Time Optimal Control Problem of Semilinear Retarded Systems in Hilbert Spaces

힐버트 공간상에서 준선형 지연계의 시간최적제어 문제

Advisor: Jin mun Jeong

by

Chang Bae Kim

in the Department of Applied Mathematics, Graduate School,
Pukyong National University

February 2002

김창배의 이학석사 학위논문을 인준함

2001년 12월 26일

주 심 이학박사 김 도 상

위 원 이학박사 김 태 화

위 원 이학박사 정 진 문

Time Optimal Control Problem of Semilinear Retarded Systems in Hilbert Spaces

A Dissertation

by

Chang Bae Kim

Approved as to style and content by:

Chairman Do Sang Kim

Jae hua lem Member Tae Hwa Kim

Member Jin Mun Jeong

CONTENTS

	ABSTRACT(KOREAN)
1.	Introduction
2.	Retarded Semilinear Equations
3.	Lemmas for Fundamental Solutions
4.	Time Optimal Control for Retarded Systems15
	REFERENCES

할버트 공간상에서 준선형 지연계의 시간초적제어 문제

김 창 배

부경대학교 대학원 응용수학과

요약

본 논문에서는 Hilbert 공간 H 상에서 다음과 같은 준선형 지연계의 포물형 형태의 미분방정식에 의한 시간최적제어 문제를 다루는데 있다.

(RSE)
$$\begin{cases} \frac{dx(t)}{dt} = A_0 x(t) + A_1 x(t-h) + \\ \int_{-h}^{0} a(s) A_2 x(t) ds + f(t, x(t)) + k(t), \\ x(0) = \phi^0, \quad x(s) = \phi^1(s) \quad -h \le s < 0. \end{cases}$$

또 다른 Hilbert 공간 V는 H공간에서 조밀성을 가지며 그의 공액공간을 V^{\bullet} 라 하면 작용소 A_0 는 $V \times V$ 에서 Gårding 부등식을 만족하고 sesquilinear 형태로부터 정의되어 질때 A_0 는 H와 V^{\bullet} 에서 해석적 반군 S(t)를 생성 하므로 (RSE)는 H와 V^{\bullet} 에서 고려되어진다. $A_i(i=1,2)$ 작용소들도 비슷한 성질을 가질 때 먼저 (RSE)의 해의 존재성, 유일성 그리고 정규성을 다루었으며 이러한 성질을 바탕으로 하여 주 작용소 $A_i(i=0,1,2)$ 들이 unbounded 일 때기본해를 구축하여 그 성질을 다루어 (RSE)에서의 시간 최적 문제를 조사하였다.

1. Introduction

Let H be a complex Hilbert space. We assume that another Hilbert space V is embedded in H as a dense subspace and that V has a stronger topology than H. Let V^* be the dual space of V. In this paper we deal with the time optimal control problem governed by the semilinear parabolic type equation in a Hilbert space H as follows.

(RSE)
$$\begin{cases} \frac{d}{dt}x(t) = A_0x(t) + A_1x(t-h) \\ + \int_{-h}^{0} a(s)A_2x(t+s)ds + f(t,x(t)) + k(t), \\ x(0) = \phi^0, \quad x(s) = \phi^1(s) \quad -h \le s < 0. \end{cases}$$

Let A_0 be the operator associated with a bounded sesquilinear form on $V \times V$, satisfies Gårding inequality. Then A_0 generates an analytic semigroup S(t) in both H and V^* and so the equation (RSE) may be considered as an equation in both H and V^* .

Let $(\phi^0, \phi^1) \in H \times L^2(0, T; V)$ and $x(T; \phi, f, u)$ be a solution of the system (RSE) associated with nonlinear term f and control u at time T.

We now define the fundamental solution W(t) of (RSE) by

$$W(t)\phi^0 = \begin{cases} x(t; (\phi^0, 0), 0, 0), & t \ge 0 \\ 0 & t < 0. \end{cases}$$

According to the above definition W(t) is a unique solution of

$$W(t) = S(t) + \int_0^t S(t-s) \{ A_1 W(s-h) + \int_{-h}^0 a(\tau) A_2 W(s+\tau) d\tau \} ds$$

for $t \geq 0$ (cf. Nakagiri [5]). Under the conditions that $a(\cdot) \in L^2(-h, 0; \mathcal{R})$ and $A_i(i=1,2)$ are bounded linear operators on H into itself, Nakagiri in [5] proved the standard optimal control problems and the time optimal control problem for linear retarded system (RSE) in case $f \equiv 0$ in Banach spaces. If $A_i(i=0,1,2):D(A_0)\subset H\to H$ are unbounded operators, Blasio, Kunish and Sinestrari in [2] obtained the global existence and uniqueness of a strict solution for the linear retarded system in Hilbert spaces. Under some general condition of the Lipschitz continuity of nonlinear operator f from $\mathcal{R} \times V$ to H, in [4] they established

the problem for existences and uniqueness of solution of the given system. But we can not immediately obtain the time optimal control problem as in [5; section 8] without the condition for boundedness of the fundamental solution W(t). Since the integral of $A_0S(t-s)$ has a singularity at t=s, we can not solve directly the integral equation of W(t). In [6], Tanabe was investigated the fundamental solution W(t) by constructing the resolvent operators for integrodifferential equations of Volterra type(see (3.14), (3.21) of [6]) under the condition that $a(\cdot)$ is real valued and Hölder continuous on [-h, 0].

This paper deals with the time optimal control problem by using the construction of fundamental solution, which is the same results of [5], in case the principal operators $A_i (i = 0, 1, 2)$ are unbounded operators.

2. RETARDED SEMILINEAR EQUATIONS

The inner product and norm in H are denoted by (\cdot, \cdot) and $|\cdot|$. The notations $||\cdot||$ and $||\cdot||_*$ denote the norms of V and V^* as usual, respectively. Hence we may regard that

$$(2.1) ||u||_* \le |u| \le ||u||, \quad u \in V.$$

Let $a(\cdot, \cdot)$ be a bounded sesquilinear form on $V \times V$, satisfies Gårding's inequality

(2.2) Re
$$a(u, u) \ge c_0 ||u||^2 - c_1 |u|^2$$
, $c_0 > 0$, $c_1 \ge 0$.

Let A_0 be the operator associated with the sesquilinear form $-a(\cdot,\cdot)$:

$$(A_0u,v)=-a(u,v),\quad u,\ v\in V.$$

It follows from (2.2) that for every $u \in V$

$$\operatorname{Re}((c_1 - A_0)u, u) \ge c_0||u||^2$$
.

Then A_0 is a bounded linear operator from V to V^* , and its realization in H which is the restriction of A_0 to

$$D(A_0) = \{u \in V; A_0u \in H\}$$

is also denoted by A_0 . Here, we note that $D(A_0)$ is dense in V. Therefore, it is also dense in H. Then A_0 generates an analytic semigroup in

both H and V^* . Hence we may assume that there exists a constant C_0 such that

$$(2.3) ||u|| \le C_0 ||u||_{D(A_0)}^{1/2} |u|^{1/2}$$

for every $u \in D(A_0)$, where

$$||u||_{D(A_0)} = (|A_0u|^2 + |u|^2)^{1/2}$$

is the graph norm of $D(A_0)$.

First, we introduce the following linear retarded functional differential equation:

(RE)
$$\begin{cases} \frac{d}{dt}x(t) = A_0x(t) + A_1x(t-h) \\ + \int_{-h}^{0} a(s)A_2x(t+s)ds + k(t), \\ x(0) = \phi^0, \quad x(s) = \phi^1(s) \quad -h \le s < 0. \end{cases}$$

Here, the operators A_1 and A_2 are bounded linear from V to V^* such that their restrictions to $D(A_0)$ are bounded linear operators from $D(A_0)$ to H. The function $a(\cdot)$ is assumed to be a real valued and Hölder continuous in the interval [-h, 0].

Let $W(\cdot)$ be the fundamental solution of the linear equation associated with (RE) which is the operator valued function satisfying

(2.4)
$$W(t) = S(t) + \int_0^t S(t-s) \{A_1 W(s-h) + \int_{-h}^0 a(\tau) A_2 W(s+\tau) d\tau \} ds, \quad t > 0,$$
$$W(0) = I, \quad W(s) = 0, \quad -h \le s < 0,$$

where $S(\cdot)$ is the semigroup generated by A_0 . Then

(2.5)
$$x(t) = W(t)\phi^{0} + \int_{-h}^{0} U_{t}(s)\phi^{1}(s)ds + \int_{0}^{t} W(t-s)k(s)ds,$$
$$U_{t}(s) = W(t-s-h)A_{1} + \int_{-h}^{s} W(t-s+\sigma)a(\sigma)A_{2}d\sigma.$$

Recalling the formulation of mild solutions, we know that the mild solution of (RE) is also represented by

$$x(t) = \begin{cases} S(t)\phi^{0} + \int_{0}^{t} S(t-s)\{A_{1}x(s-h) \\ + \int_{-h}^{0} a(\tau)A_{2}x(s+\tau)d\tau + k(s)\}ds, & (t>0), \\ \phi(s), & -h \le s < 0. \end{cases}$$

From Theorem 1 in [6] it follows the following results.

Proposition 2.1. The fundamental solution W(t) to (RE) exists uniquely. The functions $A_0W(t)$ and dW(t)/dt are strongly continuous except at t = nh, n = 0, 1, 2, ..., and the following inequalities hold: for i = 0, 1, 2 and n = 0, 1, 2, ...

$$(2.6) |A_iW(t)| \le C_n/(t-nh),$$

$$(2.7) |dW(t)/dt| \le C_n/(t-nh),$$

$$(2.8) |A_i W(t) A_0^{-1}| \le C_n$$

in (nh, (n+1)h),

for $nh \leq t < t^{'} \leq (n+1)h$. Let ρ be the order of Hölder continuity of $a(\cdot)$. Then for $nh \leq t < t^{'} \leq (n+1)h$ and $0 < \kappa < \rho$

(2.10)
$$|W(t') - W(t)| \le C_{n,\kappa} (t'-t)^{\kappa} (t-nh)^{-\kappa},$$

(2.11)
$$|A_{i}(W(t') - W(t))| \leq C_{n,\kappa}(t' - t)^{\kappa}(t - nh)^{-\kappa - 1},$$

$$|A_{i}(W(t') - W(t))A_{0}^{-1}| \leq C_{n,\kappa}(t' - t)^{\kappa}(t - nh)^{-\kappa},$$

where C_n and $C_{n,\kappa}$ are constants dependent on n and n, κ , respectively, but not on t and t'.

Considering as an equation in V^* we also obtain the same norm estimates of (2.6)-(2.12) in the space V^* . By virtue of Theorem 3.3 of [2] we have the following result for the linear equation (RE).

Proposition 2.2. 1) Let $F = (D(A_0), H)_{\frac{1}{2}, 2}$ where $(D(A_0), H)_{1/2, 2}$ denote the real interpolation space between $D(A_0)$ and H. For $(\phi^0, \phi^1) \in F \times L^2(-h, 0; D(A_0))$ and $k \in L^2(0, T; H)$, T > 0, there exists a unique solution x of (RE) belonging to

$$L^{2}(-h, T; D(A_{0})) \cap W^{1,2}(0, T; H) \subset C([0, T]; F)$$

and satisfying

$$||x||_{L^{2}(-h,T;D(A_{0}))\cap W^{1,2}(0,T;H)} \leq C'_{1}(||\phi^{0}||_{F} + ||\phi^{1}||_{L^{2}(-h,0;D(A_{0}))} + ||k||_{L^{2}(0,T;H)}),$$

where C'_1 is a constant depending on T.

2) Let $(\tilde{\phi}^0, \phi^1) \in H \times L^2(-h, 0; V)$ and $k \in L^2(0, T; V^*), T > 0$. Then there exists a unique solution x of (RE) belonging to

$$L^{2}(-h,T;V) \cap W^{1,2}(0,T;V^{*}) \subset C([0,T];H)$$

and satisfying

$$||x||_{L^{2}(-h,T;V)\cap W^{1,2}(0,T;V^{*})} \leq C'_{1}(|\phi^{0}| + ||\phi^{1}||_{L^{2}(-h,0;V)} + ||k||_{L^{2}(0,T;V^{*})}).$$

In what follows we assume that

$$||W(t)|| \le M, \quad t > 0$$

for the sake of simplicity.

Proposition 2.3. Let $k \in L^2(0,T;H)$ and $x(t) = \int_0^t W(t-s)k(s)ds$. Then there exists a constant C_1' such that for T > 0

$$(2.15) ||x||_{L^2(0,T;D(A_0))} \le C_1'||k||_{L^2(0,T;H)},$$

$$(2.16) ||x||_{L^2(0,T;H)} \le MT||k||_{L^2(0,T;H)},$$

and

$$(2.17) ||x||_{L^2(0,T;V)} \le (C_1'MT)^{\frac{1}{2}}||k||_{L^2(0,T;H)}.$$

Proof. The assertion (2.15) is immediately obtained from Proposition 2.2 for the equation (RE) with $(\phi^0, \phi^1) = (0, 0)$. Since

$$||x||_{L^{2}(0,T;H)}^{2} = \int_{0}^{T} |\int_{0}^{t} W(t-s)k(s)ds|^{2}dt$$

$$\leq M^{2} \int_{0}^{T} (\int_{0}^{t} |k(s)|ds)^{2}dt$$

$$\leq M^{2} \int_{0}^{T} t \int_{0}^{t} |k(s)|^{2}dsdt$$

$$\leq M^{2} \frac{T^{2}}{2} \int_{0}^{T} |k(s)|^{2}ds$$

we have that

$$||x||_{L^2(0,T;H)} \le MT||k||_{L^2(0,T;H)}.$$

From (2.3), (2.15), and (2.16) it follows that

$$||x||_{L^2(0,T;V)} \le (C_1'MT)^{\frac{1}{2}}||k||_{L^2(0,T;H)}.$$

Let f be a nonlinear mapping from $\mathcal{R} \times V$ into H. We assume that for any $x_1, x_2 \in V$ there exists a constant L > 0 such that

(F1)
$$|f(t,x_1) - f(t,x_2)| \le L||x_1 - x_2||,$$

$$(F2) f(t,0) = 0.$$

The following result on (RSE) is obtained from Theorem 2.1 in [4].

Proposition 2.4. Suppose that the assumptions (F1), (F2) are satisfied. Then for any $(\phi^0, \phi^1) \in H \times L^2(-h, 0; V)$ and $k \in L^2(0, T; V^*)$, T > 0, the solution x of (RE) exists and is unique in $L^2(-h, T; V) \cap W^{1,2}(0,T;V^*)$, and there exists a constant C'_2 depending on T such that

$$(2.18) ||x||_{L^{2}(-h,T;V)\cap W^{1,2}(0,T;V^{*})} \leq C'_{2}(1+|\phi^{0}| + ||\phi^{1}||_{L^{2}(-h,0;V)} + ||k||_{L^{2}(0,T;V^{*})}).$$

3. Lemmas for fundamental solutions

For the sake of simplicity we assume that S(t) is uniformly bounded and the following inequalities hold:

(3.1)
$$|S(t)| \le M_0(t \ge 0), |A_0S(t)| \le M_0/t(t > 0),$$
$$|A_0^2S(t)| \le M_0/t^2(t > 0)$$

for some constant $M_0(e.g., [6])$. Let us assume that $a(\cdot)$ is Hölder continuous of order ρ :

$$(3.2) |a(\cdot)| \le H_0, |a(s) - a(\tau)| \le H_1(s - \tau)^{\rho}$$

for some constants H_0, H_1 .

According to Tanabe [6] we set

(3.3)
$$V(t) = \begin{cases} A_0(W(t) - S(t)), & \text{if } t \in (0, h], \\ A_0(W(t) - \int_{nh}^t S(t - s) A_1 W(s - h) ds), \\ & \text{if } t \in (nh, (n+1)h] \quad (n = 0, 1, 2, \dots). \end{cases}$$

For $0 < t \le h$

$$W(t) = S(t) + A_0^{-1}V(t)$$

and from (2.4) and (3.3) the exchange of the order of integration yields

$$W(t) = S(t) + \int_0^t \int_{\tau}^t S(t-s)a(\tau-s)ds A_2 W(\tau)d\tau.$$

Hence,

$$V(t) = V_0(t) + \int_0^t A_0 \int_{\tau}^t S(t-s)a(\tau-s)ds A_2 A_0^{-1} V(\tau)d\tau,$$

where

$$V_0(t) = \int_0^t A_0 \int_{\tau}^t S(t-s)a(\tau-s)ds A_2 S(\tau)d\tau.$$

For $nh \le t \le (n+1)h$ (n = 0, 1, 2, ...) the fundamental solution W(t) is represented by

$$W(t) = S(t) + \int_{h}^{t} S(t-s)A_1W(s-h)ds$$

$$+ \int_{0}^{t-h} \int_{\tau}^{\tau+h} S(t-s)a(\tau-s)dsA_2W(\tau)d\tau$$

$$+ \int_{t-h}^{nh} \int_{\tau}^{t} S(t-s)a(\tau-s)dsA_2W(\tau)d\tau$$

$$+ \int_{nh}^{t} \int_{\tau}^{t} S(t-s)a(\tau-s)dsA_2W(\tau)d\tau.$$

The integral equation to be satisfied by (3.3) is

$$V(t)=V_0(t)+\int_{nh}^t A_0\int_{ au}^t S(t-s)a(au-s)dsA_2A_0^{-1}V(au)d au$$

where

$$V_{0}(t) = A_{0}S(t) + A_{0} \int_{h}^{nh} S(t-s)A_{1}W(s-h)ds$$

$$+ \int_{0}^{t-h} A_{0} \int_{\tau}^{\tau+h} S(t-s)a(\tau-s)dsA_{2}W(\tau)d\tau$$

$$+ \int_{t-h}^{nh} A_{0} \int_{0}^{t} S(t-s)a(\tau-s)dsA_{2}W(\tau)d\tau$$

$$+ \int_{nh}^{t} A_{0} \int_{\tau}^{t} S(t-s)a(\tau-s)dsA_{2} \int_{nh}^{\tau} S(\tau-\sigma)A_{1}W(\sigma-h)d\sigma d\tau.$$

Thus, the integral equation (3.3) can be solved by successive approximation and V(t) is uniformly bounded in [nh, (n+1)h] (e.g. (3.16) and the preceding part of (3.40) in [6]). It is not difficult to show that for n > 1,

$$V(nh+0) \neq V(nh-0)$$
 and $W(nh+0) = W(nh-0)$.

Lemma 3.1. For 0 < s < t and $0 < \alpha < 1$

$$|S(t) - S(s)| \le \frac{M_0}{\alpha} \left(\frac{t-s}{s}\right)^{\alpha},$$

$$(3.5) |A_0S(t) - A_0S(s)| \le M_0(t-s)^{\alpha} s^{-\alpha-1}.$$

Proof. From (3.1) for 0 < s < t

(3.6)
$$|S(t) - S(s)| = |\int_{s}^{t} A_0 S(\tau) d\tau| \le M_0 \log \frac{t}{s}.$$

It is easily seen that for any t > 0 and $0 < \alpha < 1$

$$(3.7) \log(1+t) \le t^{\alpha}/\alpha.$$

Combining (3.7) with (3.6) we get (3.4). For 0 < s < t

(3.8)
$$|A_0S(t) - A_0S(s)| = |\int_s^t A_0^2S(\tau)d\tau| \le M_0(t-s)/ts.$$

Noting that $(t-s)/t \le ((t-s)/t)^{\alpha}$ for $0 < \alpha < 1$, we obtain (3.5) from (3.8). \square

We define the operator $K_1(t',t): H \to H$ by

(3.9)
$$K_1(t',t) = \int_t^{t'} S(t'-s)A_1W(s-h)ds,$$

for $nh \le t < t' < (n+1)h$.

Lemma 3.2. $K_1(t',t)$ is uniformly bounded for 0 < t < t'.

Proof. Let nh < t < (n+1)h, n = 0, 1, 2, ... Then the proof is a consequence of the following estimate

(3.10)

$$\begin{split} &|\int_{nh}^{t} S(t-\xi)A_{1}W(\xi-h)d\xi| \\ &= |\int_{nh}^{t} (S(t-\xi) - S(t-nh))A_{1}W(\xi-h)d\xi| \\ &+ S(t-nh)\int_{nh}^{t} A_{1}W(\xi-h)d\xi| \\ &\leq \int_{nh}^{t} M_{0}\log\frac{t-nh}{t-\xi}\frac{C_{n-1}}{\xi-nh}d\xi + M_{0}C_{n-1} \\ &\leq M_{0}C_{n-1}c_{0} + M_{0}C_{n-1}. \end{split}$$

If t < nh < t' and 0 < t' - t < h, then

(3.11)
$$K_{1}(t',t) = \int_{t}^{nh} S(t'-s)A_{1}W(s-h)ds + \int_{nh}^{t'} S(t'-s)A_{1}W(s-h)ds.$$

The first term of right hand side of (3.11) is

$$\int_{t}^{nh} S(t'-s)A_{1}W(s-h)ds
= \int_{t}^{nh} (S(t'-s) - S(t'-(n-1)h))A_{1}W(s-h)ds
+ S(t'-(n-1)h) \int_{t}^{nh} A_{1}W(s-h)ds.$$

Thus,

$$\left| \int_{t}^{nh} (S(t'-s) - S(t'-(n-1)h)) A_{1}W(s-h) ds \right| \\
\leq M_{0}C_{n-1} \int_{t}^{nh} \log \frac{t'-(n-1)h}{t'-s} \frac{ds}{s-(n-1)h} \\
\leq M_{0}C_{n-1} \int_{(n-1)h}^{t'} \log \frac{t'-(n-1)h}{t'-s} \frac{ds}{s-(n-1)h} \\
= M_{0}C_{n-1} \int_{0}^{1} \log \frac{1}{1-\tau} \frac{d\tau}{\tau}, \\
\left| S(t'-(n-1)h) \int_{t}^{nh} A_{1}W(s-h) ds \right| \leq M_{0}C_{n-1}, \\$$

and hence, it is bounded. The boundedness of the second term of right hand side of (3.11) is obtained from (3.10). \square

Remark 1. Let $K_1^*(t',t)$ be the adjoint of $K_1(t',t)$. Let $x^* \in D(A_0^*)$. Then from the fact that

$$< K_1(t',t)x, x^* > = \int_t^{t'} < S(t'-s)A_1W(s-h)x, x^* > ds$$

= $\int_t^{t'} < x, W^*(s-h)A_1^*S^*(t'-s)x^* > ds$

where A_1^* is the formal adjoint operator of A_1 , we have

$$K_1^*(t',t)x^* = \int_t^{t'} W^*(s-h)A_1^*S^*(t'-s)x^*ds.$$

and if $x^* \in D(A_0^*)$ then

(3.12)
$$\lim_{t' \to t} K_1^*(t', t) = 0$$

in the sense of strong convergence. Since $K_1(t',t)$ is uniformly bounded, so is $K_1^*(t',t)$. From that $D(A_0^*)$ is dense in H, we have (3.12) in H.

We introduce another operator $K_2(t',t): H \to H$ by

$$K_2(t',t) = \int_t^{t'} S(t'-s) \int_{-h}^0 a(\tau) A_2 W(s+\tau) d\tau ds$$

for $0 \le t < t'$.

To obtain the estimate of $K_2(t',t)$ we need the following result.

Lemma 3.3. For $0 \le t < t'$ and t' - t < h, there exists a constant C such that

$$(3.13) |K_2(t',t)| \le C(t'-t).$$

Proof. In [0,h], we transform $K_2(t',t)$ by suitable change of variables and Fubini's theorem as

$$K_2(t',t) = \int_t^{t'} S(t'-s) \int_0^s a(\tau-s) A_2 W(\tau) d\tau ds.$$

From (3.3) it follows

$$\int_{0}^{t} a(\tau - s)A_{i}W(\tau)d\tau = \int_{0}^{t} a(\tau - s)A_{i}A_{0}^{-1}(A_{0}S(\tau) + V(\tau))d\tau$$

$$= \int_{0}^{t} (a(\tau - s) - a(-s))A_{i}A_{0}^{-1}A_{0}S(\tau)d\tau + \int_{0}^{t} a(-s)A_{i}A_{0}^{-1}A_{0}S(\tau)d\tau$$

$$+ \int_{0}^{t} a(\tau - s)A_{i}A_{0}^{-1}V(\tau)d\tau.$$

Noting that

$$\left| \int_0^t (a(\tau - s) - a(-s)) A_i A_0^{-1} A_0 S(\tau) d\tau \right| \le M_0 H_1 |A_i A_0^{-1}| \int_0^t \tau^{\rho - 1} d\tau,$$

we have

$$\left| \int_{0}^{t} a(\tau - s) A_{i} W(\tau) d\tau \right| \leq |A_{i} A_{0}^{-1}| \left(\frac{h^{\rho}}{\rho} M_{0} H_{1} + h H_{0} M_{0} + h H_{0} \left(\sup_{0 \leq t \leq h} |V(t)| \right) \right).$$

Thus the assertion (3.13) holds in [0, h]. In [nh, (n+1)h), we get

$$K_{2}(t',t) = \int_{t}^{t'} S(t'-s) \int_{-h}^{0} a(\tau) A_{2} W(\tau+s) d\tau ds$$
$$= \int_{t}^{t'} S(t'-s) \int_{s-h}^{s} a(\tau-s) A_{2} W(\tau) d\tau ds.$$

If $nh \le t \le s \le t'$ then

(3.14)
$$\int_{s-h}^{s} a(\tau - s) A_2 W(\tau) d\tau$$
$$= \int_{s-h}^{nh} a(\tau - s) A_2 W(\tau) d\tau + \int_{nh}^{s} a(\tau - s) A_2 W(\tau) d\tau.$$

The second term of right hand side (3.14) is bounded in terms of (2.9). The estimate of the first term of right hand side (3.14) is

$$\left| \int_{s-h}^{nh} a(\tau - s) A_2 W(\tau) d\tau \right| = \left| \int_{s-h}^{nh} (a(\tau - s) - a(-h)) A_2 W(\tau) d\tau \right| + a(-h) \int_{s-h}^{nh} A_2 W(\tau) d\tau \right|.$$

Since s > nh, noting that $0 \le \tau - s + h < \tau - (n-1)h$

$$\left| \int_{s-h}^{nh} (a(\tau - s) - a(-h)) A_2 W(\tau) d\tau \right| \\
\leq H_1 |A_2 A_0|^{-1} \int_{s-h}^{nh} (\tau - s + h)^{\rho} (\tau - (n-1)h)^{-1} d\tau \\
\leq H_1 |A_2 A_0|^{-1} \int_{s-h}^{nh} (\tau - (n-1)h)^{\rho-1} d\tau \\
\leq H_1 |A_2 A_0|^{-1} \int_{(n-1)h}^{nh} (\tau - (n-1)h)^{\rho-1} d\tau \leq H_1 |A_2 A_0|^{-1} h^{\rho}.$$

The estimate of the second term of right hand side (3.14) is

$$\left| \int_{nh}^{s} a(\tau - s) A_{2} W(\tau) d\tau \right|
\leq \left| \int_{nh}^{s} (a(\tau - s) - a(nh - s)) A_{2} W(\tau) d\tau \right| + \left| a(nh - s) \int_{nh}^{s} A_{2} W(\tau) d\tau \right|
\leq H_{1} M_{0} |A_{2} A_{0}|^{-1} \int_{nh}^{s} \tau^{\rho - 1} d\tau + H_{0} C_{n - 1}.$$

If t < nh < t' then (n-1)h < t < nh < t' < (n+1)h. First, let t < s < nh, then

$$\int_{s-h}^{s} a(\tau - s) A_{2}W(\tau) d\tau
= \int_{s-h}^{(n-1)h} a(\tau - s) A_{2}W(\tau) d\tau + \int_{(n-1)h}^{s} a(\tau - s) A_{2}W(\tau) d\tau
= \int_{s-h}^{(n-1)h} (a(\tau - s) - a(-h)) A_{2}W(\tau) d\tau
+ a(-h) \int_{s-h}^{(n-1)h} A_{2}W(\tau) d\tau
+ \int_{(n-1)h}^{s} (a(\tau - s) - a((n-1)h - s)) A_{2}W(\tau) d\tau
+ a((n-1)h - s) \int_{(n-1)h}^{s} A_{2}W(\tau) d\tau,$$

in case nh < s < t', we have

$$\int_{s-h}^{s} a(\tau - s) A_2 W(\tau) d\tau
= \int_{s-h}^{nh} a(\tau - s) A_2 W(\tau) d\tau + \int_{nh}^{s} a(\tau - s) A_2 W(\tau) d\tau
= \int_{s-h}^{nh} (a(\tau - s) - a(-h)) A_2 W(\tau) d\tau
+ a(-h) \int_{s-h}^{nh} A_2 W(\tau) d\tau
+ \int_{nh}^{s} (a(\tau - s) - a(nh - s)) A_2 W(\tau) d\tau
+ a(nh - s) \int_{nh}^{s} A_2 W(\tau) d\tau.$$

Therefore, from (3.1), (3.2) and Lemma 3.1 it follows (3.13). \square

4. Time optimal control for retarded systems

Let Y be a real Banach space. In what follows the admissible set U_{ad} be a weakly compact subset in $L^2(0,T;Y)$. Consider the following hereditary controlled system:

(RSC)
$$\begin{cases} \frac{d}{dt}x(t) = A_0x(t) + A_1x(t-h) \\ + \int_{-h}^{0} a(s)A_2x(t+s)ds + f(t,x(t)) + Bu(t), \\ x(0) = \phi^0, \quad x(s) = \phi^1(s) \quad -h \le s < 0, \\ u \in U_{ad}. \end{cases}$$

Here the controller B is a bounded linear operator from Y to H. We denote the solution x(t) in (RSC) by $x_u(t)$ to express the dependence on $u \in U_{ad}$. That is, x_u is a trajectory corresponding to the controll u. Suppose the target set W is weakly compact in H and define

$$U_0 = \{ u \in U_{ad} : x_u(t) \in W \text{ for some } t \in [0, T] \}$$

for T > 0 and suppose that $U_0 \neq \emptyset$. The optimal time is defined by low limit t_0 of t such that $x_u(t) \in W$ for some admissible control u. For

each $u \in U_0$ we can define the first time $\tilde{t}(u)$ such that $x_u(\tilde{t}) \in W$. Our problem is to find a control $\bar{u} \in U_0$ such that

$$\tilde{t}(\bar{u}) \leq \tilde{t}(u)$$
 for all $u \in U_0$

subject to the constraint (RSC).

Since $x_u \in C([0,T]; H)$, the transition time $\tilde{t}(u)$ is well defined for each $u \in U_{ad}$.

Theorem 4.1. 1) Let $F = (D(A_0), H)_{1/2,2}$. If $(\phi^0, \phi^1) \in F \times L^2(-h, 0; D(A_0))$ and $k \in L^2(0, T; H)$, then the solution x of the equation (RSE) belonging to $L^2(-h, T; D(A_0)) \cap W^{1,2}(0, T; H)$, and the mapping $F \times L^2(-h, 0; D(A_0)) \times L^2(0, T; H) \ni (\phi^0, \phi^1, k) \mapsto x \in L^2(-h, T; D(A_0)) \cap W^{1,2}(0, T; H)$ is continuous.

2) If $(\phi^0, \phi^1) \in H \times L^2(-h, 0; V)$ and $k \in L^2(0, T; V^*)$, then the solution x of the equation (RSE) belonging to $L^2(-h, T; V)) \cap W^{1,2}(0, T; V^*)$, and the mapping $H \times L^2(-h, 0; V) \times L^2(0, T; V^*) \ni (\phi^0, \phi^1, k) \mapsto x \in L^2(-h, T; V) \cap W^{1,2}(0, T; V^*)$ is continuous.

Proof. [1] We know that x belongs to $L^2(0,T;D(A_0)) \cap W^{1,2}(0,T;H)$ from Proposition 2.2. Let $(\phi_i^0,\phi_i^1,k_i) \in F \times L^2(-h,0;D(A_0)) \times L^2(0,T;H)$, and x_i be the solution of (RSE) with (ϕ_i^0,ϕ_i^1,k_i) in place of (ϕ^0,ϕ^1,k) for i=1,2. Then in view of Proposition 2.2 we have

$$(4.1)$$

$$||x_{1} - x_{2}||_{L^{2}(-h,T;D(A_{0}))\cap W^{1,2}(0,T;H)} \leq C'_{1}\{||\phi_{1}^{0} - \phi_{2}^{0}||_{F}$$

$$+ ||\phi_{1}^{1} - \phi_{2}^{1}||_{L^{2}(-h,0:D(A_{0}))} + ||f(\cdot,x_{1}) - f(\cdot,x_{2})||_{L^{2}(0,T;H)}$$

$$+ ||k_{1} - k_{2}||_{L^{2}(0,T;H)}\}$$

$$\leq C'_{1}\{||\phi_{1}^{0} - \phi_{2}^{0}||_{F} + ||\phi_{1}^{1} - \phi_{2}^{1}||_{L^{2}(-h,0:D(A_{0}))} + ||k_{1} - k_{2}||_{L^{2}(0,T;H)}$$

$$+ L||x_{1} - x_{2}||_{L^{2}(0,T;V)}\}.$$

Since

$$x_1(t) - x_2(t) = \phi_1^0 - \phi_2^0 + \int_0^t (\dot{x}_1(s) - \dot{x}_2(s)) ds,$$

we get

$$||x_1 - x_2||_{L^2(0,T;H)} \le \sqrt{T}|\phi_0^1 - \phi_2^0| + \frac{T}{\sqrt{2}}||x_1 - x_2||_{W^{1,2}(0,T;H)}.$$

Hence arguing as in (2.3) we get

$$(4.2)$$

$$||x_{1} - x_{2}||_{L^{2}(0,T;V)} \leq C_{0}||x_{1} - x_{2}||_{L^{2}(0,T;D(A_{0}))}^{1/2}||x_{1} - x_{2}||_{L^{2}(0,T;H)}^{1/2}$$

$$\leq C_{0}||x_{1} - x_{2}||_{L^{2}(0,T;D(A_{0}))}^{1/2}$$

$$\times \{T^{1/4}|\phi_{1}^{0} - \phi_{2}^{0}|^{1/2} + (\frac{T}{\sqrt{2}})^{1/2}||x_{1} - x_{2}||_{W^{1,2}(0,T;H)}^{1/2}\}$$

$$\leq C_{0}T^{1/4}|\phi_{1}^{0} - \phi_{2}^{0}|^{1/2}||x_{1} - x_{2}||_{L^{2}(0,T;D(A_{0}))\cap W^{1,2}(0,T;H)}^{1/2}$$

$$+ C_{0}(\frac{T}{\sqrt{2}})^{1/2}||x_{1} - x_{2}||_{L^{2}(0,T;D(A_{0}))\cap W^{1,2}(0,T;H)}^{1/2}$$

$$\leq 2^{-7/4}C_{0}|\phi_{1}^{0} - \phi_{2}^{0}|$$

$$+ 2C_{0}(\frac{T}{\sqrt{2}})^{1/2}||x_{1} - x_{2}||_{L^{2}(0,T;D(A_{0}))\cap W^{1,2}(0,T;H)}^{1/2}.$$

Combining (4.1) with (4.2) we obtain

$$(4.3)$$

$$||x_{1} - x_{2}||_{L^{2}(-h,T;D(A_{0}))\cap W^{1,2}(0,T;H)} \leq C'_{1}\{||\phi_{1}^{0} - \phi_{2}^{0}||_{F}$$

$$+ ||\phi_{1}^{1} - \phi_{2}^{1}||_{L^{2}(-h,0:D(A_{0}))} + ||k_{1} - k_{2}||_{L^{2}(0,T;H)}$$

$$+ 2^{-7/4}C_{0}L|\phi_{1}^{0} - \phi_{2}^{0}|$$

$$+ 2C_{0}(\frac{T}{\sqrt{2}})^{1/2}L||x_{1} - x_{2}||_{L^{2}(0,T;D(A_{0}))\cap W^{1,2}(0,T;H)}\}.$$

Suppose that $(\phi_n^0, \phi_n^1, k_n) \to (\phi^0, \phi^1, k)$ in $F \times L^2(-h, 0; D(A_0)) \times L^2(0, T; H)$, and let x_n and x be the solutions (RSE) with $(\phi_n^0, \phi_n^1, k_n)$ and (ϕ^0, ϕ^1, k) respectively. Let $0 < T_1 \le T$ with

$$2C_0C_1'(T_1/\sqrt{2})^{1/2}L < 1.$$

Then by virtue of (4.3) with T replaced by T_1 , we see that $x_n \to x$ in $L^2(-h, T_1; D(A_0)) \cap W^{1,2}(0, T_1; H)$. This implies that $(x_n(T_1), (x_n)_{T_1}) \mapsto (x(T_1), x_{T_1})$ in $F \times L^2(-h, 0; D(A_0))$. Hence the same argument shows that $x_n \to x$ in

$$L^2(T_1, \min\{2T_1, T\}; D(A_0)) \cap W^{1,2}(T_1, \min\{2T_1, T\}; H).$$

Repeating this process we conclude that $x_n \to x$ in $L^2(-h, T; D(A_0)) \cap W^{1,2}(0, T; H)$.

[2] From proposition 2.2 or 2.4 we have

$$||x_{1} - x_{2}||_{L^{2}(-h,T;V) \cap W^{1,2}(0,T;V^{*})} \leq C'_{1}\{|\phi_{1}^{0} - \phi_{2}^{0}| + ||\phi_{1}^{1} - \phi_{2}^{1}||_{L^{2}(-h,0:V)} + ||f(\cdot,x_{1}) - f(\cdot,x_{2})||_{L^{2}(0,T;V^{*})} + ||k_{1} - k_{2}||_{L^{2}(0,T;V^{*})}\}$$

$$\leq C'_{1}\{|\phi_{1}^{0} - \phi_{2}^{0}| + ||\phi_{1}^{1} - \phi_{2}^{1}||_{L^{2}(-h,0:V)} + ||k_{1} - k_{2}||_{L^{2}(0,T;V^{*})} + L||x_{1} - x_{2}||_{L^{2}(0,T:V)}\}.$$

Hence, in virtue of (4.2) and since the embedding $L^2(-h,T;D(A_0)) \cap W^{1,2}(0,T;H) \subset L^2(-h,T;V) \cap W^{1,2}(0,T;V^*)$ is continuous, by the similar way of 1) we can obtain the result of 2) \square

Theorem 4.2. Assume that $U_0 \neq \emptyset$. Then there exists a time optimal control for (RSC).

Proof. Let $t_n \to t_0 + 0$, u_n be an admissible control and suppose that the trajectory x_n corresponding to u_n belongs to W. Let \mathcal{F} and \mathcal{B} be the Nemitsky operators corresponding to the maps f and B, which are defined by

$$(\mathcal{F}u)(\cdot) = f(\cdot, x_u)$$
 and $(\mathcal{B}u)(\cdot) = \mathcal{B}u(\cdot)$,

respectively. Then

(4.4)
$$x_n(t_n) = x(t_n; \phi, 0) + \int_0^{t_0} W(t_n - s)((\mathcal{F} + \mathcal{B})u_n)(s)ds,$$

$$+ \int_{t_0}^{t_n} W(t_n - s)((\mathcal{F} + \mathcal{B})u_n)(s)ds,$$

where

$$x(t_n; \phi, 0) = W(t_n)\phi^0 + \int_{-h}^0 U_{t_n}(s)\phi^1(s)ds.$$

From Proposition 2.4 it follows that

(4.5)
$$x(t_n; \phi, 0) \to x(t_0; \phi, 0)$$
 strongly in H .

The third term in (4.4) tends to zero as $t_n \to t_0 + 0$ from the fact that

$$\begin{aligned} & \left| \int_{t_0}^{t_n} W(t_n - s)((\mathcal{F} + \mathcal{B})u_n)(s)ds \right| \\ & \leq (\sup_{t \in [0,T]} ||W(t)||) \left\{ LC_2'(|\phi^0| + ||\phi^1||_{L^2(0,T;V)} + ||u_n||_{L^2(0,T;Y)}) + |f(0)| \right. \\ & + ||B||||u||_{L^2(0,T;Y)} \right\} (t_n - t_0)^{1/2}. \end{aligned}$$

By the definition of fundamental solution W(t) we have

$$W(t+\epsilon) - S(\epsilon)W(t) = S(t+\epsilon) + \int_0^{t+\epsilon} S(t+\epsilon-s)\{A_1W(s-h) + \int_{-h}^0 a(\tau)A_2W(s+\tau)d\tau\}ds$$

$$- S(\epsilon)\{S(t) + \int_0^t S(t-s)\{A_1W(s-h) + \int_{-h}^0 a(\tau)A_2W(s+\tau)d\tau\}ds$$

$$= \int_t^{t+\epsilon} S(t+\epsilon-s)\{A_1W(s-h) + \int_{-h}^0 a(\tau)A_2W(s+\tau)d\tau\}ds$$

$$= K_1(t+\epsilon,t) + K_2(t+\epsilon,t).$$

Hence, since

$$W(t_n - s) = S(t_n - t_0)W(t_0 - s) + K_1(t_n - s, t_0 - s) + K_2(t_n - s, t_0 - s)$$

the second term of (4.4) is represented as

$$\int_{0}^{t_{0}} S(t_{n} - t_{0}) W(t_{0} - s) ((\mathcal{F} + \mathcal{B}) u_{n})(s) ds
+ \int_{0}^{t_{0}} (K_{1}(t_{n} - s, t_{0} - s) + K_{2}(t_{n} - s, t_{0} - s)) ((\mathcal{F} + \mathcal{B}) u_{n})(s) ds.$$

The second term of the (4.7) tends to zero as $n \to 0$ in terms of Remark1 and Lemma 3.3.

We denote $x_n(t_n)$ by w_n . Since W and U_{ad} are weakly compact, there exist an $u_0 \in U_0$, $w_0 \in W$ such that we may assume that $w - \lim u_n = u$ in U_{ad} and $w - \lim w_n = w_0$ in $L^2 \cap W^{1,2}$.

Let $p \in H$. Then $S^*(t_n - t_0)p \to p$ strongly in H and by (F1) and Theorem 4.1,

$$(4.8) W(t_0 - \cdot)((\mathcal{F} + \mathcal{B})u_n)(\cdot) \to W(t_0 - \cdot)((\mathcal{F} + \mathcal{B})u_0)(\cdot)$$

weakly $L^2(0,T;V)$. Hence from (4.5)-(4.8) it follows that

$$(w_0, p) = (x(t_0; \phi, 0), p) + \int_0^{t_0} (W(t_0 - s)((\mathcal{F} + \mathcal{B})u_0)(s), p)ds$$

by tending $n \to \infty$. Since p is arbitrary, we have

$$w_0 = x(t_0; \phi, 0) + \int_0^{t_0} W(t_0 - s)((\mathcal{F} + \mathcal{B})u_0)(s)ds \in W$$

and hence w_0 is the trajectory corresponding to u_0 , i.e., $u_0 \in U_0$. \square

Now we consider the case where the target set W is singleton.

Consider that $W = w_0$ such that $\phi^0 \neq w_0$ and $\phi^1(s) \neq w_0$ for some $s \in [-h, 0)$. Then we can choose a decreasing sequence $\{W_n\}$ of weakly compact sets with nonempty interior such that

(4.9)
$$w_0 \in \bigcap_{n=1}^{\infty} W_n$$
, and $\operatorname{dist}(w_0, W) = \sup_{x \in W_n} |x - w_0| \to 0 (n \to \infty)$.

Define

$$U_0^n = \{ u \in U_{ad} : x_u(t) \in W_n \text{ for some } t \in [0, T] \}.$$

Then, we may assume that u_n is the time optimal control with the optimal time t_n to the target set W_n , n = 1, 2, ...

Theorem 4.3. Let $\{W_n\}$ be a sequence of closed convex in X satisfying the condition (4.9) and $U_0^n \neq \emptyset$. Then there exists a time optimal control u_0 with the optimal time $t_0 = \sup_{n>1} \{t_n\}$ to the point target

set $\{w_0\}$ which is given by the weak limit of some subsequence of $\{u_n\}$ in $L^2(0, t_0; Y)$.

Proof. Since (4.9) is satisfied and U_{ad} is weakly compact, there exists $w_n = x_n(t_n) \in W_n \to w_0$ strongly in H. Since U_{ad} is weakly compact, there exists $u_0 \in U_{ad}$ such that $u_n \to u_0$ weakly in $L^2(0, t_0; Y)$. Thus, from the similar argument used in the proof of Theorem 4.2 we can easily prove that u_0 is the time optimal control and t_0 is the optimal time to the target $\{w_0\}$. \square

Remark 2. Let x_u be the solution of (RSC) corresponding to u. Then the mapping $u \mapsto x_u$ is compact from $L^2(0,T;Y)$ to $L^2(0,T;H)$. We define the solution mapping S from $L^2(0,T;Y)$ to $L^2(0,T;H)$ by

$$(Su)(t) = x_u(t), \quad u \in L^2(0, T; Y).$$

In virtue of Proposition 2.4

$$||Su||_{L^{2}(0,T;V)\cap W^{1,2}(0,T;V^{*})} = ||x_{u}|| \le C'_{2}(1+|\phi^{0}| + ||\phi^{1}||_{L^{2}(-h,0;V)} + ||u||_{L^{2}(0,T;Y)}).$$

Hence if u is bounded in $L^2(0,T;Y)$, then so is x_u in $L^2(0,T;V) \cap W^{1,2}(0,T;V^*)$. Since V is compactly embedded in H by assumption, the embedding $L^2(0,T;V) \cap W^{1,2}(0,T;V^*) \subset L^2(0,T;H)$ is also compact in view of Theorem 2 of Aubin [1]. Hence, the mapping $u \mapsto Su = x_u$ is compact from $L^2(0,T;Y)$ to $L^2(0,T;H)$. Since $\{x_n\}$ is bounded in $L^2 \cap W^{1,2}$ and $L^2 \cap W^{1,2} \subset L^2(0,T;H)$

Since $\{x_n\}$ is bounded in $L^2 \cap W^{1,2}$ and $L^2 \cap W^{1,2} \subset L^2(0,T;H)$ compactively it holds $x_n \to x$ strongly in $L^2(0,T;H)$. Since $x_n \to x$ weakly in $L^2 \cap W^{1,2}$ we have $x_n \to x$ strongly in $L^2(0,T;H)$. From (F1) and Lemma 3.1 we see that \mathcal{F} is a compact operator from $L^2(0,T;Y)$ to $L^2(0,T;H)$ and hence, it holds $\mathcal{F}u_n \to \mathcal{F}u$ strongly in $L^2(0,T;V^*)$. Therefore $(\mathcal{F}u_n,x^*)=(\mathcal{F}u_0,x^*)$.

REFERENCES

- 1. J. P. Aubin, Un thèorème de compasité, C. R. Acad. Sci. 256 (1963), 5042-5044.
- G. Di Blasio, K. Kunisch and E. Sinestrari, L²-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), 38-57.
- 3. J. M. Jeong, Retarded functional differential equations with L¹-valued controller, Funkcialaj Ekvacioj **36** (1993), 71-93.
- 4. J. Y. Park, J. M. Jeong and Y. C. Kwun, Regularity and controllability for semilinear control system, Indian J. pure appl. Math. 29(3) (1998), 239-252.
- 5. S. Nakagiri, Optimal control of linear retarded systems in Banach spaces, J. Math. Anal. Appl. 120(1) (1986), 169-210.
- 6. H. Tanabe, Fundamental solutions for linear retarded functional differential equations in Banach space, Funkcialaj Ekvacioj 35(1) (1992), 149-177.