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Notations

Let G,H ,and K be groups.
H @& K : the direct sum
H x K : the free product
H x;; K : the amalgamated free product
G~ H : G isisomorphic to H
G/H : the quotient of G by H
AutG : the automorphism group of G
EndG : the endomorphism ring of G
gpu{—} : the subgroup generated by a subset of H
[a,b] : the commutator of a and b
ZG : the integral group ring
IG : the augmentation ideal
— ®¢g — : the tensor product of ZG -modules
rk(G) : the rank of the torsion-free part (when G is abelian)
d(G) : the least number of generators
V(G) = 1 — rk(Hy(G)) + d(IT:(G)
Hi(G,A) : the k-th homology group of G with coefficients in A
H*(G,B) : the k-th cohomology group of G with coefficients in B
H(G) : the second integral homology of G
H?(G) : the second integral cohomology of G

p1, po : the standard surjections
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i1, o © the standard injections
A — B : the inclusion of A into B
Z : the integers
kera : the kernel of o
ima : the image of a
Notation concerning presentations.

Let o be a group presentation.
ma(gp) : the second homotopy module
M (p) : the relation module
x(p) : the Euler characteristic
Notation concerning pictures.

Let [P be a picture.
W(P) : the label of P
A(P) : the boundary of P
—P : the mirror image of P
P" : the spherical picture obtained from a spherical picture P by surrounding

it by a collection of concentric closed arcs with total label W

< P > : the equivalence class containing P
W(y) : the label of a path
W(A) : the label of a disc
expr(P) : the exponent sum of R in P

exp.(W) : the exponent sum of = in W



Miscellaneous notation.
Let o be a sequence of words.
Ilo : the product of terms of o
< o > : the equivalence class containing o

o(¥) : the sequence associated with 7
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Chapter 1

Introduction

Let g, and g, be group presentations for H and K, respectively and p
presentation for G = H *y K , i.e., the amalgamated free product of H and
K with subgroup U . It is known that short exact sequences of amalgamated
free products are closely related. We can find out the relation among them by
applying diagrams of groups(modules).

In this thesis, we investigate the mutual relation among short exact se-
quences of amalgamated free products which involve augmentation ideals, re-
lation modules, and second homotopy modules. In particular, we find out
commutative diagrams having a steady structure in the sense that all of their
three columns and rows are short exact.

We can more easily obtain a group presentation of relation modules from

a short exact sequence which is consist of second homotopy modules and rela-



tion modules. It follows that relation modules depend on their presentations
heavily, that is amount to say that, if two isomorphic groups have two differ-
ent presentations, then it is possible that their relation modules are different
from each other. Moreover, even though two groups are not isomorphic, their
relation modules can be isomorphic from each other.

In addition, if we know the structure of relation modules, then we are able
to compute the higher (co)homology groups of G. In particular, we compute
the second integral (co)homology of G and investigate the efficiency of G and
Cockroft property.

There are five chapters, each of which is consist of several sections. The
main themes with which we shall be principally concerned in this thesis are
relations among short exact sequences which associate with amalgamated free
products. We devote chapter 2 to a preliminary discussion of exact sequences,
diagrams, and amalgamated free products.

In chapter 3, we deal with relations among short exact sequences involving
augmentation ideal and relation modules. In addition, we study the relation-
ship between two short exact sequences.

In chapter 4, we provide an overview of the theory of pictures from a homo-
topy theoretic perspective and deal with relations among short exact sequences
concerning second homotopy module mo(gp). We also describe combinatorial
geometric techniques that determine explicit generators for the second homo-

topy modules.



The second homotopy modules arise from both topological and algebraic
sources. The description focuses on the theory of pictures. Pictures have
been used for many purposes. It is known that there is a formal expressing
the second homotopy modules which is denoted by the group consisting of all
elements < P > where P is a spherical picture. The set ¥ of all equivalence
classes of all identity sequences forms a group. We identify mo(p) with X.
We shall be concerned with their relation to short exact sequences of relation
module M(p) and second homotopy module m5(p) .

In chapter 5, it will be presented how the presentation of relation modules
can be built up from short exact sequences and the application about relation
modules will be shown. We also compute the second integral (co)homology of
G, and investigate the efficiency of G and Cockroft property.

We now state the main results of the thesis ; the proofs of theorem 1.0.1
and corollary 1.0.2 will be given in chapter 3 and the proofs of theorem 1.0.3
and corollary 1.0.4 will be given in chapter 4. The following theorem and

corollary give us the evident relation among short exact sequences.

Theorem 1.0.1. For G = H xy K, we have the following commutative dia-



grams :

0 0 0
! ! !

0 — ZGuIU % (ZG®yIH)®(2ZGexIK) 2% 16 — 0
I 1 1

0 — ZOQUZU % (2GonZH)® (ZG®x 1K) 2 26 — 0
e e le

0 — ZGeyZ =5 (ZG®uL)®(ZG®xZ) 5 Z — 0
l ! !
0 0 0

where IU , IH, IK , and IG are the augmentation ideals of ZU , ZH , ZK ,

and ZG respectively.

Corollary 1.0.2. (1-1) is short exact if and only if (1-2) is short exact.
(1-1) 0 — ZG ®y IU 25 (ZG &y [H) @ (ZG ®x [K) 25 IG — 0.

(1-2) 0— ZG®yZ 2% (ZG @5 Z) ® (ZG ®x L) 2 7 — 0.

We also have the following theorem and corollary.
Let Pyl = ®rer,ZHR, PY = ®ser,ZLKts, Pl = ®ieiZUY;,
Py = (®rer, ZGtr) ® (Bser, ZGts) @ (@iesZGy)
M(py) = Ni/N1', M(ps) = No/No' and M(p) = N/N' and let N. = kerf.
with 0, : F, — U defined by y; — a;N; (i € I), where a; is non-empty

freely reduced words such that U = gpg{a;N; : ¢ € I}. Then we have:



Theorem 1.0.3. The following diagram is commutative with exact rows and

columns.
0 0 0
! l !

0 — (ZG®um(p)) @ (ZG ®x mlpa)) > mlp) > ZG®yNJN.' — 0
Lm2 Iz L

0 - (ZGeyPMo@ZGexPK) = pn 5 7ZGeyP’' — 0
L= L2 lon

0 — (ZG®u M(p)) ® (ZG®k M(p2)) > M(p) * ZG&yIU — 0
! ! !
0 0 0

Corollary 1.0.4. (1-3) is short exact if and only if (1-4) is short exact.
(1-3) 0 = (ZCRuma(1))D(ZGR T3(g2)) > mo(p) = ZGRy(N./N. ") — 0.
(1-4) 0— (ZG®u M(p))®(ZG&x M(p2)) > M(p) % ZG @y IU — 0.

We finally set up some general conventions. First, we use the left-handed
convention, whereby the composite of the morphism « followed by the mor-
phism [ is written Ja. Modules are understood to be left modules, unless
the contrary is explicitly stated. Similarly, group actions are generally un-
derstood to be left actions. We allow ourselves to simplify notation once the
strict notation has been introduced and established. The identity element of
a multiplicative group G is denoted by 1g or 1 and the same notation 1

is also used for the trivial subgroup consisting of the identity element. The

S



notation and terminology not defined in this thesis are standard and can be

found in almost all standard books on related areas.



Chapter 2

Preliminaries

In this chapter, we present the exact sequences, the notions of diagrams and
the amalgamated free products together with their properties. Some basic

concepts and notation are also defined.

2.1 Exact sequences and diagrams of groups(modules

Suppose that we have a sequence {G,} of groups(modules) and a sequence of
group(module) homomorphisms f; from G; into Gi;,. We will express these

homomorphisms by arrows between the groups(modules):

2-1) i Gy M, G —

The set of suffixes may be finite or infinite. The above sequence (2-1) is said

to be exact if we have im f,_1 = ker f, foreach n. If G; =0 for i <n -2



and G; =0 for i >n+ 2, then
(2 —2) 0— Gy — G, — Gpyy — 0.
The sequence (2-2) is called a short exact sequence.

Remark 2.1.1. Suppose that 0 — A I, B2 ¢ — 0 is short ezact.

Then f is a monomorphism and g is an epimorphism.

Let A,B,C, and D be groups(modules) and let a,f,y, and & be

group(module) homomorphisms. We say that the diagram

A % B
17 18
c % D

is commutative if So = d : A — D . This notion can be generalized to more

complicated diagrams in an obvious way.

Lemma 2.1.2. ( Five lemma ) Let
Al — Ay — A3 — Ay — As
oo o2 Jos Los Los
B — By, — By — By — Bs
be a commutative diagram with exact rows.
(a) If ay is an epimorphism and o, oy are monomorphisms, then s is a
monomorphism,
(b) If as is a monomorphism and a,, o4 are epimorphisms, then az s an

epimorphism.



Lemma 2.1.3. ( Snake lemma ) Given the commutative diagram with exact

Tows.
A2 B XA o — o0

al ) 7]
0 — A X op K o
there exists a homomorphism A : kery — cokera such that the sequence

A* I A AL I
kera — kerf — kery — cokera —— coker3 — coker~y

is exact. Moreover, if X is monomorphic, then so is A\* and if p' is epimor-
phic, then so is ., .

Lemma 2.1.4. ( 3 x 3 lemma )

Consider the following commutative diagram, where three columns are exact.

0 0 0
1 { l

0 — A — A — A3 — 0
! ! !

0 — B — B, — By — 0
{ ! l

0 — C — C — C — 0
! ! !
0 0 0

Suppose that the middle row is exact. Then the first row is exact if and only

of the third row is exact.



2.2 Amalgamated free products

Let H,K,and U be groups and ¢; and ¢, homomorphisms:
v o oH

(2 - 3) b2
K

A solution of the above diagram (2-3) is a group G and homomorphisms

and 1, such that the following diagram commutes (i.e., ¥1¢1 = P2¢2 ):

U L om
(2—4) ¢2| Y1
K 2 g

A push-out of the diagram (2-3) is a solution (G, ¥1,%2) such that, for any
other solution (L, #,,6,), there exists a unique homomorphism a : G — L
such that 6; = ov; (¢ = 1, 2). As usual, the push-out is unique up to
isomorphism.

Let p = ( x : r) be a group presentation, where x is a set and r is a
set of cyclically reduced words on xUx"*. Let N be the normal closure of
r in F, where F' is the free group on x. Then the quotient G of F' by N

is called the group defined by g .

Theorem 2.2.1. A push-out exists for the diagram (2-8). Moreover, of H
and K are defined by @1 = ( x;:11 ) and ps = ( X2 : 1y ) respectively, then

the push-out G is defined by p = ( x;Uxy : r;UroU{d;(u)do(u) ' tue U} ).

10



A proof of this theorem can be found in [37] (Theorem 11.58). When both
¢1 and ¢ are monomorphisms, the push-out G is called the amalgamated
free product of H and K with subgroup U. In this case we usually regard
U as a subgroup of H and K, and regard ¢; and ¢, as inclusions. The
usual notation for the amalgamated free product of H and K with subgroup
U is H xy K. Sometimes it is more convienent to use the notation H xya~y K
where U C H, V C K, and U = V. For more precision, we could mention
the specific isomorphism from U to V. For an amalgamated free product we

see that %1 and 5 are monomorphisms, and we regard them as inclusions.

11



Chapter 3

The augmentation ideal and

relation modules

In this chapter we will describe the basic concepts of the augmentation ideal
and relation modules. We also present some short exact sequences concerned
about the augmentation ideal and relation modules associated with amalga-

mated free products.

3.1 The augmentation ideal

In this section, we describe the relationship among short exact sequences in-
volving augmentaion ideal with amalgamated free products.
Let G be a group written multiplicatively. The integral group ring ZG of

G is defined as follows. Its underlying abelian group is the free abelian group

12



on the set of elements of G as basis ; the product of two basis elements is
given by the product in G . Thus the elements of the group ring ZG are sums

z€G

where m is a function from G to Z which takes the value zero except on a
finite number of elements of G. The multiplication is given by

" m@)z) - Q- myy) = Y () -m'(y))zy.

zeG yeG z,yeG

The group ring is characterised by the following universal property. Let

i : G — ZG be the obvious embedding.

Proposition 3.1.1. Let R be a ring. To each function f:G — R such that
flzy) = f(z)- f(y) and f(1) = 1g, there exists a unique ring homomorphism
f :ZG — R such that f'i = f.

A (left) G-module is an abelian group A together with a group homo-
morphism ¢ : G — AutA. In other words, each element of G acts as an
automorphism of A. Since AutA C EndA, the universal property of the
group ring yields a ring homomorphism ¢’ : ZG — EndA, making A into a
(left) module over ZG . Conversely, if A is a (left) module over ZG then A
is a (left) G-module, since any ring homomorphism takes invertible elements
into invertible elements, and since the group elements in ZG are invertible.
Thus we need not retain any distinction between the concepts of G-module

and ZG -module. A (left) G-module is called trivial if the structure map

13



o : G — AutA is trivial, i.e., if every element of G acts as the identity in
A. Every abelian group may be regarded as a trivial left or right G-module
for each group G. We regard Z as a left ZG-module with trivial G -action.
The augmentation map ¢ : ZG — Z is the homomorphism sending every

z € G into 1 € Z, that is

€:2G — Z
Z m(x)r — Z m(z)
z€G z€G

The kernel of € is denoted by IG and is called the augmentation ideal of ZG .

Thus we have a short exact sequence

(3-1) 0—IG—7ZG 7 —0

Tensoring (3-1) with /G overZ , we obtain the short exact sequence
(3-2) 0— IG®z IG - ZG ®7 IG - IG — 0

where v and ¢ are defined by
yi(z-)®@@-1)r—(z-1)®((@x-1) (z€q)
frx®(y—-1)r—z(y—1) (z,y€l).
Lemma 3.1.2. (i) As an abelian group IG is free on the set {z—1|1#z € G}.
(1) If S is a generating set for G, then the set {s—1|s € S} generates IG

as a Z.G -module.

Lemma 3.1.3. Let U be a subgroup of G . Then ZG 1is free as left(or right)
U -module.

14



Let G = H *xy K be the amalgamated free product of H and K with

subgroup U . Then we have:

Proposition 3.1.4. There is a short ezact sequence
(3-3) 00— ZG &y IU 25 (ZG ®y IH) & (ZG ®x IK) 25 1G — 0

where oy and [, are defined by

o 2@u—-1)r— (z®u-1),-z®u-1)) (z€G, uel)
Gr:i(z@h-1),y®(k-1)+—z(h—1)+y(k—1) (z,y€ G,he H k€ K).

Proposition 3.1.5. There 1s a short exact sequence
(3-4) 0 ZG®yZU % (ZG @ ZH) & (ZG K ZK) 2+ 76 — 0

where ag and Jo are defined by

a:rzQu— (zQu,~z®u) (z€G, uel)

Bo:(z@hy®k)—zh+yk (z,ye G, he€ H, k€ K).

Proposition 3.1.6. There is a short ezact sequence
(3 -5) 0—ZGRuZ 25 (ZGOn L) & (ZG Rk L) 25 7 — 0

where a3 and 33 are defined by

air®ar— (z®a,—z®a) (z€G, acl)

B3:(z®a,y®b)—a+b (z,y€ G, a,beZ).

15



We now observe the relation among (3-3),(3-4), and (3-5) through the fol-

lowing theorem.

Theorem 3.1.7. The following diagram is commutative :

0 0 0
l | !

0 — ZGulIU 2% (ZGoyIH)® (ZGexIK) 25 16 — 0
1 1 L

0 — ZO®uZU 2% (Z6®yZH)® (ZGoxZK) 2 2G — 0
ls’ la" ls

0 — ZGouZ =% (IG®yL)®((ZC®xZ) 5 Z — 0
l ! !
0 0 0

where

drz@@u—-1)r—z®u-1) (z€G, uel)

girur—z®1 (zr€G, uel)

o (z®(h—1),yR(k—1)) — (z®(h—1),y®(k-1)) (z,y€ G, h€ H, k € K)

e (rRhyRk)— (z®1L,y®1) (z,y€G, he H, k€ K)
Proof. (1) We consider the commutativity of the left upper hand square. Then
oz u-1))=r@eu-1),-z80u-1)=(z®(u-1),-r® (u-1))

al(z®u—-1)=mEou-1) =(z®u-1).—z® (u-1)).

16



Thus we have t*a; = apt’. Hence the left upper hand square is commutative.

(2) We consider the commutativity of the right upper hand square. Then

Wiz (h-1),y®(k-1)) =(z(h—1) +y(k—1)) =z(h - 1) +y(k - 1)
Pa(z@(h—1),y®(k—1)=folz@(h—1),y®(k-1)) =x(h—1) +y(k - 1).
Thus we have (3; = (o¢* . Hence the right upper hand square is commutative.

(3) We consider the commutativity of the left lower hand square. Then
ear®u) =c(zQu,—z0u) = (z®1, -z ® 1)
aE(z@u) =3z ®1) = (z®1,-z®1).
Thus we have *as = ase’. Hence the left lower hand square is commutative.
(4) We consider the commutativity of the right lower hand square. Then
efo(z@h,y®k) =c(zh+yk)=1+1
Ose*(z@hy®k)=Frzel,y®l)=1+1.

Thus we have £, = J3¢*. Hence the right lower hand square is commutative.

Therefore we get the result by (1),(2),(3), and (4). O

As a consequence of the above theorem, we have the following corollary,

which shows the evident relation between (3-3) and (3-5).
Corollary 3.1.8. (8-3) is ezxact if and only if (3-5) is ezact.

Proof. The third column is given in (3-1). The first and second columns are
given from (3-1) and by tensoring ZG ®y — and (ZG ®y —) ® (ZG Rk —)

respectively. Then by 3x3 Lemma and Proposition 3.1.5 we get the result. [

17



3.2 Relation modules

In this section, we describe the relation between two short exact sequences
involving augmentaion ideal and relation modules.

Let G be the group defined by a given presentation g = ( x:r ) and let
N be the normal closure of r in F, where F is the free group on x. Then

we have a short exact sequence of groups
(3—6) 1—N—F- 5 G—1.

The abelianization N/N’ of N can be regarded as a left ZG-module via
G -action induced by conjugation in F (if U € N and W € F then
(WNYUN') = WUW™IN"). The G-module N/N' is called the relation
module determined by the short exact sequence (3-6).

Relation modules depend on their presentations heavily, that is amount to
say that, if two isomorphic groups have two different presentations, then it is
possible that their relation modules are different from each other. Moreover,
even though two groups are not isomorphic, their relation modules can be
isomorphic from each other. The application of these concepts is referred to
Example 5.1.1 in chapter 5.

Next we consider the short sequences involving relation modules and aug-

mentation ideals. Then we have the following short exact sequences :

(3-17) 0— N/N' -5 F/N' 25 G —0

18



where

t:UN'— UN" (U € N),
p:WN — WN (W eF),

and
(3 - 8) 0 — N/N' 5 @, ZGt, 25 IG — 0
where

- ow
WN '——"*Z.O(*a?)tx (WeN)
rex

ty — N —1 (z € x)

Here 2 : ZF — ZF is the Fox derivation (See [29] Section I1.3) and
p : ZF — ZG is induced by the natural epimorphism F — G. From

(3-1) and (3-8), we get
(3-9) 0 — N/N' 25 @, ZGt, 257G — 0.

Lemma 3.2.1. Let

l1—N-—wF -5 G—1

be a short ezact sequence of groups, where G is a group defined by o = (x:r)

and N 1is the normal closure of v in F free on x. Then

K

(3 - 10) 0 — N/N' 5 ZG®pIF — IG—0

is an ezact sequence of G -modules where x(UN') = lg ® (U — 1) and

Vlg® (W —1)=n(W)—1 (UeN, WeF).

19



A proof of this lemma can be found in [23](Chapter VI, Theorem 6.3).

Theorem 3.2.2. The two short ezact sequences (3-2) and (3-10) are isomor-
phac.
Proof. Consider the following diagram
0 — N/N 5% ZG®rIF — IG — 0
le \# 1t
0 — IG®zIG -5 ZG®zIG —» IG — 0
where a, 3,7, and ¢ are defined by
a:UN'+— 16 (UN-1) (U € N),
Bilg@(W-1)r— 18 (WN-1) (WeF),
y:(WN-1D)®(WN-1)— WN-1)®(WN-1) (WN €Qq),

(==

g @ (WN-1)—WN-1 (WNeQG).

(1) We consider the commutativity of the left hand square. Then
3rk(UN') = Al ® (U-1)=1c® (UN - 1)
ya(UN') = y(lg ® (UN - 1)) = 1l¢ ® (UN — 1).

Thus we have Jx = ya. Hence the left hand square is commutative.

(2) We consider the commutativity of the right hand square. Then
w(llg@ (W —=1)) =((WN-1)=WN -1
Ble@ (W —-1))=6(lc® (WN -1)) =WN - 1.
Thus we have w = 3. Hence the right hand square is commutative. Now

we want to show that « is an isomorphism. We show that kera = 0.

20



Let UN’' € kera. Then 0 = ya(UN') = (x(UN'). It is routine to
show that [ is an isomorphism. Since § is an isomorphism, &(UN') = 0.
Since « is injective, it follows that UN’ = 0. Secondly, we shall show
that « is surjective. Let (UN — 1) ® (UN — 1) € IG ®z IG. Then
Y(UN-1)®(UN —1)) € ZG®zIG. Since § is an isomorphism, there exists
l¢®(U~—1) € ZGRpIF suchthat f(1c®(U—1)) = y((UN-1)®(UN —1)).
Then w(leg ® (U —1)) =68(1c ® (U -1)) =dy((UN - 1)® (UN - 1)) = 0.
Hence v(lg ® (U — 1)) € kert. Since ¢ is an isomorphism, it follows that
v(lg ® (U ~1)) =0. Then 1 ® (U — 1) € kerv = im«. Hence there exists
UN’ € N/N' such that x(UN') = 1¢ ® (U — 1) . This implies that

Y(@UN') = (UN - 1) ® (UN - 1))
=1a(UN') =7((UN - 1)® (UN — 1))
= B(UN") — 4((UN = 1) ® (UN — 1))
=f1e® (U ~-1) - y((UN-1)® (UN - 1))
= 0.
Then a(UN")—((UN =1)® (UN —1)) € ker~. Since v is injective, it follows
that a(UN')—((UN-1)&(UN-1)) =0, i.e., a(UN') = (UN-1)@(UN ~1)

Therefore « is surjective. Consequently, we obtain the result. O

Let H and K be the groups defined by p; = (x; :r; ) and ps = (x2:12),

respectively and let N; be the normal closure of r; in F;, where F; is free
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group on x; for i = 1,2. Then we have short exact sequences
l1— N, —F 5 H—1

and

1 — Ny — Fy 5 K — 1.

Let G = H xy K be the amalgamated free product of groups H and K with

subgroup U . Then there is a short exact sequence
(3-9) 1—N-—>F*xF -5 HsxyK—1
of G, where F| x F, is the free product of F; and F5, and the epimorphism

7 is defined by

7T|F1 =T, W|F2 = Ty .
Theorem 3.2.3. There is a short exact sequence of G -modules

0 — ZG ®u N1 /N, ' 5 ZG @p, [Fy 25 7.6 @y [H — 0

where
I€1216®U1N]"—>10®(U1—1) (U1€N1)

v 1G®(W71—1)'——<)1G®(W1N1~—1) (Wl EFl).
Proof. By Lemma 3.2.1,

0— N/N, " — ZH Qg IFy — ITH — 0
is exact. Tensoring with ZG over H yields
ZG Ry (ZH ®p, TF)) = (ZG ®y ZH) ®p, 1F) = 76 Qp, TF
Hence the above sequence is exact. ]
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Corollary 3.2.4. There is a short exact sequence of G -modules

0 — (ZG ®u NMi/N: ) @ (ZG @k Na/Ny ') =
(ZG @, IF) ® (ZG ®r, IFy) “5 (ZG ®p IH) & (ZG @k IK) — 0
where
K (le@UIN, 16 @ UaNy ') ¥— (16 ® (U — 1), 16 ® (Ua — 1))
Uye Ny, Uy €N,
v (lg® (W) —1),16 ® (Wy — 1)) — (1 ® (WiN; — 1), 1 ® (WoN; — 1))
Wy e Fy, WyeF,
Theorem 3.2.5. Let F = F, x Fy, and let G = H xy K. Then the following

diagram is commutative.

0 0

| !
(ZG ®5 Ny /N)) @ (ZG ®x Na/N}) N/N’
I I
(ZG @5, [F) ® (Z2G ®p, [F) 5 ZG®pIF

L I

0 - ZGeulIU %  (ZGeplIH)®(ZGexIK) 53 16—
! |
0 0

where

C . (1(;@(1’1/1-—1), 10@(”/ -*1)) e lc®(IV1*1)+1g®<‘4/2—1) (VV] c Fl, W2 S FQ)
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Proof. We want to show that v( = giv*.

v((lg ® (W1 — 1), 16 ® (W2 — 1))
=v(lg®@ (W, — 1) + 1c ® (Wy — 1))
== (W1N1 - 1) + (W2N2 - 1)

On the other hand

B (le ® (Wh — 1), 16 ® (W2 — 1))
= B1(lg ® (WiN; — 1), 1g ® (WaN, — 1))
= (W1N1 - 1) + (WQNQ - 1)

Therefore we get the result.

From the above theorem, we can obtain the short exact sequence
0 — (ZG ®y N1 /N}) ® (ZG &y No/N3) — N/N' — ZG @y IU — 0.

This can be found in [22].
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Chapter 4

Second homotopy modules

In this chapter, we introduce the basic concepts of the pictures and the identity
sequences. We also study some short exact sequences concerned about the

second homotopy modules associated with amalgamated free products.

4.1 Pictures

A picture P is a geometric configuration consisting of the following:

(a) A disc D? with basepoint O on 9D?.

(b) Disjoint discs Ap,...,A, in the interior of D?. Each disc A, (
A=1,..., n) has a basepoint Oy on 9A,.

(c) A finite number of disjoint arcs oy, ..., o, . Each arc lies in the closure
of D\|J}_, A and is either a simple closed curve having trivial intersection

with 9D2 U 0A, U ... UOA,, or a simple non-closed curve which joins two
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points of D?UJAU...UJA, , neither point being a basepoint. Each arc has
a normal orientation, indicated by a short arrow meeting the arc transversely.

A picture P is called to be connected if |J{A1,...,Ax} U U{ar,--.,an}
is connected.

For each disc A, the corners of A are the closures of the connected com-
ponents of dA\ | J{a1,...,an}, where a1, ..., an are arcs of A. The regions
of P are the closures of connected components of D?\(|J{discs} U U{arcs}).
An inner region of P is a simply connected region of P that does not meet
oD? .

We remark that when we refer to the discs of P we mean the discs
Ay, ..., A, , but not the ambient disc D?. We define 8P to be D?.

We say that P is spherical if no arcs meet OP. If P is spherical then we
often omit JP.

Let o = (x:r ) be a group presentation, where x is a set and r is a set

of cyclically reduced words on x Ux 1.

Definition 4.1.1. A picture P is over p if the following conditions hold:
(1) Each arc is labelled by an element of x Ux™1.
(2) If we travel around 0N once in the clockwise direction starting at Oy
and read off the labels on the arcs encountered then we obtain a word which

belongs to rUr ! and we call this word the label of A, .
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Example 4.1.1. Let p = (z,y,2z: 2%, yzy 27 zyz 2y~ zzz7227!) . Then

the following picture is a spherical picture over p.

Figure 4.1.1. Spherical picture.

Let y and s be subsets of x and r respectively. An arc labelled by an
element of y Uy™! is called a y-arc and a disc labelled by an element of
sUs™1 is called an s-disc. The label on P (denoted W (P) ) is the word read
off by travelling around dD? once in the clockwise starting at O.

Example 4.1.2. Let ¢ = { a,b,c: a? (ab)? [b,c],[a, ] ).
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Then W(P) = b tac b ac.

Figure 4.1.2. Label of P.

A (transverse) path in P is a path in the closure of D?\[J}_; Ax which
intersects the arcs of P only finitely many times. If we travel along a path
from its initial point to its terminal point we will cross various arcs, and we
can read off the labels on these arcs, giving a word W (), the label on 7.
A spray for P is a sequence ¥ = (71,...,7. ) of simple paths satisfying the
following; for A = 1,...,n, 7, starts at O and ends at the basepoint Opg(x)

of Ag(y , where 6 is a permutation of {1,...,n} (depending on % ); for
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1< A< p<n, v and 7, intersect only at O; travelling around O clockwise

in P we encounter the paths in the order vi,...,7n.

Now we introduce the basic operations on pictures.

(A) Deletion of a closed arc which encircles no discs or arcs of PP (such a
closed arc is called a floating circle).

(A)~! Insertion of a floating circle.

A cancelling pair is a spherical picture with exactly two discs, and when
their basepoint lie in the same region like Figure 4.1.3.

(B) If there is a simple closed path 3 in [P such that the part of IP encircled
by [ is a cancelling pair, then remove that part of P encircled by 3.

(B)"! The opposite of (B).

Figure 4.1.3. Cancelling pair.
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(C) Bridge move.

Figure 4.1.4. Bridge move.

Two pictures will be said to be equivalent if the pictures are both spherical

and one can be transformed to the other by a finite number of operations (A),

(A)7", (B), (B)™", and (C).

Remark 4.1.2. Since we allow only one basepoint on each disc, when a relator
is a proper power, we need more caution. That is to say, P and Py are

cancelling pair, whereas Py 1s not. So we will only insert basepoints for discs
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whose labels are proper powers.

Figure 4.1.5. Cancelling pair and not cancelling pair.

The algebraic operations in second homotopy modules are easily visualized in
terms of pictures. Let P,P,, and P, be based pictures over p. Two new
pictures P, + P, and —P are constructed as in Figure 4.1.6 and Figure 4.1.7,
respectively. Thus Py + P, is a certain sum of P; and P and —P is a mirror
image of P obtained by a planar reflection and by changing the signs on all

discs of P.

31



Definition 4.1.3. (1) Py + P, is the sum of P, and P,.

. +.

Figure 4.1.6. Sum of PP, and P;.

(2) —P s the mirror image of P.
P —P
Figure 4.1.7. Mirror image of P.
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We let ( P ) denote the equivalence class containing P. The set of all
equivalence classes of all spherical pictures over p forms a group under the

following binary operation
(Pr)+(Pp)=(P1+Ty)

where the inverse of (IP) is ( —P ) and the identity is the equivalence class
containing the empty picture. We let mo(gp) denote the group consisting of
all elements ( P ) where PP is a spherical picture. Let PY¥ be the spherical
picture obtained from a spherical picture P by surrounding it by a collection

of concentric closed arcs with total label W like Figure 4.1.8.

PW

Figure 4.1.8. Spherical picture P" .
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We can also consider my(p) as a left ZG -module by the G -action given by
WNAP) = (PV) (W € F).

Then we call 7o(p) the second homotopy module of .

4.2 Identity sequences

Let p = ( x : r ) be a group presentation. Let G be the group de-
fined by g, that is, G = F/N, where F is the free group on x and N
is the normal closure of r in F. We denote by w the set of all words

1

on xUxY. If s is a subset of r then s" is the set of all words of

the form WS*W YW € w,S € s,e = £1). Let ¢ = (c1,- - -,¢,) where
c; €r¥(i=1,--- n). Wedefine llo to be the product cicy-- - ¢, . If Ilo is
freely equal to 1 then o is called an identity sequence. We define the inverse
o1 of o tobe (¢;',---,c[") and for W € w we define the conjugate WoW !
of o by W tobe (We, W1, ... We,W™1) . We define operations on sequences
as follows. Let ¢; = W,RFW, (W, e w,Ri€r,e; =+1,:=1,...,n).

(4 1) Replace each W; by a word freely equal to it.

(# 2) Delete two consecutive terms if one is identically equal to the inverse
of the other.

(# 3) The opposite of (f 2).

(# 4) Replace two consecutive terms c;, cip1 by either ¢y, ¢ heiciyr or
by cicipici e
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Two sequences o and ¢’ will be said to be (Peiffer) equivalent if one can
be obtained from the other by a finite number of applications of the operations
(1), (§2), (43), and (K4).

The equivalence class containing ¢ will be denoted by (o). The set ¥ of
all equivalence classes of all identity sequences forms a group under the follow-
ing binary operation (o) + (02) = (6102) where 0,02 is the juxtaposition of
the two sequences o and o3.

We can also consider ¥ as a left ZG -module via the G -action given by
WN.(o) = (WeW™1) (W € F).
We now define a map
pima(p) =X, (P)—(0)

where o is an identity sequence. From now on, we will identify () with
Y. We can think of an identity sequence as a relation (an identity) among
relators. So ¥ gives us a description of all relations among relators. Thus
computing generators of ¥ amounts to determining a collection of identities
among the relators of ¢ from which all other identities are derivable. The

sequence o(¥) associated with spray ¥ = (v1,...,7 ) is

(W)W (Qe)W ()™ - W)W (D) W () )

A picture will be said to represent a sequence o if there is a spray for the

picture whose associated sequence is o .
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Example 4.2.1. We consider p =< z,y : z°, zyzy~" >. Then we get the fol-
lowing picture like Figure 4.2.1. Let R, = z* and Ry = zyzy . Then we ob-
tain the identity sequence o = (Ry, z 'Ry 'z, yry 'z Ry ayz 'y~ y Ry, RY.

Hence PP represents o .

Figure 4.2.1. P representing o .

Note that if PP represents o then —P represents o~ !. Note also that
if P, and P, represent o, and o, respectively then P; + P, represents
o105 . Consider a collection X of spherical pictures over p. We introduce two
further operations on my(p) as follows.

(D) If there is a simple closed path 3 in a picture such that the part of
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the picture enclosed by 3 is a copy of P or —P (PP € X)), then delete that
part of the picture enclosed by 3.

(D)™! The opposite of (D).

Two spherical picture will be said to be equivalent (rel X ) if one can be
transformed to the other by a finite number of operations (A), (4)™', (B),
(B)™1, (C), (D), and (D).

Theorem 4.2.1. [33] (Theorem 2.6 Corollary 1) The elements (P ) (P € X)
generate mo(p) if and only if every spherical picture is equivalent (rel X ) to

the empty picture.

If the elements {P) (P € X) generate 7m2(p) then we say that X generates

mo(p) -

4.3 Short exact sequences

Let o = (x,:1; ) and po = ( x2 : r2 ) be the presentations for H and K
respectively and let G = H xy K be the amalgamated free product of groups
H and K with subgroup U. Choose (disjoint) sets y. = {yi : ¢ € I}. Let
w. be the set of all words (reduced or not) on y,. Let F, be the free group
on y, and let N, be the kernel of the epimorphism 6, : F, — U defined by
y; — a;N, (i € I), where a; is non-empty freely reduced words on x; such
that U = gpy{a;Ny :i € I} and U = gpg{b:N; : 1 € I} with the property

that the correspondence a; — b; induces the isomorphism .. Then G has
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a presentation

PZ(Xl,Xz : 1'1,1‘2,S>

where s = {aib,-_1 i €I}. Let X; and X3 be the collections of all spherical
pictures over p; and g, such that m3(p1) and ma(po) are generated by X
and X, respectively and let X = X; UXs.

If an element W(y;) € w, defines an element of N, then W (a;) defines the
identity in H. So there is a picture Aw over p; with the boundary label
W (a;) . We note that though Ay is not unique, it is unique up to equivalence
(rel X ), because that the pictures Ay and —Aw can be combined to make
a spherical picture over p;. Thus we can make a collection A by choosing
one picture Ay over p; with the boundary label W (a;) for each element
W (y;) € w. which defines an element of N, . Since . is an isomorphism, if
Wi(a;N1) is 1 in H then also W(b;N3) is 1 in K. Thus for each element
W(y;) € w. which defines an element of N., we get another picture Bw
over p, unique up to equivalence (relX) with the boundary label W(b;).
Therefore we can get another collection B consisting of pictures By over po
with the boundary label W (b;) for each element W (y;) € w. which defines

an element of N, . Let
W = VV(yz) = yi,“yizgz s -yine" (yi]. IS A" £; = il, ] = 1, 2, e ,n).

Then we can construct a spherical picture Py over p of the form depicted in

Figure 4.3.1. Let Y be the collection of all spherical pictures Py (W defines
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an element of N, ).

......

€n

Figure 4.3.1. Spherical picture Py .

Theorem 4.3.1. [1] (Theorem 3.2.4) X UY generates my(p) .

Example 4.3.1. Let p; =< a,b: [a,b],a% b* > and po =< ¢,d: [c,d],c*, d* >
be the presentations for H and K respectively. Let U = gpu{a®Ny, b2N1},
V = gpx{*Ny,dN,} and let v: U — V begivenby a®N; — Ny, b*N; — dN.

Then p =< a,b,c.d: [a,b],a5 b [c,d],ct, d? ac™?,b?d™" >
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Let 0 : F, — U be given by x —— a3Ny, y +—— b>N;, where F, is the
free group on {z,y}. Then N, is the normal closure of z% 3% and [z,y].
So my(g) is generated by the following pictures like Figure 4.3.2, Figure 4.3.3,

and Figure 4.3.4.

]P’1€X1, 1P’2€X1, 1P3€X1, ]P4€X1

Figure 4.3.2. Generators which belong to Xj .
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]PsEXz, PﬁEXz, P7€X2, PgEXz

Figure 4.3.3. Generators which belong to X5 .
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PyeY, ]PmGY, P, €Y

Figure 4.3.4. Generators which belong to Y.
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Let p=(x:r) and X a generating set for m2(p) and

Py = ®pex ZGtp, Py = ®per ZGtr, Py = @ex LGz, Po = ZG.
Then we have the following short exact sequence (see [33]).
(4-1) 0 — m(p) £ P, 225 N/N' — 0

(P) — ) eW:Ntp, (Pe€X)
=1

tp— RN’ (Re€r)
where P represents
o= (WiRSW, ..., W, R"W.H.

We present short exact sequences concerned about relation modules and
second homotopy modules associated with amalgamated free products.
Let P/l = ®per,ZHtr, Pf = ®ser,ZKts, PI = ®ic;ZUL;
Py = (Drer, ZGtRr) ® (Bser, ZGts) ® (Bici ZGt)
M(p,) = Ni/N, ', M(p2) = Na2/No ', and M(p) = N/N' and let N, = ker6,

where 0, : F, — U . Then we have:

Theorem 4.3.2. There 1s a short exact sequence

(4-2) 0 — (ZG@yma(01))D(ZCR K Taip2)) > malp) > ZGRy(N./N. ') = 0

where ¥ and £ are defined by

V(18 <P >, 18 <Py >) <P+ P, > (P, € X4,P; € X3)
<P>—0 (PeX)

<Py >—1@WN.' (Pw€Y)
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Theorem 4.3.3. There is a short ezact sequence
(4-3) 0— (ZG oy PY) ® (ZG @k PK) % P, 2 2G @y PV — 0

where « and (3 are defined by

4

1®ERP—-—>tR
[0
1®ESF—>tS
\
,
tR*——-*O
B ts— 0
til*—>].®t_i

Theorem 4.3.4. There is a short exact sequence

(4—4) 0— (ZG®y M(p)) ® (ZG®x M(p2)) A Mp) 5 ZG®y IU — 0
where A and p are defined by

A:(1@WIN, 1@ WolNy ') — WIN' + WoN' (W e N, Wh € Ns)

RN' 0 (R€ 1)
9 SN +—0 (S erg)
TN' — 1® (a;N, —1) (T €s={ab;"" :i €I}
We now observe the relation among (4-2),(4-3), and (4-4) through the fol-

lowing theorem.

Theorem 4.3.5. The following diagram is commutative with eract rows and
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columns.
0 0 0
! ! !

0 — (ZG®ym(p))® (ZG @k m(ps)) — mlp) > ZGRyNJN.' — 0

luz’ L2 lul'
0 - (ZGeopPH)®@ZGexPK) > P 5 zZGeyP’

e’ o2 Lo

0 — (ZG &y M(p)) ® (ZG®Kk M(pa)) > M(p) %  ZG&yIU
l ! !
0 0 0

where

H2 " (1® <P >, 1® < P, >) — (1@ Z ERWRNER ,1® Z ESWSIVES)

Rery Serg

P, EXl, PQ c X,

pr (18 ) hptp, 18 Y ksts)— (1® > hrBRN 18 Y ksSNy )

Rery S€ra REry S€ra
hgp € H, ks € K
, oW
u1 1 WN, o—>1®2p( )t (W € N,)
el ayi
pr 1®ZQT51‘F——’1®Z(01‘N* -1) (9r € U).
icl iel

Proof. We consider commutativity :

(1) (1® <Py >, 10 < Py >) —< P+ Py > Z 51{%’}{1\”3*}"2 esWeNtg

Rery S€r2
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(1® <P > 1® <Py >) — (l@ Z erWrNtr ,1® Z EsWSNfs)

Rery Serg

— Z cepWrNtg + Z esWsNts

Rer; Serz

Thus the left upper hand square is commutative.

(2) <P>—0+—0

c9W
<Py >—1@WN, ' —1®
;p ayz
<P>— ZgRtR+ ngtsP——’()
Rery S€rg
<Buoe Y atns Y asts + St 10 A
Rery S€rs el el

Thus the right upper hand square is commutative.

(1® Z hrptr, 1® Z kgt_s) — Z hrptr + Z kstg

Rery Sers Réery S€rs
> hgRN'+ ) ksSN’
Rél‘l Serz
(1® Z hrtr, 1 ® Z ksts) — (1® Z hrRN; ', 1® Z ksSNy ")
Rery S€rg Rery S€ra
— > hrRN'+ ) ksSN'
R€ry Sers

Thus the left lower hand square is commutative.

) Y grtr+ Y gsts+Y_grti— 18 gri— 107 (aiV.~1)

Rery Sery €] €] el
S grte+ Y gsts + Y grti— Y grRN + Y gsSN'+ ) grTN'
ReEr Serg el Réery Sery €]
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—~18 ) (aiN.—1)
el

Thus the right lower hand square is commutative.

Therefore we get the result by (1),(2),(3), and (4). a

As a consequence of the above theorem, we have the following corollary,
which shows the evident relation that is to say, necessary and sufficient condi-

tions between (4-2) and (4-4).
Corollary 4.3.6. ({-2) is ezact if and only if (4-4) is ezact.

Proof. The second column is given in (4-1). The first column is given from
(4-1) and by tensoring (ZG ®y —) ® (ZG ®k —). The third column is given
from (3-8) and by tensoring ZG ®y —. Then by 3 x 3 Lemma and Theorem

4.3.3, we get the result. (|
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Chapter 5

Applications

In this chapter, it will be presented how the presentation of relation modules
can be built up from a short exact sequence. We also compute the second inte-

gral (co)homology of G, and we investigate the efficiency of G and Cockroft

property.

5.1 Second integral (co)homology

In this section, we describe relation modules and higher (co)homology as a rea-
son for computing generators of mo(gp). We also compute the second integral
(co)homology of G'. Thus we define the nth cohomology group of G with

coefficients in the left G -module A by

H™(G, A) = Ext}(Z, A),
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where Z is to be regarded as a trivial G-module. The nth homology group

of G with coefficients in the right G-module B by
H,(G,B) = Tor$(B,Z),

where again Z is to be regarded as a trivial G -module (see [23] p188).

We denote by M(p) the relation module N/N' of p. We often write
p2(P) and o(P) instead of pp(< P >) and o which is represented by P
respectively. The short exact sequence (4-1) in section 4.3 of chapter 4 gives

us a presentation
(tr (Rer): io(P) =0 (Pe X))

for M(gp) from X . So we can sometimes know the structure of M ().
From now on, we observe through the following example that it is pos-

sible that their relation modules are different from each other between two

isomorphic groups. Moreover, even though two groups are not isomorphic,

their relation modules can be isomorphic from each other.

Example 5.1.1. (i) Let G; be the group defined by the presentation
o1 =<z : R > where R = °

and N is the normal closure of R in F freeon {z}. Then my(gp1) is generated

by the following picture P like Figure 5.1.1. We also get through the following
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picture the identity sequence o(P) which is represented by P and calculate

p2(P) = 0, so that we obtain a presentation for M ().

Figure 5.1.1. Generator of ma(g1)-

The above picture yields that
o(P) = (R,z 'R 'x)
po(P) = Ntgp — 2z 'Ntg = 0.

Thus = € N . Therefore g, ' =< tgp: > is a presentation for M ().

(ii) Let G2 be the group defined by the presentation
gog =< a,b: Ry, Ry, Ry >
where R; = a3, R, = b, and R3 = [a,b] and N is the normal closure of

Ry, Ry, and R3 in F free on {a,b}. Then my(p2) is generated by the follow-

ing pictures like Figure 5.1.2. Through the following pictures P; (i = 1,2,3,4),
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we get the identity sequence o(P;) which are represented by P; and calculate

the relation ua(P;) = 0, so that we obtain a presentation for M (gp2).

P,

Figure 5.1.2. Generators of m(g2) .

The spherical picture P, yields that

U(Pl) = (R1,(1—1R1_1(1)
/.LQ(]P)I) = 17VtR1 — a—thRI = 0.
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(1) aeN
The spherical picture P, yields that

U(]PQ) = (Rz,b—lRQ_Ib)
ug(Pz) = NtRz — b_thR2 = 0

(2) be N

The spherical picture P yields that
o(P3) = (R;',a?Rsa? aRsa™", R3,bR1b7")
po(P3) = —Ntg, +a’Ntg, + aNtg, + Ntg; +bNig,
= (—Ntg, +bNtg,) + (a®Ntg, + aNtg, + Ntg,) = 0.
From (2), we have —Ntg,+bNtp, = —Nitg,+Ntg, = 0. Thus a’Ntg,+aNtg,+Ntp, = 0.

From (1), we have a®?Ntg, + aNtg, + Ntg, = Ntg, + Nig, + Ntg, =0, i.e.,
(3) 3tr, =0
The spherical picture Py yields that

o(Py) = (R;' bR L Ry aRsa™)

}LQ(]R;) = —NtRz — bNtR3 - NtRa + CL]VtRZ

= (—‘[VtRz + a]\"tgz) + (——b]VtRs — Nth) = 0.

From (1), we have —Ntg,+aNtg, = —Ntg,+Ntgr, = 0. Thus bNtr,+Ntg, = 0.
From (2), we have bNtg, + Ntg, = Nig, + Ntp, =0, i.e.,
(4) g, = 0
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From (3) and (4), we have tg, = 0. Therefore py ' =< tg,,tr, : [tr), tr] > s
a presentation for M(gp2).

(iii) Let G3 be the group defined by the presentation p3 =<¢, d: 5,52 >,
where S; = 3,5, = d> and N is the normal closure of 5,5, in F free on

{c,d}. Then my(ps) is generated by the following pictures like Figure 5.1.3

Figure 5.1.3. Generators of m(3) .

The spherical picture P; yields that
o(Py) = (S1,¢71S o)
po(Py) = Ntg, — ¢ 'Ntg, = 0.
Thus ¢ € N. The spherical picture P, yields that
o(Py) = (Sg,d_lsg_ld)

/.LQ(]P)Q) - ll\lrtsz - dwlx’Vtsb = 0.
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Thus d € N . From the above procedures, it follows that
p3 =< ts,ts, : [ts,ts,] >
is a presentation for M(ps3). By (i), (ii), and (iii), we have
Gy = L, Go =Ly ® L, G3 = Ly * Ls,
M(p1) =Z, M(p2) =Z®Z, M(p3) =Z DL
ie. Gh Gy but M(py) 2 M(p2)

G2 ;7_3 Gg but M(pz) = M(pg)

We may summarize the above procedures as follows. If two isomorphic groups
have two different presentations, then it is possible that their relation modules

are different from each other.

If we put the three sequences (3-1), (3-8), (4-1) together we get the exact

sequence
(5-1) p2p2p %R0

where
ag : tp [ — /LQ(P)
02 = 112

o = p
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For any picture P over p and for any R € r, the exponent sum of R in P,
denoted by expr(P) is the number of discs of P labelled R minus the number
of discs labelled R7!.
For any word W on z and any z € x, the exponent sum of z in W,
denoted by exp.(W) is the number of occurences of z in W minus the number
1

of occurences of 7.

We often write the following sequence instead of (3-8).
(5-2) 0 — M(p) == P = P — 0.

Then by dimension shifting we get
H2(G, -) = Eat}(M(p), -)
Hpia(G, =) = Tord (=, M(p)), nzLl
See 23], p189. So if we know the structure of M(gp) then we can compute the
higher (co)homology groups of G. In particular, we can compute the Hy(G)
(Schur multiplier) and H?*(G).
If A and B are any right and left G-modules respectively, then from (5-1)

we have

kerl ® Jo
iml ® O3
keT‘HOTTlZG (83, 1)
imHomzg (92, 1)

Hy(G,A) =

H2(G,B) =

In particular, taking A =7 and B = Z (with trivial G-action) we have
Hy(G) = kerdy/imds
HQ(G) = ;C6T63*/i'm(52*
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where

(5 - 3) 8y : Bree Ztp — Buex Lo, tr— Y expa(R)t.
TEX

(5—-4) d3 : Dpex Ztp — Drer Lir , tp Z expr(P)tr
Rer

(5-5) 0" Baex Lts" — Oper Ltr',  ta"+— Y exp(R)tR"
Rer

(5—6) 05" : @rer Ltr" — Dpex Ltp' tp" — Z expr(P)tp’

PeX

So we can compute them easily.

Example 5.1.2. We consider the same presentation as in Example 4.3.1.
o =< a,b,c,d:S1,52,55,T1,T2,T3, By, Ry >
where
Sy =[a,b], So=a° S3=b" T =c,d], T = A Ty =d* R, =a’c? Ry=0b%d"".

P,,....IP;; are the same as in Example 4.3.1. Then we obtain the results as
follows.

tsl, tT1 — 0

th L 6ta 4
to* > 6tg,* + 3tg,”
ts, — 4ty
tb* | — 4t5 * + ZtR *
021 Q tr, — 4t, 02" 1 4 ’ ’
tc* > 4tT2* - 2tR1*
tr, — 2t4
| tat 20" — tR,

tr, — 3ta — 2t.

tRQ — th - id
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532

\

tp, — 0 (i =1,2,5,6)

tp, — 6ts,
tp, — —4ts,
tp, — 4t
tpy — —2tgy

tp, — —ts, + i1, + 2tg,
tp,, — —ts, +try + 2tg,

tp,, — —6ts, + 2ty

Suppose that

ts,* — 6tp,” — 4tp,” — 6tp,,*
ts,” — —tp,”

ts,* — —tp,,"

tr,* — 4tp,* — 2tp," + 2p), "
tr," — tpy”

tr” — tpy

*

tr," +— 2tp,"

tR; — Qt]pm*

k1 (Gta) + k2(4tb) -+ k3(4tc) + k}4(2td) + k5(3ta - 2tc) + k:ﬁ(th - td) =0.

Then

Thus we have

Therefore kerd, is generated by

tSp tT], Qtﬁl + tTg - tSQ’

o7

2k, + ks =0
) 2ks + ks =0
2k3—k5:0
| 2k — k=0
[ k= —ks

ks = 2ks
<

ko = —kq
kk6:2k4

and QtRQ +ir, — tgs



1mds3 is generated by
QtR] +1ir, —ts,, 2tR2 + th —ts,, 6t517 4t51, 4tTl, 2tT1,and 2tT1 - 6t51

So we get

Hy(G) 2 < x,y:[z,y), 2% % 2% >.

Now we calculate H?(G). Suppose that
ki (6tﬂ”3* — Atp,” — Gtﬂ’u*) + k2(_tﬁ”9*) + k3(_t11”10*) + k4(4tﬂ’7* - ZtPs* + 2t1?11*)
+k5t1p9* +- kstlpw* + k7(2t]p9*) + ’Cg(?t[pm*) =0

so we have

~ky + ks +2k7 =0
—k}3+k6+2k‘8'—'0

Then we have solutions ;

(k’g, I€5,k7) - (2, 0, 1) or (1, 1, 0)
(k’g, k(;,kg) = (2, 0, 1) or (1, 1, 0)

Therefore kerds™ is generated by
wy = ts," +itr,", wo =2ts,” + g, wy=tg, " +tn", and wy = 25" + tR,
imdy” is generated by
3ws, 2wy, 2(2w; — woe), and 2ws — wy
So we get
HY(G) 2 < wi,wy,ws,wy: [wiwil1<i<j< 4),w23,w42, (w12w2_1)2,w32w4"1 > .
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5.2 Efficiency and Cockroft property

In this section, we investigate the efficiency and Cockroft property as a reason

for computing generators of mo(p).

We can regard a finite presentation p =< x:r > asa 2— CW complex

with one vertex.

Figure 5.2.1. 2 — CW complex with one vertex.
And the Euler characteristic x(gp), say
x(p) =1-|x[+]|r]
is bounded below by
v(G) = 1 = rk(H1(G)) + d(H2(G))

where G is the group defined by g, rk( ) means the rank of the torsion-free

part and d( ) means the least number of generators. See [7].
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Definition 5.2.1. Consider the collection G of all finite presentations which
define a group G .

(1) 9o € G s called minimal if x(po) < x(gp) forall p € G.

(2) po € G s called efficient of x(po) = v(G)

(3) G is called efficient if there is an efficient presentation for G .

(4) A spherical picture P is called Cockroft if for all R € r, expgr(P) = 0.
(5) g 1is called Cockroft if all P € may(p) are Cockroft.

(6) p is called Cockroft (mod p) where p > 1 is an integer if for each

P € my(p) and for all R €r, expr(P) = 0 (modp).

Remark 5.2.2. (i) Classes of efficient groups are gwen in [7], [13].
(i) Examples of non-efficient groups were given by Swan [39], and their min-

imal presentations were given by Wamsley [41].

Example 5.2.1. Let
=< z,y,z,u:S1,5,58T1,T3,T3, B, Ry >

where Sy = [z,y], So = 2% S5 = ¢° Th = [zu), Tp = 2°, Ty = u?,

Ry = z%27%  and Ry, = yPu™l.

Then we get a set of generators for ma(p)
consisting of the following eleven spherical pictures like Figure 5.2.2, Figure
5.2.3, and Figure 5.2.4. And also we compute the second integral (cojhomology

of G and investigate the efficiency of G as follows. The following pictures Py,
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P,, P;, and P, are spherical pictures consisting of S-discs with the property

that there are no 7 -discs and R -discs.

Figure 5.2.2. Generators of my(p).
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The following pictures Ps, Pg, P, and Pg are spherical pictures consisting

of T -discs with the property that there are no S-discs and R-discs.

Figure 5.2.3. Generators of ma(p) .
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The following pictures Py, Pjp, and Py; are spherical pictures consisting of

S -discs, T -discs, and R -discs.

Figure 5.2.4. Generators of ma(gp) .
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Now we compute the second integral (co)homology of G and investigate the
efficiency of G and Cockroft property.
Since ezps,(P;) = 0, exps,(P2) =0, expp,(Ps) =0, and ezxpr,(Ps) = 0, it

follows that P, , Py, Ps, and Pg are Cockroft respectively.

’

ts,, tr, — 0

tSz L 6ta: (
t," — 6ts,” + 2tg,”
ts, — 9t
ty* — 9t " + 3tgr,”
62 Q tq, — 9L, 62" 1 ¢ ’ ’
t," — Otn,* — 3tg,”
tr, — 3t
{ t, — 3t —tr,"

tR1  — 2tz - 3tz

tr, — 3ty — tu

tp, — 0 (1 =1,2,5,6) ts,® — 6tp,” — 9tp,™ — Olp,,”
tp, — btg, ts, — —tp,"
tp, — —Ots, ts,® — —tp,"
tp, — 9t tr," — Otp,* — 3tp,* + 3tp,,”
03 4 03 = 3
tp, — —3tn tr," — tp,”
tp, — —ts, +tp, + 3tg, try" — tpy,"
tp, — —ts, +try + 3R, tr," — 3tpy "
| te, — —6ts, +3tn, [ Ry Sl

Suppose that

ki(6t.) 4 ka(9t,) + ka(9t.) + ka(3t.) + ks(2ty — 3t.) + ke(3t, — t.) = 0.
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Then

3k1 + ks =0
) 3ko+ ke =0
3ks — ks = 0
| ks — ks =0
Thus we have )
ki = —ks
ks = 3ks
) ko = —ky
| ko = 3k

Therefore kerd, is generated by
ts,, tr, 3tr, +tn, —ts,, and 3tg, + tr, — ts, -
tmds is generated by
3tg, +tr, —ts,, 3tr, +tr, —ts,, bts,, 9ts,, 9, 3ty 3ty — bis, .

So we get,

Hy,(G)= < a, b:lab], a® b, a®h™® >.

Now we calculate H?(G). Suppose that
k1 (Gt]pa* - 9t1p4* — 6t1p>n*) + kz(—tpg*) + k3(—t]}1’10*) + k4(9t1p77* - 3t|p8* + Btp“*)

-I—k5tgm9* + k‘gt]plo* —+ k7(3t1p9*) + k3(3t[pm*) =0
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so we have
ki=ks=0

kg—k?5-—3k7:0
kg—kﬁ—3k8:0

Then we have solutions ;

(kz,k5,k7) = (3,0, 1) or (1, 1,0)
(k3’k67k8) = (330) 1) or (17 110)

Therefore kerds* is generated by

4

a) = th* + th*v
az = 3t52* + tR1*1

asz = tS3lt + tTg*u

| W = 3ts,” + tr,” .

imdy” is generated by

2as, 3aq, 3(3a; — a2), and 3a; — a4 .

So we get

o 113 -
H*(G) ¥ < ai,a,a3,a4:[a;,q)(1 <i<j<4),a%as’, (a’a) as’as™ >

Thus we have
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So v(G) =1—-0+2=23. Next we consider

p ' :< x’y’z’u : [x7 y]7 [z’ u]"IG’yg’ $2Z—37y3u-1 > *

Then x(p') =1—-4+6=23. Since x(p’) = v(G), it follows that p ' is an

efficient presentation for G'.
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