x,0) + dditar(—,u,(t))

+ € i (BRL (7, w) } dE+ pl[C]2,

which implies,
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‘s T T d”l
-/ 2 bR (1) =3 dt>[ > arln pr (O3 (8,3, 0) = (1)
o a =1

n

+ & e (Wt e, )b de+ Y pl[CH

r=1
(4.36)
By integration ~&-t—-,u(t) from a to b and applying the boundary condition, we
have
d77 _ T b ’ T _ ’ T,
g rOdt ="M~ ntalt)de = — [ 07 dt. (4.37)
a a a

Using (4.37) in (4.36), we have

n

b
—/ Z,ur (h"(t,z,u) — ) dt>/ Za,{n (AT (8, 2, u) + 0T (t)

+ £ (DA (¢ 2, u) ) df + Zp,,-ucn?
r—=1

(4.38)
Since (4.32), (4.34) and (4.38) hold the same a, we have

b P b P
fZTifi(t,m*,u*)dt/ Zﬁf’i(t,m,u)dt
¢ =1 ¢ i=1
bk _ b n
-_/ ZA](t)gJ(t,x,u)dt—/ Zpr(t)(hr(t,myu)—:t)dt
a le a —
b v
2[ (nTQ{ZTif;(t,x,u) Z/\( 19l (¢, 2, u) +Z,ur oz, u) + o(t)}
¢ = j=

k n
+€T&{an £,z u) + Z)\j(t)gi(t:c.‘w+Zur(t)hl(t)m,u)}) dt
Jj=1

i=1 =1
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+300 TupalCII* + Z?:l pilICI[* + >ore1 pelICI1? = 0 by (4.5),(4.6) and (iv).
Hence

b P _
/an”(t,a:*,u*)df
k
f{znf (t,z,u) Z (t)g]t:tu +Z‘“T (W7 (¢, x,u) — z) } dt,

=1

which is a contradiction to (4.31). O

Corollary 4.5.1. Assume that weak duality {Theorem 4.5.1) holds between
(MCP) and (WMCD). If (x,u) is feasible for (MCP), (z,u,r, A, 1) is feasible
for (WMCD) with Z?:l A (0)g7 (¢, x,u) = 0, then (z, 1) is an efficient for (MCP)
and (x,u, 7, A, 1) is an efficient for (WMCD).

Proof. Suppose (x, %) is not an efficient for (MCP). Then there exists some
feasible {x*,«*) for (MCP) such that

b b
/fi(t,a:*,u*)dtgffi(t,m,u)dt, forall e=1,---,p

and
/ SO o™, um)dt < / [, z,u)dt, for some g =1, --p.
a a

Since Ele Ai(t)g7(t,z,u) = 0and S0, - () (7 (¢, z,u) — %) = 0, we get

b . b . k -
[ e wydes [+ Y 0000 50)
o a ]:1

+Zur (R7(t, z,u) — &)} dt,
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forall i=1,---,p

and
b b k
/ foolt,z* u*)dt <f {fio(t,z,u) +Z)\j(t)gj(t,$,u)
a @ =1
S el (2, w) — )
r=1
for some i =1,---,p.

This contradicts the weak duality. Hence (x,u) is an efficient for (MCP). Now
suppose (x,u, T, A, 1) is not an efficient for (WMCD). Then there exists some
(x*, u*, 7%, A%, 1*) feasible for (WMCD) such that

b k n
/ {6, u )+ N (g (2™ u') + 3 pr()(B7 (2% u*) — &%)} dt
va j=1 r=1

b k n
2 [ ¢ A0 ) 4 3 ) = i)
a i=1 r—1

foralli=1,--- ,p

and

b k
/{fio(t,m*,u Z (¢, 2, u* +Z,ur JRT(t, 2™ u") —27) b dt

b k
>/{fi0tmu)+z)\(t (t,z,u) +Z/,¢r Y(RT(t, x,u) — 2)} dE,

for some i =1,---,p.
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Since S4_, A, (8)g7 (t, 2, u) = 0 and T°_, o (1) (17 (1, 2, w) — &) = 0,

b k n
[ 1 X 00 ) 4 Y O a 0) - 8))
* j=1 r=1
b .
> [ Pamd, a1

and

b k n
/ {fot e, u®) + 3 X0 (L a™ut) + > (0 (0 (1, 2%, u*) — )} dt
e j=1 r=1
b .
> / fro(t,z,u)dt, for some ig =1, - ,p.

This contradicts the weak duality. Hence (z,u, 7, A, p1) is an efficient for (WMCD).
|

Theorem 4.5.2 (Strong Duality). Let (z*,u*) be an efficient for (MCP)
and assume that (x*,u*) satisfies the constraint qualification for MCPy(z*, u*)
for at least one k € {1,--- ,p}. Then there exist 7* € RP and piecewise smooth
functions A* : I — R* and p* : I -+ R™ such that (z*,w™, 7%, A%, u*) is feasible
for (WMCD) and Zle A5 ()¢ (t, 2%, u*) = 0. If weak duality also holds between
(MCP) and (WMCD), then (z*,u*, 7%, \*, ") is an efficient for (WMCD).

Proof. Tt follows from Lemma 4.2.1 that there exist 7* € RP, and piecewise

smooth functions A* : I — R*¥ and p* : | — R™, satisfying the following

relations, for all ¢ ¢ I:

_87_



'M*

p
>ttt u) + ()gl(t, a*, u* +Zﬂ, (OKL (8, o™ u*) + " = 0,
1=] r=1

k
ZT (t, 2", u" Z;‘ Vgl (t, o, u* +Z,u,, Jho(t,z™,u™) = 0,

r=1

k
Y oAt at, ut) = 0,
j=1

f20, Yar=1, A 20

i

As (z*,u") is feasible for (MCP), #* = A7 (¢, 2*,u*) and f; S (B (AT a u)
~a*)dt > 0. therefore (z* u*, 7%, A*, u*) is feasible for (WMCD). The result

now follows from Corollary 4.5.1. L

Now we establish some duality theorems between the multiobjective control
problem (MCP) and its Mond-Weir type dual problem (MMCD).

Theorem 4.5.3 (Weak Duality). Assume that, for all feasible (z*, u*)
for (MCP) and all feasible (z,u, 7, A, ) for (MMCD),

(i) (fjfl(-, Sdt, e, [2FP(,n ) dt) is Voppseudominvex with
respect to 77,£,( and o,

(1) (f: Agt(c, Yt cee ff Aeghl) dt) is V-p-quasi-invex with
respect to 17,£,{ and 3,

(i) (fj PR Gy ) =@ dt, e [P (RRC ) — ) dt) is V-p-qua

si-invex with respect to n,&, ¢ and ~, and

(iv) Y mp+Xpi+>p =0

_88_



Then the following relations cannot hold:

b b
/ fit,a* u)dt < / fit,z,uydt, forall i=1,--- p (4.39)

(4.40)

Proof. Suppose contrary to the result that (4.39) and (4.40) hold.

Since oz, x*, &, 2%, uw,u*) > 0,

]Za@ (t, %, u” alt<-/Za2 (t,x,u)d

Then (i) yields

b P 2
] ST + e e+ Y I <0,
& =1 i=1

Since 7; > 0, we have

/ Z{n 7 fi(t, x,u) -I—!;’Tnfz(t:ru}dt+znpzllgl[2<0 (4.41)
i=1

From the feasibility conditions,

b b
f A (g (8, o ut) dt < / NG (4 z, uddt, foreach j=1, - k.
a

@€
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Since 3; > 0, ¥j =1,---  k, we have

/Zﬁ] It z* u* dt</z,f3] ¢ (t, x, u)dt.

It now follows from (ii) that

bk k
/ DA N gt xw) + TN gl + Y AplicI? <o,
a1 3=1
(4.42)

From (4.3} and (4.13), we have

b on

/ Z“r (LR (¢, 2%, u* —:E)dt<f > pe (BB, u) — &) dt.
r=1
Since v, >0, Vr =1,-.. ,n, we have
b N
/ Z”Mtr(f "(txt uty — 1) dt </ Z%u,.(t)(hr(t,:r,u) — ) dt.
. a -1
From (iii) it follows that

f Z{'f? pr (B (8,2, ) — dt u( JHE (ke + Y pICIF < 0.

r=1
(4.43)

By integrating d—g;u(t) from a to b and applying the boundary condition (4.1),

we have
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b
/ dgt () dt = / oL i(t) dt. (4.44)

Using (4.44) in (4.43), we have

b N n n
/ o0 u R + g i) + 3wz e+ S pllCE < 0.
 r=] r=] r=1

(4.45)

Adding (4.41), (4.42) and (4.45), we have

]' ( T{Zm:(t z,u +Z/\ng(t z u)+2ur (t,z,u) + A(t))

+ & {ZTJ (t, 2, u +Z)\Jgut$u)+ZuThrt:cu)})dt

r=1
+ anil(li?‘ + ZﬂjHCHZ + ZPrHQ!lz <0,
i=1 i=1 =1
which is a contradiction to (4.11), (4.12) and (iv). (J

Corollary 4.5.2. Assume that weak duality theorem (4.5.3) holds between
(MCP) and (MMCD). If (x,u) is feasible for (MCP) and {x,u, 7, A, iz} is feasible
for (MMCD), then (z, u) is an efficient for (MCP) and (x,u, 7, A, 1) is an efficient
for (MMCD).

Proof. Suppose (x,w) is not an efficient for (MCP). Then there exists some
feasible (z*, %) for (MCP) such that
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b b
f fi(t,a:*,u*)dtgf fit,z,u)dt, forall i=1,-- .p

and

b b
] fio(t,:v*,u*)dt</ fo(t,z,u)dt, for some ig=1,---,p.

But (z,u, 7, A, ) is feasible for (MMCD), hence the result of weak duality the
orem is contradict. Therefore (z,u) is an efficient for (MCP). Now suppose
(z,u, 7, A, p) is not an efficient for (MMCD). Then there exist some feasible
(", u”, 7, A 1) for (MMCD) such that

] b
/fz(t,z*,u*)dtZ/ fit,z,w)dt, Y i=1,--,p

and

b b
/ fio(t,a:*,u*)dt>/ foo(t,z,w)dt, for some ig =1, ,p.

This contradicts weak duality. Hence (x,u, 7, A, 1) is an efficient for (MMCD).
U

Theorem 4.5.4 (Strong Duality). Let (z*,u*) be an efficient for (MCP)
and assume that (z*,u*) satisfies the constraint qualification for MCPy(z*, u*)

for at least one k € {1,--- ,p}. Then there exist 7% € R? and piecewise smooth
functions A* : I — R¥ and p* : I — R™ such that (x*,u*, 7% A%, p*) is feasible
for (MMCD). If also weak duality holds between (MCP) and (MMCD), then
(%, u”, 7%, A%, u*) is an efficient for (MMCD).

Proof. Proceeding on the same lines as in Theorem 4.5.2, it follows that
there exist 7* € R”, and piecewise smooth functions A" : 1 — RF and p* : T —

R™, satistying for all ¢ € I the following relations:
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P k n
Z (L ut) + Z X (gt @ u*) + Z pE(ORE(t, 2 u*) 4 ff =0,

Z'rf(t:r; u)—i—Z)\* (1)g (¢, 2%, u* +Z,ur DR, (2", u") =0,

i=1 r=1
k
Z I, a* u*) =0,
P
=0, > =1, AN(t) 20
i=1
Therclatlonsf Z] LA gH (2, u*) dE = 0, andf o ()Rt T u)~

t*)dt > 0 are obvious.
The above relations imply that (z*,u*, 7%, A*, u*) is feasible for (MMCD). The

result now follows from Corollary 4.5.2. [1
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Chapter 5

Multiobjective Fractional Control Problem

with Generalized V-p Invexity
5.1. Introduction
The following problem is called a multiobjective fractional control problem:

(MFCP)

Minimize

j‘ F(t, z(t), u(t))dt

f g(t, z(t), u(t))dt

(f itz ,u(t))dt jjfp(t,x(t),u(t))dt)
(

(t)
gl a(e),u@®)de [P gP(t, zlt), u(t))dt
subject to x{a) =toy, x(b) =ty, (5.1}

B (t,x(t), u(t)) < tel, (5.2)
Kt z(t),u(t) =%, tel, (5.3)

where f4,¢" : Ix R"x R™ - R, i=1,---,p, k! : I x R* x R™ — R, ] =
,---,m.,and k' : I x R"x R™ - R, I=1,--- ,n, are continuousty differen-
tiable functions. [ = [a, 8] is a rcal interval. We assume that f*(¢, z(t), u(t)) > 0
and g*(t,z(t),u(t)) >0on [ x K" x R™ fori=1, - ,p.

Let z : I — R™ be differentiable with its derivative #, and let w : 7 — R™ be
a differentiable function. Denote the partial derivatives of f by f;, fz, and f,
that is

of o qof of, . _9f  Of
at’ fo = azx!’ ’Bm”]’ fu_[ﬁul’ ’8-um]’

where the superscripts denote the vector components.

o=
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Similarly, we have g;, gz, gu, e, by, by, and k¢, k., k,. Denote by X the space
of piecewise smooth functions z : I — R", with the norm ||z|| = ||z]je +
||Dz||s and by Y the space of piecewise continuous control functions wu : I —
R™ with the norm ||ul|o. The differential equation (5.3) with initial conditions
expressed as z(¢) = x(a) + fat ki(s,x(s),u(s))ds, t € I may be written as
& = K'(z,u), where K!: X x Y ~— C(I,R™), C(I, R") being the space of
continuous functions from 7 to R™ defined as K'(z,u)(t) = k'(t, z(t), u(t)).

In this chapter, we will define generalized V-p-invex functions for optimal con-
trol problems and consider a multiobjective fractional control problem {(MFCP).
We obtain the sufficient optimality conditions of the Kuhn-Tucker type for
(MFCP) under generalized invexity conditions. Moreover, we formulate Wolfe
type dual (WFCD) and Mond-Weir type dual (MFCD) for (MFCP), and then

establish their duality relations.
5.2. Definitions and Preliminaries

Definition 5.2.1. A feasible solution (z*,u") of (MFCP) is said to be an
efficient solution of (MFCP) if there does not exist a feasible solution (x,u) of
(MFCP) such that

] filt,x u)dt fb Filt, x* u*)dt

= P
fg(trudt fgta: ,u*)dt
and
b .; b o,
do (4, @, u)dt o (¢, x%, u*)dt _
Jo S22, w) < ARG for some i5=1,--- ,p.

[ gtz uydt D gi(t,x*,ur)dt
Following Bector et al. [3], the problem (MFCP), stated below is associated

with the given problem (MEFCP) for v € RY, where RY is the positive orthant
of RP.
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(MFCP),

Minimize [b{f(t, z(t), u(t)) — v’ g(t, 2(t), u(t)) }dt
b
= ([ 00000 = ong 120, o) e,

b
o [P0, 800) = o (0,0 )
subject to (5.1) — (5.3).

The following Lemma connecting (MFCP) and (MFCP), has been proved in
[4]-

Lemma 5.2.1. (z*,u*) is an efficient solution of (MFCP) if and only if
. f: fi(t,z“,u*)dt

£ kY o : : '
(x*,u*) is an efficient solution of (MFCP),,, where v; Proieeanya

Lemma 1 of [34] states that (z*,u*) is an efficient solution for (MFCP), if

and only if (z*,u*) solves

(MFCP,)p(z*,u*) :

Minimize ]b{fk(t,:l:,u) — vg®(t, x,u)} dt
subject to :c(aa) = tg, x{b) = ty,
itz u) <0, j=1,---,m,
kl(t,:v,u) =z, =1, n,
{F(t2,u) — 0,97 (8,2, 0)} < {7 (8,27, 0") —vi° (1,27, u")},

fOT all ]E {1* zp}*7%k’r
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foreach & =1, -+ p.

Chandra, Craven, and Husain [6] gave the Fritz John necessary optimality
conditions for the existence of an extremal solution for the single objective

control problem (CP):
(CP)

b
Minimize / flt,z,u)dt
a
subject to z(a) = tg,z(b) = tf,
g(t,z,u) <0,

h(t,z,u) = @,

where f : IXR"xR™ - R, g: IxR"xR™ - R™ andh:IxR"xR™ —» R"
are assumed to be continuously differentiable functions.

Mond and Hanson [28] pointed out that if the optimal solution for (CP) is

normal, then Fritz John conditions reduce to Kuhn-Tucker conditions.

Lemma 5.2.2 (Kuhn-Tucker Necessary Optimality Condition). Let
(z*,u*) € X x Y be an efficient for (MFCP),. If the Fréchet derivatives [D —
KI( ,u*)] is surjective and (z*,«*) is normal for at least one Py {x*,u*) then
there exist 7° € RP, and piecewise smooth functions A* : I — R™ and u*

I — R", satisfying the following equalities, for all t € T,

P
Zﬂ*{fi(t,f*,u)—vzgz(tr )+ O3 u)

=1

+ZM (DKL (8, 2%, u*) + 3" (£) = 0,
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p m
Y or Rt e w) - v (t 2t w) Y ARt 2 u)
j=1

=1

n .
+ > (kL (t 2 ut) = 0,
=1
D OBt 2 u) =0,
=1

=0, Y =1, M) >0

Definition 5.2.2. Let &’ be a function from I x B™ x R™ x R™ into
R and let K'{z,u) = f: k*(t,z,&,u)dt. Let there exist differentiable vector
functions n(t,x,z*, &, 2% u,u*) € R™ with 5 = 0 at ¢ if z(t) = 2*(t), and
£t z,a", &, 2% u,u*) € R™, ((z,z*, &, 2%, u,u*) € R" Let ||{(z,z*, %,%%, u,u*)
|| = sup,; ||C{@, £*, %, 2%, u, u*)||? and p; real numbers.

(1) A vector function K = (K!,---, K™) is said to be V-p-invex in z*, &*,
and »* on I with respect to 7, &, (, and « if there exist differentiable vector
functions n € R", £ € R™,( € R™, ay(x,2*, &, 2%, u,v*) € R\{0} and p; € R

such that, foreach z,2* € X, v,u* €Y andfori=1,--- ,n

3

Kz, u) — K'(z* u*)
b . gl , |
> / (T ek (6,27, 8" ") + —— gk (60t E7 ut) + E gkl (o, 2, ut) ) dt

dt
+ ps)ICH2

(2) The vector function K = (K!,... | K™) is said to be V-p-pseudo-invex

(strictly V-p-pseudo-invex ) in z*,&*, and »* on I with respect to n, ¢, ¢ and
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B if there exist , £, ( as above and §;(z,2*, &, 2%, u,u*) € Ry \{0} and p; € R

such that, for each z,z* € X, u,u* ¢ YV andfori=1,--- ,n

b

T

b n
A , d _ .
/ Z{nTk;(t,x*,,a'-*,u*H%k;(t,m*,i*,u*)+§Tk;(t,x*,a;~*,u*)}dt
T =1

AL
b n ) b ]

:>/ Z,Bikl(t,m,i,u)dtzf S Gk (2t 6wt de ()
@ =1 ¢ 4=1

{3) The vector function K = (K!

x*, %, and w* on 1 with respect to 7, £, ¢, and v if there exist 1, &, ¢, as

.-+, K™) is said to be V-p-quasi-invex in

above and the vector v;(x, 2%, ¢, 2%, u,u*) € R:\{0} and p; € R such that, for

eachz, 2" € X, u,u* €Y andfori=1,--- ,n

]

b n b n
/Z'yiki(t,a:,j:,u)dtgf Z'yiki(t,w*,d:*,u*)dt
¢ izl ¢ =1

T

b
— f Z{T}Tk;(t,m*,j:*,u*) + %k;(t,ﬂ;*,:ﬁ*,u*) + €T (¢, & u) bt
@ i=1 '

+> pllciP <o

5.3. Formulation of Fractional Control Dual Problem

We formulate two pairs of the following multiobjective fractional dual controt

problems.

The Wolfe type dual [39]:
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(WFCD)

Maximize [/ ({f (t,x,u) —vlq(tmu}+z/\ b (t, 2, u)

{i

b
ES O E o) - )t / (17682, — vpg?(t, 2, )}

i=1
+Z)\J It x,u) +Zm £)(k!(t, Eu)-:c))dt]
subject to :r(a.) =tg, z(b) =ty, (5.4)
P m
Z’f}{f;(f,l‘,ﬂ) Uzg$t$U}+ZA ()R (t, z, u)
i=1
+Zm Ltz u)+ a(t) =0, tel, (5.5)

Zﬁ{fﬁ(t,x,u v; g (¢, x, u)}+2)\ )R (t, z, u)

=1
*Z“i 'toz,u)y=0, tel, (5.6)
Alt ) z 0, tel, (5.7)
v, 20, i=1-,p, >0, inzy (5.8)

The Mond-Weir type dual [30]:
(MFCD)
b
Maximize (/ {f1 2, uw) —vig'(t, x,u) bdt,

b
=/ {fPtz,u) Upgp(t,a:,u)}dt)
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subject to z(a) = z(b) = ty, (5.9)

P m
Zn{ (¢, m,u) —vgt(t,x,u)} + Z)\j(t)hi(t,:::,u)

PESS | =1
Y Ok e w)+pt)y =0, tel, (5.10)
=1
P ] ] m ‘
Yon{filtzw) —vightmw) + > A (BRI, 7, )
i=1 =1
+ Y kL () =0, tel, (5.11)
i=1
/Z,\ (ORI (. u)dt > 0, tel, (5.12)
p n
/ Zul(t)(k[(t,x,u) —)dt >0, tel, (5.13)
¢ 1=1
AE) >0, tel, (5.14)
»
T 2 0, Zﬂ':l- (5.15)
=1

5.4. Sufficient Optimality Theorem for (MFCP),,

We obtain a Kuhn-Tucker type sufficient optimality theorem of (MFCP), as

follows:

Theorem 5.4.1. Suppose that (2*,u*) is feasible for (MFCP), such that

there exist 7* > 0, A*(t) and p™(¢) such that
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ZT{ftil‘ Jut) — qu(t:cu}JrZ)\ HRL(t, ™, u*)

+ Z pi kL (o ) + p*(t) =0, (5.16)

=1

ZT{f o u*) — vl (t 2%, 0" }+Z)\* YR (t, 2% u*)

1=1
+ Z;L;‘(t)ic;(t,a:*,u*) =0, (5.17)
=1

m .
Z,\;(t)hf(t,a;*,u*) =0, (5.18)
ZM (Y (KMt 2, u*) — &%) = 0, (5.19)

P
7 >0, Zn-* =1, (5.20)
and X\*(t) > (5.21)

hold through ¢ < ¢ < b (except that at t corresponding to discontinuities of

u*(t), (5.16) holds for right and left limits). If f;(fi—'uigi) dt, i=1,---,p, ]: >N
hidt, j =1,---,m, and f:,u;"(kl —g*)dt, | = 1,---,n are all V-p-invex
with respect ton, &, ¢, and o, and > 70, + > p; + > pi 2 0, then (2%, u*) is

an efficient solution of (MFCP),,.

Proof. Suppose that (x*,«") is not an efficient solution of (MFCP),,. Then

there exists (z,u) # (z*, u*) such that (r,u) is feasible for (MFCP),, and
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b b :

/ {F7(t, 2, 0) — v gH{t, o, u) ) di < / {Fi(t, x*,u*) — vigt(t, z*, u*) ) di,
a o+ a

Vi=1,-p

and

b b
/{f’“(t,a?,u)—vio_gio(t,a:,u)}dt< /{fi"(t,a:*,u*)—vmgio(t,:c*,u*)}dt,

for some i =1,---  p.

Since t[:(f'i — ;%) dt is V-p-invex, we have

b
/ (-nTcri{f;(t,I*,u*) —vgs(t, 2, u™)}
a

+ ETa:i{fi(t,:r;*,u*) — Uz-gi(t,:r;*ju*)}) dt + piHCH2 <0, Vi=1,---,p,

and
b . .
/ (7/Tai{f;° (t,x" u") — v g0 (¢, ™, u™)}
a

4—€Ta%{ﬁfﬁfmﬂtf)Afvmg?(tm*ﬂfﬂ})dt+w%HCH2<10

for some 49 =1,--- p.

Since 7" > 0 for all ¢, we get

b P
|32 e m ittt ) — gt )
@ =1

FEr{fut et w) - ngilta® ut)} ) de+ S pllClP < 0. (5.22)

=1

From the feasibility conditions, 37" | A¥(t)h? (¢, z,u) < 0 = Do AR (2,27, ut).
By the V-p-invexity of f; Aj ()R dt, we have
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p oM m
fZB{nTA* (b1, )+ ETXEORL (6 2w e+ 3 pslICIP < 0.
a j=1
(5.23)

From the feasibility conditions, > ;" | puf () (K (¢, ,u)—2) =51 pr () (kHE, 2% u)

~&*) = 0. By the V-p-invexity of jab pi (kb — &%) dt, we have

T

d
/a Z%{n (DKL (837 u7) — St () + €7 (DR (1, 0 )}

+ 3 plcli <o (5.24)

(=1

By integrating dﬂd;— p*(t) from a to b by parts and applying the boundary con-

dition, we have

b .
b7 u *(t)dt = _/ ot @ (1) dt. (5.25)

Using (5.25) in (5.24), we have

A Zv 0 (R 2,2 ) + i (0) + €7 (ORL 8, )
+ Zmucw <0. (5.26)
=1

Since (5.22}, {5.23) and (5.26) hold the same «, we have
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b P
| (X w st e v gk )
a i=1
m ) n V
= DAL ) Y (K (2" ) + i (1))
j=1 =1
P A .
T(Y(ZTi*{f;(t;I*JU*) —vig (27, u")}
=1
m . n
DN WM w4 Y u Ok (Lt )| de
o =1

P m n
+ 3ol + D pilIcP + 3 aulicl? < o, (5.27)
i=1 j=1 =1

From (5.16), {(5.17) and hypothesis, we have

b 4 m
f [T]Ta( Z Tt T u) — gt (E 2 ut) )+ Z AS(E)RL(t, x*, u*)
@ i=1 =1
+ Zuf(t)ki(t,zﬂ*,u*) + 7t ) 1)+ € (ZT {fi(t, o™, u*) — vgl (¢, 2%, u*)}

N ZA*(t)h (t, 2%, u*) + Z“l kL 2 ))J

=1

+ Zr:pilrdl? + Sl + Y allcl? 2
i=1 j=1 i=1

which contradicts the inequality (5.27). Hence (x*,u*) is an efficient solution

of (MFCP}),. 0
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5.5. Duality Theorems

Now we establish some duality theorems between the multiobjective frac-

tional control problem (MFCP),, and its Wolfe type dual problem (WFCD),

Theorem 5.5.1 (Weak Duality). Assume that for all feasible (z*,u*)
for (MFCP),, and all feasible (x,u, 7,v, A, 1) for (WFCD)

(i) [/:({fl(t,-,-) ng( }+Z/\h3 ) +ZW ) 8))dt,
,fab({fm,-,-)—vpgp(t }+2Ah3(t,,-+zmkf ) =) di]

are V-p-invex with respect to the same 1, £, ( and «, and

(ii) 7, >0, Yi=1,---,p, and p > 0, then

b b
/{fi(t,:c*,u*)—vigi(t,:t*,u*)}dt< / ({fi(t,.r,u)~1)zvgi(t,:c,u)}

+ZA Y4 (t, ) +ZM (k(mu)mx))dt, Vi=1,--,p (5.28)
=1
and

[ {fio(t’m*’u*) _ viogio(t’]j*,u*)} dt oy / ({flo(t,l‘,u) - Ufiogio(tyl:yu)}
+Z)\(f t:zu+2m tTU)'ﬂ)‘it

for some ig=1,---,p (5.29)

cannot hold.
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Proof.  Suppose contrary to the result, that (5.28) and (5.29) hold. As
(z*,u*) is feasible for (MFCP), and A(t) > 0, (5.28) and (5.29) imply

b
/a ({fi(t,a:*,u )—Ulq }—!—Z)\ u*)

e

b
+ Z M(t)(k[(fal'*: ’U,*) - T*)) dt = / ({fi(trmru) - 'Uigé(tv T, U)}
i=1 a

+ SN0 (¢ 2w +ZW (K'(t,z,0) =) ) di, Vi=1.p

j=1

and

/b({f”’(t,x*,u) i g }+Z/\ BRI (t, 27, )
-I—Z,w(f t " u*) —z* )) dt < /ab ({fio(t,a:,u) _.Ulogio(t,:c,u)}

+Z)\ (YR (¢, 7, u) +Zm t;tu)——a:))dt,

for some 9 =1,---,p.

Now hypothesis (i) and >.¥_ 7, = 1 imply

m

/(Zﬂ{f”f ") —vig'(t, 2", o }+Z/\J BhI (t, 2%, )

+Z,ug(z‘ (¢, 2", u") — *))dt< / (Zri{fi(t}x,u)~U2-gi(t,ac,u)}
@ Ci=1

Z Ak (L, @, u +ZM (t,xju)—:i:)) dt. (5.30)
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Now according to (i),

b m
/ ({fi(t,m*,u*) - 1;igi(t,a:*,u*)} + Z /\j(t)hj(t,:z;*,u*)
Ja i
b
+ Z,ul Lt o u*) — *)) dt — / ({fi(tiatju) —v,g*(t, 2, u)}
+Z)\ It 2, u) +Zm k(t:cu)ﬁq))dt

E/b[nTai({fi(t,x,u) ’ulgrta:u}JrZ)\ R (t, x,u)

T

+ 3 w2, + o ()
=1

€T au({fltr 0 = gl (b, )}

+ZA (O (1,z, u +Zm Ok (1,2 u))] dt + ps]|C]|2. (5.31)

By integrating 22— a ©(t}) from a to b by parts and applying the boundary

conditions, we have

d?

b
Tty it~ — [ o aptr)di (5.32)

[#

Using (5.32) in (5.31), we have
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b
/ ({f’;(t,x*,u*)~v (t,z* u* }+Z/\ R (t, 2, u*)

b

+ Z'U” ) (Kt =%, u*) —i‘*)) dt — f ({fi(t,x7u) kvigi(t,:ﬁ,u)}

a

+Zx\ I(t,r,u +Z“‘<t tiL‘U)—T))

b
> / {nTai({fi,(t,:c,u) vigh (t, x,u)} + Z/\ )Rt 2, u)
3wtk (L, u) + () + €T ({f:;(a 7,1) ~ vigl(t @, u)}

=1

+Z>\ (R (t, 7, u) + ZM Lt x ’u,))] dt + pillCI2.

Now 7; >0 and > % | 7 = 1, imply

b P
f(ZT,{f(tm ) — vt 2 u*)}—i—Z/\ VR (t, %, u®)

i=1 g=1

+Z,ug Wtz u®) — %) )dt—f (Zn{f tor,uw) —ugt(t z,u))

z=1

-I-Z/\ O (t, z,u) +Zug Ktz u) ~ ))dt
2./; [nTaz-(Zn{f;(t,:c,u) lgxtaxu}-{-Z/\ (WA (t, x,u)

+ Zul Etya,u) + alt )) + £Tai(27i{fi(t, x,u) — vigh(t, z,u)}

=1
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+Z)\ YRl (t, x, u) +Zm tmu))]dt

=1

+ Zﬁp1||§||2 > 0 by hypothesis (ii}, (5.5) and (5.6).

=1

Hence

b P
/ (Zn{fi(t,m*,u*) —v;0:(t, 2" 1 }+Z)\ {t)h;(t, x* u")
@ e

a

Ym0 ) - 8) ez [ (3 - vt )
=1 i=]

+ 3 Ntz w) S () kit ) — j;)) dt
j=1 =1

which is a contradiction to (5.30). W

Theorem 5.5.2 (Weak Duality). Assume that for all feasible (z*,v*)
for (MFCP),, and all feasible (z,u, 7,v, A, p) for (WFCD)

([ —ugeonran, [0 - pe pa),

b b
(ii) ( AMRME, Y, - f)\mhm(t,-,-)dt) and

(iii) /b (B (- ) —a)dt, -, /ab pn (" (L, ) — &) dt)
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are all V-p-invex with respect to the same 7, £, {, and
(iv) 7, >0, Ve=1,---,p, then (5.28) and (5.29) cannot hold.

Proof. The proof is on similar lines as that of Theorem 5.5.1. ]

Corollary 5.5.1. Assume that weak dualities (Theorem 5.5.1, 5.5.2) hold
between (MEFCP}, and (WFCD). If (x,u) is feasible for (MFCP),, and (z,u, T, v,
A, i) is feasible for (WFCD) with Z;”:l A (YR (¢, z, ) = 0. Then (z,u) is an
efficient for (MFCP), and (x,u, 7,v, A, i} is an efficient for (WFCD).

Proof. Suppose that (z,u) is not an efficient for (MFCP),, then there
exists some feasible (z*, u*) for (MFCP), such that

b b
f{fi(t,a:*,u*)—vigi(t,z*,u*)}dtgf {fi(t,;r,tt)—v,;gi(t,x,u)}dt,

YVi=1,-,p (5.33)
and

/ {f’zo(t) 1“*71'['*) A’U’L()glo(t7$*7u*)}dt <f {f’bo(t,:l/‘:u) - Uzoglo(t7zﬁu)}dt?
for some ig =1, - ,p. (5.34)

Since Z;”:l A0 (tx,u) =0 and Y0 ity (ki (2, u) — 3) = 0, we get

b b
/ {7t a* ™) — vgt(t, % w*) } di S/ ({fi(t,:r,u) — v g'(t, z,u)}

Y NOR (G b Y )k ()~ :ﬁ)) dt, ¥i=1,--,p

=1
and

b b
/ {fio(t,:t:*,u*) — vmgio(t,m*,u*)} dt < ] ({fio(tzxau) - ’Uiogio(t:wvu)}

+ Z)\j(t)hj(t,z,u) + Zm(t)(kl(t,:c,u) — ;r)) dt, for some i =1, - ,p.

j=1 =1
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Since (x,u, 7,v, A, ) is feasible for (WFCD) and (z*, u*) is feasible for (MFCP)

U

these inequalities contradict weak duality. Hence (x. u) is efficient for (MFCP),,.

Next suppose (z,u,7,v, A, ) is not an efficient for (WFCD). Then there
exists some feasible (z*,u*, 7%, v*, A*, u*) for (WFCD) such that

b m
/ (L u) — gt ™)) + 30 Xsb (8,27, )
4 Qa j:l
b .
+ZM £y (k' (t, 2%, u* ~:i:*)) dt > / ({f’(t,:r,u) —v,g"(t,x,u)}

+ZA (£Yh? (¢, , u) —i—Z;L; Kt o, u) — a':))dt, Vi=1,--,p
and

b m
/ ({fi"(t, 5 u*) - v g (T u)} + Z AS (OB (¢ 2%, ")

=1

i”l (Kt 2" w*) — & )) dt > /ab ({fio(t, T u) -~ v, g (t z,u)}

A ()R (2, 2, u) + Z,u,;(t)(kl(t,a:, u) — .’L‘)) dt, for some ig =1, - p.
1 =1

TI'

Since >0 Aj(0)A (t,x,u) = 0 and Y w(t) (k' (f, z,u) — &) =0, we get

h rm
[ (1) wgtea, w4 3 N0 (a0
Ja jzl

T

b
+Zuf(t)(ki(t,$*,u*)~j:*)) dt > f{fi(t,gvgu)—vi—gi(t,z,u))}dt,
=1 @

Vi=1,.p
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and

b m
/ ({f“’(t, *u) — v, gt t ut)) + Z AR (t, 2%, u*)
a j=1

n b
+ Zuf(t)(kl(t,as*,u*) — a:*)) dt > / {fo(t, 2, u) — v g% (t, x,u) ) dt,
=1 a

for some ¢ =1,---,p.

Since (x*, ") is feasible for (MFCP),, these inequalities contradict weak duality.

Hence (z,u, 7, v, A, 1) is an efficient for (WFCD). (J

Theorem 5.5.3 (Strong Duality). Let (z*,«*) be an efficient for (MFCP),
and assume that (z*,u*) satisfies the constraint qualification for Py (z*,u*) for
at least one k € {1,---,p}. Then there exist 7* € R? and piccewise smooth
functions A* : I — R™ and p* : I -~ R™ such that (z*,u*, 7°, v*,

A%, p*) is feasible for (WFCD) and Z;”zl N ()R (t, 2% u*) = 0,
Further, if weak duality also holds between (MFCP), and (WFCD), then

(z® u*, 7% v* A%, u*) is an efficient for (WFCD).

Proof. It follows from Lemma 5.5.2 that there exist 7* € RP, and piecewise
smooth functions A* : ] — R™ and p* : I — R™, satisfying for all ¢ € I the

following relations:
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ZT {fi(t,z* u*) — vigi(t,z* fu,)}+Z/\* ORIt 2™, u")

=1

S OR (e u) (0 =

i=1

p m
Yol et wt) < vgh(ta, ut) ) + > AL )
=1

=1

+ Y (kL a7 u*) =0,

S XNt 2t ut) =0,
i=1

P
P20 Yo v
i=1
Hence (z*,u*, 7%, v, A*, u*) is feasible for (WFCD). The result now from Corol-
lary 5.5.1. (W]

Now we establish some duality theorems between the multiobjective frac-
tional control problem (MFCP),, and its Mond-Weir type dual problem: (MFCD).

Theorem 5.5.4 (Weak Duality). Assume that for all feasible (x*,u*)
for (MFCP), and all feasible (x,u, 7, v, A, 1) for (MFCD)

b m n
) f (Z/\jhj(t, )+ Zm(k‘(t, ) = :c)) dt is V-p-quasi-invex at (z, u),

(ii) Tl>0 Vi=1,---,p and

([t -ustt .- e e )

is V-p-pseudo-invex at(x,u) with respect to the samen, £, ¢,

(i) Y mipit+ Y py >0,
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then the following cannot hold:

b b
f{fi(t,a:*,u*)Avi_gi(t,a:*,u*)}dtg /{fi(t,l',u)—ZJigi(t,az,u)}dt

Wi=1,p (5.35)
and

b 7 b _
f {folt, =%, u’) — v, gt 2%, u*) } dt < / {0t zou) — v, 9 (t, )} dt
for some i =1,--- p. (5.36)

Proof. Let (z*,u*) be an arbitrary feasible solution of (MFCP), and
(x,u,7,v, A p) be an arbitrary feasible solution of (MFCD). As A(t) > 0, we
have that

Therefore

[(Z)\hjt:c u” —i-Zm (6, 2%, u") — ;i:*))dt
5/ (Z)\jhj(t,:n,u)—i—Zul(kl(t,m,u)—:i;)) dt.
4 =1 =1

Since 3; >0, ¥j=1,---,m, we have
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fZﬁJ MR (3% ut) + ke, 2, u)—r))
fZﬁJ AR ( tfu)+ul(k’(t,;c,u)—:b))dt

Then (i) yields

T 7 d”f]T
Z Rt ) + k(6 3,0)} + S ()
fT{»\jhw,:c,u) + k(b z )} ) dt S pllcF <00 (537)

By integrating d—;ti 4 from a to b by parts and applying the boundary condi-

tions, we have

b g T b
/ dditu(t)dt:—/ 7' (t) dt. (5.38)

Using (5.38) in (5.37), we have

/ Z T{)\ hJ(t z. U)‘i‘ﬂl"f (t T U)"‘lf‘(t)}

+ 5T{Ajhi(t, z,u) + jukl (t, ,u)) )dt +Y pliclF <0, (5.39)

On the other hand, suppose contrary to the result of the theorem that (5.35)
and (5.36) hold.

Since a; > 0, we have
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/ab (Zp:ai{fi(t,:c*,u*) —vigi(t,a:*,u*)}) gt
bz:] P
<fa (Zai{fi(t,x,u)Uigi(t,x,u)}) dt.

By the V-p-pseudo-invexity of [ ; (f* —vig*) dt,

b P
[ > (nT{f;'(t,:v,u) - vkt w)} + ET{fi(t, z,u) — vig:;u,x,u)}) dt
+ > pillCl® < 0.

Because 7, > 0, Vi=1,--.  p, we have

b P

] Z (nz'n{fi(t,z,u) — vl (t,z,u)} + ETR{Fi(t, x,u) — vigl (¢, r,u)}) dt
e 4=1

+ZTsz’|lCH2 < 0. (5.40)

Adding (5.39) and (5.40), we have

/b [nT(iTi{f;(t,m,u vzgz (t,r,u }-I—Z,\ (t z,u)
¢ i=1

M:

+ 3kt 0) 4 ) + € (Zﬂ{f(txw vigh(t, 7, u))

=1

+

'MS

Ak (t T, u +Z,uikl t,x,u )} dt + Z'ripiHCHerijHCHZ <0,

j=1

which is a contradiction to the hypothesis (iii), (5.10) and (5.11). CJ
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Theorem 5.5.5 (Weak Duality). Assume that for all feasible (z*, u*)
for (MFCP), and all feasible (z,u, 7, v, A, 1) for (MFCD)

(i) 7,>0, Vi=1,-

[{f ) —uvig'(t, -, )} dt, - /{fp AR vag(,,)}dt)

is V-p-pseudo-invex at (z, u),

(ii) '(/bz\lhl(t,-,-)dt, /b/\mhm(t,-,-)dt) and
G ([t pa [ e - o)

are V-p-quasi-invex with respect to the same 7, &,y

(iv) domps + 3. p;+ > p >0, then (5.35) and (5.36) cannot hold.
Proof. 'The proof is on similar lines as that of Theorem 5.5.2. U
The following result is very similar to Corollary 5.5.1.

Corollary 5.5.2. Assume that weak dualities (5.5.4, 5.5.5) hold between
(MFCP), and (MFCD). If (z,u) is feasible for (MFCP), and (z,u, 7, v, A, 1) is
feasible for (MFCDY}, then (x, u) is an efficient for (MFCP), and (z,u, 7, v, A, p)
is an efficient for (MFCD).

Proof. Suppose that (z,u) is not an efficient for (MFCP),. Then there
exists some feasible (z*,»*) for (MFCP), such that
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b b
/ {fi(t,m*,u*) ~v,;gi(t,:c*,u*)}dt < / {f’(t,az,u) uvigi(t,w,u))}dt,
Vi=1,-,p

and
b . . b . A

f {0tz v™) — v g™t z",u") }dt < / {folt, 2, u) —viog™(t, z,u)} dt,
a a

for some i =1, ---,p.

But (z,u.7,v,A, u) is feasible for (MFCD), hence the result of weak duality
theorems (5.5.4, 5.5.5) is contradicted. So, (z,u) must be efficient for (MFCP),,.
Similarly assuming (x,u,7,v,A, ) is not an efficient for (MFCD), we get a
contradiction and therefore (x,u, 7,v, A, u) is an efficient for (MFCD).

U

Theorem 5.5.6 (Strong Duality). Let (z*, u*) be an efficient for (MFCP),,
and assume that (z*,u") satisfies the constraint qualification for Py (z*,u*) for
at least one k € {1,--- ,p}. Then there exist 7* € RP and piecewise smooth
functions A* : I — R™ and p* : I — R” such that (z* u*, 7" v*,

A%, u*) is feasible for (MFCD). If also weak duality holds between (MFCP),
and (MFCD), then (z*, u*, 7" v*, A*, u*) is an efficient for (MFCD).

Proof. Proceeding on the same lines as in Theorem 4.5.3, it follows that
there exist 7* € RP, and piecewise smooth functions A* : [ — R™ and p* :

I — R™, satisfying for all ¢ € I the following relations:

p m
Z‘ri*{f;(t, T u) — gk (t ot ut)) + Z A;(t)hi(t;;:*, u™)
i=1 i=1

+ > kL T )+ () = 0,
=1

- 119 -



P m
Yot ) —vgh (et ut)} + Y ARt u)
i=1 j=1

+) kLt 2" u) =

SN (2" u) =0

1=1
P

w20, Y =1 X 20
=1

The relations fab ST AR (t, 2*, u*) dt > 0and j(f S (kN u) -
z*}dt > 0 are obvious.
The above relations imply that (z*,u*, 7%, v*, A*, u*} is feasible for (MFCD).

The result now follows from Corollary 4.5.2. N

Theorem 5.5.7 (Strict Converse Duality). Let (z*,u*) and (z,u, 7, v,
A, 1) be efficient solutions of (MFCP), and (MFCD), respectively. If [°(fi —
vigt)dt, i =1,---,p, are V-p-quasi-invex and f: (— ST AR = (K
:i:))dt is strictly V-p-pseudo-invex at (z, u) with respect to the same 7, £, C, then
(&%, u*) = (z,u), ie., (z,u) is an efficient solution of (MFCP),, .

Proof. Suppose that (z*,u*) # (x,u). Since (z*,u*) is an efficient solu-
tion of (MFCP}, by strong duality, there exist 7* € RP,v* € R and piecewise
smooth functions A" : [ — R™and p* : I — R", such that (z*, u*, 7% v*, A", u*)
is an efficient solution of (MFCD). Since (x,u,7,v, A, ) is also an efficient so-
lution of (MFCD), it follows that

b _ b A
/{f’(t,ar*,u*)—vig’(t,a:*,u*)}dt:/{fz(t,a:,u)—vigl(tﬁm,u)}dt,

Vi=1, - .,p.

- 120 -



Since a; >0, i=1, -- ,p, we have

b P b P
/ Zai{f’(t,;r*,u*)—vigz(t,:r:*,u*)}dt:f Zai{fi(t,:c,u)—vigi(t)xju)}dt,
4 g1 @ =1

By the V-p-quasi-invexity of f;( P — v;g%)dt at (z,u), we have

b P
[ (o stnm) — gkt 30} + €7 (530020 — b1, )
@ =1
+ 3 pillcl <o.

Since ; >0, ¢t=1,---,p, we have

b P
/ ( Z?)Tn{f;;(t, T, ) — 'Uz-gi(t, T, u)}+ fTTi{fZ(t,I, u) — Uz-gi(t, T, u)}) dt
L=

+ ZTiPiHCIIZ <0

Since (z,u,7,v, A, ) is an efficient solution of (MFCD), from (5.10) and (5.11),

we have

b m n m n
j - (TIT{Z Mg+ > gk + a0} + €T AL+ > Mki})@’t
a i=1 i=1 Jj=1 =1
- ZﬂpiHCHQ > 0.

‘ b o1 b
Since [ n"p(t)dt = — [ < d” dt, we have

/ (” {Z’\ h, +ZWT[}+ HGHGT Z,\ i, +Zuzk’ ) dt
‘ZﬂﬂiHCHzBU-
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By the strict V-p-pseudo-invexity of f: ( = MR = (k- i‘))dt at

(I, u‘)u

m

[ (o) 4 3 w2 ) =)
a =1

=1

> /b (i ARtz u) + im(kl(t,x,u) — :‘v))dt.
a j=1 =1

Since fab (E;’; MRtz u) + S0 (K 2, ) — :ic))dt >0, we obtain

]b (i)\jhj(t,m*’u*) + im(kl(t,l‘*,u’k) _ i*))dt -0 (5.41)

=1

Since b/ (¢, z*,u*) <0, Vj=1,---,m, A(t) >0 and Kt o* u) = 3%, Yl =

7

1,--- ,n, we obtain

b m n
/ (Z)\jhj(t,:c*,u*) + Zm(kl(t,m*,u*) - a'c*))dt <0.
4 =1 =1

This contradicts the inequality (5.41). Hence (z*,u*) = (x,u). 1
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