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1. INTRODUCTION

Let H be a complex Hilbert space. We assume that another Hilbert
space V is embedded in H as a dense subspace and that V has a stronger
topology than H. Let V* be the dual space of V. In this paper we
deal with the time optimal control problem governed by the semilinear
parabolic type equation in a Hilbert space H as follows.

( %J;(t) = Apz(t) + Ayz(t — h)
(RSE) 4 + /Oh a(s)Axx(t + s)ds + f(t, z(t)) + k(t),

L 2(0) =¢°, z(s)=¢'(s) —h<s<O.

Let Ap be the operator associated with a bounded sesquilinear form
on V x V, satisfies Garding inequality. Then A, generates an analytic
semigroup S(t) in both H and V* and so the equation (RSE) may be
considered as an equation in both H and V*.

Let (¢°,¢') € H x L?(0,T;V) and z(T; ¢, f,u) be a solution of the
system (RSE) associated with nonlinear term f and control » at time
T.

We now define the fundamental solution W (t) of (RSE) by

0 _ iL'(t, (qu,O),0,0), tZO
WieT= { 0 t<0.

According to the above definition W (t) is a unique solution of

t 0
W(t) = S(t) + /0 S(t — ) { AW (s — h) + / a(7) Ay W (s + 7)dr}ds

for t > 0 (cf. Nakagiri [5]). Under the conditions that a(-) € L?(—h,0; R)
and A;(7 = 1,2) are bounded linear operators on H into itself, Nakagiri
in [5] proved the standard optimal control problems and the time op-
timal control problem for linear retarded system (RSE) in case f = 0
in Banach spaces. If 4;(z = 0,1,2) : D(Ap) C H — H are unbounded
operators, Blasio, Kunish and Sinestrari in [2] obtained the global exis-
tence and uniqueness of a strict solution for the linear retarded system
in Hilbert spaces. Under some general condition of the Lipschitz conti-
nuity of nonlinear operator f from R x V to H, in [4] they established

2



the problem for existences and uniqueness of solution of the given sys-
tem. But we can not immediately obtain the time optimal control
problem as in [5; section 8] without the condition for boundedness of
the fundamental solution W (¢t). Since the integral of AoS(t — s) has a
singularity at ¢ = s, we can not solve directly the integral equation of
W(t). In [6], Tanabe was investigated the fundamental solution W (t)
by constructing the resolvent operators for integrodifferential equations
of Volterra type(see (3.14), (3.21) of [6]) under the condition that a(-)
is real valued and Holder continuous on [—h, 0].

This paper deals with the time optimal control problem by using the
construction of fundamental solution, which is the same results of [5],
in case the principal operators A4;(z = 0, 1,2) are unbounded operators.

2. RETARDED SEMILINEAR EQUATIONS

The inner product and norm in H are denoted by (-,-) and | - |.
The notations || - || and || - ||« denote the norms of V and V* as usual,
respectively. Hence we may regard that

(2.1) lulls < Jul <|lull, weV.

Let a(-, -) be a bounded sesquilinear form on V xV, satisfies Garding’s
inequality

(2.2) Re a(u,u) > collul]® — ci]ul?, ¢ >0, ¢ >0.
Let Ag be the operator associated with the sesquilinear form —a(,):
(Aou,v) = —a(u,v), u, veV.
It follows from (2.2) that for every u € V
Re ((cy — Ao)u,u) > col|ul|?.

Then Ap is a bounded linear operator from V' to V*, and its realization
in H which is the restriction of Ay to

D(Ao) = {u eV Agu € H}

is also denoted by Ag. Here, we note that D(Ap) is dense in V. There-
fore, it is also dense in H. Then Ag generates an analytic semigroup in
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both H and V*. Hence we may assume that there exists a constant Cy
such that

(2.3) llull < Collull gy, lul"?

for every u € D(Ap), where
lell pagy = (|Aoul? + |uf?)!/2

is the graph norm of D(Ay).

First, we introduce the following linear retarded functional differen-
tial equation:
(d

Em(t) = AoiB(t) + Alx(t - h')

(RE) < + /0 a(s)Agx(t + S)dS + k’(t),
—h

L 2(0) = &, z(s)=¢l(s) —h<s<O.

Here, the operators A; and A, are bounded linear from V' to V* such
that their restrictions to D(Ap) are bounded linear operators from
D(Ap) to H. The function a(-) is assumed to be a real valued and
Hélder continuous in the interval [—h,0].

Let W(-) be the fundamental solution of the linear equation associ-
ated with (RE) which is the operator valued function satisfying

(2.4) W(t) = S(t) + /0 "S- s {AW(s — h)

0
+/ a(T)AW (s + 1)dr}ds, t >0,
—h
W(0) =1I, W(s)=0, —-h<s<0,

where S(-) is the semigroup generated by Ag. Then

(2.5)
0 t

2(t) = W(£)g° + / Uy(s)¢* (s)ds + / W(t — s)k(s)ds,

~h 0

Ul(s)y=W(t—-—s—h)A + /3 W(t— s+ o)a(o)Aqdo.
—h
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Recalling the formulation of mild solutions, we know that the mild
solution of (RE) is also represented by

[ S(t)¢° + /0 S(t - ){Arz(s — h)

=Y+ [ st +ryir + kw)ds, (¢ 0),
—h

L #(s), —h<s<0.

From Theorem 1 in [6] it follows the following results.

Proposition 2.1. The fundamental solution W (t) to (RE) exists uniquely.
The functions AgW (t) and dW (t)/dt are strongly continuous except at
t=nh, n=0,1,2, ..., and the following inequalities hold:
fori=0,1,2andn=20,1,2, ...

(2.6) |A;W (t)| < Crn/(t —nh),
(2.7) |dW (t)/dt| < C,,/(t — nh),
(2.8) AW (A < Cy

in (nh, (n+ 1)h),

(2.9) l/t]t A;W(r)dr| < C,

fornh<t<t < (n+ 1)h. Let p be the order of Hélder continuity of
a(-). Then fornh <t <t <(n+1)hand0 <k <p

(2.10)

IW(t') = W(E)| < Cnu(t —t)"(t —nh)~",
(2.11)

|A(W(E) = W) < Crlt’ =)t —nh)™"1,
(2.12)

|A(W () = W(E)AG!] < Crnlt —)"(t — nh) ™",

where C,, and C, , are constants dependent onn and n, k, respectively,
but not on t and ¢t .

Considering as an equation in V* we also obtain the same norm
estimates of (2.6)-(2.12) in the space V*. By virtue of Theorem 3.3 of
[2] we have the following result for the linear equation (RE).
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Proposition 2.2. 1) Let F = (D(A¢), H)y o where (D(Ao), H)1/2,2
denote the real interpolation space between D(Ag) and H. For (¢°, ')
€F x L?(—h,0;D(Ap)) and k € L*(0,T;H), T > 0, there exists a
unique solution z of (RE) belonging to

L*(—h,T; D(Ao)) n\W"2(0,T; H) € C([0,T]; F)
and satisfying

(2.13) || L2 (= b7, D a0y wr 20,701 < CL(|6° F
+ H¢1||L2(—haO;D(Ao)) + ||k”L2(0,T;H))7
where C} is a constant depending on T.

2) Let (¢°,¢') € H x L?(—h,0; V) and k € L2(0,T;V*), T > 0. Then
there exists a unique solution z of (RE) belonging to

L*(=h, T;V)nWY2(0,T; V*) c C([0,T); H)
and satisfying

(2.14) lzl| L2~k T v)wr 20,70y < C1(16°]
+ M L2 (=n,0.v) + Kl L20,7:v+))-

In what follows we assume that
NW®ll <M, t>0

for the sake of simplicity.

Proposition 2.3. Let k € L?(0,T; H) and z(t) = fot W (t — s)k(s)ds.
Then there exists a constant Cy such that for T > 0

(2.15) 1|l 220,750 40)) < ChlklI 20,71,
(2.16) |zl 20,71y < MT||E|| 200, 1,1,
and

(2.17) 1l L20,75v) < (CLMT)? ||kl 20,7 1)-
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Proof. The assertion (2.15) is immediately obtained from Proposition
2.2 for the equation (RE) with (¢%, ¢!) = (0,0). Since

T t
el = [ 1 [ Wt k(s

T t

< M? / ( / le(s)|ds)2dt
0 0
T t

< M2 / " / Ik(s)|2dsdt
0 0

2T2 T 2
<M — |k(s)|°ds
2 Jo

we have that
2l 20,1y < MT||k||L2(0,1; 8-
From (2.3), (2.15), and (2.16) it follows that

[zl z20,7;v) < (CiMT)%HkHLz(o,T;Hy O

Let f be a nonlinear mapping from R x V into H. We assume that
for any x1, z2 € V there exists a constant L > 0 such that

(F1) |f(t,z1) — f(t,22)| < Ll|zy — 22|,
(F2) £(t,0) = 0.

The following result on (RSE) is obtained from Theorem 2.1 in [4].

Proposition 2.4. Suppose that the assumptions (F1), (F2) are satis-
fied. Then for any (¢°,¢') € H x L?(—h,0;V) and k € L*(0,T;V*),
T > 0, the solution = of (RE) exists and is unique in L%(—h,T;V) N
W12(0,T;V*), and there exists a constant C} depending on T such
that

(2.18) 2l L2 (=n,myvynwr 2o,y < Co(1+ |¢°)]
+ |¢M 22 (—h0;vy + 1Kl L20,7v4))-



3. LEMMAS FOR FUNDAMENTAL SOLUTIONS

For the sake of simplicity we assume that S(¢) is uniformly bounded
and the following inequalities hold:

(3.1) IS < Mo(t 2 0), [AS ()] < Mo/t(¢ > 0),
|AZS ()] < Mo/t*(t > 0)

for some constant Mpy(e.g., [6]). Let us assume that a(-) is Holder
continuous of order p:

(3.2) la()| < Ho, |a(s) —a(7)| < Hi(s — 7)°

for some constants Hy, H;.
According to Tanabe [6] we set

Ao(W(t) — S(1), if t € (0,h],
(3.3) V(t)=q Ag(W(t) — t S(t —s)A1W (s — h)ds),
nh
if t € (nh,(n+1)h] (n=0,1,2, ..).

ForO<t<h
W(t) = S(t) + A7V (¢)

and from (2.4) and (3.3) the exchange of the order of integration yields

t ot
Wi(t) = S(t) + / / S(t — s)a(r — s)ds AW (7)d.
0 Jr
Hence,
t ¢
V(t) = Vp(t) +/ AO/ S(t — s)a(r — s)ds A Ay 'V (7)dr,

0 T

where

Vo(t) = /0 A, / " S(t — $)a(r — 5)dsApS(r)dr.
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Fornh <t < (n+1)h (n=0,1,2, ...) the fundamental solution W (t)
is represented by

W(t) =S(t) + /ht S(t — s) Ay W (s — h)ds
i /ot_h /:M S(t — s)a(r — s)dsAx W (r)dr
+ /t j: /T t S(t — s)a(r — s)ds AW (T)dT
" /n; /: S(t — s)a(r — s)ds AW (7)dr.

The integral equation to be satisfied by (3.3) is

V(t) = W(t) + /; A /t S(t — s)a(r — s)dsA2 A5 'V (T)dT

where

Vo(t) = AoS(t) + Ao " St —s)AW (s — h)ds
h

t—h T+h

+ /0 AO/ S(t — s)a(T — s)dsA; W (r)dr
nh

+ / Ao /t S(t — s)a(r — s)ds AW (7)dr

t t T
+ / Ao / S(t—s)a(r — s)dsAz/ S(t — o)A W (o — h)dodr.
nh T nh

Thus, the integral equation (3.3) can be solved by successive approxi-
mation and V(t) is uniformly bounded in [nh,(n+ 1)h] (e.g. (3.16)

and the preceding part of (3.40) in [6]). It is not difficult to show that
for n > 1,

V(nh+0)# V(nh—0) and W(nh+0)= W(nh —0).



Lemma 3.1. ForO<s<tandO0O<a<1

(34) IS - S(s)l < 2 (=),
(3.5) |ApS(t) — ApS(s)| < My(t — s)*s™ 71,

Proof. From (3.1) for 0 < s <t

(3.6) S(t) - S(s)| = | / AoS(r)ar| < Mylog

It is easily seen that forany t >0and 0 < a < 1
(3.7) log(1+1t) < t%/e.
Combining (3.7) with (3.6) we get (3.4). For 0 < s <t

(3.8) |A0S(t) — ApS(s)| = }/t A2S(7)dT| < Mo(t — s)/ts.

Noting that (t —s)/t < ((t —s)/t)* for 0 < a < 1,
we obtain (3.5) from (3.8). O

We define the operator K;(t',t) : H — H by
t'
(3.9) Ki(t' t) = / St — s)A1W (s — h)ds,
t

for nh <t <t' <(n+1)h.
Lemma 3.2. K;(t',t) is uniformly bounded for 0 <t < t'.

Proof. Let nh < t < (n+ 1)h, n = 0,1,2, .... Then the proof is a
consequence of the following estimate

(3.10)
| hSU—@AﬂVK-hMﬂ

= | h(S(t — &) = S(t —nh)) L W( - h)dE

t
+S(t—nh) | AW — h)dE]
nh

t t—nh C 1
< M, log ———n— —2T
= S O T e

< MoCr—1c0 + MoCp_;.

d€é + MyCr 1
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Ift<nh<t and 0 <t —t < h, then

(3.11) Ki(t't) = " S(t — s) AW (s — h)ds

t/
+ / S(t' — s)A1W (s — h)ds.
nh

The first term of right hand side of (3.11) is
nh
/ S(t — $) AW (s — h)ds
t
nh ‘
= / (S{t' —s)— S(t' — (n—1)h)AW (s — h)ds
t

nh
+ S(t = (n—1)h) / AW (s — h)ds.
Thus,
nh
| /t (S( — 5) — St — (n — 1)R)) Ay W (s — R)ds]

' —(n—-1)h ds
tV—s s—(n-—-1)h

v t — (n—1)h
< MoCroy / log (" ) ds
('n—l)h t'—s S — (Tl — 1)h

nh
SMOCn—l/ log
t

1 dr
1—7 71

7

1
=M0C'n_1/ log
0

nh
1St — (n — 1)h)/ AW (s — h)ds| < MoCn_1,
t

and hence, it is bounded. The boundedness of the second term of right
hand side of (3.11) is obtained from (3.10). O

Remark 1. Let K{(t',t) be the adjoint of K;(t',t). Let z* € D(Af).
Then from the fact that

tl
< Ki(t' t)z,z* > = / < St —s)AW(s — h)z,z* > ds
t
tl
= / <z, W*(s—h)ATS*(t' — s)z* > ds
t
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where A] is the formal adjoint operator of A;, we have
tl
K (' t)a* = / W*(s — B)AIS* (¢ — 5)z*ds.
¢
and if z* € D(Ap) then
(3.12) tl,ith{‘(t’,t) =0

in the sense of strong convergence. Since K (#',t) is uniformly bounded,
so is K{(t',t). From that D(A}) is dense in H, we have (3.12) in H.

We introduce another operator K»(t',t) : H — H by

t 0
Ka(t', 1) = /t S — s) /_ a(r) As W (s + r)drds

foro<t<t.
To obtain the estimate of K(¢',¢) we need the following result.

Lemma 3.3. For0 <t <t andt —t < h, there exists a constant C
such that

(3.13) |[Ka(t', t)| < C(t —t).

Proof. In [0, h], we transform K(t',t) by suitable change of variables
and Fubini’s theorem as

Ky (t',t) :/t S(t —s)/(; a(t — 8) AW (7)drds.
From (3.3) it follows
/ a(r — s)A;W(r)dr = / a(T — 8) A Ay (ApS(T) + V (7))dr
0 0
= / (a(t = 8) — a(—s))A; Ayt AgS(T)dT + / a(—s)A; Ay ApS(T)dr
0 0

t
+ / a(T — 8)A; Ay V(T)dr.
0

12



Noting that
‘ t
‘/ (a(T - 3) - a(*S))AZAalAOS(T)dT| S MOHllAiAO_l| / Tp—ld"/’,
0 0
we have

t
| f a(r — 8) AW (T)dr| <|A; A5 1|( " MoH, + hHo Mo
0
+ hHo( sup |V ()])).
0<t<h

Thus the assertion (3.13) holds in [0, k]. In [nrh, (n + 1)h), we get

2(t t)_/ St —s)/ T)A W (T + s)drds

- / St — s) / a(r — ) AW (r)drds.

¢
If nh<t<s<¢t then

(3.14)
/_ha(r — 8)A W (T)dr

= /nh a(tT — 8)A W (r)dT + /s a(T — s) AW (T)dr.
s—h nh

The second term of right hand side (3.14) is bounded in terms of (2.9).
The estimate of the first term of right hand side (3.14) is

nh
|/ a(t — s) A W(r)dr| = [/ a(t — s) — a(—h)) AW (7)dT
+a(=h) / | Aaw(ryar]
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Since s > nh, noting that 0 <7 —-s+h <7 —(n—1)h

]/ (1 —8) —a(—h)) A W(r)dT|

nh
< Hy| Ay Ao| ! / (r— s+ h)P(r — (n — 1)h)~dr
s—h
nh
< Hp|AzAo|™? (r—(n—1)h)dr
s—h

nh
< H1|A2A0[‘1/ (7 — (n = 1)h)P~1dr < Hy|AsAo|~'1*.
(n—1)h

The estimate of the second term of right hand side (3.14) is

|/nha(T — 8) AW (7)dT|

</ / (a(r — ) — a(nh — $)) AW (7)d7| + |a(nh — s) / AW (T)dT|
nh nh
< H1Mo|f42A()|_1/ 7 dr + HoCr_1.
nh

Ift < nh <t then (n—1)h <t <nh <t < (n+1)h First, let
t < s < nh, then

/S a(r — s)AW(r)dr
s—h

(n—1)h s
_ / a(r — 8) AgW (r)dr + / a(r — ) AgW (7)dr
s—h (n—1)h

(n—-1)h
_ / (a(r — s) — a(—h)) AW (r)dr

—h

{(n—1)h
+ a(—h) / AW (1)dr
s—h

[ =)= altn = N AW
(

n—1)h

+a((n—1)h—s) AW (T)dT,
(n—1)h

14



in case nh < s < t’, we have

/s a(r — s)A W (T)dr
s—h

S

nh
= / a(T — 8) AW (7)dr + / a(r — s) AW (r)dr
s—h nh

nh
= /_h(a(’r —8) —a(—h))A,W(r)dr
+ a(—h) " AW (T)dr

h

S—

+ /T;h(a(T —8) —a(nh — s)) AW (7)dT

+ a(nh — s) AW (1)dr.
nh

Therefore, from (3.1), (3.2) and Lemma 3.1 it follows (3.13). O

4. TIME OPTIMAL CONTROL FOR RETARDED SYSTEMS

Let Y be a real Banach space. In what follows the admissible set
U,q be a weakly compact subset in L2(0,T;Y). Consider the following
hereditary controlled system:

Cd
-d—t-;y(t) = Aoili(t) + Alx(t - h‘)

0
(RSC) 4 + [h a(s)Azxx(t + s)ds + f(t,z(t)) + Bu(t),

2(0) = &, w(s) = ¢'(s) —h<s<O,
\ u € Ugg-

Here the controller B is a bounded linear operator from Y to H. We
denote the solution z(t) in (RSC) by z,(t) to express the dependence
on u € Uyy. That is, z, is a trajectory corresponding to the controll u.
Suppose the target set W is weakly compact in H and define

Up = {u € Upq : z4(t) € W for some ¢ € [0,7T]}

for T > 0 and suppose that Uy # (). The optimal time is defined by low
limit ¢y of ¢ such that z,(t) € W for some admissible control u. For
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each u € Uy we can define the first time ¢(u) such that z,(t) € W. Our
problem is to find a control @ € Uy such that

t(@) < t(u) for all u € Uy

subject to the constraint (RSC).

Since z,, € C([0,T]; H), the transition time #(u) is well defined for each
u € Ugg.

Theorem 4.1. 1) Let F = (D(Ao), H)1/22. If (¢°,¢') € FxL?*(—h,0;
D(Ap)) and k € L?(0,T; H), then the solution x of the equation (RSE)
belonging to L?(—h, T;D(As)) NWH2(0,T; H), and the mapping F x
L%(—h, 0, D(Ao )) x L*(0,T; H) > (¢°, ¢*, k) +> x € L2(—~h, T; D(Ao))N
Wb2(0,T; H) is continuous.

2)If (¢°, ¢') € Hx L?(—h,0; V) and k € L?(0,T; V*), then the solution
x of the equation (RSE) belonging to L?(—h,T; V)NW1.2(0,T; V*),
and the mapping H x L*(~h,0; V )) x L%(0,T; V*) > (¢°,¢' k) — = €
L?(=h,T; V)NW12(0,T; V*) is continuous.

Proof. [1] We know that z belongs to L?(0,T; D(Ap))N WH2(0,T; H)
from Proposition 2.2. Let (¢9, ¢!, k;)€Fx L2(—h,0; D(Ag))xL?(0,T; H),
and z; be the solution of (RSE) with (4%, #},%;) in place of (¢°, ¢!, k)
for ¢ =1, 2. Then in view of Proposition 2.2 we have
(4.1)
|1 — za2l|r2(—h,7; D0y w2 0,1y < Ci{l|¢) — 8317
+ 161 — &322 (=h0:D(a0)) + 17 (5 21) = £ 22l L2 0,7
+ [1k1 — kallL20,1;0) }
< Ci{l1#7 — #allF + 111 — B2l L2(=h,0.D(a0)) T 1K1 = k2llL20,1;m)
+ Lf|z1 — zal| L2 0,7:v) }-

Since .
e1(t) ~ m2(t) = o - 6 + [ (@1(5) = (o)),
we get
|21 — z2|l 220,71y < VT|gh — ¢3] + %Hxl — x2|lwr20,1;H)-
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Hence arguing as in (2.3) we get
(4.2)
l|z1 — 22| L2¢0,1,v) < Collz1 — $2||}4/22(0,T;D(A0))””E1 - 3’2”}4/22(0,T;H)

< Collz1 — 372H1L/22(0,T;D(A0))
x {T*|¢9 — 312 + (\/—)1/2”371 - “72||W1 20,73 H) }
< CoTY*¢ — ¢91M 2|1 — 372||L2(0,T;D(A0))
+ Co(-\%)l/zllwl — Z2||L2(0,7;D(A0))nW12(0,T; H)
< 2774Col¢} — )]

T
+ 200(@)1/2113?1 — Z2||L2(0,T;D(A0))nW 120, T; H)-

Combining (4.1) with (4.2) we obtain

(4.3)
|1 = @2l | L2(=h 7. DA AW r20,1:H) < Ci{l|#] — #5l|F
+ |61 — b5l L2 (=h,0:Dca0)) + 1K1 — K|l L20,710)
+27 4Gy L] g7 — 49|

T
+ QCO(E)UZLHSIH — T2||L2(0,T;D(A0))nW 1 2(0,T; H) } -

Suppose that (¢917¢1117kn) - (¢07 ¢1’ k) in FXLz(—h,O, D(AO))XL2(07
T; H), and let z,, and x be the solutions (RSE) with (¢2, ¢}, k,) and

(¢°, ¢t k) respectively. Let 0 < Ty < T with

2CoC1(T1/V2)*?L < 1.

Then by virtue of (4.3) with T replaced by T}, we see that x, — = in
L*(—=h,Ty; D(Ap))NW12(0,Ty; H). This implies that (z,(T1), (Tn)T,)
— (z(T),z7,) in FxL?(—h,0; D(Ap)). Hence the same argument

shows that z,, — z in

LTy, min{2T}, T}; D(Ap)) N WH2(Ty, min{2Ty, T}; H).
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Repeating this process we conclude that z,, — z in L?(—h, T; D(Ap))N
WL2(0, T; H).
(2] From proposition 2.2 or 2.4 we have
21 — @2l|2n,mvynwrz,rv ey < Cr{lé] — ¢9]
+1l¢1 = dallznovy + I FC21) = FC 22l L2 0,mive)
+[1k1 = kallL2(0,myv+) }
< Ci{l9Y — 5] + o1 — 3ll2(—novy + |lk1 — k2]l L20,mv e
+ Lilz1 — z2l|L2¢0,7:v) }-
Hence, in virtue of (4.2) and since the embedding L?(—h,T; D(A4g)) N

Wbl2(0,T; H) ¢ L*(—h,T;V)n Wh2(0,T;V*) is continuous, by the
similar way of 1) we can obtain the result of 2) [

Theorem 4.2. Assume that Uy # (). Then there exists a time optimal
control for (RSC).

Proof. Let t, — ty + 0, u, be an admissible control and suppose that
the trajectory x, corresponding to u, belongs to W. Let F and B be
the Nemitsky operators corresponding to the maps f and B, which are
defined by

(Fu)(-) = f(-,zu) and (Bu)(-) = Bu('),
respectively. Then

(4.4)
lta) =2(tni 5,0) + | Wtn = )(F + Bpua)(5)ds,

+ [ i W (ty, — s)((F + B)uy)(s)ds,

where o

ot 6,00 = W)+ [ U, (501 (5)ds.
From Proposition 2.4 it follows that
(4.5) z(tn; ¢,0) — z(to; #,0) strongly in H.

18



The third term in (4.4) tends to zero as t,, — tg + 0 from the fact that
(4.6)

tn

| | W(tn = s)((F + B)u,)(s)ds|
to
< (,sup_ IWOILCHIE] + 16! lzz0.r:) + Ilunllzzorin) +17(0)
+ 1Bl 20,77y Htn — to) /2.

By the definition of fundamental solution W (t) we have

W(t+e)—S(eW(t)=S(t+e¢€) + ft+6 S(t+e—s){A1W(s—h)
. 0
+ /_h a(T)AW (s + 7)dr}ds
— S(e){S(#) /St—s){/h (s—h)

0
+ /_h a(T)AsW (s + 7)dr}ds

t+e
= S(t+e—s){AW(s—h)

¢
0
—I—/ a(T)A:W (s + 7)dr}ds
—h
= Kl(t + G,t) + KQ(t + G,t).

Hence, since

W(tn—S) = S(tn —to)W(t0—8)+K1(tn —S,to —-8) —I-Kg(tn —S,t() —-S)
the second term of (4.4) is represented as
(4.7)

to

A S(tn —to)W(to — 8)((F + B)uy,)(s)ds

+ /0 (K (b — 5,10 — 8) + Kot — 5,t0 — 8))(F + B)u)(s)ds
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The second term of the (4.7) tends to zero as n — 0 in terms of Remark1
and Lemma 3.3.

We denote z,,(t,) by wy,. Since W and U,4 are weakly compact, there
exist an ug € Uy, wg € W such that we may assume that w—limu, = u
in Uyq and w — limw,, = wp in L? N W12,

Let p € H. Then S*(t, — to)p — p strongly in H and by (F1) and
Theorem 4.1,

(4.8) W(to — ) ((F + Bun)(-) = W(to — -)((F + B)uo)(-)

weakly L?(0,T;V). Hence from (4.5)-(4.8) it follows that

(w0, p) = ((to; $,0),) + / (W(to — 8)((F + Byuo)(s), p)ds

by tending n — oo. Since p is arbitrary, we have

to

Wo = l‘(to; ¢, 0) + W(t() — 3)((f + B)U())(S)ds ceW
0
and hence wy is the trajectory corresponding to ug, i.e., ug € Ug. O

Now we consider the case where the target set W is singleton.

Consider that W = wy such that ¢° # wy and ¢'(s) # wy for some
s € [—h,0). Then we can choose a decreasing sequence {W,,} of weakly
compact sets with nonempty interior such that

(4.9) wo € ﬂ Wy, and dist(wp, W) = sup |z — wo| — 0(n — oo0).

n=1 zeW,

Define
Uy ={u € Ugq : 2,(t) € W, for some t € [0,T]}.

Then, we may assume that u, is the time optimal control with the
optimal time ¢, to the target set W,,, n =1,2, ...

Theorem 4.3. Let {W,,} be a sequence of closed convex in X satisfy-
ing the condition (4.9) and U} # 0. Then there exists a time optimal
control ug with the optimal time ty = sup,~;{tn} to the point target
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set {wo} which is given by the weak limit of some subsequence of {uy}
in L?(0,tp;Y).

Proof. Since (4.9) is satisfied and U,y is weakly compact, there exists
Wp, = Tp(tn) € Wy, — wp strongly in H. Since U,q is weakly compact,
there exists ug € U,q such that u, — wug weakly in L2(0,ty;Y). Thus,
from the similar argument used in the proof of Theorem 4.2 we can
easily prove that ug is the time optimal control and ¢y is the optimal
time to the target {wo}. O

Remark 2. Let z,, be the solution of (RSC) corresponding to u. Then
the mapping u — z, is compact from L?(0,T;Y) to L?(0,T; H). We
define the solution mapping S from L?(0,T;Y) to L?(0,T; H) by

(Su)(t) = zu(t), w€ L*0,T;Y).
In virtue of Proposition 2.4

1Sull L2 0,m;v )t 20,7 v ) = |lzal] < Co(1 + |6°

+ ||¢1||L2(—h,0;V) + [|ullz20,7;vy)-

Hence if u is bounded in L?(0,7;Y), then so is =, in L%(0,T;V) N
W12(0,T;V*). Since V is compactly embedded in H by assump-
tion, the embedding L?(0,7;V) n WL.2(0,T;V*) c L%(0,T; H)) is
also compact in view of Theorem 2 of Aubin [1]. Hence, the mapping
u + Su =z, is compact from L%(0,T;Y) to L?(0,7T; H).

Since {z,} is bounded in L? N W12 and L2 N W12 c L?(0,T; H)
compactively it holds z,, — z strongly in L?(0,T; H). Since z, — x
weakly in LZNW 2 we have z,, — z strongly in L(0,T; H). From (F1)
and Lemma 3.1 we see that F is a compact operator from L2(0,T;Y)
to L?(0,T; H) and hence, it holds Fu, — Fu strongly in L2(0,T;V*).
Therefore (Fu,,z*) = (Fug, z*).
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