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1. Introduction

Optimality conditions and duality in single objective or multiobjective
fractional programs have been of much interest in the recent past [1, 2, 5, 9,
11, 12, 13, 15, 17, 18] (see also the references therein). In particular, using
parametric approach, Bector et al. [1} derived Fritz John and Karush-Kuhn-
Tucker necessary and sufficient optimality for a class of nondifferentiable
convex multiobjective fractional programming problems, and they also es-
tablished some duality theorems. Following the approaches of Bector et al.
(1], Liu [12] obtained the necessary and sufficient conditions and derived dual-
ity theorems for a class of nonsmooth multiobjective fractional programming
problems involving pseudoinvex functions.

Recently, Kuk et al. [8] defined the concept of V-p-invexity for vector-
valued functions, which is a generalization of the V-invex function [7,14], and
they proved the generalized Karush-Kuhn-Tucker sufficient optimality theo-
rem, weak and strong duality for nonsmooth multiobjective programs under
the V-p-invexity assumptions. Kuk, Lee and Tanino [9] extend their results
to nonsmooth multiobjective fractional programs on the basis of efficiency.

The aim of this paper is to consider the results of Kuk, Lee and Tanino
[9] for nonsmooth multiobjective fractional programs on the basis of weak
efficiency.

In this thesis, we consider a nonsmooth multiobjective fractional program-
ming problem. For sufficient conditions, we define the V-p-invex functions for
locally Lipschitz functions. We obtain the generalized Karush-Kuhn-Tucker
necessary and sufficient optimality theorems and prove weak and strong dual-

ity theorems for the multiobjective fractional programs. This thesis consists



of four sections. In Section 2, we give notations, definitions and examples
for next sections. In Section 3, we obtain generalized Fritz - John necessary
optimality conditions, and the generalized Karush-Kuhn-Tucker necessary
and sufficient optimality theorems. Finally, in Section 4, we prove duality

theorems for the multiobjective fractional programs.

2. Notations, Definitions and Examples

Now we give mathematical notations definitions and examples for next
sections. The real-valued function f:R™ — R is said to be locally Lipschitz
if for any z € R™ there exists a positive constant K and a neighborhood N

of z such that, for each z, y € N,

f(z) = fF)l £ K]z —

where || - || denotes any norm in R”™.

In this paper, we consider the following multiobjective fractional pro-

gramming problem:

NS B AT
(FP) minimize (gl(m)’ ’gp(m))

subject to z € X ={z € R" | hj(z) £0, j=1,---,m}

where f, '\ R*" >R, ¢, :R* 2R, ¢=1,--- ,pand h; :R* =R, 7=1,--- |'m
are locally Lipschitz functions.

We assume in the sequel that fi(z) = 0 and g;(x) > 0 on R” for ; =
- ,p.



The Clarke [4] generalized directional derivative of a locally Lipschitz

function f : R™ - R at z in the direction d € R™ denoted by f°(z;d) is as

follows:

fo(w;d) = limsupt(f(y + td) — f(y)).

¥z

t10
Further the Clarke [4] generalized gradient of f at z is denoted by

Of(z) ={€| f(z;d) 2 £7d, for all d € R"}.

It is well-known that

°(z;d) = max &'d.
fo(a; d) (. £

Now we define the upper Dini directional derivative of the function f at x in

the direction d € R™:

fH(z;d) = limsup fz+td) — fz) .
t10 t

Then for any z € R™ and any d € R™,

fH{zid) £ F(z; d).

Example 2.1. Let

Then f is not locally Lipschitz at 0.



Example 2.2. Let

Then f is locally Lipschitz on R, 8f(0) = [-1,1] # {f'(0)} and f°(0;d) = |d|
for any d € R. But f*(0;d) = 0 for any d € R, and hence f+(0;d) < f°(0;4d).

Example 2.3. Let n be a natural number with n = 3, and let
z™ sin %, z#0
flz) =
0, =0

Then f is locally Lipschitz on R (continuously differentiable on R), 8f(0) =
{f'(0)} = {0} and f°(0;d) = f*(0;d) = 0 for any d € R.

Lee [10] defined invexity of locally Lipschitz functions as follows:

Definition 2.1. A locally Lipschitz function f is said to be invex on
Xo € R™if for z, u € Xq there exists a function n(z,u) : X x Xy —» R™
such that

f(z) — flu) =2 €Tn(x,u), for each & € f(uw).

Egudo and Hanson [6] generalized the V-invexity of Jeyakumar and Mond

7] to the nonsmooth case as follows:



Definition 2.2. A vector function f : Xy = R" is said to be V-invex if
there exist functions 7 : Xo x Xp — R™ and «; : Xo X Xo = R, \ {0} such
that

fi(@) — fi(w) — oy(z, W)l n(z,u) 2 0, for each & € 8f;(u).

Kuk et al. [9] defined V-p-invexity to the nonsmooth case as follows:

Definition 2.3. Let f; : R* - R, ¢; : R* = R, i = 1,---,p and
hj :R* = R, j=1,---,m be locally Lipschitz functions, and let v € R?.

(a) f—vg == (fi—vigr," -, fo—Vpgp) is said to be V-p-invex with respect
to functions n and 4 : R® x R™® -» R" if there exist «; : R®* x R* — R, \ {0}
and p; € R, ¢ = 1,.-+ ,p such that for any z, v € R™ and any & € 0fi(u)
and ¢ € dgi(u),

ai(z, u){ fi(z) — vigi(z) — filu) + vigi(u)} = (& — wuGnlz, u) + pill0(z, w)|)*. (1)

If we have strict inequality in (1) for any z, u € R™, with z 5 u, then f —vg is
said to be strictly V-p-invex with respect to functions n and 4 : R®xR" — R™.

(b) h is said to be V-o-invex with respect to functions 77 and 8 : R* xR —
R™ if there exist 3; : R®* x R® - Ry \ {0} and o; € R, j = 1,--- ,m such

that for any z, u € R™ and any pu; € 0h;(u),

Bz, u){hy(z) — h(w)} = pinlz,u) + 0;]|60(z, W),

Remark 2.1. If in the above definition, (a) p; = 0 and ¢; = 0 for all 4,

and o; = 0 in (b) of Definition 2.3, then the functions f and h are V-invex.



Remark 2.2 Let A : R™ — R be a convex function. The subdifferential
of h at z is given by

Oc:h(z) = {£ € R™ | h(y) — h(z) 2 € (y - 2) for all y € R"}

Then 8h(z) = d.h(z).

Let ;R™ — R be a concave function: The subdifferential of @ at T is

given by
o)) = {C € R™ |p(y) — p(z) < (T(y — ) for ally € R™}
We can easily check that
Op(x) = ~B(—)(x) = Di().

Hence if fi(z), ¢=1,--- ,pare convex and g;, i = 1,---,p are concave Then

for any & € 0. f:(u) and ¢; € 8°g;(u),
fz(x) - Uigi(l‘) - fi(u) + uigi(u) = ET(CU —u)— Ci(ﬂf - u)

Let oi(z,u) = 1,n(z,u) =2 —u, p; =0, f(z,u) = 0. Then for such f; and g;,
(1) in Definition 2.3 hold.

Definition 2.4.([3,16]) A point Z € X is said to be an efficient solution
of (FP) if there exist no z € X such that

filz) _ fil®@)
gi(x) = 9:(z)

foralli=1,--- ,p

)

and

fe(z)  fel@)
9x(x) = 9x(T)

for some k.




Definition 2.5.([3,16]) A point Z € X is said to be a weakly efficient
solution of (FP) if there exist no € X such that
filz) _ fil

)
a(z) = (3)

£

forali=1,---  p.

It is clear that an efficient solution of (FP) is a weakly efficient solution

of (FP), but the converse does not hold.

3. Optimality Conditions

In this section, we establish generalized Fritz-John necessary theorems,
and generalized Karush-Kuhn-Tucker necessary and sufficient optimality the-

orems for weakly efficient solutions of (FP).

Theorem 3.1. Let Z € X is a weakly efficient solution of (FP). Then

the following statements hold.

(i) Z € X is an optimal solution of the following scalarizing optimization

problem:

(SP) Minimize  {{x)
subject to re X ={z|hi(x) <0, ji=1,---,m}
where [(z) = max [ﬂﬂ — ﬂ@] .
1gi<p L9i(@)  0:(@)

(if) I £* := {5 | hj(z) =0} = 0, 0 € AU(z), where T = {1,--- ,m}.



(iii) If I* # @, then the system

< I°(z;d) <0, >
hi(z;d) <0, jeI”
has no solution d € R™.

(iv) If I* # @, then 0 € co{8Il(Z) U |J Oh;(Z)}, where co A is the convexhull

Jjern
of the set A.
(v) If I* # 0, there exists @ = 0, u; 20, j € I* such that

(aa ”j)jEf‘ ?é 07 and

0 € adl(z)+ Y u;0h;(3).

jeI*
(vi) If 0 & co |J &h;(Z), then a > 0, where « is a real number in (v).
jer
(vii) If Q% = {d € R* | B%z;d) < 0, j € I'} # O, ie., there exists

d € R™ such that Vj € I, h3(Z;d) <0, then 0 & co |J 8h;(Z), equivalently,
jer
0 € > ere #50R;(Z) and fi; = 0 implies f; = 0, j € I".
(viii) If 0 & co |J 8h;(Z) there exist ; = 0, i = 1,---,p, A 20, 5=
€I

1,---,m such that

0¢ ZT,-{a £i(@) — p:0g:(B)} + f}\jahj(i), (2)
AJh'.:f(:i) = 0: J= l: 3 11, (3)
(71, ,7) #0, (4)



aap i= L P

o

where y; =

(viiii) there exist 7, 20, i =1,--- ,p, A; 20, § =1,--- ,m such that

P m
0€ ) 7{0fi(2) - wdo:(2)} + D X0hy(3),
i=1 J=1
Ahyi(E) =0,
(le"'pr>/\11"'1Am):7£O

Proof. (i) Since % is a weakly efficient solution of (FP),

Jiz)  f@)
6@~ al@)

max l:

]20 for any z € D.
1<i<p

Since

the conclusion hold.

(ii) Since I* = 0, that is , for all j = 1,---,m, h;(Z) < O since h; is
continuous, there exists 4, > 0 such that for any = € 7 + B;(0), for any
7 € Ihi(z) < 0. So, T+ B;(0) C D. Since Z is a minimum of (SP),
there exists 8, > 0 such that for any z € DN (z + B;,(0)), I(z) = I(z). Let
6 = min{dy, 6,}. Then £+ B;5(0) C D and for any z € T+ B;(0) , l(z) = I(z)
Thus 0 € 0I(Z).

(iii) Suppose to the contrary that the system has a solution d* € R™. Notice
that I*(z;d*) < 1°(%;d") and h}(%;d") < h3(z;d*). So, I*(%;d*) < 0 and

_10_



hi(z;d*) < 0,7 € I*. Since [*(Z;d*) < 0, there exists 87 > 0 such that
for any A € (0,67), {(Z + Ad*) < I(Z). Similarly, for any j € I* there exists
o7 > 0 such that for any A € (0,8;), hj(Z + Ad*) < h;(F) = 0. Since h; is
continuous, and h;(z) < 0, for any j € I\ I*, there exists 5‘? > 0 such that
for any X € (0,67), (% + Ad*) < 0. Let §* = min{4}, 87,55} Then for all
A€ (0,6%), I(Z+ \d*) < U(Z) and h;(Z + Md*) < 0 (and hence T + \d* € D).
This contradicts the optimality of Z.

(iv} By (iii),

max 'd < 0
¢€ai(z)
< max £'d <0, 5 € I* >

£€0I(z)

has no solution. Suppose to the contrary that
0 ¢ cofdi(@)u | J oh(2)}
jeI

By separation theorem, there exists d(s 0) € R” such that £td < 0, for any

£ € cofOl(z) U |J Ohy(2)}. Thus, &d < 0, for any £ € dl(%), any j € I*

JeI*

and any £ € 0h;(Z). Since 91(z) and 8h;(Z) are compact, n})sli)g) £d < 0 and

Erg’?)(( ¢'d < 0 for any j € I*. This is a contradiction. Thus
< x

0 € cofdl(z) U | 0h;(2)}.

JjeI*

_llﬁ



(v) Since

co{dl(Z) U U Oh;(Z)}

jeI*
={abo+ ) m&laz0, 20, jelaty py=1,
JEI* JEI*

o € 0U(Z), &; € Ohy(z), j € I'}

and 0 € co{0!(z) U {J Oh;(Z)}, there exist @ 2 0, p; = 0, j € I* such that
€I

(@, t5)jer # 0 and 0 € adl(Z) + 3 pu;0h;(T).

jers
(vi) Suppose to the contrary that o = 0. From (v), 0 € > 1;0h5(Z), (1) jer #
jeI-
0,and p; 20, j € I*. So, 0 € co |J 8h;(Z). This contradicts the assump-
jel*
tion. Thus o > 0.
{vii) Suppose to the contrary that O € co |} dh;(Z). Then there exist w; =20

jerr

and §; € 8h;(Z) such that 3° i =1and 0= Y ui€l. So,

JEI* jeIr

0 = <Zﬂ;s;,d>

jer*

= > w{g,d)

jer*

< Z uih3(z;d) <0 (by assumption).

Jel

This is a contradiction.

_12_



If 0 € 3 fi;0h(Z) and fi; = 0 implies ji; = 0, j € I*, then 0 &

jer

co |J 0h;(Z), and the converse holds.

jelI*

(viii) Suppose that 0 ¢ co |J 8h;(z). Then by (iv) and (v), there exist & > 0

el
and p; 2 0, j € I* such that

0 € adl(z)+ > 11;0h;(%).

jerr
Letting A; = Zp;, € I*and \; =0, j € T\ I*, we have
0 € Al(Z) + > A;0h;(z)
=1
and Ajhi(Z)=0,7=1,--- ,m.

Since I(z) = max; ¢;c, [ ;’7:% — :;:—g% ] for any z € D, we have

Ji
9:

Ol Z) C co {6( z)|i=1,--- ,p} (see p. 47 in [4])

~ co{gi(li)afi(i)_ “—{;:i(%)}zagi(i) li=1,--- ,p} (see p. 48 in [4])

Thus, we can get the conclusion.

(viiii) Using the argument in the proof of (viii), we can get the conclusion

from (V).

Now we give sufficient optimality conditions for (FP) under generalized

invexity assumptions.

_13_L



Theorem 3.2. Let (z,7,)) € R® x R? x R™ satisfy conditions (2)-(4).
Assume that f —yg == (fi —v191, - » fo — UpGp) is V-p-invex and h is V-o-

invex with respect to the same 7 and ¢ and
p m
Y T+ > Xoy 20, (5)
i=1 j=t

where y; = f;(Z)/g9:(%), 1 =1,--- ,p. Then Z is a weakly efficient solution of
(FP).

Proof. Suppose that Z is not a weakly efficient solution of (FP). Then
there exists z € X such that

fz) A3
a(@ " 6@

fori=1,---,p.

Since g;(z) > 0 for alli = 1,--- ,p, we have
fi(@) —yigi(z) < fi(Z) — wsgi(z) foralli=1,--- ,p.

Since 7 > 0 and o;{z,%) > 0 foralli=1,--- ,p, we have

Zﬂai(f’f){ﬂ(ﬂ?) — fi(z)} < Z’GO:‘(E,T){%%(I) — v:9:(Z)}.

Then, by the V-p-invexity of f — yg, we have

P P
Z Ti(&i - inz‘)U(ma 5E) + Z Tipillg(‘r: "E)“2 < 0: (6)
i=1 i=1

for each ¢; € 8f;(%) and each ¢; € 8g;(Z). From (2) and (5), (6) yields

S Nun(z,3) + > Ao |18(z, B)° > 0,

j=1 g=1

_14_



for some u; € Oh;(T). Hence, by the V-o-invexity of h, we obtain
> B, B){hy(z) ~ hi(2)} > 0.
=1

Since A;h;(Z) =0 for all j = 1,--- |, m, we have

> Al 2)hy(z) > 0,

which contradicts the conditions 3;(x, ) > 0, A; 20, and h;{z) < 0 for all

3 =1,---,m. Thus 7 is a weakly efficient solution of (FP).

4. Duality Theorems

Following the parametric approach of Bector et al. [1], we formulate the

following dual problem for (FP).

(FD) maximize (vq,---,v,)

subject to 0 & iﬂ'{@fi(ﬂ?) - 'uic'?gi(:c)} -+ i /\jah_;(x), (7)
j=1

i=1
fi(CU) - ’Uigi(ﬂf) =20, i= L--,p,

)\th(a;)%o! j:]-: y 172,

TERPLAER™N vER, 7 20,7#0,A20. (10)

We establish weak and strong duality theorems between (FP) and (FD).

_15_



Theorem 4.1 (Weak Duality). Let z be any feasible for (FP) and let
(z,7, A, v) be any feasible for (FD). Assume that f —vg := (fi~vigy,- - - , fo—

Upgp) is V-p-invex and h is V-o-invex with respect to the same 7 and 8 and

P m
ZTipi‘FZ}\jUj;O. (11)
i=1 j=1
Then the following cannot hold:
fz(il?) :
<y, foralle=1,--. p. 12
oi(z) (12)

Proof.  Suppose contrary to the result of the theorem that for some

feasible x for (FP) and (z, 7, A, v) for (FD),

Ii—(i) <wv;, foralle=1,---,p.
gi(z)

Then, we have
fi(z) —vgi(z) <0, foralli=1,--- p.

Hence, from (8) and (10), we obtain

fi(z) = vigi(z) < fi(Z) ~ vigi(@). (13)
By the V' — p-invexity of f — vge, there exist a; : R* x R* — R, \ {0} and
pER, 1=1,---,psuch that for any & € 8f,(Z) and ¢; € 9g:(F),

ai(z, Z){ fi(z) — vigi(z) — filZ) + vigi(2)} 2 (& — viG)n(z, T) + pi||0(z, 7_3()1|z)

_16_



From (13) and (14)

0> (& —viCi)n(z, ) + pill0(z, Z)|1°.

Since 1; 2 0 and 7 # 0, we have

P ?
0> Z (& — viG)n(z, T) + Zﬂ'lh”g(% z)|1%, (15)

for any §; € 8fi(Z) and any & € 8g;(Z). Hence
4 m
0€ ) 7{0fi(z) - vidg(@)} + > \dh;.
i=1 =1

This means that there exist & € 8fi(Z), { € 8g:(Z), w; € Oh;(E) such that
0=737,n&—wG)+ > ie1 Ajw; and hence 37 (& — wil)n(x, 7) =
= 2oim Aywin(e, £). Thus from (15), 0 > — 2oier Ajwin{, )+ Tpill0(z, 2)))2.

By the assumption (11),
0> = Nuwm(z,2) — Y Nipillé(z, 7).
j=1 =1

Thus we have

> Awn(z, )+ Y Apslle(z, 7)) > 0. (16)
7=1 7=1

By the V — p-invexity of h, there exists 3; : R® x R® — R, \ {0} such that

Bz, ) h;(z) — hi(2)} 2 win(z, 2) + p;|10(=, B)|I°.

_17_



Thus we have
2 Az, ) {hy(2) — ki)t 2 Y Nuwin(z, @) + 3 Asps 10z, 7).
i=1 =1 i=1

By (15), ;n:l )\]ﬁj(x,i‘){hj(:c) - hj(i')} > 0. Since )\]hj(ﬂ_?) > 0, and
Bi(z,2) > 0, 3772, \i8;(x, 2)h;(x) > 0. However, since A; = 0, and hi(z) <
0,

D \Bi(x, B)hi(z) < 0.
j=1
This is a contradiction. So, the conclusion holds.

Theorem 4.2 (Strong Duality). Let Zbea weakly efficient solution
of (FP) and suppose that the condition in (vii) or (viil) holds at Z. Then
there exist 7 € R, A € R™ and % € R? such that (Z,7,A,7) is a feasible
solution for (FD). If the assumptions of Theorem 4.1 hold, then (Z,7,A,7) is

a weakly efficient solution for (FD).

Proof. By (viii) of Theorem 3.1, there exist 7 € RP and X € R™ such that

0¢ Z?{afi(f) — 5:00:(Z)} + > \;0hy(%),

Jj=1

_18_



So, there exist 7 € R?, A € R™, and © € R? such that (Z,7,X,7) is a
feasible solution of (FD). Since weak duality holds between (FP) and (FD),

there does not exist a feasible solution (vq,--+ ,v,) for (FD) such that
T_]’i <, i:11'~. » D-

Thus (z,7, A, 9) is a weakly efficient solution of (FD).
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