工學碩士學位論文

Synthesis and Characterization of Copolymers Containing Oxyethylene and Alkyl Methacrylate Blocks by ATRP.

2002年 2月

釜慶大學校大學院

寫眞情報工學科

李 玟 英

工學碩士學位論文

Synthesis and Characterization of Copolymers Containing Oxyethylene and Alkyl Methacrylate Blocks by ATRP.

指導教授 林 權 澤

論文 碩士學位論文 提出

2002年 2月

釜慶大學校大學院

寫眞情報工學科

李 玟 英

李玟英 工學碩士 學位論文 認准

2001年 12月 26日

主	審	理學博士	許		焄	(ED)
委	員	理學博士	鄭	淵	泰	(印)
委	員	理學博士	林	權	澤	(ED)

List	of figures
List	of schemes
List	of tables
Abst	ract

1	1
---	---

2	2
2-1.	2
2-2. Atom Transfer Radical Polymerization (ATRP)	3
2-2-1. ATRP mechanism	5
2-2-2. 7	6
2-2-3.	6
2-2-4.	6
2-2-5.	7
2-3	8
2-4.	10

- iv -

3	••••••	••••••		12
3-1.	••••••	••••••••••••		12
3-2. PEG macroinitiate	or s	••••••		13
3-3. MPEO macroiniti	ator FOMA	ATRP		14
3-4. MPEO macroiniti	ator MMA A	TRP		15
3-5.	•••••	••••••		15
4	•••••			17
4-1.	••••••	••••••		17
4-2. Macroinitiator				20
4-3. PEO- <i>b</i> -PFOMA		monor	ner conversion	21
4-4. PEO- <i>b</i> -PMMA	PEO- <i>b</i> -PFOMA	•••••		23
4-5. Macroinitiator	PEO- <i>b</i> -PMMA	GPC traces .	•••••••••••••••••••••••••••••••••••••••	25
4-6. 130	PEO- <i>b</i>	-PMMA		26
4-7. PEO- <i>b</i> -PFOMA		•••••••		28
4-8. PEO- <i>b</i> -PFOMA	micel	les film	•••••••••••••••••••••••••••••••	30
4-9.	••••••		•••••••••••••••••••••••••••••••••••••••	35
4-9-1.		••••••		36
4-9-2.		••		37
4-9-3.			•••••••••••••••	38

- 5. 40

- v -

]List of figures

Fig. 1 A schematic representation of how new polymers and materials can be prepared
from a few monomers using controlled/living polymerizations
Fig. 2 Effect steric stabilization versus density of supercritical CO ₂
Fig. 3 Schematic representation of the effect of formulation variables in the phase behavior
of ternary system, water / CO ₂ / nonionic surfactant
Fig. 4 Synthesis of block copolymers via ATRP 11
Fig. 5 Extrimental measurements for synthesis of macroinitiator (left) and PEO-b-P
(1H,1H-FOMA) diblock copolymer (right) 13
Fig. 6 FT-IR of macroinitiator (PEO-Cl) and MPEO 19
Fig. 7 ¹ H-NMR spectrum of macroinitiator (PEO-Cl) and PEO-b-P(1H,1H-FOMA)
diblock copolymer in the mixture of FC-113 and CDCl ₃ (4:1) as a solvent.
Fig. 8 ¹ H-NMR spectrum monomer conversion by time of PEO- <i>b</i> -P(1H,1H-FOMA)
diblock copolymer in the mixture of FC-113 and CDCl3 (4:1) as a solvent.
Fig. 9 Kinetic plot for ATRP of FOMA and MMA using PEO as macroinitiator.
Fig. 10 GPC traces of PEO macroinitiator and corresponding PEO-b-PMMA
copolymers
Fig. 11 Kinetic plot for ATRP by [M]/[I] ratio of 1H,2H-FOMA using PEO
as macroinitiator
Fig. 12 TEM image of spherical micelle of PEO- <i>b</i> -PFOMA as chloroform

- vi -

Fig.	13	TEM image of mophology of PEO-b-PFOMA.	34
Fig.	14	High-pressure apparatus for emulsion formation and characterization of emuls	ion
		stability and droplet size.	35
Fig.	15	Non flocculated & highly flocculated of emulsion.	36
Fig.	16	Emulsion stability versus salinity.	37
Fig.	17	Variation of interfacial tension with w% PEO at constant CO2 density of 0.916g/m	nL.
			39

List of schemes

Scheme. 1	General mechanism of living radical polymerization.	5
Scheme. 2	Polymerization mechanism of ATRP.	7
Scheme. 3	Synthesys of macroinitiator and PEO-b-P (1H,1H-FOMA) diblo	ck
	copolymer 1	7

- viii -

List of Tables

Table 1. Detailed experimental conditions and results from block copolymerizations	
performed using ATRP methods at 80 24	
Table 2. Detailed experimental conditions and results from block copolymerizations	
performed using ATRP methods at 130 27	
Table 3. A study of solubility of PEO-b-PFOMA copolymers.29	
Table 4. Micelles characteristic depend on solvent by Dynamic Light Scattering.	
Table 5. Micelles characteristic of good solvent of PEO by Dynamic Light	
Scattering	
Table 6. Interfacial tension measurments versus HCB balance. copolymers.	

- ix -

Synthesis and Characterization of Copolymers Containing Oxyethylene and Perfluoroalkyl Mithacrylate Blocks by ATRP.

Mn-Young Lee

department of photographic science and information technology, Pukyong National University

Abstract

Anphiphilic block copolymers composed of poly(ethylene oxide) (PEO) block as hydrophilic and poly(1H, 1H perfluoroocthyl methacrylate) (1H, 1H PFOMA) or poly(1H, 1H, 2H, 2H perfluoroocthyl methacrylate) (1H, 1H, 2H, 2H PFOMA) block as CO-philic were synthesized by atomic transfer radical polymerization (AIRP) using PEO macroinitiators.

The macroinitioators were prepared by esterification of methoxy polyethylene oxide (MPEO) 2000, MPEO 5000, and PEO 2000 with 2-chloropropionyl chloride. The polymerization was carried out in a mixed solvent of TFT and benzene at 130 _oC under condition for ATRP using the copper coordination complex CuCl/bipyridine. Both the macroinitiator and the block copolymer were identified by ¹H-NMR and CPC.

Semilogarithimic plots of monomer conversion vs time were nearly linear during the whole course of the polymerization. Measured monomer conversion and molecular weight distribution by time at the process confirmed ATRP as living polymerization. Thus the structure of the copolymers, the size of the blocks, and the composition were varied by changing the monomer and the ratio of monomer to macroinitiator.

The micelles and nophology characteristics in solvent were characterized by DLS and TEM

It was also illustrated that the property of the PEO-b-PFOMA in CO depends on the ratio of hydrophilic and CO-philic block length.

- X -

MPEO Methoxy polyethylene glycol

CPC 2-chloropropionyl chloride

1H,1H-FOMA 1H,1H-perfluorooctyl methacrylate

1H,2H-FOMA

1H,1H, 2H,2H-perfluorooctyl methacrylate

TEA Trietylamine

DMAP 4-dimethyl aminopyridine

FC-113 1,1,2-trichlorotrifluoroethane

1.

,

· 가 VOC CO2 가 dry cleaning · ·

micro lithography microelectronic device 7

- 12 -

2-1.				
	7	ו דו	가	
		가		[10 - 12]
			CO ₂ - philic	(CO ₂ -soluble)
CO ₂ -phob	ic (CO ₂ -insoluble)			(amphiphilic
surfactant)			(lip	ophilic)
(hydrophilic)				
, CO2- philic	amorphous fluoropoly	mers s	ilicones	
가	. CO ₂ -p	hobic]	ipophilic
hy drophilic			가	. ,
CO ₂ -philic	lypophilic		,	가
			가 hydrop	ohilic
CO ₂ -philic	lypophilic			. W/C
C/ W		hydroj	philic	CO ₂ - philic
가	• • •			
	가			
	가]	living
Group	Transfer polymerizatio	on (GTP)	Atom Tr	ansfer Radical
Polymerization (AT	RP)	,		

2.

- 13 -

, 가

2-2. Atom Transfer Radical Polymerization (ATRP)

							7	ł
가								
				가		1956	Matyjas	zew ski's
group	Sawamoto's	co-wokers				liv	ing free	radical
polymer	ization							
		가	,		가			가
					[13 -	14]		
						가		
		7	' 100%					
		가	100%	가				가
가		7	ŀ					
					가			
		가			가			

- 14 -

•

Fig. 1

가

가

가

Fig. 1 A schematic representation of how new polymers and materials can be prepared from a few monomers using controlled/living polymerizations.

.

2-2-1. ATRP mechanism

ATRP	Cu(I), Ni, Pd, Ru, Fe	가		Cu (I)	
halide/ 2,2' - bipyridine		가	[26-32]		
	R-X			Cu ()	
가	R·		mechanism	scheme 2	
가	가		. Scheme 2		
-		가			
	R - X			%	

- 16 -

가 가 2-2-2. 가 ATRP . , , 가 , 가 . 가 ,

2-2-3.

[33-34]

가 2,2 - bipyridine . 4,4 -가 Cu • , cyclam, TREN-Me6 Cu Cu

•

2-2-4.

,

alkyl halide R-X halide . X가 가 HI가 , X가 • 가 가 , , - X R-X CuCl . /bipyridine 1-phenylethyl bromide

- 17 -

•

Scheme 2. Polymerization mechanism of ATRP.

2-2-5.

CO₂ - philic CO₂-phobic . CO₂-philic CO₂-phobic hydrophilic W/C가 , CO_2 -soluble 가 CO₂-philic . 가 . (critical flocculation density, CFD) . • 가 CFD 가 Fig. 2 CO₂ - philic 가 CFD • 가 가 Fig. 3 "fish" plot [35-36] , , (hydrophilic/CO₂-philic balance, HCB) 가 , hydrophilic 가 가 HCB . 가 C/W, 가 CO2 HCB W/C가 balance state가 , . hydrophilic CO_2 - soluble .

,

- 19 -

•

Fig. 2 Effect steric stabilization versus density of supercritical CO₂.

Fig. 3 Schematic representation of the effect of formulation variables in the phase behavior of ternary system, water / CO₂ / nonionic surfactant.

- 20 -

.

CO₂-philic CO₂-phobic

CO₂-philic

(10-15 mN/m) 기

.

.

1H,1H-perfluorooctylmethacrylate(1H,1H-FOMA)1H,1H,2H,2H-perfluorooctylmethacrylate(1H,1H,2H,2H-FOMA).CO2-phobic

hydrophilic polyethylene oxide (PEO)

. ethylene oxide perfluorooctyl methacrylate amphiphilic 가 surfactant ATRP . 가 CO₂ hydrophilic CO₂-philic 가 • , 가 가 Fig. 4 , 가 가

- 21 -

diblock

W/C C/W microimulsion

•

Fig. 4 Synthesis of block copolymers via ATRP.

- 22 -

3-1.

2-chloropropionyl chloride (CPC, 97%, from Aldrich) 가 30 CPC가 flask , CPC 가 ice 가 Trietylamine (TEA, 99.5%, from Aldrich) p-toluenesulfonyl chloride 1 amine 2 amine 3 amin . TEA CaH₂ 4- (Dimethylamino)pyridine (DMAP, 99%, from Aldrich) 40 toluene 0 12 filter . toluene 24 Methylene dichloride (CH₂Cl₂) CaH₂ 가 1 . Methoxy polyethylene glycol (MPEO, from Sigma) 2000 (2K) toluene azeotropic distillation 5000 (5K) 24 1H,1H-perfluorooctyl methacrylate (1H,1H-FOMA) 1H,1H,2H,2H-perfluorooctyl methacrylate (1H,1H,2H,2H-FOMA) Al₂O₃ (Aldrich, neutral, Brockman I, Standard Grade, ca. 150mesh, 58) (inhibitor) CaH₂

- 23 -

3-2. PEG macroinitiators

Figure 5 (left)	condenser	three-neck round-bottom flas	k
magnetic stirrer	dropping fun	nel	
gas inlet/gas outlet	N ₂ gas 30		

Fig. 5 Extrimental measurements for synthesis of macroinitiator (left) and PEO-b-P(1H,1H-FOMA) diblock copolymer (right).

- A : magnetic stirrer, B : dropping funnel, C : condenser,
- $D\ : glass\ chock,\ E\ : temperature\ measurements,\ F\ : hitter$

5000 methoxy-PEO 15g (3.0mmol) , flask CH₂Cl₂ 10mL DMAP 0.552g (4.5mmol) TEA 0.42mL (3.0mmol) . DMAP TEA가 가 flask 0 , CH_2Cl_2 10mL CPC 0.72mL (7.5mmol) 가 . 가 MPEO , yellow CH_2Cl_2 60mL MPEO 15g (3mmol) dropping funnel 1 dropwise . 18 . 18 filter cold diethyl ether , . MPEO-Cl ethanol 12 (macroinitiators) • filter , cold ether

3-3. MPEO macroinitiator FOMA ATRP

.

PEO-*b*-PFOMA diblock TFT cosolvent . 5000 MPEO-Cl , 100mL round flask 3g (0.60mmol) CuCl 0.06g (0.6mmol), bipy 0.28g (1.8 mmol) 2 (3 **x**) . , TFT (50:50) 7mL 1H, 1H - FOMA (Fw = 468) 4.2g (9.0 mm ol), 30 bubbling 130 가 5 .

PEO macroinitiator FOMA monomer , homo FOMA polymer . FOMA monomer cold ether , 24 3 PEO macroinitiator .

- 25 -

2 fluorinated solvent (FC-5080) FOMA homopolymer chloroform FC - 113 (1:4 Al_2O_3) , 24 .) 1 H-NMR CDCl₃ FC-113 (1:4 block length . (PEO : $M_n = 5000$, 87%, PFOMA : $M_n = 7500$, 93%).

3-4. MPEO macroinitiator MMA ATRP

diblock PEO-*b*-PMMA solvent . 2000 MPEO-Cl , 100mL round flask CuCl 0.02g (0.2mmol), bipy 0.094g (0.6 mmol) 0.4g (0.20 mm ol)2 (3 **x**) , 2mL MMA (Fw=100) 2g (20mmol) , 30 . bubbling 130 가 • 5 PEO-*b*-PFOMA ether chloroform FC-113 THF Al_2O_3 • ¹H-NMR Block length CDCl₃ . (PEO : M_n=2000, PMMA : $M_n = 11000, 90\%$)

3-5.

HP 1100 series GPC.polymer standards service clumns (guard, 100 , 1000 , 100000)isocraticpump(HP-G1310A)HP-1047A RI detector. 25

- 26 -

THF(1Me/min) polystyrene standard (Mn. 1300, 7000, 20650, 29000, 214500, 320000, 594340) calibration curve injection . volume $100\mu\theta$, 0.1 wt% . (M_n) monomer conversion JNM-ECP 400MHz (JEOL) ¹H-NMR FC-113 , CDCl₃ 4 : 1 . IR B-100 (Canada) michelson series FT-IR BOMEN . Spectral range $4000 \ 400 \ \text{cm}^{-1}$, spectrometer transmittance 10 scanes . PEO-*b*-PFOMA micelles Dynamic laser light scattering (DLS) , Brookhaven laser light scattering (Brookhaven Instruments Co.) 0.1 wt% 0.45 μ m filter . , 24 mV diode laser 25 659 nm 90° Brookhaven BI . 9000 AT autocorrelator . Hydrodynamic diameter (dh) $\mu_2/^2$ Stokes equation μ2 2 . [43-44] Transmission electron micrograph (TEM) Hitachi H - 7500 80 keV micelles film . FC-113 CHCl₃ (4:1) 0.1 wt% , Kimwipers carbon copper grid 가 • (CHCl₃) 0.1 wt% 가 가

stain , fluorinate 7 dark regions

- 27 -

 2K
 5K
 methoxy
 PEO
 CPC
 (MPEO-Cl)

 , 1H,1H-FOMA, 1H,1H,2H,2H-FOMA
 MMA
 alkyl
 alkyl
 methacrylate
 ,

 scheme. 3
 .
 .
 .
 .
 .

4.

Scheme. 3 Synthesys of macroinitiator and PEO-b-P(1H,1H-FOMA) diblock copolymer.

- (1) : methoxy PEO, (2) : CPC, (3) : macroinitiator, (4) : 1H,1H-FOMA,
- (5) : PEO-*b*-P(1H,1H-FOMA) diblock copolymer.

- 28 -

	MPEO-Cl m	acroinitiator	Cl	가	Cu	Cl
macı	oinitiator					
macroinitiator	monomerフ					,
			mon	omer가		
chin	transferフト		가		가	
ATRP	Cl 가				m on om er	가
	,					
m on om er			monom	er가		
					Cl	가
			atom tra	nsfer rad	ical polym	rerization
	,	가				
가		[19-25]				
			,	ATI	RP	
macroinitiator	MPEO-Cl		Methox	xy-PEO (1) 0	CH_2Cl_2
CPC (2)	PEO-Cl				PEO	CPC가
HCl						
	HCl	T	EA DI	MAP	가 .	18
			macroin	itiator (3)		. PEO-Cl
macroinitiator		Methoxy-PE	EO OH	peak가		, Fig. 6
I	FT - IR	PEO-O	Cl 350	0		OH peak가
macroinitiatorフ	ŀ					
	PEO 2K	5K		, scher	me. 3 (1) PEO
$(O-CH_2-CH_2)$	44	1,	20	00 n	45	,
5000	n 1	13				
macr	oinitiator	CuCl	bipyridin	e 가	,	TFT (50
: 50) cosolv	vent 1H,1	H-FOMA (or 1H,11	H ,2H ,2H - H	FOMA)	ATRP
PEO- <i>b</i> -P(1H,1H	H-FOMA) (or	PEO- <i>b</i> -1H,	1H,2H,2H	-FOMA)		. (scheme.

- 29 -

Fig. 6 FT-IR of macroinitiator (PEO-Cl) and MPEO.

- 30 -

4-2. Macroinitiator

Fig. 7 ¹H-NMR spectrum of macroinitiator (PEO-Cl) and PEO-*b*-P (1H,1H-FOMA) diblock copolymer in the mixture of FC-113 and CDCl₃ (4:1) as a solvent.

- 31 -

Methoxy P	EO	FON	IA m	onomer		ATRP		Fig.	8
	:	5.5 6.5	ppm			monor	ner		signal
2	4.3 ppm	PFO	MA			signal			
			mono	omner	conv	version	가	mon	omer
	PEO- <i>b</i> -PF	OMA				가		5	
monomer	conversion	90)%	,	12			99.9%	
monomer	conversion							A	TRP가
living					•				
ATRP		CuCl	2,2'-	bipyrid	yl			,	
monomer								CuCl ₂	
				mono	mer				
						activation	n - addi	tion - deac	tivation
cycle	chain-g	rowth	polymo	erizatio	on ()) .	
			가				dead	ctivation	

- 100%

- 32 -

Fig. 8 ¹H-NMR spectrum monomer conversion by time of PEO-*b*-P (1H,1H-FOMA) diblock copolymer in the mixture of FC-113 and CDCl₃ (4:1) as a solvent.

- 33 -

Fig. 9 Kinetic plot for ATRP of FOMA and MMA using PEO as macroinitiator.

- 34 -

entry	PE Mn	O- Cl [I] (mmol)	monomer	[M]/ [I]	time (hr)	monomer conv.(%)	\mathbf{M}_{n}^{e}
1	2k ^a	0.1	MMA ^d	200	5	90	20,000
2	2k	0.1	1H-FOMA	43	6	90	20,000
3	2k	0.1	1H,2H-FOMA	46	5	75	20,000
4	2k	0.75	1H-FOMA	2.8	6	85	7,000
5	2k	0.5	1H-FOMA	3.4	7	50	43,000
6	2k	0.1	1H-FOMA	64	6	70	70,000
7	2k	0.3	1H-FOMA	43	7	75	140,000
8	5k⁵	0.6	1H-FOMA	2.5	5	55	2,000
9	5k	0.4	1H-FOMA	21.4	5	50	30,000
10	5k	0.4	1H-FOMA	16	5	67	50,000
11	5k	0.2	1H,2H-FOMA	23	7	60	5,000
12	5k	0.2	1H,2H-FOMA	34.7	5	75	30,000
13	5k	0.2	1H,2H-FOMA	50	7	77	40,000
14	5k	0.05	1H,2H-FOMA	185	7	75	60,000

Table 1. Detailed experimental conditions and results from block copolymerizationsperformed using ATRP methods at 80

^a: macroinitiator (Mn=2000), ^b: macroinitiator (Mn=5000), ^c: efficiency of macroinitiator, ^d: benzene of solvent, ^c: Mn of PFOMA block determined by ¹H-NMR, solvent: TFT +benzene, [CuCl/[I]=1, [bipy]/[I]=3.

.

.

,

2K 5K macroinitiator 1H,1H-FOMA (or 1H,1H,2H,2H-FOMA) 80 5 7

table 1. entry 9 5K , , 1g (0.2mmol) 1H,2H-FOMA (FW:432) 3g (7mmol) PEO 5K-*b*-15K 가 copolymers가 PEO , 5k-b-PFOMA 30k entry 1 4 . 2K PEO copolymers

.

- 35 -

4-5. Macroinitiator PEO-*b*-PMMA GPC traces

•

Fig. 10 GPC traces of PEO macroinitiator and corresponding PEO-*b*-PMMA copolymers. a: macroinitiators [PDI=1.20], b: 80 , benzene [PDI=1.80], c: 80 , THF [PDI=1.34], d: 130 , benzene [PDI=1.23], e: 130 , benzene, CuCl: [PDI=1.14]

Fig.	10	macroiniti	iator (a)			shift	unimodal
	80)						
					,	,		
	benz	ene T	HF					

- 36 -

가 . bipyridine 130 . copolymers deactiv ation CuCl₂ 가 [46-51] GPC 80 living character가 가 130 , living character가 •

4-6. 130 **PEO-***b***-PFOMA**

80 GPC 130 . 130 ATRP [M]/[I] . table 2 . 80 monomer 68% . , entry 1, 2, 3 가 가 [M]/[I] kinetic plot figure 11 , 1H,1H,2H,2H-FOMA . PEO-Cl 2K - b - 20K, 2K-*b*-50K, 2K-*b*-100K 46, 116, 232 [M]/[I] kinetic plot . , 가 monomer 가 monomer 가 가 가 가 [M]/[I] 기 . 가 100, 200 50 5 15 20

- 37 -

.

T able	2. Detailed	experimental	conditions	and	results	from	block	copolymerizati	ons
	perform	ed using ATR	RP methods	at 1	30.				

	PI	EO-Cl			temp	time	monomer		solvent	
entry	Mn	[I] (mmol)	monomer	[M]/ [I]	()	(hr)	conv.(%)	Ie ff ^c	(ml)	M ^{n^d}
1	2K ^a	0.1	1H,2H-FOMA	46	130	4	85	-	$benzene_{(1)}/TFT_{(1)}$	20,000
2	2K	0.05	1H,2H-FOMA	116	130	15	94	-	benzene(1.3)/TFT(1.3)	50,000
3	2K	0.025	1H,2H-FOMA	232	130	20	94	-	benzene(1.3)/TFT(1.3)	100,000
4	5K⁵	0.4	1H-FOMA	8	130	3	91	70	benzene(1.7)/TFT(1.7)	4,500
5	5K	0.6	1H-FOMA	15	130	5	93	87	$benzene_{(3.5)}/TFT_{(3.5)}$	7,500
6	5K	0.6	1H-FOMA	22	130	4	85	68	benzene(4.5)/TFT(4.5)	12,500
7	5K	0.08	1H-FOMA	64	130	8	94	70	benzene(1.4)/TFT(1.4)	45,000

^a: macroinitiator (Mn=2000), ^b: macroinitiator (Mn=5000), ^c: efficiency of macroinitiator,

 $^{\rm a}\colon Mn$ of PFOMA block determined by $^{\rm t}H\text{-}NMR,$ [CuC]/[I]=1, [bipy]/[I]=3.

Fig. 11 Kinetic plot for ATRP by [M]/[I] ratio of 1H,2H-FOMA using PEO as macroinitiator.

- 38 -

4-7. PEO-*b*-PFOMA

PEO (hydrophilic) PFOMA (CO₂-philic)

•

									•
PEO- <i>b</i> -P	FOMA		amphiph	lilic				2	가
PEC	D good	solvent	CHCl ₃	PF	ОМА	good	solvent	FC	C-113
	cosolv	ent							
							T able	3.	
CHCl ₃		PEO-Cl 1	macroiniti	ators		100% I	FC-113		
	CHCl ₃ 7		가						
PFOMA			FC-113	100%			FC-1	13	$CHCl_3$
가 2:1	l	micelles		,		СНС	Ⅰ₃가 가		
					5K	PEO		PF	OMA
	가		entry	3 6					
FOMA		entry 3	, 4]	PFOM	А	g00	d so	lvent
FC-113	tubid				FO	MA	5,	6	
		m	icelles			,	PFC	MA	
가	FC-	113			가				
		FC-113	CHCl ₃		4:1		1:1		
	, 1:1.5		CHCl ₃ 가	가					
Entry 7	10		2000	PEO	FON	ΑM			
5K		PFOM	A		가	FC-	113		
가 .	2K- <i>b</i> -14	-0K	PFOM	4]	FC-113
			, 4	:1 (FC	2 - 113:0	CHCl ₃)			
		chlorof	orm						5K
PEO	2K F	ΡĖΟ				1:1			
	C	CHCl ₃							

- 39 -

	2K PEO	가 5K P	EO CHCl ₃	
	2Kフト 5K	PEO	PFOMA	
chloroform		가 PEO	가	
PFOMA		poor solve	ent chloroform	
	FC	2-113 100%		
CHCl₃가	가	가	, 1:1	
CHCl ₃				
가 FC-113 : CH	Cl ₃ 가 4:1	가		
solvent	FC-113 CHC	Cl ₃ cosolvent (4	4:1)	

•

•

Table 3. A study of solubility of PEO-b-PFOMA copolymers.

			FC-113 chloroform					
entry	polymers	FC-113	4:1	2:1	1:1	1:15	1:2	1:4
		(100%)						
1	PEO- Cl	××						
2	PFOMA homopolymer				×	×	××	× × ×
3	PEO _{5K} - <i>b</i> - PFOMA _{5K}	××						
4	РЕО 5 к - <i>b</i> - РГОМА20к	××						
5	PEO_{5K} - <i>b</i> - $PFOMA_{40K}$							
6	РЕО 5 к - <i>b</i> - РГОМА50к							
7	$PEO_{2K} - b - PFOMA_{7K}$	××						
8	РЕО _{2 к} - <i>b</i> - РГОМА _{4 3 к}	××						
9	РЕО _{2к} - <i>b</i> - РГОМА _{70к}						×	×
10	РЕО ₂ к - <i>b</i> - PFOMA ₁₄₀ к						×	×

x x x : insolubility, x x : turbid, x : milky,: white micelles,: deep blue micelles,: light blue micelles,: clear micelles,: solubility,: bubble,: precipitation

- 40 -

micelles film

		가				
good solve	nt	ро	or solvent			
self-ass	semble	[52-57]			micelles	
			(shell)			,
		(core)			Р	ЕО
good	solvent	PFOMA	poor solvent	CHCl ₃	PEO가 shell	
PFOMA가	core		micelles	, PF	FOMA	
가	mi	celles		FOMA		

Table 4. Micelles characteristic depend on solvent by Dynamic Light Scattering.

block copolymer	solvent	effective diameter $R_h(nm)$
PEO _{5K} - <i>b</i> -PFOMA _{5K}	$CHO_3 : FC-113 = 4 : 1$	148 nm
РЕО 5 к - <i>b</i> - РГОМА20к	$CHO_3 : FC-113 = 4 : 1$	170 nm
РЕО 5 к - <i>b</i> - РГОМА40к	$CHO_3 : FC-113 = 4 : 1$	177 nm
РЕО 5 к - <i>b</i> - РГОМА60к	$CHC_3 : FC-113 = 4 : 1$	187 mn
	$CHC_3 : FC-113 = 4 : 1$	175 nm
$PEO_{2K} - D - PFOMA_{7K}$	$CHO_3 : FC-113 = 1 : 4$	*
	$CHO_3 : FC-113 = 4 : 1$	338 nm
PEO ₂ k - <i>D</i> - PFOMA ₄₃ k	$CHO_3 : FC-113 = 1 : 4$	*
	$CHCl_3 : FC-113 = 4 : 1$	515 nm
PEO ₂ k - <i>D</i> - PFOMA ₇₀ k	$CHO_3 : FC-113 = 1 : 4$	*
	$CHO_3 : FC-113 = 4 : 1$	*
$PEO_{2K} - D - PFOMA_{140K}$	CHC_3 : FC-113 = 1 : 4	345.7 nm

temperature : 25 , concentration of micelles : 0.1wt%, passed by 0.45 μm * : large aggregation

- 41 -

CHCl ₃	micelles						
	F	C-113		solvent		FOMA	
	chlo	proform ric	h	(CHCl	3:FC-113=4:1) P	EO가 shell
PF	OMA가 cor	e		micelle		, PEO	
가							
T able	4		PEO ((2k)	PEO	(5k)	가
				FC	0MA		
	mice	lles					
	FC-113	rich	(CH	HCl₃:FC-1	13=1:4)	PFOMA	자카 shell
PEO	core	micelle		,			
						T able	4
	PFOMA				micelles		,
		7	ŀ				
		25		0.1 wt%			0.45 μm
filter						DL	S

Table 5. Micelles characteristic of good solvent of PEO by Dynamic Light Scattering.

•

block copolymer	solvent	effective diameter $R_h(nm)$
РЕО3 к - <i>b</i>-РГОМА 45 к	chloroform	50 nm
РЕО ₃ к - <i>b</i> -РГОМА _{7.5} к	chloroform	100 nm
РЕО ₅ к - <i>b</i> -РГОМА _{12.5} к	chloroform	120 nm
РЕО ₃ к - <i>b</i> -РГОМА ₄₅ к	chloroform	*

temperature : 25 , concentration of micelles : 0.1wt%, passed by 0.45 μm * : No micelles by chloroform.

- 42 -

	FOMA	2	20K		ch	loro	form			
			FOMA							PEO
good	solvent	PF	OMA	poor	solvent	(CHCl ₃			
4.53					0144			77		
4.5	K, 7.5K	, 12.5K		F	OMA		PEO 5	K		
chlor	oform			T ał	ole 5		•			
	mi	celles		, FO	MA				:	가
가				45K	FOMA					
					ch	lorof	orm			
		transmis	ssion el	ectron	microgra	ph	(TEM)			,
Fig.	12			chlor	oform	0.1	wt%			0.45 µ m
				,	st	ain	gri	id		
		I	PFOMA						I	nicelles
				co	re PF	OM A	A	PI	ΞO	
			sl	hell						
		(shell)	PEO	가	core		PFOMA			
]	PFOMA					core			
		F	PEO		가 cor	e	PI	FOMA		
		PFO	OMA						core	
									가 :	7 ት
								F	ig. 12	
			,						J	
PE	O 5K- <i>b</i> -	PFOMA	4.5K		shell		PEO		core	PFOMA

가

- 43 -

•

PEO	5K-b-PFOMA 7	.5K PFOM	A	PEO	가
	PFOMA	PEO가			
	,	가	가	, 5K- <i>b</i> -4.5K	
			PEO	5K- <i>b</i> -PFOMA 12.5K	PEO
가		PI	FOMA	PEO	가
				. ,	
		5K- <i>b</i> -	7.5K	PFOMA	

Fig. 12 TEM image of spherical micelle of PEO-b-PFOMA as chloroform.

film mophology PEO-*b*-PFOMA (CHCl₃:FC-113=1:4) 0.45**µ**m 0.1wt% Fig. 13 stain FOMA . mophology PEO , 5K-*b*-7.5K PFOMA가 PEO PEO 1:1 PFOMA가 5K-*b*-12.5K PFOMA . PFOMA 가 가 PEO가 •

- 44 -

Fig. 13 TEM image of mophology of PEO-b-PFOMA.

- 45 -

CO₂-philic hydrophilic water in CO₂ (W/C) CO₂ in water (C/W) balanced state 7 balanced state 7 .

.

Fig. 13 High-pressure apparatus for emulsion formation and characterization of emulsion stability and droplet size.

- 46 -

Fig. 14 Non flocculated & highly flocculated of emulsion.

4-9-2.

Fig. 15 Emulsion stability versus salinity. Thin solid line represents isostability contour for 20 % volume settling of 50:50 (by mass) CO₂ / water emulsion with 1% wt.

- 48 -

PFOMA				가
가 C	O ₂	W/C		
가 가				C/W
. W/C		フト 0.82		
가		highly	flocculated	. 가
가				가
				7 CO2
		. PEO 2к-PFC	МА 7К	
		FOMA		0.78
ighly flocculated			가	
FOM	МА			
PFOMA	PEO		C/ W	
			가	가
	PFOMA 7 C 7 7 . W/C 7 7 7 ighly flocculated FOM PFOMA	PFOMA 7; CO2 7; 7; . W/C 7; 7; sighly flocculated FOMA PFOMA PEO	PFOMA 기CO2 W/C 기 기 . W/C 기 0.82 기 0.82 기 highly 기 . PEO 2K-PFC FOMA ighly flocculated . FOMA PFOMA PEO	PFOMA $7 CO_2 W/C$ 7 7 7 W/C 7 0.82 7 highly flocculated 7 . PEO 2K-PFOMA 7K FOMA FOMA PFOMA PEO C/W 7

4-9-3.

HCB					PFOMA	A	
PEO	가	morpholo	ogy Ta	ble. 6			
	PFOMA	PEO	wt%フト	가	W/	/ C	
	22.22 wt%			PI	EO가	가	morphology가
C/ W					T able	mor	phology
35		Fig 19				PEC	07ト 20%
Р	EO	가			, 22	2%	
		balance s	tate				,
	PEO				가		

- 49 -

Structure	wt%	Emulsion	(m N/m)	(mN/m)
Structure	PEO	Preferred Mophology	de. H_2O	0.1M NaCl
Р FOMA 25 к - <i>b</i> - PEO 2 к - b - PFOMA 25 к	3.85	W / C	3.14	4.90
РЕО _{2к} - <i>b</i> - РFOMA _{25к}	7.41	W / C	2.99	2.84
PEO5K - <i>b</i> - PFOMA52K	8.77	W / C	14.02	12.06
PEO_{5K} - b - $PFOMA_{40K}$	11.11	W / C	6.21	6.44
РЕО ₅ к - <i>b</i> - РҒОМА ₃₀ к	14.29	W / C	10.89	12.66
$PEO_{2K} - b - PFOMA_{7K}$	22.22	W / C	1.35	1.97
РЕО 5 к - <i>b</i> - РFOMA1.3к	79.37	C / W	7.03	9.35

Table. 6 Interfacial tension measurments versus HCB balance.

Fig. 17 Variation of interfacial tension with w % PEO at constant CO₂ density of 0.916g/mL.

- 50 -

PEO-*b*-PFOMA ATRP HCB . 1H,1H-perfluorooctyl methacrylate (1H,1H-FOMA) 1H,1H,2H,2H-perfluorooctyl methacrylate (1H,1H,2H,2H-FOMA) PEO . methoxy PEO 2K 5K CPC (MPEO-Cl) , 1H,1H-FOMA 1H,1H,2H,2H-FOMA FOMA . 가 PEO-Cl FOMA ATRP . ATRP activation - addition -

deactivation cycle

.

. CDCl₃ FC-113 (1:4) ¹H-NMR signal

kinetic plot , Mn, monomer conversion 가

가 ATRP가 living

•

monomer 가 가

GPC

bipyridine

.

- 51 -

5.

			•	80
				130
ATRP가	:	가		CuCl ₂ 가
	가			
(PDI=1.14)				
	PEO	PFOMA		
			amphiphilic surf	actant
			PEO	good solvent
chloroform	PFOMA	good solvent	FC-113	
PEO	chlorofo	orm		, PFOMA
FC	C-113			
		,		
chloroform :	FC-113 = 1:4			
		가		PEO good
solvent chl	loroform Pl	EO가 shell	, PFOMA가	core
		, PFOMA		micelle
	PFOMA	good solvent	FC-113 rich	
PFOMA	ント shell	PEO가 core		
				PFOMA
		가		
	, PFOMA		가	
W/C	, PI	EO		가
C/W			가	
balan	ce state			
1-2 μ m	,	W/C	PFO	MA

가 가 , C/W PEO

- 52 -

	가	가		•	
НСВ				PEO	フト 20 w%
W/C		, 22	w %		blance state
		PEO	가	79 w%フト	C/ W

가 .

- 53 -

- 1. McHugh, M. A.; Krukonis, V. J. Supercritical Fluid Extraction; Principles and Practice, 2nd ed.; Butterworth-Heineman: Sroneham, 1993.
- Li, G; Yates, M. Z.; Johnston, K. P.; Lim K. T.; Webber, S.; E. *Macromolecules* 2000, 33, 1606-1612.
- Psathas, P. A.; da Rocha, S. R. P.; Lee, C. T.; Johnston, K. P.; Lim K. T.; Webber, S.; E. Ind. Eng. Chem. Res. 2000, 39, 2655-2664.
- 4. Makebe, A.; Araki, S.; Kimura, M ; Aida, Y. JPN. J. Appl phys., **1994**, 33, 122.
- 5. Backhouse, A. J. J. coatings Tech., 1982, 54, (693), 83.
- Shahar, M.; Meshulam, H.; margel, S. J. polym. Sci. Part A : Polym. Chem. 1986, 24, 203.
- 7. 1) Johnston et al.; Science (1996), 2) Clark et al.; J. Am. Chem. Soc (1997),
 3) Ji et al.; JACS (1999), 4) Holmes et al.; Science (2000), 5) Nature(2001),
 6) Desimone et al.; Science (1994)
- Smigol, V.; Svec, F.; Hosoya. K.; Wang, Q.; Frechest, J. M. J. Makromol. Chem., 1992, 195, 151.
- Liang, Y. C.; Svec, F.; Frechest, J. M. J. J. Polym. Sci.; Part A, Polym. Chem. 1995, 33, 2639.
- 10. Kendall, J. L.; Canelas, D. A.; Yong, J. L.; Desimone, J. M. chem. Rev. 1999, 32, 4802.
- Psathas, P.; P. da Rocha, S. R.; Lee, C. T.; Jr. J.; Johnston, K. P. Ind. Eng. Chem. Res.. 2000, 39, 2655.
- 12. Lim, K. T.; Webber, S. E.; Johnston, K. P. 1999, 32, 2811.
- 13. Robinson, K.L.; Khan, M. A.; Wang, X. S.; Armes, S. P. Macromolecules 2001, 34, 3155.
- 14. Wang, X. S.; Armes, S. P. Macromolecules 2000, 33, 6640.
- 15. Beers, K. L.; Boo, S.; gaynor, S. G.; Matyjaszewski, K. Macromolecules 1999, 32, 5772.

- 54 -

- 16. Ueda, J.; matsuyama, M.; Kamigaito, M.; Sawamoto, M. Macromolecules 1998, 31, 557.
- 17. Chen, X. P.; Padias, A. B.; Hall, H. K.; Jr. Macromolecules 2001, 34, 3514.
- 18. Betts, D. E.; Johnson, T.; LeRoux, D.; Desimone, J. M. Am. chem. soc. 1998.
- 19. Ziegler, M. J.; Matyjaszewski, K. Macromolecules 2001, 34, 415.
- 20. Shinoda, H.; Miller, P. J.; Matyjaszewski, K. Macromolecules 2001, 34, 3186.
- 21. Granel, C.; jerome, D. R.; Teyssie, P. Macromolecules 1996, 29, 8576.
- 22. Ando, T.; Kato, M.; Kamigaito, M; Sawamoto, M. Macromolecules 1996, 29, 1070.
- 23. Moineau, C.; Minet, M.; Teyssie, P; Jerome, R. Macromolecules 1999, 32, 8277.
- 24. Queffelec, J.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 2000, 33, 8629.
- 25. huan, K.; Bes, L.; Haddleton, D. M.; Khoshdel, E.
- Tong, J. D.; Moineau, G.; Leclere, P.; Bredas, J. L.; Lazzaroni, R.; Jerome, R. Macromolecules 2000, 33, 470.
- 27. Matyjaszewski, K.; Gaynor, S. G. Macromolecules 1997, 30, 7042.
- 28. Haddleton, D. M.; KuKulj, D.; Duncalf, D. J.; Heming, D. A.; Shooter, A. J.
- 29. Wang, W. S.; Jackson, K. A.; Armes, S. P. Macromolecules 2000, 33, 255.
- Heise, A.; Diamanti, S.; Hedrick, J. L.; Frank, C. W.; Miller, R. D. *Macromolecules* 2001, 34, 3798.
- 31. Zhang, X.; Xia, J.; Matyjaszewski, K. Macromolecules 2000, 33, 2340.
- Matyjaszewski, K.; Paik, H. J.; Shipp, D. .; Isobe, Y.; Okanoto, Y. Macromolecules 2001, 34, 3127.
- 33. Patten, T. E.; Matyjaszewki, K. A dv. Mater. 1998, 12, 901.
- Moineau, G.; Dubois, Ph.; Jerome, R.; Senninger, T.; Teyssie, P. Macromolecules 1998, 31, 545.
- 35. M. Kalhweit, j. col. Inter. Sci. 1982, 90, 197.
- 36. K. L. Harrison, K. P. Johnston, and Isaac C. Sanchez, langmuir, **1996**, 12, 2637.
- 37. Matyjaszewski, K.; Gaynor, S. G. Macromolecules 1997, 30, 7034.
- 38. Jankova, K.; kops, J.; chen, X.; Gao, B.; Batsberg, W. polym. Bull. 1998,

- 55 -

41, 639.

- 39. Yu, Q.; Zeng, F.; Zhu, S. Am. chem. soc. : 2000.
- Jankova, K.; Truelsen, J. H.; Chem, X.; Kops, J.; Batsberg, W. polim. Bull.
 1999, 42, 153.
- 43. Allen, C.; Yu, Yisong.; Maysinger, D.; Eisenberg, A. Bioconjugatechem.
 1998, 9, 564.
- 44. Kong, X.; Kawai, T.; Abe, J.; Iyoda, T. J. Am. chem. soc. 2000.
- 45. Krupers, M.; Moller, M. Macromol. com. 1997, 198, 2163.
- 46. Matyjaszewski, K.; Kajiwara, A. Macromolecules 1998, 31, 548.
- 47. Davis, K. A.; Matyjaszewski, K. Macromolecules 2001, 34, 2101.
- 48. Percec, V.; Barboiu. B. Macromolecules 1996, 29, 3665.
- 49. Xia, J.; Matyjaszewski, K. Macromolecules 1997, 30, 7692.
- 50. Beets, K. L.; Boo, S.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 1999, 32, 5772.
- 51. Patten, T. E.; Xia, J.; Abernathy, T.; Matyjaszewski, K. Science, 1996, 272, 866.
- 52. Zushun, Xu.; Changfeng, Yi.; Shiynan, C.; Linxian, F. polim. Bull. 2000, 44, 215.
- 53. Quintana, J. R.; villacampa, M.; Katime, I. A. Macromolecules 1993, 26, 601.
- 54. Waton, G.; Michels, B.; Zana, K. Macromolecules 2001, 34, 907.
- 55. Wilhelm, M.; Zhao, C. L.; Wang, Y.; Xu, R.; Winnik, M. A. *Macromolecules* **1991**, 24, 1033.
- 56. Harad, A.; Kataoka, K. Macromolecules 1998, 31, 288.
- 57. La, S. B.; Okano, T.; Kataoka, K. J. pharmacentical Sci. 1996, 85, 85.

•

,

, , , . .

, .

.

- 57 -