2002 2

2002 2

()

Abstract		1
1		2
2		4
2.1		4
2.2	37	5
2.2.1		5
2.2.2		5
2.2.3		6
2.3		7
2.3.1	(Inverse Dynamics)	7
2.3.2	(Compliance Matrix)	7
3		9
3.1		9
3.2		11
3.3		12
3.4		15
3.5 가	가	18
Λ		23
т // 1		23
4.1	simulation	25
4.2 2	siniulation	25
4222		25 26
4.2.2 2		31
43		34
4.5	가	37
441	71	37
442		39
4.4.3		45
-		4.0
5		48
••••		49

Estimation of Excitation Force from the Vibration Responses of Multi-Degree-of-Freedom System

Soo-Mok Lee

Department of Interdisciplinary Program of Acoustics and Vibration The Graduate School Pukyong National University

ABSTRACT

This paper presents the concept, methodology and result of estimation for the excitation in multi DOF vibration system using the its responses. It is a kind of inverse dynamics of multi-DOF flexible body in frequency domain. A simple cantilever model was chosen as the test model. Direct inversion method of transfer function matrix was tried but instability in the vicinity of zeros in transfer function was found giving the unstable result. Estimation of excitation based on the modal response theory of vibrational system was attempted. The results gave ideal result for simulated response of 2 DOF system but showed large discrepancy for the measured response of experiments. It was concluded that more precise identification of the system and inclusion of residual modes as well as elaborated signal processing of the measured data are required for the reliable estimation of excitation of excitation from the response data.

1

- 2 -

	(mode-based method)		
가		(inverse	dynamics)
	,		
2	(simulation)	가	

degree-of-freedom, MDOF)

2.1

(discrete)

$$M\ddot{x} + C\dot{x} + Kx = f(t)$$
 (2.1)

•

•

•

.

 $f(t) = F e^{i\omega t} \quad 7 \end{cases} ,$ $(-\omega^2 M + i\omega C + K) X(\omega) = F(\omega) \qquad (2.2)$ $, M, C, K \qquad , \qquad , x(t), f(t)$ $, X(\omega), F(\omega)$ $, \omega \qquad (angular frequency) \qquad .$

$$X(\omega) = (-\omega^2 M + i\omega C + K)^{-1} F(\omega) = H(\omega) F(\omega)$$
(2.3)

$$H(\omega)$$

•

3가 2.2 3가 가 , . 2.2.1 (2.2) , (spatial model) 가 , 가 (2.4) . (straight-forward) • 가 가 , . $F(\omega) = (-\omega^2 M + i\omega C + K)X(\omega)$ (2.4) 2.2.2 (frequency response function, FRF) FRF (set) (response model) . (receptance) FRF , $\alpha_{ij}(\omega) = \frac{X_i(\omega)}{F_j(\omega)}$ (2.5)

$$\boldsymbol{H}(\boldsymbol{\omega}) = [\boldsymbol{\alpha}_{ij}(\boldsymbol{\omega})] \tag{2.6}$$

,

•

가

$$F(\omega) = H(\omega)^{-1} X(\omega)$$
(2.7)

,

.

, ,

(modal model)

.

.

$$\omega_r, \zeta_r, \phi_r, m_r, A_r, r = 1, 2, ..., M$$
 (2.8)

,
$$\omega_r$$
 ζ_r r, ψ_r , m_r A_r (modal mass)(modalconstant), M .

(FRF)

, ,

.

$$\alpha_{jk}(\omega) = \sum_{r=1}^{M} \frac{A_{jk,r}}{(\omega_r^2 - \omega^2 + i 2\zeta_r \omega_r \omega)}$$
(2.9)

$$\alpha_{jk}(\omega) = \sum_{r=1}^{M} \frac{\phi_{jr} \phi_{kr}}{m_r (\omega_r^2 - \omega^2 + i 2\zeta_r \omega_r \omega)}$$
(2.10)

(modal testing)

(2.9) (2.10)	FRF가		가
(2.6) (2.7)	가		
(2.10)			가
		4	

.

2.3.1	(Inverse Dynamics)	
		(inverse dynamics)
	,	

$$F = M a \tag{2.11}$$

.

(2.11) (rigid body) *С К*가 M , . 가 pedulum , CAD . M 가 F а 가 ,

F = K x(2.12)

K A (compliance , **K** , flexibility) K . , 가 , A . . , () 가 . 가 가 가 .

- 7 -

,

•

3

FRF

3.1

,

가

•

B. 1) フト , (フト) .

2) (, FRF) (3.1)

 $H(f)_{ij} = \frac{A_{i}(f)}{F_{j}(f)}$ (3.1)

3) () (7¹) . $H(f)_{N \times N} = [H_{ij}(f)]$ (3.2)

System	Cantilever $(L \times B \times D = 1 \text{ m} \times 50 \text{ mm} \times 10 \text{ mm})$
Measured points	4 Pts incl. cantilever end
Measured quantity	Acceleration and force
Accelerometer	B&K type 4384 acceleromter
Force transducer	PCB 086C03 impact hammer with force sensor
Data processing	OROS OR25 multi-channel signal processing unit

Table 1 Summary of experimental set-up

.

Fig.1 Experimental setup for the impact test of a cantilever

가

•

	(frequency	response fur	nction,	FRF)	가		
						가	
. 가						(point FF	RF)
			(trans	sfer FRF)			
		,			(mu	lti-input r	nulti-
output system)						가	•
	,	(3.6)		Maxwell		(recip	orocal
theorem)가	,	$H(\omega)$			•		
$H_{ij}(\omega)$ =	$= H_{ji}(\omega)$					(3.6)	
,		가		가 (a	ccelerance	e)	,
$m/s^2/N$	1/kg						
Fig. 2		FRF	가			. Fig. 2	.1
Fig. 2.2 1	3	point FRF ,	Fig.	2.3 Fig	g. 2.4	2 3	3
transfer FRF		. Fig.	2.1	Fig. 2.2			,
FRF	가			1 FRF	가	3	
. 1	300 Hz	peak	3			, 475 H	[z
peak 1	3						
	point	FRF	,	가			
pea	ık	peak		Ν		フ	-
point FRF				[2].			
Fig. 2.3 Fig.	2.4	,	가	transfer	FRF		
Maxwell	가			•			
		가 ,		Ν	Ν		
		가	() point	FRF		
, N	ſ			가	()	
,	Ν						
		peak				12	Hz,
54 Hz, 148 Hz, 30	00 Hz, 475	Hz, 725 Hz	Z				

- 12 -

Fig. 2.1 Experimental frequency response function (excitation point 1, response point 1)

Fig. 2.2 Experimental frequency response function (excitation point 3, response point 3)

Fig. 2.3 Experimental frequency response function (excitation point 2, response point 3)

Fig. 2.4 Experimental frequency response function (excitation point 3, response point 2)

(Inverse FRF, IFRF) (3.4) 가 . (apparent mass) . Fig. 3 IFRF 가 peak 가 IFRF FRF IFRF peak . FRF zero 가 0 가 Fig. 3.3 Fig. 3.4 IFRF . Maxwell 가 , 가 FRF IFRF 91 Hz, 131 Hz, 312 Hz, 400 Hz, 685 Hz, 975 Hz peak가

FRF peak . IFRF 가 pulse , . () 가 (가)

가

.

3.4

가

Fig. 3.2 Inverse frequency response function (response point 3, force point 3)

Fig. 3.3 Inverse frequency response function (response point 2, force point 4)

Fig. 3.4 Inverse frequency response function (response point 4, force point 2)

3.5 가 가

	FRF			(3.5)
가		. Fig. 4	1	가
	가		가	1
		가		2, 3, 4
			•	
реак		,		
Fig. 5	가		, 가	
	peak 가	(3.5)	,	
peak 가	peak			Fig. 4 Fig. 3
Fig. 3	,	가	peak	
peak		I	peak	
(가) peak		,	, FRF	
	가			IFRF
	·			
				가

Fig. 4.1 Estimated forces by IFRF method (of point 1 under point 1 impact condition)

Fig. 4.2 Estimated forces by IFRF method (of point 2 under point 1 impact condition)

Fig. 4.3 Estimated forces by IFRF method (of point 3 under point 1 impact condition)

Fig. 4.4 Estimated forces by IFRF method (of point 4 under point 1 impact condition)

Fig. 5.1 Comparison of estimated and actual forces (for point 1 under impact on point 1)

Fig. 5.2 Comparison of estimated and actual forces (for point 2 under impact on point 2)

Fig. 5.3 Comparison of estimated and actual forces (for point 3 under impact on point 3)

Fig. 5.4 Comparison of estimated and actual forces (for point 4 under impact on point 4)

,

$$X_{j}(\omega) = \sum_{k=1}^{N} \alpha_{jk}(\omega) F_{k}(\omega) = \sum_{k=1}^{N} \sum_{r=1}^{M} \frac{\psi_{jr} \psi_{kr} F_{k}}{m_{r}(\omega_{r}^{2} - \omega^{2} + i 2\zeta_{r} \omega_{r} \omega)}$$
(4.1)

$$g_r(\omega) = \omega_r^2 - \omega^2 + i \, 2\zeta_r \omega_r \omega \tag{4.2}$$

$$X_{j}(\omega) = \sum_{k=1}^{N} \sum_{r=1}^{M} \frac{\phi_{jr} \phi_{kr} F_{k}(\omega)}{g_{r}(\omega)} = \sum_{k=1}^{N} \sum_{r=1}^{M} \phi_{jr} \frac{1}{g_{r}(\omega)} \phi_{kr} F_{k}(\omega)$$
(4.3)

(4.3)

.

.

$$\boldsymbol{X} = \boldsymbol{\Phi} \left[diag \; \frac{1}{g_r} \right] \boldsymbol{\Phi}^{t} \boldsymbol{F}$$
(4.4)

X , F, Ф (modal matrix)

,

4

$$\boldsymbol{\Phi} = [\phi_{1}, \phi_{2}, ..., \phi_{M}]$$
(4.5)

$$(4.4) \quad 7^{1}$$

$$F = (\boldsymbol{\Phi}^{-1})^{t} [diag g_{r}] \boldsymbol{\Phi}^{-1} X$$
(4.6)

$$7^{1}, ..., 7^{1}, ...,$$

.

, A 가 .

4.2 2 Simulation

(4.7) 7 7 (multi-DOF system) 2

4.2.1 2

Fig. 6 2

, Table 2

•

Fig. 6 Model for 2 DOF simulation

Table 2. Characteristics of 2 DOF Model

Mass	$m_1 = 2$ kg, $m_2 = 1$ kg
Stiffness	$k_1 = 1$ N/m, $k_2 = 1$ N/m
Damping	$\zeta_1 = 0.0234, \ \zeta_2 = 0.0207$
Natural frequency	$\omega_1 = 0.541 \text{ rad/s}, \ \omega_2 = 1.306 \text{ rad/s}$
Modal matrix	$\boldsymbol{\varPhi} = \begin{bmatrix} 0.5 & 0.5 \\ 0.707 & -0.707 \end{bmatrix}$

4.2.2 2 () Fig. 7 가 (accelerance) FRF FRF (reciprocal theorem) Fig. 7 FRF (3.4) (IFRF) Fig. 8 IFRF . 3 0 가 . 0 (zero-crossing), FRF . (receptance) , (dynamic stiffness) Fig. 9 가 0 가 (apparent mass) 가 •

.

,

.

(2.4)

0

,

$$\boldsymbol{K}^{D}(\boldsymbol{\omega}) = (-\boldsymbol{\omega}^{2}\boldsymbol{M} + i\boldsymbol{\omega}\boldsymbol{C} + \boldsymbol{K})$$
(4.8)

(2.4)

,

.

Table 2

$$Re\{K^{D}\} = (K - \omega^{2}M) = \begin{bmatrix} 2 - 2\omega^{2} & -1 \\ -1 & 1 - \omega^{2} \end{bmatrix}$$
(4.9)

Fig. 9
 ,

$$\omega = 0$$
 ,

 -1
 .
 ,

 .
 FRF (α_{11}, α_{22})
 $\omega = 1$

 0
 . (4.9)

 7[†]
 ,
 IFRF

 zero crossing
 .

 Fig. 8
 7[†]
 ,

 7[†]
 ,
 2.4)
 $A = -\omega^2 X$

$$\boldsymbol{M}^{A}(\boldsymbol{\omega}) = (\boldsymbol{M} - i\boldsymbol{C}/\boldsymbol{\omega} - \boldsymbol{K}/\boldsymbol{\omega}^{2})$$
(4.10)

$$Re \{ M^{A} \} = (M - K/\omega^{2}) = \begin{bmatrix} 2 - 2/\omega^{2} & 1/\omega^{2} \\ 1/\omega^{2} & 1 - 1/\omega^{2} \end{bmatrix}$$
(4.11)

$$. Fig. 8 \qquad (4.11)$$

$$. 7 \downarrow 0 7 \downarrow \qquad (4.11)$$

$$(\omega \rightarrow \infty) \qquad 7 \downarrow \qquad , zero crossing$$

$$. \qquad 0 7 \downarrow$$

Fig. 7 FRF(accelerance) of 2 DOF system

Fig. 8 Inverse FRF(apparent mass) of 2 DOF system

Fig. 9 Inverse FRF(dynamic stiffness) of 2 DOF system

4.2.3 2			가			
(4.6)	(4.7)	フ	· 가		2	
	,	(4.7)		가		
1		가	가	2		가
		가				•
Fig. 10		가			, Fig. 11	
					가	
,	가		가			
					가	

Fig. 10 Simulated responses of 2 DOF system by impact and sinusoidal excitations on different points

Fig. 11 Estimated forces of 2 DOF system by the mixed responses.

Table 3 Modal parameter and mode shape vectors of tested model

Mode	1	2	3	4	5
Natural frequency	54 Hz	148 Hz	300 Hz	475 Hz	725 Hz
Damping ratio	2.6 %	1.1 %	1.4 %	1.5 %	0.7 %
Mode vector 1	0.39	0.352	0.251	0.245	0.337
Mode vector 2	0.0	-0.163	-0.198	-0.102	-0.063
Mode vector 3	-0.215	-0.228	0.063	0.232	0.261
Mode vector 4	-0.249	0.028	0.2 17	-0.079	-0.3 10

•

Fig. 12 . Fig. 13 FRF .

Fig. 12 Mode shapes of the tested cantilever model

Fig. 13.1 Comparison of fitted FRF with measured one (excitation and response of point 1, real part)

Fig. 13.2 Comparison of fitted FRF with measured one (excitation and response of point 1, imaginary part)

Fig. 13.3 Comparison of fitted FRF with measured one (excitation on 4 and response of point 3, real part)

Fig. 14.1 Estimated excitation for point 1 under actual excitation of point 1

Fig. 14.2 Estimated excitation for point 2 under actual excitation of point 1

Fig. 14.3 Estimated excitation for point 3 under actual excitation of point 1

Fig. 14.4 Estimated excitation for point 4 under actual excitation of point 1

4.4.2

Fig. 15 . 가가

$$\boldsymbol{F} = (\boldsymbol{\Phi}^{-1})^{t} [g_{r}(\omega)] \boldsymbol{\Phi}^{-1} \boldsymbol{A} / (-\omega^{2})$$

$$(4.7)$$

1) 7 (acceleration response, A) Fig. 15.1 4 7 . peak7 B, C, D, F peak , A E peak . (Table 3 Fig. 12 .)

В	mode 1, C フト フト	mode 2, D	mode	3 , F A	F peak E peak	mode 4	
3)		(modal particip	ation, [g	$_{r}(\omega)$] $\boldsymbol{\Phi}^{\cdot 1}A$	$= \boldsymbol{\Phi}^t \boldsymbol{F} \boldsymbol{\omega}^2$)	
	가 ,	, 가		(participati	on)	가 가 [‡] . Fi 가	g. 15.3
([‡] 7 [5].)		$P_n = \frac{\boldsymbol{\phi}_n^t M 1}{\boldsymbol{\phi}_n^t M \boldsymbol{\phi}_n}$		(participation	factor)	,	가 4.12)
4) Fig	g. 15.4 , 3 ,	(unconver 2	rted force	, (<i>Φ</i> ^{・1}) [*] [ჴ フト ・	g _r (ω)] Φ ⁻¹ Α	$A = F \omega^{2})$ $7 $ 1 $A, E peak$	
5) Fig	(fo g. 15.5	rce, $F = (\mathbf{\Phi})$. 7	¹) ^t [g _r (c	ω)] Φ ⁻¹ Α / ω	²)	Fig. 14	
3	Fig. 16 . Fig. 15.4 가 가 가	5 가 :	2, 3, 4 1	가 . 4	가	2	

Fig. 15.1 Stepwise result (acceleration response)

Fig. 15.2 Stepwise result (modal contribution)

Fig. 15.3 Stepwise result (modal participation)

Fig. 15.4 Stepwise result (unconverted force)

Fig. 15.5 Stepwise result (converted force)

Fig. 16.1 Unconverted force under impact on point 2

Fig. 16.2 Unconverted force under impact on point 3

Fig. 16.3 Unconverted force under impact on point 4

4.4.3 , ア, ア, ア, ア, 2 (apparent mass IFRF) 2 simulation IFRF7, 7, (Fig. 8) IFRF 7, . (4.7)

$$\boldsymbol{M}^{A} = (\boldsymbol{\Phi}^{-1})^{t} [g_{r}(\omega)] \boldsymbol{\Phi}^{-1} / (-\omega^{2})$$
(4.13)

IFRF . .

Fig. 17

2

.

, 1000 Hz

•

Table 4

.

Table 4 Mass effect between points from apparent mass (kg)

Point	1	2	3	4
1	102	237	27	116
2	237	564	63	273
3	27	63	14	29
4	116	273	29	14 1

가(over-estimation)가 가 Fig. 17 IFRF Fig. 8 2 , Fig. 3 IFRF

Fig. 17.1 Calculated IFRF (apparent mass) for point 1

Fig. 17.2 Calculated IFRF (apparent mass) for point 2

Fig. 17.3 Calculated IFRF (apparent mass) for point 3

Fig. 17.4 Calculated IFRF (apparent mass) for point 4

peak7}

simulation

가

•

가

•

가

,

	(signal	processing)가
(inverse	dynamics)	가

,

(identification)

- D. J. Ewins, "Modal Testing : Theory and Practice", Research Studies Press Ltd. 1984
- [2] Maia, Silva, et al. "Theoretical and Experimental Modal Analysis", Research Studies Press Ltd. 1997
- [3] M. H. Richardson and D. L. Formenti, "Parameter Estimation From Frequency Response Measurements Using Rational Fraction Polynomials", Proceedings of the 1st International Modal Analysis Conference (IMAC I), 1982
- [4] Vibrant Technology, ME'scope VES operating manual, 2000
- [5] R. W. Clough and J. Penzien, "Dynamics of Structures", 2nd ed. 1993