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1. INTRODUCTION

Let X be a Banach space. In this paper we deal with the time optimal
initial function problem governed by linear parabolic type equation in
X as follows

(REC) + f_ Oh als)Aex(t + s)ds + f(t), £ >0

z(0) = ¢°, 2(s)=¢'(s) —h<s<O,
¢ = (¢07¢]) S Uad-

Let the admissible set U,y be assumed to be weakly compact in
X x LP(0,T; D(Ap))(1 < p < 00).

Let (¢% ¢') € X x LP(0,T; D(Ap)) and z(t; ¢) be a solution of the
system (REC) associated with initial function ¢ € U,4 at time ¢. Sup-
pose the target set W is weakly compact in X and define

Up={¢€Us:z(t;¢) € W for some t < [0,T]}

for T > 0 and suppose that Uy # . The our problem is to find a initial
function g € Uy such that

t(g) < i(¢) for all ¢ € U,

subject to the constraint (REC). We assume that Ap is a densely closed
linear operator which generates an analytic semigroup S(t) in X, and

A, and A, are closed linear operators with domains D(4,) and D{A;)
containing the domain D{A).

There exist many literatures which studies optimal control problems
of control systems in Banach spaces. However, most studies have been
devoted to the systems without delay and the papers treating the opti-
mal initial functions for the retarded system with unbounded operators
are not so many.

Under the conditions a{-) € L?(—h,0; R) and 4,(i = 1, 2) are bounded
linear operators on Banach space X into itself, S. Nakariri in [5] proved
the existence, uniqueness, and a variation of constant formular for mild
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solutions as given the initial data (¢°,¢') € X x L2(0,T;X) and in-
vestigated the standard optimal control preplems and the time optimal
control problem for linear retarded system (REC). If X is a Hilbert
space and A;(: = 0,1,2) : D(Ag) © X — H are unbounded operators,
Di Blasio, Kunish and Sinestrari in [2] obtained L2-regularity, global
existence and uniqueness of the strict solution for linear retarded sys-
tem in Hilbert spaces. Moreover, let X be (-convex, that is, the Hilbert
transform is bounded from L?(0,00; X)(1 < p < o) to itself. Then,
Dore and Venni as in [3] obtained the L”-regurarity for the initial value
problem (REC).

The main problem is the construction of the fundamental solution
W(t) in case A;(¢ = 1,2,3) are unbounded, which is defined by

e EEH(@%0), t>0
I/I(t)—{() t < Q.

The fundamental solution W (¢) is transformed to the integral equa-
tion

t S(t—s){AW(s — h)+ fo a(T)As W (s + 7)d7}ds

—h

Wit) = S(t) +/

0

for t > 0. (cf. Nakagiri [6]).

In [7], H. Tanabe investigated the fundamental solution W(t) by
constructing the resolvent operators for integrodifferential equations of
Volterra type (see (3.14), (3.21) of [7]) with the condition that a(-) is

real valued and Hoélder continuous on {—£, 0].
This paper deals with the time optimal initial function problem by

using the construction of fundamental solution in case where the prin-
cipal operators A;(i = 0,1,2) are unbounded operators. Maximum
principle and bang-bang prineiple for the time optimal initial function
are also given.



2. FUNCTIONAL DIFFERENTIAL EQUATIONS WITH TIME DELAY

Let X be a complex Banach space with norm |- |. We assume that
the principal operator Ay : D(A4p) € X — X is a densely defined closed
and unbounded linear operator which generates an analytic semigroup
S(t) in X. D(Ay) will be regarded as a Banach space with the graph
norm ||xllpagy = |z| + |Apz|. A;(i = 1,2) are closed linear operators
with domains D(A;) containing the domain D(Ag) of Ay.

The state space M, = X x L*(—h,0; D(Ag)) of the equation (REC)
is the Banach space with the norm

0
(18" + f g (8)]Pds) 7, i 1< p < o0,
—h

9% + 119", if p = o0

(2.1) llgllar, =

for every g = (4%, ¢') ¢ M. Since X is reflexive and 1 < p < oo,
the adjoint space (M,)" of M, is identified with the product space
X" % Ly (—h,0; D(Ap)*) via the duality pairing

0

<o f>m=<g",f"> +/ < g'(s), f*(s) > DiAg) 48

~h
for every g = (¢°,¢") € M, and f = (f°, f') € (M,)" where < -, >
denote the duality pairing between X and X*. First, we introduce the
following linear retarded functional differential equation:

r %m(t) = Aoz (t) + Arx(t — h)
(RE) < 1 ]‘0 a(s)Aqx(t + s)ds + f(t),
—h

z(0) =¢%, xz(s) =0 s) —h<s<0

for every ¢ € M. The function a(-) is assumed to be a real valued and
Hoélder continous in the interval [—£,0).

Recalling the formulation of mild solutions, we know that the mild
solution of (RE) is also represented by

t
S(t)6° + / S(t— s){Ayz(s — h)

z(t) = +[Ua T)Apa(s + )ds + f(s)}ds, (¢ > 0),

d(s), —h<s<O.



Let W(-) be the fundamental solution of the linear equaton associ-
ated with (RE) which is the operator valued function satisfying

(2.2) W(t) = S(t) + ft S(t— s){AW(s — k)

0
+ / a(T)A W (s + 7)dr}ds, >0,
—h
W(0)=1, Wi(s)=0, —-h<s<0,

where S(-) is the semigroup generated by Ay. Then

(2.3)

w(t) = W(t)e® + /

—h

Ur(s)¢' (s)ds + /t W(t - s)f(s)ds,
Ui(s) =W(t —s—h)A; + /3 W(t— s+ o)a(c)Asds.
—h

From Theorem 1 in [7] it follows the following results.

Proposition 2.1. The fundamental solution W (t) of (RE) exists uniquely.
The functions AgW (1) and dW (¢)/dt are strongly continuous except at
t=mnh, h=0,1,2, .., and the following inequalities hold:

fori=0,1,2 andn=10,1,2, ...

(2.4) AW ()] < Cp/(t — nh),
(2.5) |dW(t)/dt| < C,, /(¥ — nh),
(2.6) [AW (A, < Cn

in (nh, (n+ 1)h),
(2.7) | / : AW (ryir| <,

formh < i<+t < (n+1)h. Let p be the order of Holder continuity of
a(-). Then fornh <t <t <(n-+ Dhand 0 < x < p
(28) W) - W) < Couelt’ =)t = k)",
(29)  JAWE) = W) < Conlt’ — 05t —nh)™ "7,
(2.10)
|4 (W) = WENAGH < Cronlt ~ 5 — nh) ",
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where C,, and C, ,. are constants depending on n and n, k, respectively,
but not on ¢ and t .

Let ¢ = (¢°,¢') € X x L?(—h,0; D(Ay)) and z(T'; ¢, f) be a solution
of the system (RE) associated with forcing term f at time T. By virue
of Proposition 2.1 we have immediately the following result in Banach
space X .

Proposition 2.2. Let (¢°,¢') € M, and f € L?(0,T;X) for 1 < p <
oo and T > 0. Then there exists a solution = of (RE) satisfying that
x(-, ¢, f) Is strongly continuous on [0,00), i.e.,

‘E(ﬂb,f) € C([U,OO),X),

and there exists a constant Cq such that

|zt &, F)l < Crllldllm, + Flizeo,rix))-
If X is a Hilbert space then as in [2] we can derive L2-regurarity for

retarded equation (RE) in the highest-order derivative as follows.

Proposition 2.3. 1) Let F = (D(Ao), X)1 o where (D(Ao), X )i/2,2
denote the real interpolation space between D(Ap) and X. For (¢°, ¢')
eF x L*(—h,0; D(Ap)) and f € L*(0,T;X), T > 0, there exists a
unique solution = of (RE) belonging to

L*(—h,T; D(Ap)) NWH2(0,T; X) < €([0,T); F)
and satisfving

(2.11) 1zl L2¢—n 7D (a0 w207 x) < Cr({1¢°1] P
+ ot

|L2(0,750(40)) + |1 fllz20,7:%)
where C7 is a constant depending on T

Moreover, let X be (-convex, that is, there exists a real valued func-
tion { on X x X having the properties

({z,-) and ¢(-,y) are convex for all z, y € X,

z,y) = (ly, z),

Cle,y) < lz+yll 3 ]zl <1<yl

C('a ) > 0.
Then, with the aid of the maximal regularity result by G. Dore and

A. Venni [3] we can obtain the regularity for the initial value problem
(RE) in [4] as follows.



Proposition 2.4. Let us assume that there exists a constants C > 0
stuch that

1A%l < Ce™ 02 < 2
for every s € R. Let I' = (D{Ay),X)1/pp(l < p < o0). Then for
¢ € F < LP(—h,0;D(Ag)) and f ¢ LP(0,T;X), T > 0, there exists a
unique solution z of (RE) belonging to

LP(—h, Ty D(Ag)) NWH2(0,T; X)  C((0,7]; F)
and satisfying

|zl Lo (—n, 7 Do) w e x) < C1(||¢°]]F

+ 16 1o 0,000y + IF | Leo.m.300);

where C is a constant depending on T.



3. TIME OPTIMAL INITIAL FUNCTION
Let the admissible set U,y © M,(1 < p < o0) be assumed to be
weakly compact, that is,

Usg = Upy x Uly, U2, C X and UL, ¢ LP(—h,0; D(Ap))

and U2,, UL, are weakly compact in X and LP(—h,0, D(Ay)), respec-
tively. Consider the following hereditary controllied system:

d
dt

0
(REC) +/ a(s)Asz(t + s)ds+ f(t), t >0

—h

z(0) = ¢°, =z(s) =@(s) —h<s<0,
(b = (¢07 ¢1) c Uad-

We denote the solution of (REC) by x4(t) to express the dependence on
¢ € Uaq. That is, x4 is trajectory corresponding to the initial function
@. Suppose the target set W is weakly compact in X and define

Uy = {¢ € Usa : z(t) € W for some t € [0,7T]}

for T' > 0 and suppose that Uy # (. The optimal time is defined by low
limit, g of ¢ such that x4(¢) € W for some admissible initial function ¢.
For each ¢ € Uy we can define the first time #(¢) such that z4(f) € W.
The our problem is to find a initial function g € Uy such that

t(g) < t(¢) for all ¢ € Uy

subject to the constraint (REC). )
since z4 € C([0,T]; X), the transition time (¢) is well defined for each
¢ € Uad-

Theorem 3.1. Assume that Uy £ 0. Then for f € LP{(0,T;X) there
exists a time optimal initial function subject to constraint (REC).

We will prove this theorem in the following sections.
Next we consider the maximal principle and bang-bang principle for
time optimal initial functions as follows.



The structural operator F' is defined by

(3.1)
Fg=([Fg]’,[Fq]"),
[Fgl° =¢°,

(o' = Fig'(s) = Aig (~h —5) + ] () Aag' (7 - s)dr

for g = (g%, ¢%) ¢ M,. It is easy to see that

(3.2)
Ero = ([F¢]°, [F ¢]"),
[Fr¢]® = ¢,

[F* @) (s) = Frol(s) = AjoH(—h — ) + /Sh a(T)Asp (T — s)dr

With the aid of suitable changes of variables and Fubini’s theorem we

obtain
0 0

Ui(s)p'(s)ds = Wt + s)[F)*(s)ds,

—h —h

and hence, in virtue of (2.3) the mild solution z,(f) is represented by

(3.3) z4(t) = W(t)e" +/ T/V(t—ks)[Fqﬁ]l(s)ds-i—/[;l Wit —s)f(s)ds,

—h

Theorem 3.2. Let W be convex, closed and nonempty interior and g
be a time optimal initial function subject to constraint (REC) with its
optimal time tg. Then there exists a nonzero z* € X* such that

(3.4) max < ¢, F*p >Mp:< g,F*p >Mp
¢‘€Uad

where p € (M,)* satisfying

PP =W"(ta)z", p'(s) =Wty +s)a* sc [—h,0).

Proof. Let us define the reachable set R(ty) by

Rty)={yeX:y= z4(to) for some ¢ € U,4}.



g

If there exists y € (Int W) N R(y) then we have a initial function ¢ €
Uqq satisfying z4(fo) € Int W. Thus, there exists t; < ty such that
x4(t1) € W, which contradicts that t¢ is an optimal time. Thus we have
(Int W) N R(ty) — §. Since W is closed and convex, W = Cl(Int W).
Therefore, by the separating hyperplane theorem and by continuity,
there exists a nonzero * € X* such that

(3.5) sup <y’ >< inf <y, 2" ><< xy(to), 2" > .
Y€ R(to) yew

By the form of the trajectories, the inequality (3.5) is reduced to

0
sup < Wi(ty)¢° +f Wity -+ s)[F¢)' (s)ds,z* >
ISl Ep —h
0
<< Wity)g” + Wity + s)[Fgl*(s)ds,x* > .

—h

It is equivalent to the fact that

0
4)31;[}) {< ", W*(to)z* > +f < oMs), [F"W (tg + ) z*|*(s) >Dp(ay) ds
Claqg —h

0

<< g%, W(to)z" > +] < g (8), [F"W(to + )"z ' (s) >p(ay) ds.
—h

Hence, from the duality pairing between M, and (M,)*, (3.4) fol-
lows. O

Proposition 3.1. If A, : D(Ag) — X Is an isomorphism, then F :
M, - X x L,(—h,0; X) is an isomorphism.

Proof. For f = (f°, f') € X x Ly(—h,0; X) the element g € Z satisfying
¢° = f% and

g (—=h—3s)+ fh a(T)A T Aagi (T — s)dT = A ' (s)

is the unique solution of F'g = f. The integral equation mentioned
above is of Volterra type, and so it can be solved by successive approx-
imation method. [

The following result is obtained from Lemma 5.1 in [6].
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Lemma 3.1. Let f € L?(0,T;X), 1 < p < cc. If
t
] Wit —s)f(s)ds =0, 0<t<T,
0

then f(t) =0 ae 0<t <T.

Theorem 3.3. Let A; be an isomorphism and f = 0. Then the solu-
tion xy(t) is identically zero on a positive measure containing zero in
[—h,T] for T' > h if and only if " = 0 and ¢' = 0.

Proof. With the change of variable and Fubini’s theorem we obtain

[ (;Ut(s)gzﬁl(s)ds

= /0 Wt —s— h)Aj¢'(s)ds

—h

+f { ) Wi(t-s +T)(L(T)A2d7)¢1(s)ds

—h J-—-h

0
— f W(t+ $){Aix noy(s)p'(=h — s)

—h

+ fs a(T) A () (7 - s)dr}ds

—h

= /0 W(t+ s)F ¢ (s)ds.
—h

Thus the mild solution x4(t) is represented hy

z(t) = W(t)e? 4 i W(t+ s)Fy¢(s)ds.

—h

Thus, we have that z(0) = W(0)¢” = ¢° = 0 in X. Because that A4; is
an isomorphism and, we obtain that F} is isomorphism from Proposition
3.1. Therefore from Lemma 3.1 z,(¢) = 0 if and only if ¢* = 0 and
Pt =0. O

From Theorem 3.2 the following bang-bang principle follows imme-
diately.
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Corollary 3.1. Let A; be one to one mapping and W(ty)g® # 0.
Then the time optimal initial function g is a bang-bang control, i.e,
g = (g%, g1) satisfies

(3.6) g° €U, and g'cdUl,

where 0U?D, and OU), denote the boundary of U, and 8U,, respec-
tively.

Proof. On account of Theorem 3.2, it is sufficient to show (3.6) that
PP =WH(to)x™ #0, Frpl(s) = FfW*({ly+s)z” A0 se[—h,0).

Noting z* # 0, by proposition 3.1 and Lemma 3.1, (3.6) follows. [

Now we consider the case where the target set W is singleton.
Consider that W = wy. Then we can choose a decreasing sequence
{W,} of weakly compact sets with nonempty interior such that

(3.7) wg € ﬂ Wy, and dist(wg, W) = sup |z — wy| - 0(n — o).

- W
n=1 & Wn

Define
Uy = {g € Uga : 24(t) € W, for some t € [0,77]}.

Then, we may assume that g, is the time optimal initial function with
the optimal time ¢,, to the target set W,,, n = 1,2, ... .

Theorem 3.4, Let {W,,} be a sequence of closed convex subsets of X
satisfying the condition (3.7) and U} = 0. Then there exists a time
optimal initial function gy with the optimal time ¢, = sup,>;{t.} to
the point target set {wo} which is given by the weak limit of some
subsequence of {g,} in M,.

Proof. Since (3.7} is satisfied and U, is weakly compact, there exists
w,, = xpltn) € W, — wy strongly in H. Since U, 4 is weakly compact,
there exists go € Uaq such that g, ~» go weakly in M. Thus, from the
similar argument used in the proof of Theorem 3.1 we can easily prove
that gq is the time optimal initial function and i is the optimal time
to the target {wp}. [J



4. PREPARATIONS FOR THE PROOF OF MAIN RESULTS

In what follows we assume that
W) <M, >0

for the sake of simplicity. We also assume that S(t) is uniformly
bounded. Then

(4.1) IS < Mo(t > 0), |AcS(F)| < My/t(t > 0),
|AZS ()| < K/t3(t > 0)

for some constant My (e.g., [7]). Let us assume that a(-) is Hélder
continuous of order p:

(4.2) a()| < Ho,  a(s) —alr)| < Hi(s = 7)°
for some constants Hy, H;. Set

4.3 ., = Apg'(s)].
(4.3) g™ || Sgl[rgagf[)]} 0g ()]

According to Tanabe [7] we set
AW () - S@), e (0,4]
(4.4) Vi(t) = ’ .
Ag(W(t) — | S(t— &) AW(s — h)ds),

nh

where t € (nh,(n + 1)h](n = 1,2, ... ) in the second line of the right
term of (4.4). For 0 <t < h

W(t) = S(t)+ Ay 'V (1)
and from (4.4) we have

W(t) = S(t) + ] t / 'S(t— s)alr — s)ds AW (T

Hence,

t t
V) =V(t) + / AO/ St — s)alr — S)dSAQAJ]V(T)dT
0 T
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where
f Agf S{t — s)a{r — s)dsA,S(1)dr.

For nhA <t < (n+1)h(n =0,1,2, ... ) the fundamental solution W (¢t)
1s represented by

W(t) =S(t) + ft S{t — s)A,W (s — h)ds

/f hf a(t — )ds AW (7)dr
J( hu/

St — s)a(r — s)dsA W (7T)dr

n
" [n; [ S(t = s)a(r — s)ds Az W (r)dr.

The integral equation to be satisfied by (4.4) is
V() = f Ao / S(t — s)a(r — s)dsAs A, 'V (r)dr
where
nh
Volt) = AoS(E) -+ Ay / S(t — $)AW (s — R)ds
h
t—-h T+h
+ f AO] S(t - s)a(r — s)dsA W (7)dr
0 T
nh t
+ / Ay / S(t — s)a(r — s)dsA; W (T)dr
t—h 0
t |4 T
+ / AO/ S(t - s)a(r — S)dSAQ/ S(r—o)AiW (o — h)dadr.
nh T nh

Thus, the integral equation (4.4) can be solved by successive approxi-
mation and V() is uniformly bounded in [nh, (n+1)h] (e.g. (3.16) and
the preceding part of (3.40) in [7]). It is not difficult to show that for
> 1,

Vinh+0) #V(nh-0), and W{nh+0)=W(nh-0).
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Lemma 4.1. ForO0< s<tand 0 < a<1,

(15) S() — S(s)] < =22y,
(4.6) 1A6S(1) — AoS(s)| < Mo(t — 5)*s~* 1.

Proof. 1t follows from (3.1) that for 0 < s < ¢,

(4.7) 1S(t) — S(s)| = / AOS(T)dTl < Mylog 2

It is easily seen that for any £ > 0 and 0 < a < 1,
(4.8) log(1+t) < t%/e.

Combining (4.8) with (4.7) we get (4.5). For 0 < s < ¢,

(4.9) |AgS(t) — AgS(s)| = /t A%S(T)d?“ < My(t — 8)/ts.

Noting that (t —s)/s < ((t —s)/s)* for 0 < & < 1, we obtain (4.6) from
(4.9). O

We define the operator K;(¢',¢) : X — X by
t’
(4.10) K (', t) = [ St — s)A1W (s — h)ds,
t

for nh <t <t' <(n+1)h

Lemma 4.2. Let nh <t < (n+1)h,n=20, .... Then

'K] (t nh)| § A’.[UCH_1CU + AJOC,L__]

/1 1 do
co = log —
0 l—0c o

where




Proof. The proof is a consequence of the following estimate

i

S0 W - n)

*}/nh (t — &) = S(t — nh)) A, W (€ — h)de

t

+S(t - nh)/ AW (e - h)dg}
nh
t
< [ Mylog L Cnt e apoc

nh bt—-f‘f—nh
S ]\/IOC'.,L,lco -+ MoCnfl. O

In terms of Lemma 4.2 K(t',t) is uniformly bounded in (nh, (n +
1)h]. And we remark that K,(#,t) converges to 0 as ' — ¢ at any
element of D(Ap) in virtue of (2.6).

We introduce another operator Ky(#',t) : X — X by

(4.11) Kyt t) = ft S(t' — s) /0 a(T)AsW (s + 7)drds,
t —h

fornh <t <t < (n+1)h
To obtain the estimate of K5(¢',t) we obtain the following result.

Lemma 4.3. There exists a constant C!, > 0 such that

t
{4.12) f a(T — S)AiW'(T)dT’ <, i=12,

h

forn=0,1,2, .., t € [nh,(n+ 1)k} and t < s <t+h.
Proof. It follows from (3.4) that for ¢ € [0, 2](i.e.,n = 0)

/o a(rT — s)A,W(7r)dr = /0 a(r — S)AiAal(AQS(T) + V{(r))dr

_ / (a(7 — 5) — a(—5)) A Ay AeS(r)dr + a(—s)A; AT (S(E) — )

0

¢
+ / alt — s)Az—AalV(T)dT

J
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Noting that

]fot(a(»r —8) — a(—s))A,-AglAOS(T)dT‘ < MogH,|4;: A /Ot *ldr,
we have

{
If a(T — s)AiIV(T)dT‘ g\AiAgH{hPMOHl + Ho(M + 1)
0

+ hHo(Oiltlgh VD)

Thus the assertion (4.12) holds in [0, k]. For ¢ € [nh, (n+ 1)k}, n > 1,
(4.13)

f: a{t — ) AW (7)dr = /t alT — 5)A; AV (1)dr

h nh

+ /nha(r — 5)A; fn S(r — £)A,W (£ — h)dedr.

h

The first term of the right of (4.13) is estimated as

I/ SAAGIV (F)dr| < hHOl AT sup V(D))
rth

nh<t<(n+l)h
Let o = (7 + nh)/2 for nh < 7 < (n + 1}h. Then
(4.14)

0 [ str - awie - ma

nhk
< / AoS(r — ENAIW(E — h) — AW (T — R)de

+ (S((r —nh)/2) — AW (T — h)

(A8 - oSt - AW E - Wt

+ ApS(T — nh) /" AW (€ — h)dE

nh
Cn —1

T —nh

/ MO Co1nlT — O (& —nh) " 1de + (My + 1)

[o Mg(£ —nh) C, i MyC,,_,
- Jnh (T 6)(T - ’Lh) 6 —nh T —nh
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= MoCh-1n ] (7 )N nh) "dE—2

nkh
2My + 1D, MyC,,_
+ ( Q ) 1 + 0 1
T —nh T —nh
= {Zf\ffocnflzﬁB(K,, 1 I‘i) + (2M0 + 1+ Mg log Z)Cn_] }/(T — nh)

= ;,ﬁ /(T — nh)
where B(-,-) is the Beta function. Note that
d T

dT nh

T —nh

log 2

T

S(r—&) MW(E—h)dE = AW (7 h)+Ag f Slr=€) AW (E-h)ds.

Integrating this equality on [nh,t] and by Lemma 3.1 and the induction
hypothesis

(4.15)
] Ao / S(r — )M W(E — h)dedr
nh nh

t t
- f S(t— &)AW(E - h)dE — f AW (7 — h)dr.
n nh

h
Thus, by Lemma 4.2, the induction hypothesis and combining the above
inequality with (2.9) we get
t T
(416) ! A() S(T — S)AiI/V(S - h)deTI S (]\4'()60 -+ ]\/fo + l)Cn,].

nh nh

Therefore, from (4.14), (4.16) the second term of the right of (4.13) is
estimated as

fn;a(T Yy /nh S(r = AW (€ ~ h)dedr

/' {a(T — s) —a(s — nh)}A; /’ S(r — ) A, W(& — h)dédr

+ a(s — nh) /ﬂ ; A /ﬂ h S(r— ) AW (€ h)dng’

-t

< | Hi(r —nh)P|AASNC, (7 — nh) Ydr

nh

+ lals — nh)||Ai Ay H(Moco + My + 1)C, 4
< H1C,, JAAG (t — nh)? + Hol A A5 |(Meo + M+ 1)Ch .
Hence, we get the assertion (4.12). I



18

Lemma 4.4. Let nh <t <t < (n+1)h. Then there exists a constant
C}, such that

-7

(4.17) |[Ko(t',t)| < 3MCL{t —t).

Proof. In [0, k], we transform K, (¢',t) by suitable change of variables
and Fubini’s theorem as

Kyt t) = [ St — @)/ a(t — s) AW (r)drds

0
t ot
= / / St — s)a(t — 8)AsW (7)dsdr
0 Ji
t ot
+[ f S(t" — s)a{r — s)A W (r)dsdr
t T
t' i
= / St — s)/ a(t — s)AsW(r)drds
t 0
t/ s
+ f St — a)] a7 — s) AW (T )drds.
t ‘
Thus from Lemma 4.3 we have
|Ko(t', 1) < 2MoCy, (£ — ).
In [nh, (n + 1)h), by the similar way mentioned above we get

t! 0
Kq(t', 1) = f St — 5)f a(T)A W (T + s)drds
t —h

I

— ]tt S(t' - s) /:h a(r — s) AW (T)drds
- f o ]t TS Sl 8) AW (r)dsdr
. /tf_h [ U S syalr - $)AsW(r)dsdr

,

ot pt
- / / S(t' - s)alr — 8) A, W(7)dsdr
1 T

.
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t t'—h
= [ St~ s)/ a{t — s)As W (7)d7ds
t s—h

-t t
+ / St — 5)/ a(t — s) AW (r)drds
t it --h

4 /t ' St s) [ Calr — 8) AW (r)drds.

Therefore, by Lemma 4.1 it holds (4.17) [



5. THE PROOF OF MAIN THEOREM

Throughout this section we will prove Theorem 3.1. Let t,, — 5+ 0
and g, be an admissible initial function. Suppose that the trajectory
Iy corresponding to g, belongs to W. Then

0

(5.1) T (tn) =W (t) g0 +/ W (t, + s)Fig}(s)ds

—h

tn
+ / W (i, — 5)f(s)ds
Lo
to
+ / W(t,, — s)f(s)ds.
0
By the definition of fundamental solution W (¢) it holds
t4e
W(t+e)— Se)W(t) =S +¢)+ / Sit+e—s){AW(s—h)
0

0

+/ a(t)AsW (s + 7)dr}ds
—h

t

_ S(a{SH) + fo S(t — $){ A, W(s — h)

+ fﬂh a(T)AsW (s + 7)d7}ds
[ St e W — 1)

t

0
—i—] a(T) AW (s + 7)dr}ds
—h

= Ki(t +e¢,t) + Kot + €,¢).
Hence, since
W(t,) = Sty — to)W(to) + K1{tn, to) + Kot to),
for z* € X* we have
(5.2} < W(t,)gs,x" > =< Witg)g2, §*(t, — to)z" >
+ < Kyt to)g, ™ >
+ < I{Q(t'n,:t())gv(')ux* >
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The first term of right hand side of (5.2) tends to < W {ty)g®,z* >
because of the strong continuity of §*(#,, — ty) in X™*. The second and

third terms in (5.2) tends to zero as t,, — £, +0 from in terms of Lemma
4.2, 4.4. Noting that

I’V(tﬂ + S) = S(tn — tg)VV(f() -} S) + K, (in +s,t0+ S) + Ko (tn + 8,10+ S),
the second term of (5.1) is represented as
(5

3)
0
/ St — o)W lta + 5)Figl (s)ds

0
+ / {K1(tn + 8,80 + 8) + Ko(t, + 5,0 + 8)} Fig: (s)ds.
—h

Since X* is reflexive, we know that
S*(tn, — to)z" — x¥strongly in X".
Noting that
|F1g,,(s)] < 1AL A5 [ 9]l + hHo|[A2A5 [ {9]]oo,

the second term of (5.3) is estimated as

0
‘/ {Kl(tn -+ S,tg - S) + Kyg(tn - S,to - S)}Flg,l,,(s)ds
_h

S h{lKl(fn + Svtﬂ - 8)! + |K2(t” - S,t() - 8)1}
(141 A5 1 {lgn oo + hHol| Az AG [ 11gn]|oo)

— O(n — co).

Thus, since
0
/ < 8(t, —to)Wto 4 ) Fygl(s)ds, =" >
—h
0
= f < Witq + s)F1g}(s)ds, S™(t, — to)x* >

0
-~ ] < Wity + s)Fig' (s)ds, a* >,



S
o]

we have
S(tn — to)W(to + JF1g}(-) = Wite + ) Fig' (")

weakly in LP(—h,0; D(Ap)).
The third term of right hand side (5.1) is estimated as

tn
l W (tn — s)f(s)ds| < (tn — to)" P sup [[WOIDIFlloro7:x)
" t€(0,T)
— 0(n — o).

By using the similar method to the fourth term of right hand side
(5.1), we have

W(tn - )f() — I/V(to - )f()

weakly in LP(0, ty, X).

We denote x,(t,,) by w,,. Since W and U4 are weakly compact, there
exist g € Uy, wg € W such that we may assume that w —limg, = ¢ in
Ugg and w — limw,, = wp in M, and X, respectively.

Therefore, we obtain that

0
< wg,z” >= < W(tg)g®, 2" > +/ < Wity + s)Frg'(s),z* > ds
—h

tp
+/ < Wity — s)f(s),z* > ds.
0

by tending n — oo. Since z* is arbitrary, we have

0

umwwmf+f W(to + s)Figt(s)ds
ki

to B
+ Wity — s)f(s)ds.
0

and hence wy is the trajectory corresponding to gq, i.e., go € Us.
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