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1 Introduction

Let G be a group. If G has a cyclic normal subgroup K such that G/K is
also cyclic, then G is called a metacyclic group. If G is a metacyclic group
and if K is a cyclic normal subgroup of (7, then there exists a cyclic subgroup
S such that G = SK . Therefore each metacyclic group G has a factorization
G = SK . Every subgroup and quotient group of a metacyclic group are also
metacyclic. Some special classes of metacyclic groups can be found in [3] and
Chapter 1 of Coxeter and Moser [4]. As a special subfamily of soluble groups,
metacyclic groups have been received considerable attention by many authors.

Various classifications for metacyclic groups of prime power order (simply
metacyclic p-groups) may be found in [6, 7], [3], [5] and [9]. The classifica-
tions are usually given by listing representatives of the isomorphism types of
metacyclic p-groups in terms of various standard presentations for which the
parameters involved consist of some invariants of the isomorphism types.

Understanding of the subgroup structures of finite groups is often very
useful in the study of finite groups. In this thesis, we investigate the structure
of subgroup lattice of finite metacyclic p-groups for odd prime p. The main
purpose of this thesis is to give an explicit description of the structure of
subgroup lattices of metacyclic p-groups for odd prime p.

First of all, we will consider the subgroups of the direct product of two cyclic

p-groups; we will explicitly determine all subgroups of the direct product of



two cyclic p-groups. A lattice isomorphism from the subgroup lattice of a
group G onto that of a group H is called a projectivity from G onto H .
Projectivity of groups were extensively studied by Baer [2, 1]. It is known in
[2] that certain family of finite p-group has a projectivity from some abelian
p-groups. We will give an elucidation of this for finite metacyclic p-groups
for odd prime p. For this purpose, we will use the following classification of

metacyclic p-groups for odd prime p given by Sim [9].

Theorem 1.1. (1) Every noncyclic metacyclic p-group P for an odd prime

p has a presentation of the form:
P={ab|a” =", """ =1, p*=p'**")

where a, 3,7,8 are nonnegative integers such that a > 3 >v>6, v> 1.
(2) Each such a presentation defines a metacyclic p-group of order
p*P+0 - different values of the parameters o, 8,7,8 with the above condition

give non-isomorphic metacyclic p -groups.

2 (General conventions and some basic facts

We first set up some general conventions and notation, which will be used
throughout this thesis. If g and & are elements of a group, the conjugate

h~'gh is denoted by g¢".



The identity element of a multiplicative group is denoted by 1 and the same
notation is also used for the trivial subgroup consisting of the identity element.
Let G be a group. The automorphism group of the group G is denoted by
Aut(G). For a subgroup H of G, the centralizer of H in G is the subgroup
consisting of those elements x such that zh = hz forall h in H, and denoted
by Cg(H). Let Iso(X,Y) denotes the set of all isomorphisms from X onto
Y for groups X and Y.

The following result is well-known as Dedekind Law [14, Theorem 3.14, p.
26]:

Lemma 2.1. Let A, B and C be any subgroups of a group such that A< B.
Then A(BNC)=BnNAC.

We observe some useful arithmetic facts.

Lemma 2.2. Let p be an odd prime. Then for each integer ¢ with i > 2, if

p™ divides i- (1 —1)---2-1 then m<i—-2.

Proof. Assume that ¢ = p* for some integer ¢, then m < %}l +t. By
using mathematical induction on the number ¢, we see that ﬂﬂg&l < pt.

Since

ti+)p—-1) tE-1p-1)

tt—1)(p—-1)
; ; +¢,

2

+tlp—-1) >

it follows that m < ﬂt—ﬂ%ﬁ’f—l) < p' = 1. Therefore m <i— 2.
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Suppose that p* < ¢ < p*l. Then m < t—(ti%(ﬁ_—l) < pt < 4. Thus

m<i-—2. O

Lemma 2.3. Let p be an odd prime. If ged{t,p) =1, then
(1+tp°)* = 1 mod p™ if and only if p™ divides kp®.

Proof. By Binomial Theorern,

k : i (i—1)
s\k __ 5 £} (k—l)(k—i+1)tp(
(1+tp°)*=1+ktp +k‘p-§_2 | :
It follows from Lemma 2.2 that p divides (k‘l)‘"(k_zfl”ips(i_l) for 7 > 2. Hence

(1+tp°)* =14 kp*(t+¢'p) where t is positive integer. If (1+¢p*)* =1 mod
p™, then p™ divides kp*(t + t'p). And since ged(t,p) =1, p™ divides kp®.
Suppose that p™ divides kp®. It follows from (1 +tp*)* =1+ kp*(t +t'p)

that (1 + tp*)* =1 mod p™. O
Lemma 2.4. Let p be an odd prime. If v =1 mod P then

1+r+r2+---+r”k_15pk mod p™.

Proof. If r =1 mod p™, then the result is clear,
Assume that r # lmodp™. Since ¥ > 1, by Fermat’s Theorem
o= mod p and hence r = lmodp. So r = 1+ sp™ 7 mod p™ where

1 < j < m, ged(s,p) = 1, Then since v* = (1 + sp™7)?* | by Lemma 2.3 p’
J g



divides p* and so j < k. Then from Binomial Theorem,

k ; i— m—F\i—
Tpk_lEpk+pm~j+k,Z(pk*l)”'(pk_z—i-l)s l(p .'i) 2.

_ |
1 = 4!

k
Since m — j > 1, we have =7 = p* mod p™ by Lemma 2.2. O

Lemma 2.5. Let p be an odd prime and m,n integers such that n < m.
Define e =1+ p™ ™ and define o(k) :=1+e+e*+- .+ e Then
(1) o(z+j) =0o(i) + €a(j).

(2) the induced map o : {1,2,3,...,p"} — Z» is bijective.

Proof. (1) o(i+j)=1+e+ ---+e ' +e+ - -+t =00 +eo(f).
(2) To prove that o is bijective, it suffices to show that ¢ is injective.
Since o(j) = o(i) + e'o(j — 1) from (1) and since p does not divide ¢*, if
o(i) = o(j) in Zypn for 1 <4 < j < p" then o(j —4) = 0 in Zy. By
Lemma 2.3, if o(k) = 0 for &k such that 1 < k < p*, then k& = p™. Since

1 <j—1<p", this yields a contradiction. Thus ¢ is injective. O

We finally give some investigation about the automorphism groups of finite
cyclic groups.

Let Z, denote the additive group of integers modulo n for a positive
integer n. The set U, of integers m modulo n which are relatively prime to
n forms an abelian group under muitiplication modulio n. It is well-known
that the antomorphism group of a cyclic group of order n can be identified

with this multiplicative group U, .



Lemma 2.6. The autornorphism group Aut(Z,) is isomorphic to U, .

The structure of U, is well-known. We here just state the special case

when n is a power of an odd prime number.

Theorem 2.7. If p is an odd prime, then Uy is the cyclic group of order

(p—1)p*'.

3 Subgroup lattices of groups

In this section we give a brief introduction of the basic concepts of lattice
theory; the presentation is based on [8].

A partially ordered set is a set P together with a binary relation < such
that the following conditions are satisfied for all z,y,z € P:

(1) z <z (Reflexivity).

(2) f z<y and y <z, then z =y (Antisymmetry).

(3) If z <y and y <z, then z <z (Transitivity ).

An element z of a partially ordered set P is called a lower bound for a
subset .S of P if z < s for all s € §. The element z is a greatest lower
bound of § if x is a lower bound of S and y < z for all lower bound y of S .
Similar definitions apply to a upper bound and a least upper bound. By (2),
a greatest lower bound and a least upper bound of S are unique respectively

if they are exist.



A lattice is a partially ordered set in which every pair of elements has a
least upper bound and a greatest lower bound.

Let G be a group, and let L(G) be the set of all subgroups of G'. Then
L(G) is partially ordered with respect to subgroup inclusion <. Moreover,
for each subgroups X and Y of G, the intersection X NY is the greatest
lower bound of X and Y, and the join (X,Y) is the least upper bound of
X and Y. Therefore, L(G) is a lattice, which is called the subgroup lattice
of G.

Let L and L' be lattices. A bijective map o : L — L' is called an

isomorphism from L onto L' if
(+) oz ny)=o(z)Aoly) and o(zVy) = o)V oly)

for all z,y € L. It is of course that the inverse map of an isomorphism from
a lattice L onto L' is an isomorphism from L’ onto L. If there exists an
isomorphism from L onto L', then L is called isomorphic to L', and denote
by LZL .

If G and H are groups, an isomorphism from L(G) onto L(H) is called
a projectivity from G onto H. We also say that G and H are lattice-
isomorphic if there exists a projectivity from G onto H .

In order to show that a bijective map between two lattices is an isomor-
phism, it suffices to prove that it has one of the two properties in (*) or that

it preserves the order relations of the lattices.



Let G and H be groups. A bijective map ¢ : G — H such that
S<G ifandonlyif o(S)<H

for all subset S of G, is called a subgroup-preserving bijective map. A
subgroup-preserving bijective map induces a projectivity from G onto H.
The projectivity of groups induced by a subgroup-preserving bijective map

between the groups preserves the order of each subgroup.

4 Subgroups of direct product of cyclic groups

Let G = HK be the direct product of two cyclic subgroups  and K of G,
let 7 and x be the projection of G onto the factors H and K, respectively.

Then we have the following lemma.

Lemma 4.1. Let C be a subgroup of G. Then A; = n(C), Ay = HNC,
B]_ = K,(C), Bg =KncC Ef and OTLly ’if A10 = AlB] = B]_C, Al ne = Ag,
B]_ in C = Bz .

Proof. Let Ay =n(C), A, =HNC, B, =&(C) and By = KNC. We want
to show that A;C = A1B, =CB;. If he A,k € By then ak € C for some
a € Ay, it follows that hk = hae '(ak) € A;C. Thus A;B, is contained in
AiC. If he Ay and ¢ € C with ¢ = ab for some a € A; and b € B; then
he = hab = (ha)b € A;B;. Thus A;C is contained in A,B;. Consequently
AC=AB,.



Similarly, ByC = A;B;. Therefore A;C = A;B;, = CB;. On the other
hand A; = HNC = n{C)NC = A;NC and B, = KNC = x(C)NC = BiNC.
For the converse, suppose that 4,C = A/B; = CB;, A, NC = A,,
ByNC = By then p(C) = n(CBy) = n(A1B1) = A1, s(C) = k(4,0)
=k(A1B1) =By, HNC= HNACNC=HNABNC =A,NC =4,
and KNC=KNCBNC =KNABNC=BnNC=B8B,. O

Lemma 4.2. For each 0 € Iso(H,K), C :={a-6{a) : a € H} is a subgroup
of G suchthat HC=KC=G, HNnC=KnNC =1.

Proof. Let C ={a-8(a) : a € H}. Forevery z =a-6{a), y=06-6() c C
and a,b€ H,

oyt = (a-6(@)(b-6(0)) " = (@) (0()0()™) = (ab) - (ab™) € C.

Thus C' isasubgroup of G. Itisclear that HC = KC = G, HNC = KnC = 1.
OJ

Lemma 4.3. If Q={C: HC=KC=G,HNC =KNC =1} then there

exists a bijective map ® : 0 — Iso(H, K).

Proof. For every C € (1, there is the restriction of 1 to C, denoted by 7 |,
in the set of all isomorphisms from H to K. Define ¥¢ = (5 1c)(n {¢)™?
then o € Iso(H,K). Define ®(C) = . For every C,,Cy € Q, if ¢4

1s not equal to Cy then there exist z € H and y € K such that zy € ()

9



but zy ¢ Cy. Since n(Cy) = H, there exists z € K such that zz € (.
Thus y is not equal to z. Then (k le)(n lo,) Hz) = (k bo)(zy) = ¥
and (k 1o, )(n 1o,) 7' (2) = (5 ley)(zz) = z. Since y is not equal to z, ¥,
is not equal to ¢, te. O(Cy) # ®(C,). And so @ is injective. Define
C={a-0(a) : ac H} forall § € Iso(H, K) then &(C) =1, = 8. Since C
is an element of ? by Lemma 4.2, & is surjective. We have shown that & is

bijective. (1

Let S be a set of all the subgroups of G and let
J={(A1,A2,B,,By) : Ay QA <H, B,AB, <K, Aj/A, = B\/B,}.

Define the map ®: § — 7 by &(C) = (n(C), HN K, x(C), K N C). Then
®(C) is an elment of J for all C' € §. Suppose that (A1, A2, B1,By) e J.
Then Iso(A;/As, B1/Bs,) is not empty. Let

X - AlBg/AQBQ, Y = AzBl/Ang, Z - AlBl/Ang.

Since Ay /A, # X and By/B, @Y, Iso(X,Y) is not empty. Then there exists
CeSsuchthat XC=2Z=YC, XNnC=YNC =1 where C =C/A,B,
and then A;C = A\B, = BiC, AinC = Ay, and BiNC = B,. It follows
from Lemma 4.1 that

Alzf](C), AZZHOC, B}ZK,(C), BQZKHC.

Then ®(C) = (n(C), HNC,x(C),K NC) = (A1, Az, By, By) € J and so we

obtain that @ is surjective.

10



Define a relation ‘~’ on by C; ~ C; if and only if ®(C)) = ®(C,) for all
C1,C; € §. Then ‘~' is an equivalent relation on §. Let [C] denote the
equivalence class containing C for each C € S.

Put [S] = {[C]: C € 8}. The ® induces a bijective map & from [S] to
J . Suppose that ®(C) = (Ay, Az, B1, Bz). Then it follows from Lemma 4.1

that
[C] - {C . A1C’ = AlBl = Bl(Z', A] NC = AQ, Bl ﬂC: Bz}

Since there is a bijective map from {C : XC =Z =YC, XnC =¥YnC =1}
onto [C], it follows from by Lemma 4.3 that there exists a one-to-one corre-
spondence between [C] and Iso(X,Y). Since X & A,/A; and Y = B,/B,,
we see that [C] is in one-to-one correspondence with Iso(A;/As, By/Bs).

Let
T - {(A11A27 BI;B216) : (AIJAZ)Bl'IB2) c \7: 0 € ISO(AI/A% BI/BQ)}

Consequently, we have shown that there exists one-to-one correspondence be-

tween S and T . We state the result more precisely as follows:

Theorem 4.4. Let U be the map from T into S defined by
‘I’(Al,Az, Bl; BQ,B) = {.’L‘y . 9(33142) = yBg, € Al}

Then ¥ is a bijective map from T onto S.

11



Let C = ¥(A,, Ay, By, By,0). The isomorphism 6 induces a homomor-
phism 6% from A; onto B;/B,, which is defined by 6*(x) = #(zA4,). Then
C={zy: 0"(z) =yBs, x € A1} = {zy : y€ 0*(x), z € Ar}.

Let C' = \I!(All, A;, Bi, B;, 19') . Then it is easy to see the following fact,

Remark 4.5. C' < C if and only if A1 < A] and 0(z) C 0*(z) for all

:1:€A1

5 Subgroup lattices of Z,« x Z,s

Let G = (a)x(b), where (a) 2 Zy and (b) = Zys . We assume o < 3. We

explicitly determine all subgroups of G. Let
Ti = {(A1, 42, B1, By,0) € T : |A||By| = p*}

for each i = 0,1,... ,a+ . Then ¥(T;) is the set of all subgroups of G of
order p'.

Let |A;| = p* for some integer k. Then 0 < k < o and k < i. Then
|Ba| =p*~*, and so 4; = (a*™ "), By = (b)Y,

We first consider the case when 1+ < 3. Foreach j =0,1,... ,p* — 1, define
C(j, k) = (o077 ",

For each j=0,1,... ,p* -1, C(j,k) is a subgroup of G of order p* and so

C(j, k) is contained in ¥(7;). From Theorem 4.4 , every subgroup of order pf

12



is C(j,k) for some integers j, k suchthat 0 < j<pF—1, 0<k< o, k<i.

Therefore

U(T) ={C(,k) - 0<j<p"—1,0<k<i} for i <a,
and

V() ={C(j,k) : 0<j<p*—1,0<k <a}fori>a.

Consequently, there exist precisely 1+ p+ --- + p' subgroups of order p' if
t<a,and 1+p+--- 4 p* subgroups of order p* if a <3< g.
We then consider the remaining case when 3 < i. In this case, i-3 < k < a.

Foreach j =0,1,...,pF — 1, define
C'(j, k) = (o "0 B,

Each C'(j, k) for j = 0,1,... ,p* — 1 is a subgroup of G of order 7. Con-
versely it follows from Theorem 4.4 that every subgroup of G of order ptis
equal to C'(j, k) for some integers 7, k such that 0 < j < pF—1, i—-f<k<a.

Therefore, in this case
WT)={C'(j,k) : 0<j<p~1,i-B<k<al
Then
YT)={C'Gk-B+1): 0<j<p - 1L0<k<a+f-i}

So [¥(T)| = Y p+7~* p* . Consequently, there exist exactly 1+p+- - 4 path—t

subgroups of order p' in this case .

13



We now summarize the observation as follows:

Theorem 5.1. Let G — Zipe X L.
(1) If i < o then there exist precisely 1+ p + - -- + p' subgroups of order

p* and the subgroups can be listed as follows:
(@Y T 0< i< -1, 0<k<a

(2) If @ <i <[ then there exist precisely 1 + p+--- + p® subgroups of

order p' and the subgroups can be listed as follows:
(P T o< i< -1, 0<k<a

(3) If i > B then there exist precisely 1+ p+ - + p*P~% subgroups of

order p* and the subgroups can be listed as follows:

(@ ), 0<i<pF -1, 0<k<a+4—i

Now we shall draw the subgroup lattices of the special groups G for
G= Zp X ZP, Zp x sz, sz X sz.

(1) The subgroups of Z, x Z,

Let H=(a)2Z,, K= (b)2Z,. Consider (A, Ay, By, B;) such that
Ai1/Ay = By/By =2 1. There are two cases.
CASE 1) A1 EAQ :—H,Bl = Bg ZK

i4



The only subgroup in this case is H x K.

CASE2) A1:A2:1,Bl:.82:1.

The only subgroup in this case is the trivial subgroup 1.

We then consider (A, Ay, By, By} such that A;/A, =2 B, /By = Zy. In this
case Ay = By = 1. So Iso(A;/A,, Bi/By) = Iso(H,K). Let 6, : H — K
be the isomorphism defined by #:{a*) = b for i = 1,2,... ,p — 1. Then
{6+ i =12 .. ,p—1} = Iso(A1/4;, B1/By). Let C; = {zy : 6i(x)
=y, z € H} = (ab’). So the subgroup consider in this case is (ab*) for
each ¢ = 1,2,... ,p — 1. Consequently, we can list all subgroups of G as
follows :

1, H K, Hx K, {ab') for i=1,2,...,p— 1.
Then we can draw the diagram of the subgroup lattice of Z, x Z, as shown

in Figure 1.

(2) The subgroups of Z, x Z,
Let H=(a)XZ,, K =(b)=Z,. Consider (4,, Ay, By, B;) such that
Ay/A; & B1/B,; = 1. In this case there exists only one isomorphism € from

A;1/A; to B;/B,. The subgroups in this case are
LH K (), Hx{P), Hx K.
We then consider (Al, Ag, B]_, BQ) such that Al/A2 = B1/32 Eh Zp'

CASE 1) Al :H,Azz ].,Bl = (bp)’B2: 1.

15



Since 4; = By = 1 in this case, Iso(A4:/A4s, B1/B;) = Iso(H,{b"}).
Let 6; : H — (V) be the isomorphism defined by 6;(a*) = b*P for
t=12,...,p—1 Then {6, : ¢ = 1,2,... ,p— 1} = Iso(A1/As, B1/Bs).
Let C; = {xy : 8(z) =y, z € H} = (ab™). So the subgroups considered in

this case is (ab'?) for each i =1,2, .. ,p— 1.

CASE 2) Ai=H, Ay =1,B1 = K,By = ().

In this case Iso(A) /Ay, B,1/B;) = Iso(H, K/(¥)). Let 6; : H —s K/{b)
be the isomorphism defined by 6;(a*) = b*(b) for i =1,2,... ,p— 1. Then
{0 : 1=1,2,... ,p—1} = Iso(A1/As, B1/Bs). Let C; = {zy : 6;(z) = y*(bP),
z € H} = (ab'). So the subgroups considered in this case is {ab‘) for each
i=1,2 .. ,p-1

Consequently, we can list all subgroups of G as follows :
LH, K, HxK,{0P),Hx (W) (ab?),{ab') fori=1,2,...,p—1.

Then we can draw the diagram of the subgroup lattice of Zpx Ly s shown

in Figure 2.

(3) The subgroups of Z,: x Z,
Let H = (a) ® Zy, K = (b) 2 Z,.. Consider (A1, Ay, By, By) such
that A;/A; = B;/B; = 1. In this case there exists only one isomorphism §

from A;/A; to B;/B;. The subgroups in this case are
1, (a®), H, (¥}, K, (a®} x (b"), Hx (), (eP)x K, H x K.

16



We then consider (A, Ay, By, By) such that A,/4, = B;/B, ® Z,.

CASE 1) Ay =(a?),A; =1,B, = ("), B, = 1.

In this case Ay = B; = 1. So Iso(A;/As, B/ By) = Iso({aP), {b)).
Let 8; : (a?) — (%) be the isomorphism defined by 8;(a*?) = b* for
t=12..,p— 1 Then {6; : ¢ = 1,2, ,p— 1} = Iso(A;/A;, B1/B,). Let
Ci={zy : 0i(z) =y, x € (a®)} = (aPb'). So the subgroup consider in this

case is (aPb®) foreach i1 =1,2,... ,p— 1.

CASE 2) A =(a?),A;=1,B; = K, By = (b°).

In this case Iso(A;/A;, B1/B,) = Iso({a?}, K/{b")).
Let 8; : (a?) — K/{b) be the isomorphism defined by 6;(a*?) = b*{b?)
for i =1,2,..,p—1 Then {¢, : i=1,2,.. ,p—1} = Iso(A;/Aq, B1/Bs).
Let C; = {zy : 0;(z) =y(b), z € (P} } = (aPb’). So the subgroup consider

in this case is (aPb*) for each i=1,2,... ,p— L.

CASE 3) A; = H, Ay = (a?), By = (®), B = 1.

In this case Iso(A;/A,, By/By) = Iso(H/{aP), (")).
Let 6; : H/(a?) — (b") be the isomorphism defined by 6;(a*(a?)) = biP
for i=1,2,...,p—1 Then {6, : i=1,2,.. ,p—-1} = Iso(A;/Az, B1/Bs).
Let C; = {zy : 0;(zAs) =y, z € H} = (ab®?). So the subgroup consider in

this case is (b’ )for each i =1,2,... ,p— 1.

CASE 4) Al = H,A2 = (a”),Bl = K,Bg = (bp)
In this case Iso(A;/As, B1/B;) = Iso(H/{a? ), K/{b")).

17



Let §; : H/(aP) — K/{b) be the isomorphism defined by 8;(a*{a?}) = b*{pP)
for i=1,2,...,p—1. Then {6; : i =1,2,...,p—1} = Iso(A;/As, B1/B;). Let
Ci = {zy : 0i(zAy) = yBy, 7 € H} = {ab*, ). So the subgroup consider in
this case is (ab', ) for each i =1,2,... ,p— 1.

Then consider (A;, Ay, By, By) such that A,/A; 2 B, /B, = Zye. In this
case Ay = By = 1. So Iso(A;/A,, B1/B;) =Iso(H,K). Let 6;: H — K be
the isomorphism defined by 6;(a*) = b* for each i such that ged(p,i) = 1,

1 < i< p® Then {6;] ged(p,i) = 1,1 < i < p*} = Iso(Ay/Ay, B1/B,). Let
C; =A{zy|bz) =y, z€ H} = {ab'). So the subgroup consider in this case
is (ab'), for each ¢ such that ged(p,i) = 1,1 < i < p?. Consequently, we

can list all subgroups of G as follows :
1, {(a?), H, ("), K, (a?) x (), Hx(¥"), (aP ) x K, HX K, (aPb™), (a*'),

(ab™®), (ab',07), (ab') fori=1,2,...p—1 and ged(p, t) = 1,1 < t < p?

Moreover, for each integers ¢,¢ such that i = 1,2,... ,p— 1, ged(p,t) = 1,
1<t <p? if t=14 modp then (ab') < (abi,b?).
Then we can draw the diagram of the subgroup lattice of Zg: x Zs2 as

shown in Figure 3.
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(arx=(h >

Figure 1. The subgroups of Z, x Z,.

Car={b>

Cad>xld s

{a> Cht>

Figure 2. The subgroups of Z, x Z,.
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{apr=Cbe

Car =™

{ar b

Figure 2. The subgroups of Zj: x Zjz.
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6 Subgroups of metacyclic p-groups

Let P be a finite noncyclic metacyclic p-group for an odd prime p. Then P

has a presentation of the form:
P={abla® =" " =1, b* = p*7")

where «,f3,v,é are nonnegative integers such that o > 3 > v > 4, v>1.
Let B := Cp({b)). Then B = (a#*""",b), and B is an abelian normal
subgroup of P. We also have [P/B| = p#+i-7,

Let A is the abelian group obtained by adjoining to B an element w,

subject to the relation w* ™™ = a7  that is
A= (Bw|w’™™ " ="y =y (u€ B) ).

Then A={uw' : we B, i=0,1,2,.. p*7 — 1} and A= Zjavs X L.
Define e := 1+ p" and define o(k):=14+e+€e*+ .-+ ef1. Then from
Lemma 2.5 the induced map o : {1,2,3,... ,p*} — Zps+s—v is bijective.

~o 1y

Define the map 7: A — P by 7(uw’) =u*™" “a° '@ for every ww' in

A with ue B.

Lemma 6.1. (1) 7 is bijective. (2) If S be a subgroup of A then

o~ 15 . )
r(@)r(y) = r(@” Ty) € 7(8) for every z = uw, y = vw’ € S.
Proof. T(ﬂfea_l(j)y) = T(ue"_lmuw(iE"-l(”-H'))
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—_ . —1,. g'_l ; . - .
_ (uea I(J)U)e—cr Lie (-7)+J)aa*'1(ie°' Y04y

-1, ~1,.
oo L)~ (ie” <JJ+J')Ue—o—1(ie“ (J)+j)ag—1(ieﬂ_1(j)+j)

m(z)7(y) = we” Vg e T B o l(y)
— ue"'l(")aa"(z‘)ve—""(”a—a—‘(i) a® @) ol

_ ueo_l(i)Ue—a_l(j)Aafl(i)aa—l(j)+o~l(i) .

By Lemma 2.5, we see that o(c7'(j) + ¢7'(i)) = j + " 'Wi. Then

o ) + o Hi) = o715 + "W). So it is clear that
ad"l(ie”_l(j)+j) _ ao'_l(j)-i-o'_l(i)_

P S P R Y C I .
. (-e—10) o Lie +)
It is also clear that »¢~° = " and

o e ae ey uev"lu)-a—lu)w—‘(f) _ uea_l(i)

—15)

Therefore 7(z)r(y) =7(z¢" y). O

Lemma 6.2. For every x € A, {(r(z))=7((z)).

Proof. Since 7(x) € 7({x)),(7(x)) is contained in 7({z)). Put p™ is the
order of . Then 7(z)* =1 if and only if T(.’,L‘E;:—l_l) =1 where ¢t = e* '@ if
and only if £=! =1 if and only if p™ divides 2= if and only if p™ divides n
by Lemma 2.3. Thus p™ is the order of 7(x). Therefore the order of {7(z))

is equal to the order of 7({z)). This yields that {7(x)) = r({z)) O

Lemma 6.3. S < A if and only if 7(S) < P.
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Proof. Let 7(z), 7{y) € 7(5). If z = ww’,y = vw’ € S then Ve s 1t
follows from Lemma 6.1 that 7(x)7(y) = T(meflmy) € 7(S). Thus 7(S) < P.

Conversely, if 7(S) < G and z € S then 7(z) € 7(S). It follows from
Lemma 6.2 that 7({z)) is contained 7(S). Thus (z) is contained S. If
T =wuw',y=vw €S then 2=° ¥ ¢ S, andso T(zy) = T(:cﬁanl(j))f(y) e 7(5).

Thus zy € S. Therefore S < A. O

We can now state the following consequence. We note that it can be ob-

tained also from a general observation given by Baer [2].

Theorem 6.4. If P is a finite metacyclic p-group for an odd prime p, then
there ezists an abelian p-group A and a subgroup-preserving bijective map

from A onto P that induces a projectivity from A onto P.
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