### 工學碩士 學位論文

# 都市廢棄物 소각재 熔融工程에서 조업조건변화에 따른

## 重金屬 擧動特性

### 指導教授 李 濟 根



# 殷熙喆의 工學碩士 學位論文을 認准함

2001年 12月 26日



### Abstract

| 1.     |    |
|--------|----|
| 2.     |    |
| 2.1.   |    |
| 2.2.   |    |
| 2.3.   | 9  |
| 2.3.1. | 9  |
| 2.3.2. |    |
| 2.3.3. |    |
| 2.3.4. |    |
| 3.     |    |
| 3.1.   |    |
| 3.2.   |    |
| 3.3.   |    |
| 3.3.1. | 24 |
| 3.3.2. |    |

| 3.3.2.     |    |
|------------|----|
|            |    |
| 3.3.3. XRD |    |
| 3.3.4.     |    |
| 225        | 26 |
| 5.5.5.     |    |
| 3.3.6.     |    |

| 4.         |   |
|------------|---|
| 4.1.       | • |
| 4.1.1. XRD |   |
| 4.1.2.     |   |
| 4.1.3.     |   |
| 4.2.       |   |
| 4.3.       |   |
| 4.4.       |   |
| 4.4.1.     |   |
| 4.4.2.     |   |
| 4.4.3.     |   |
|            |   |

| 5 | • |  |
|---|---|--|
|   |   |  |

### Table List

| Table 2.1 F | Pollutant concentration included in waste incineration ash5        |
|-------------|--------------------------------------------------------------------|
| Table 3.1 A | Analysis data of the ash used in this experiment22                 |
| Table 3.2 S | Sequential Extraction Procedure25                                  |
| Table 4.1 F | Fractional composition of ash used in this experiment              |
| Table 4.2   | Concentration of heavy metals in the ash used in this experiment   |
|             |                                                                    |
| Table 4.3   | Fractional composition of Cu in the ash and slag used in this      |
| (           | experiment                                                         |
| Table 4.4   | Fractional composition of Zn in the ash and slag used in this      |
| (           | experiment                                                         |
| Table 4.5   | Fractional composition of Pb in the ash and slag used in this      |
| (           | experiment                                                         |
| Table 4.6.  | Leaching concentration of heavy metals in the ash and slag used in |
|             | this experiment44                                                  |

# Figure List

| Fig. 2.1 Flow sheet for an incineration process of wastes                      |
|--------------------------------------------------------------------------------|
| Fig. 2.2 Phase diagram for $CaO-Al_2O_3-SiO_2$ compositions                    |
| Fig. 2.3 Structure of silicatglass on the supposition of Zachariasen-Wamen's   |
| network                                                                        |
| Fig. 2.4 Melting technologies of wastes                                        |
| Fig. 2.5 Types of melting furnace                                              |
| Fig. 2.6 Partition rates of ash components                                     |
| Fig. 2.7 Residual fractions for each metal under oxidizing conditions19        |
| Fig. 2.8 Residual fractions for each metal under reducing conditions           |
| Fig. 3.1 Schematic diagram of high temperature electric furnace23              |
| Fig. 4.1 Refresentative X-ray diffraction patterns of ash used in this         |
| experiment                                                                     |
| Fig. 4.2 Microphotographies of polished thin section separated from melting    |
| slag                                                                           |
| Fig. 4.3 Refresentative X-ray diffraction patterns of slag in oxidizing        |
| condition                                                                      |
| Fig. 4.4 Refresentative X-ray diffraction patterns of slag in reducing         |
| condition                                                                      |
| Fig. 4.5 Separation rate of heavy metals from slag with melting atmosphere. 41 |
| Fig. 4.6 Separation rate of heavy metals from slag with melting time41         |
| Fig. 4.7 Leaching rate of heavy metals in the ash and slag used in this        |
| experiment                                                                     |

### Effect of Operating Conditions on Heavy Metal Behavior in Melting Process of the Municipal Waste Ash

Hee-Chul Eun

Department of Environmental Engineering, Graduate School Pukyong National University

#### Abstract

The large quantity coupled with the potential leachability of high metal concentrations in the ashes has necessitated the study of treatment and disposal related problems. Several technologies such as melting and solidification, solidification with cement, stabilization using chemical agents and extraction using acid or other solvents had been developed to decompose the toxic ash and/or make them inert, so that they could be reused or at least bo disposed of without any risk. Of great promise among waste treatment processes is melting process, it is most effective in stabilization and the least harmful.

In this study, municipal waste ash was examined to investigate the behavior of heavy metals from slag in the melting processes. Melting processes were performed in oxidizing or reducing atmosphere with cooling type and melting time using an electric furnace.

Municipal waste ash used in this study had high concentrations of heavy metals and its leaching concentrations exceeded largely Drinking Water Standards.

Melting slag is divided into slag layer, transition layer, and metal layer by specific gravity separation of heavy metal. Air-cooled slag was amorphous, on the other hand slowly-cooled slag formed crystalization in each other conditions. Chemical fractions of heavy metals in slag were hardly different with melting atmosphere and cooling type, however indicated an appreciable change with increasing melting time in reducing atmosphere. In general, separation efficiency of heavy metals from slag in reducing atmosphere appeared higher than in oxidizing. And it increased with rising melting time in reducing atmosphere. Specially, Cd was non-detected in the slag. Separation efficiency of Zn was very low in comparison with the other heavy metals because it almost existed in residual fraction in slag or ash. Leaching concentrations of heavy metals from the slag were considerably reduced in comparison with ash. It were hardly different with melting atmosphere, but were reduced with rising melting time in reducing conditions. Pb and Cd were not almost leached from the slag. Also, leaching rate of heavy metals from slag indicated much lower than the ash. However, leaching rate of Cu was increased with rising melting time in reducing.

In conclusion, properties of slag were greatly affected by cooling type of melting slag, and chemical fractions of heavy metals in slag were highly influenced by melting time. It was found that the slag which had a low concentration of heavy metals, could be obtained, and heavy metals in the ash become a stable state with rising melting time in reducing condition.

Key words : ash, melting, heavy metal, slag, behavior

가, ,

<sup>3)</sup>. フト .

, , , , , <sup>4,5)</sup>, 가

 7ł
 6-10).

 2
 ,
 ,

 7ł
 .
 ,

,

.

가가

가

8). 8).

<sup>13)</sup>, フト フト <sup>14)</sup>. . アト

. ,

.

### 1300

. フト .

, , , ,

> , 가가 .

2.1.

,

Fig. 2.1 . Fig. 2.1 (bottom ash), (boiler ash) (filter ash) (bag filter) 가 (cyclone) , 5 15% . 가 , , , Table 2.1 . T able 2.1 (furans) (dioxins), 가 . 가 , 가 .

,

,

2



Flyash + Reaction product

Absorption agent

Fig. 2.1 Flow sheet for an incineration process of wastes.

| Inorganic | Flyash      | Bottom ash   | Diovins        | Flyash            | Bottom ash         |
|-----------|-------------|--------------|----------------|-------------------|--------------------|
| material  | (mg/kg)     | (mg/kg)      | DIOXIIIS       | (ng/g)            | (ng/g)             |
| Al        | 5300 176000 | 5400 180000  | <u>Dioxins</u> |                   |                    |
| Sb        | 4.4 760     | 1 600        | MCDD           | 2                 | NR                 |
| As        | 1 750       | 1 80         | DCDD           | 0.4 200           | NR                 |
| Ba        | 80 9000     | 40 2000      | T 3CDD         | 01 01 82          | NR                 |
| Be        | ND <4       | ND < 0.44    | T 4CDD         | ND 250            | < 0.04 410         |
| В         | 5 5654      | 85           | PCDD           | ND 722            | ND 800             |
| Br        | 21 250      | NR           | H6CDD          | ND 5565           | ND 1000            |
| Cd        | 0.3 2100    | 0.2 442      | H7CDD          | ND 3030           | ND 290             |
| Ca        | 3000 290000 | 5900 112000  | OCDD           | ND 3152           | ND 55              |
| С         | 17000 74000 | 10000 287000 | 2,3,7,8-T CDD  | ND 330            | < 0.04 6.7         |
| Cs        | 2100 12000  | NR           | Total PCDD     | 5 10883           | ND 2800            |
| Cl        | 1160 253000 | 2000 10000   |                |                   |                    |
| Cr        | 110 13000   | 13 10000     | Furans         |                   |                    |
| Co        | 2.3 5000    | 3 62         | MCDF           | 41                | NR                 |
| Cu        | 69 3100     | 80 26000     | DCDF           | ND 90             | NR                 |
| F         | 1500 3100   | 130 300      | T 3CDF         | 0.7 550           | NR                 |
| Fe        | 900 87000   | 1000 320000  | T JCDF         | 0.7 550<br>ND 410 | 10.1 350           |
| Pb        | 6 26600     | 0.2 17000    | PCDE           | ND 1800           | 0.07 430           |
| Li        | 7.9 34      | 7 19         |                | TD 1800           | 0.07 430<br>ND 020 |
| Mg        | 2000 40000  | 400 18000    |                | TD 997            | ND 920             |
| Mn        | 65 8500     | 50 390000    |                | IK 007            | ND 210             |
| Hg        | ND 40       | ND 3.5       |                | ND 398            | ND 11              |
| Мо        | 9.2 700     | 2 500        | 2,3,7,8-1 CDF  | 0.05 5.4          | ND 13              |
| Ni        | 9.9 1966    | 9 1300       | Total PCDF     | 3.73 2396         | ND 1600            |
| Ν         | ND          | ND 3500      |                |                   |                    |
| Р         | 1000 12000  | 400 17800    | <u>PCBs</u>    |                   |                    |
| Κ         | 4300 74800  | 920 24100    | Mono CB        | 0.29 9.5          | ND 1.3             |
| Se        | 0.48 16     | ND 7         | Di CB          | 0.13 9.9          | ND 5.5             |
| Si        | 1783 320000 | 1333 460000  | Tri CB         | ND 110            | ND 80              |
| Ag        | ND 77500    | ND 38        | Tetra CB       | 0.5 140           | ND 47              |
| Na        | 477 80000   | 1800 69000   | Penta CB       | 0.87 225          | ND 48              |
| Sr        | 98 1100     | 81 1000      | Hexa CB        | 0.45 65           | NR                 |
| S         | 4000 40000  | 1750 20000   | Hepta CB       | ND 0.1            | NR                 |
| Sn        | <100 12500  | 40 1300      | Octa CB        | ND 1.2            | NR                 |
| Тi        | <50 42000   | 400 11400    | Nona CB        | ND                | NR                 |
| V         | 22 298      | 36 90        | Deca CB        | ND                | NR                 |
| Zn        | 120 152000  | 200 36100    | Total PCB      | ND 360            | ND 180             |

Table 2.1 Pollutant concentration included in waste incineration  $ash^{4)}$ 

ND : not detected, NR: not reported



2.2.















5)

РСВ

(biphenyl)

•

,



2.3.

2.3.1.



7).

 $SiO_2$ , CaO,  $Al_2O_3$ 



Fig. 2.2 Phase diagram for CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> compositions<sup>8)</sup>.



Fig. 2.3 Structure of silicatglass on the supposition of Zachariasen-Wamen's network<sup>8)</sup>.

가

가

, Fig. 2.3

8)

3 Fe, Zn, Pb

•

,

,

.

가

, 1300

,

PCB



가



,



Fig. 2.4 Melting technologies of wastes.







,

기 기 Coke-Bed , Reverberatory , Cyclone , Arc , Plasma <sup>8-10,20</sup>. 기 , Fig

<sup>8-10,20)</sup>. 7, Fig. 2.5

1) ( ) フト . 1400 10 20mm

, . . 1800kcal/kg, 3500kcal/kg) 7ト 7ト warming up shut down (2)

2) Cokes bed

cupolar (1800 ) . cupolar 가 가 가

,

· 3) ( , ) 27ŀ

, 가 . . 가 .

가 가 , 가 가 .

4) -

가 가 1/2

가, 가

.

가 가 , . 가 가 • • 6) 가 , , 가 , , Ta Тa , 가 , Ti, Ti . 700V 가 , , • 가 가 가 . 가 가 가 . 가 1/200 가가. 가 , , (1500 ) 가 가 가가. 7) 가 , 가 가 . 가 가 . .

가 가.

5)



가 가가, .

, 7 , . . . .

.

- 15 -



(a) Surrace mening rurnace



(c) Swirling-flow melting furnace



(d) Rotary stocker type melting furnace



(e) Arc meltng furnace





(g) Electric resistance melting furnace



Fig. 2.5 Types of melting furnace.











Fig. 2.6 Partition rates of ash components<sup>8)</sup>.



1)



Fig. 2.7 Residual fractions for each metal under oxidizing conditions<sup>22)</sup>.



Fig. 2.8 Residual fractions for each metal under reducing conditions<sup>22)</sup>.

















3.1.

•

| (proximate   | analysis)       |       | (ultim     | ate a  | nalysi | s) |                  |         | (composition | 1 |
|--------------|-----------------|-------|------------|--------|--------|----|------------------|---------|--------------|---|
| an aly sis ) |                 | ,     | <b>r</b>   | T able | 3.1    |    |                  | . Table | 3.1          |   |
|              |                 | 가     | 13.2%      |        |        | ,  |                  |         |              |   |
| . Cl         | $\mathbf{SO}_3$ |       | 3.6%, 1.7% |        | ,      |    |                  |         |              |   |
|              |                 |       |            |        |        |    | SiO <sub>2</sub> |         | 20% 가        |   |
| Ca           | 0               | 38% 7 | ł          |        |        | ,  |                  |         |              |   |

.

Table 3.1 Analysis data of the municipal waste residue A used in this experiment

| Proximate a                         | nalysis[wt.%] | Ash analy               | sis [wt.%] |
|-------------------------------------|---------------|-------------------------|------------|
|                                     |               | CaO                     | 37.9315    |
| Moisture                            | 1.50          | SiO <sub>2</sub>        | 20.7724    |
| Volatila mattar                     | 10.25         | $P_2O_5$                | 8.7805     |
| volathe matter                      | 10.55         | $A l_2 O_3$             | 7.8426     |
| Fixed carbon                        | 0.35          | $Fe_2O_3$               | 6.6146     |
| A ch                                | 07 00         | Cl                      | 3.6215     |
| A SII                               | 87.80         | MgO                     | 3.5007     |
|                                     |               | Na <sub>2</sub> O       | 3.1097     |
| Ultimate analysis [dry basis, wt.%] |               | K <sub>2</sub> O        | 1.7552     |
|                                     |               | <b>S</b> O <sub>3</sub> | 1.7339     |
| С                                   | 2.800         | T iO <sub>2</sub>       | 1.6640     |
| н                                   | 0.438         | ZnO                     | 0.9948     |
| 11                                  | 0.450         | BaO                     | 0.4742     |
| Ν                                   | 0.105         | CuO                     | 0.3595     |
| 0                                   | 7 381         | MnO                     | 0.3445     |
| 0                                   | 7.501         | $Cr_2O_3$               | 0.1656     |
| S                                   | 0.244         | PbO                     | 0.1504     |
| Ash                                 |               | SrO                     | 0.0715     |
| 11011                               | 07.107        | NiO                     | 0.0259     |

3

3.2.

elevator type

Fig. 3.1  $200(W) \times 200(D) \times$ , thermal ceramics 200(H)mm zircar board, fiber , board가 U-type super 가 kanthal 180 heating element가 2 8 type "B" double 1800 , temperature controller 가 0.1 . 가 가 (O<sub>2</sub>)가 (N<sub>2</sub>) .



1. Electric furnace

3. Flue gas oultet

- 5. Electric heating euipment
- 7. Temperature controller
- 2. Gas inlet
- 4. Thermocouple
- 6. Elevator working space
- 8. Computer(program controller)

Fig. 3.1 Schematic diagram of high temperature electric furnace.



| , 1800 | ,<br>가 | 700g          |  |
|--------|--------|---------------|--|
| 가      |        |               |  |
|        |        | (slag layer), |  |

(metal layer), (transition layer) .

3.3.2.

|         |             |         |        |        | (slag |
|---------|-------------|---------|--------|--------|-------|
| layer), | (transition | layer), | (metal | layer) | 2,3)  |



3.3.3. XRD



3.3.4.

.

가

T essier  $(1979)^{26}$ 

가

,

가

SEP(Sequential Extraction Procedure for the Speciation of Particulate TraceMetals).carbonates fraction, oxides fraction, organic fraction, residual fraction57,exchangeable fraction

carbonate fraction

, Reducible fraction

| , Organic | fraction |                     |  |
|-----------|----------|---------------------|--|
| 가         |          | , Residual fraction |  |
|           | 가        |                     |  |

가

Table 3.2 Sequential Extraction Procedure

Table 3.2

| Chemical fraction         | Procedure(for sample weight 1g)                                                 |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| Exchangeable fraction     | 8 <b>Me</b> 1M - MgCl <sub>2</sub> (pH 7.0),                                    |  |  |  |  |
| Exchangeable fraction     | shaking for 5hrs at room temperature                                            |  |  |  |  |
| Carbonata fraction        | 8M2 1M - NaOAc(pH 5.0),                                                         |  |  |  |  |
|                           | shaking for 5hrs at room temperature                                            |  |  |  |  |
| Paducible fraction        | $20M\ell 0.04M - NH_2OH \cdot HCl$ ,                                            |  |  |  |  |
| Reducible fraction        | shaking for 6hrs at 96±3                                                        |  |  |  |  |
|                           | 3Me $0.02M - HNO_3 + 5Me 30\% H_2O_2$ (pH 2.0),                                 |  |  |  |  |
|                           | shaking for 2hrs at $85 \pm 2$                                                  |  |  |  |  |
| Organic fraction          | 3Me $H_2O_2(pH 2.0)$ , shaking for 3hrs at $85 \pm 2$                           |  |  |  |  |
|                           | after cooling to room temperature                                               |  |  |  |  |
|                           | 5Me $3.2M$ - NH <sub>4</sub> OAc (in 20% HNO <sub>3</sub> ), shaking for 0.5hrs |  |  |  |  |
|                           | 2Me HClO <sub>4</sub> + 10Me HF, digestion to near dryness                      |  |  |  |  |
| <b>D</b> asidual fraction | 1Me HClO <sub>4</sub> + 10Me HF, evapration to near dryness                     |  |  |  |  |
| Kesidual fraction         | $1 \text{HClO}_4 + 10 \text{M}_2 \text{HF},$                                    |  |  |  |  |
|                           | HClO <sub>4</sub> evaporation until the appearance of whitw fumes.              |  |  |  |  |

fraction

AAS

3.3.5.

, ASTM

.

E 886-82 . ASTM E 886-82 .  $107 \pm 2$  $200 \text{mesh}(75 \mu \text{m})$ 0.2g 100**M**@ . , , 1:3:1 3**Mℓ** 5**Mℓ** screw-cap  $100 \pm 5$ 2 , 50**Me** 1 가 . 3**Mℓ** 5**Mℓ** (5A : 110mm) 100**Me** • (Atomic Absorption

Spectrophotometry, AAS, SHIMADZU AA680)

.

3.3.6.

27-30) 가 pH가  $CO_2$ pН 28) 가 pH(5.8 6.3) KSLT ( pH 2.88 ± ) . 0.05 EPA T CLP . , KSLT 0.5 5.0mm pH 5.8 6.3 가 1:10 200rpm 6 0.45µm . EPA T CLP pH가 5 pH 2.88 ± 0.05 가 1:20 30rpm 9.5mm membrane filter 18 AAS . .

4

4.1.

4.1.1. XRD

. XRD , Fig. 4.1 . Fig. 4.1 peak . Matching peak , Quartz(SiO<sub>2</sub>) , Hydroxyapatite(Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>)(OH)<sub>2</sub>), Calcite(CaCO<sub>5</sub>), Iron

 $Hydrogen Phosphate(FeH_6P_3O_{12}), Sjoegrenite((Mg_6Fe_2(OH)_{16}CO_3(H_2O)_{4.5})_{0.25})$ 



Fig. 4.1 Refresentative X-ray diffraction patterns of ash used in this experiment.



Table 4.1 Fractional composition of ash used in this experiment

| Haavy matal | Chemical fraction, wt. % |           |           |         |          |  |  |  |
|-------------|--------------------------|-----------|-----------|---------|----------|--|--|--|
| neavy metai | Exchangeable             | Carbonate | Reducible | Organic | Residual |  |  |  |
| Cu          | 0.07                     | 3.84      | 34.98     | 38.65   | 22.46    |  |  |  |
| Zn          | ND                       | 5.07      | 13.61     | 6.43    | 74.89    |  |  |  |
| Pb          | 0.01                     | 14.59     | 56.13     | 12.42   | 16.84    |  |  |  |
| Cd          | ND                       | 48.20     | 44.20     | 2.69    | 4.92     |  |  |  |

- 28 -

4.1.3.

가 가 . Table 4.2 Table 4.2 Cu, Zn, Pb , pH가 , KSLT T CLP Pb KSTL pH가 27-30)  $(1999)^{32}$ 가 가 , Pb<sup>2+</sup>, Pb (OH)<sub>4</sub><sup>2+</sup> Pb (pH 6 8) , Table 4.1 . Pb reducible fraction 가TCLP KSLT Pb , KSLT Pb 260 , . pH 5.8 6.3 KSLT carbonate fraction , carbonate fraction Cu Zn , carbonate fraction Pb Cd .

2

.

가

|         | Concentrat | tion(mg/kg) | Leaching | Leachin       | Drinking<br>Water |                                  |
|---------|------------|-------------|----------|---------------|-------------------|----------------------------------|
| Species | Digestion  | Leaching    | (%)      | KSLT<br>(mg/) | TCLP<br>(mg/)     | Standards <sup>2)</sup><br>(mg/) |
| Cu      | 3296.94    | 14.034      | 0.426    | 1.404         | 2.786             | 1.0                              |
| Zn      | 8743.86    | 7.627       | 0.087    | 0.763         | 11.860            | 1.0                              |
| Pb      | 1594.64    | 129.814     | 8.141    | 12.987        | 0.559             | 0.05                             |
| Cd      | 17.75      | 0.110       | 0.619    | 0.011         | 0.166             | 0.01                             |

Table 4.2 Concentration of heavy metals in the ash used in this experiment

1) The rate of KS leaching to digestion concentration of metals

2) World Health Organization (WHO) guideline

8,13,14,20,21,28,36,37)

가 , , . 가 Fig. 1 (slag layer), (transition <sup>13,14)</sup>. (slag layer) layer), (metal layer) Si Ca , , Fig. 1 (transition layer) (metal layer) . (transition layer) , , Si Fe Cu Ca 가 (transition layer) 가 (transition layer) ,

가 가 (metal layer) Fe Cu bulk metal bulk 35) 가 (metal layer) • 가 (metal layer) , 가 13,14) 가 가 가 (transition layer) (metal layer)

.

4.2



Fig. 4.2 Microphotographies of polished thin section separated from melting slag.

4.3.



,

,



(b) slowly cooled slag

Fig. 4.3 Refresentative X-ray diffraction patterns of slag in oxidizing condition.



(a) air cooled slag



(b) slowly cooled slag

Fig. 4.4 Refresentative X-ray diffraction patterns of slag in reducing condition.

4.4.

가

.

,

#### 4.4.1.

.

<sup>31)</sup>. 7; , Tessier (1979)<sup>26)</sup> SEP

,

, Table 4.3 가 4.5 . Cu reducible fraction organic fraction organic fraction reducible fraction , 가 가  $(1996)^{(19)}$ , residual fracion . Verhulst  $(1999)^{36}$  700 Lee Cu organic fraction 가 , Wunsch  $(1996)^{37}$ 1400 sulphide fraction Cu 가  $(1999)^{36}$ Zn residual fraction . Lee

 Zn
 7!
 .
 Zn

 carbonate fraction

 7!
 , residual fraction
 .
 Pb
 reducible

 fraction
 residual fraction
 56.13%, 16.84%
 .
 .

reducible fraction 20% , Wunsch (1996)<sup>37)</sup> residual fraction ,



Table 4.3 Fractional composition of Cu in the ash and slag used in this experiment

|         |           | chemical fraction, mg/kg |         |               |              |           |           |         |          |
|---------|-----------|--------------------------|---------|---------------|--------------|-----------|-----------|---------|----------|
| Sample  | Melting   | ng Cooling               | Melting | concentration | (wt. %)      |           |           |         |          |
| CO      | condition | type                     | time    | (mg/kg)       | Exchangeable | Carbonate | Reducible | Organic | Residual |
| Raw     |           |                          |         | 3206.04       | 2.31         | 126.60    | 1153.27   | 1274.27 | 740.49   |
| ash     | -         | -                        | -       | 3290.94       | (0.07)       | (3.84)    | (34.98)   | (38.65) | (22.46)  |
|         |           | Air                      |         | 520.50        | ND           | ND        | 17.02     | 302.57  | 200.72   |
| Melting | Oxidizing | cooled                   | 2hr     | 520.50        | ND           | ND        | (3.27)    | (58.13) | (38.60)  |
|         |           | Slowly                   |         | 576.32        | ND           | 5.13      | 11.93     | 385.50  | 9.09     |
|         |           | cooled                   |         |               |              | (0.89)    | (2.07)    | (66.89) | (30.15)  |
|         |           | Air                      | 2hr     | 567.24        | 0.11         | 0.62      | 15.43     | 350.78  | 200.24   |
|         |           | cooled                   |         |               | (0.02)       | (0.11)    | (2.72)    | (61.84) | (35.30)  |
| slag    |           |                          | 21      | (05.71        | 0.36         | 5.39      | 15.99     | 381.48  | 202.49   |
| Ū       | Daduaina  |                          | 2hr     | 003.71        | (0.06)       | (0.89)    | (2.64)    | (62.98) | (33.43)  |
|         | Reducing  | Slowly                   | 21      | 280.50        | ND           | 7.12      | 8.45      | 244.32  | 12.62    |
|         |           | cooled                   | 3hr     | 380.30        | ND           | (1.87)    | (2.22)    | (64.21) | (31.70)  |
|         |           |                          | 41      | 224 58        | ND           | 25.47     | 57.20     | 28.23   | 73.06    |
|         |           |                          | 4nr     | 224.38        | ND           | (11.34)   | (3.19)    | (53.13) | (32.53)  |

|               |           | ~         | Melting | Digestion Chemical fraction, mg/kg<br>concentration (wt. %) |              |           |           |         |          |
|---------------|-----------|-----------|---------|-------------------------------------------------------------|--------------|-----------|-----------|---------|----------|
| Sample        | Melting   | g Cooling |         |                                                             |              |           |           |         |          |
| cond          | condition | type      | time    | (mg/kg)                                                     | Exchangeable | Carbonate | Reducible | Organic | Residual |
| Raw           |           |           |         | 87/3 86                                                     | ND           | 443.31    | 1190.04   | 562.23  | 6548.28  |
| ash           | -         | -         | -       | 8745.80                                                     | ND           | (5.07)    | (13.61)   | (6.43)  | (74.89)  |
|               |           | Air       |         | 7691.44                                                     | ND           | 160.75    | 613.78    | 543.78  | 6372.36  |
| Ox<br>Melting | Ovidizina | cooled    | 2hr     |                                                             | ND           | (2.09)    | (7.98)    | (7.07)  | (82.85)  |
|               | Oxidizing | Slowly    |         | 7294.07                                                     | ND           | 208.61    | 715.55    | 603.22  | 5766.69  |
|               |           | cooled    |         |                                                             |              | (2.86)    | (9.81)    | (8.27)  | (79.06)  |
|               |           | Air       | 2hr     | 7 199.94                                                    | ND           | 211.68    | 768.95    | 719.99  | 5499.31  |
|               |           | cooled    |         |                                                             |              | (2.94)    | (10.68)   | (10.00) | (76.38)  |
| slag          |           |           | 21      | 6175 77                                                     | ND           | 157.36    | 614.55    | 518.71  | 5185.15  |
|               | Peducing  |           | 2111    | 0475.77                                                     | ND           | (2.43)    | (9.49)    | (8.01)  | (80.07)  |
|               | Reducing  | Slowly    | 26.4    | 6116 77                                                     | ND           | 172.13    | 687.23    | 331.36  | 5256.05  |
|               |           | cooled    | Shr     | 0440.77                                                     | ND           | (2.67)    | (10.66)   | (5.14)  | (81.53)  |
|               |           |           | 41      | 5211 49                                                     | ND           | 155.10    | 691.02    | 26.03   | 4439.33  |
|               |           |           | 4nr     | 5511.48                                                     | ND           | (2.92)    | (13.01)   | (0.49)  | (83.58)  |

Table 4.4 Fractional composition of Zn in the ash and slag used in this experiment

Table 4.5 Fractional composition of Pb in the ash and slag used in this experiment

|         |             | a                |                | Digestion             | Chemical fraction, mg/kg |           |           |         |          |
|---------|-------------|------------------|----------------|-----------------------|--------------------------|-----------|-----------|---------|----------|
| Sample  | Melting     | ig Cooling       | Melting        | concentration (wt. %) |                          |           |           |         |          |
| c       | c on dition | type             | time           | (mg/kg)               | Exchangeable             | Carbonate | Reducible | Organic | Residual |
| Raw     | _           | _                | _              | 1594 64               | 0.16                     | 232.66    | 895.07    | 198.05  | 268.54   |
| ash     | -           | -                | -              | 1394.04               | (0.01)                   | (14.59)   | (56.13)   | (12.42) | (16.84)  |
|         |             | Air              |                | 226.39                | ND                       | 25.90     | 158.86    | 41.61   | ND       |
| Melting | Oxidizing   | cooled           | 2hr            |                       | ND                       | (11.44)   | (70.17)   | (18.38) | ND       |
|         |             | Slowly           |                | 198.78                | 0.46                     | 18.29     | 154.95    | 25.09   | ND       |
|         |             | cooled           |                |                       | (0.23)                   | (9.20)    | (77.95)   | (12.62) |          |
|         |             | Air              | ir 2hr 2hr 2hr | 126.58                | 0.14                     | 8.11      | 96.90     | 21.42   | ND       |
|         |             | cooled           |                |                       | (0.11)                   | (6.41)    | (76.55)   | (16.92) | ND       |
| slag    |             |                  |                | 106.44                | ND                       | 15.06     | 81.07     | 10.31   | ND       |
|         | Daduaina    | <b>D</b> 1 · · · |                | 100.44                | ND                       | (14.15)   | (76.17)   | (9.69)  | ND       |
|         | Reducing    | Slowly           | 21             | 10.1.06               | ND                       | 14.28     | 75.86     | 11.32   | ND       |
|         |             | cooled           | 3nr            | 101.06                | ND                       | (14.13)   | (74.67)   | (11.20) | ND       |
|         |             |                  |                | 25.26                 | ND                       | 3.73      | 17.14     | 14.49   | ND       |
|         |             |                  | 4nr            | 33.30                 | ND                       | (10.56)   | (48.46)   | (40.98) | ND       |

4.4.2.

가가

. , ASTM 886-82 . .

, Cu . Nakahara <sup>14)</sup>, Cu . , Jacob <sup>13)</sup>, Cu , Cu Cu

가 . Zn Pb . Zn (Zn2SiO4, ZnAl2O4 ) 가

<sup>38)</sup>. Zn 50% , Table 4.4 Zn 7ŀ residual fraction . , Pb reducible fraction 7ŀ residual fraction

. Yoshiie (2000)<sup>22)</sup>, Cd 1000 , Cd

, .

|                   |                         | 가       |      |  |  |  |
|-------------------|-------------------------|---------|------|--|--|--|
|                   |                         |         |      |  |  |  |
| , Cu              | 가                       |         | 가 ,  |  |  |  |
| Cu                | 가                       | 가       |      |  |  |  |
| Cu                |                         | 가       | 가    |  |  |  |
|                   | , '4.2.'                | . Zn Pb |      |  |  |  |
| 가                 |                         | 가       | 가    |  |  |  |
| 가                 | <sup>39)</sup> , , Pb 4 |         | 100% |  |  |  |
| . Zn              |                         |         | ,    |  |  |  |
| , T able 4.4      |                         | 가 Zn    |      |  |  |  |
| residual fraction |                         | 가       | Zn   |  |  |  |
|                   |                         | Zn      |      |  |  |  |
| Zn                |                         |         |      |  |  |  |
| 가                 |                         |         |      |  |  |  |

•

2)



Fig. 4.5 Separation efficiency of heavy metals from slag with melting atmosphere : S-O, slowly cooled slag in oxidizing condition; S-R, slowly cooled slag in



Fig. 4.6 Separation efficiency of heavy metals from slag with melting time.

4.4.3.

.

가 .

, Table 4.6 . . powder type agate mortar 200mesh

, Table 4.6 KSLT TCLP

. ,

<sup>5,8,13-14,29,33,34)</sup>. TCLP Zn





 ブ
 ,

 Cu 가
 . Cu

 (solubility)
 Cu

 (in soluble)
 Cu

 <sup>38)</sup>
 Cu

 ブ
 ブ

 ブ
 ブ

 デ
 デ

가 가 , Fig. 4. 가 가 기

.

. Zn . Zn 3 , 가 Table 4.4 Zn residual fraction , Pb Cd. 가 Pb Cd가 가 T CLP 가 KSLT . Cu KSLT 가 , , Zn • , Zn residual fraction T CLP (2.88 가 ±0.05) Zn . 가 , 가 Cd KSLT . Pb 가 가 KSLT Fig. , 4.7 . Pb 가 가 가 Cu 가 가 . Table 4.4 Cu 가 carbonate fraction Cu , (1999)<sup>36)</sup> 가 , Lee •

| Melting      | Melting | Cooling  | Caracian | Leaching   | Drinking Water |       |
|--------------|---------|----------|----------|------------|----------------|-------|
| Condition    | time    | type     | Species  | KSLT (mg/) | T CLP (mg/)    | (mg/) |
|              |         |          | Cu       | 1.404      | 2.786          | 1     |
|              |         |          | Zn       | 0.763      | 11.860         | 1     |
| Raw ash      | -       | -        | Pb       | 12.987     | 0.559          | 0.05  |
|              |         |          | Cd       | 0.011      | 0.166          | 0.01  |
|              |         |          | Cu       | 0.015      | 0.069          | 1     |
|              |         | Air      | Zn       | 0.025      | 6.296          | 1     |
|              |         | cooled   | Pb       | ND         | ND             | 0.05  |
| On i dinin a | 21      |          | Cd       | ND         | ND             | 0.01  |
| Oxidizing    | 2nr     |          | Cu       | 0.018      | 0.649          | 1     |
|              |         | Slowly   | Zn       | 0.028      | 10.820         | 1     |
|              |         | cooled   | Pb       | ND         | ND             | 0.05  |
|              |         |          | Cd       | ND         | ND             | 0.01  |
|              | 2hr     |          | Cu       | ND         | 0.093          | 1     |
|              |         | Air      | Zn       | 0.038      | 9.239          | 1     |
|              |         | cooled   | Pb       | ND         | ND             | 0.05  |
|              |         |          | Cd       | ND         | ND             | 0.01  |
|              |         |          | Cu       | 0.011      | 0.804          | 1     |
|              |         | Slow ly  | Zn       | 0.028      | 7.647          | 1     |
|              |         | cooled   | Pb       | ND         | ND             | 0.05  |
| Peducing     |         |          | Cd       | ND         | ND             | 0.01  |
| Reducing     |         |          | Cu       | 0.009      | 0.534          | 1     |
|              | 2h a    | Slow ly  | Zn       | ND         | 7.437          | 1     |
|              | 5111    | cooled   | Pb       | ND         | ND             | 0.05  |
|              |         |          | Cd       | ND         | ND             | 0.01  |
|              |         |          | Cu       | 0.006      | 0.194          | 1     |
|              | 41      | S low ly | Zn       | ND         | 7.109          | 1     |
|              | 4nr     | cooled   | Pb       | ND         | ND             | 0.05  |
|              |         |          | Cd       | ND         | ND             | 0.01  |

Table 4.6. Leaching concentration of heavy metals in the ash and slag used in this experiment





Fig. 4.7 Leaching rate of heavy metals in the ash and slag used in this experiment (A-O : Air-cooled slag in oxidizing condition, S-O : Slowly-cooled slag in oxidizing condition, A-R : Air-cooled slag in reducing condition, S-O : Slowly-cooled slag in oxidizing condition, 3hr : melting slag for 3hr in reducing condition, 4hr : melting slag for 4hr in reducing).

, . 1. ,

,
.
2. (slag layer), (transition layer),

5

(metal layer) , 가 가 가 가 3. , 가 가 가

4. , 7 7 100%, Cd . residual fraction Zn .





, 7h

- Azuma, K. : "Fluidized Bed Furnace in Sludge Incineration", J. Pollut. Contr., 21(9), pp.838-844(1985).
- Kawaguchi, M. : "Co-incineration System of Municipal Refuse and Sewage Sludge by Fluidized Bed Incinerator", J. Environ. Pollut contr. of Japan, 21, pp.853-859(1985).
- Buchnioz, B. A. : "Trace metal Analysis of Size-fractioned Municipal Solid Waste Incinerator Fly Ash and Its Leachate", J. Environ. Sci. Health, 28A(2), pp.423-441(1993).
- 4. Jesse, R. C. : "Chemical Fixation and Solidification of Hazardous Waste", Van Nostrand Reinhold, pp.2- (1990).
- Sakai, S. and Masakatsu, H. : "Municipal Solid Waste Incinerator Residue Recycling by Thermal Processes", Waste Management, 20(2-3), pp.249-258(2000).
- 小島 昭,柳泥 琳江: "一般廢棄物燒却フライアッシユの燒成磁性化と再利用", 資 源環 境對策, 30(8) (1994).
- 7. 竹中伸也 : "都市ゴミ燒却灰のブラズマ熔融處理", 廢棄物の熔融處理・再資源化技術と有 效利用, 工業技術會, pp.209-221(1992).
- 8. 阿部清一 : "廢棄物の熔融處理と再資源化", 廢棄物の熔融處理・再資源化技術と有 效利用, 工業技術會, pp.119-147(1992).
- Shibasaki, Y. and M. Nishigaki: "燒却殘渣の熔融固化とリサイクル研究の動向", 資源環境對策, 30(12), pp.1163-1172(1994).
- Hiraoka, M. : "Advanced Sludge Thermal Processes in Japan", Wat. Sci. Technol., 30(8), pp. 139-148(1994).

- 11. 桃井淸至 : "下水汚泥の溶融特性と結晶化に關する研究", 環境技術, 20(7), pp.29 - 34(1991).
- Suzuki, T., Yosigae, T., Palter, D. C., Kasai, T. and Itoh, S. : "Development of a Low-NO<sub>x</sub> Emission Slagging Combustor", Combust. Sci. Tech., 93, pp. 111-128(1993)
- Jakob, A., Stucki, S. and Kuhn, P. : "Evaporation of Heavy Metals during the Heat Treatment of Municipal Solid Waste Incinerator Fly Ash", Environ. Sci. Technol., 29(9), pp.2429-2436(1995).
- 14. Nakahara, K., Tada, M., Yamamoto, H., Shinagawa, T., Akashi, T. and Tsurui, M. : ごみ燒却殘渣の溶融處理と重金屬資源の循環, NKK技報, 170, pp. 8-14(2000).
- Eiceman, G. A., Clement, R. E. and Karas, F. W. : "Analysis of Fly Ash from Municipal Incinerators for Trace Organic Compounds, Analytical Chemistry", 51(14), pp.2343-2350(1979).
- 16. , , , , : " 7ł ", , 8(5), pp.790-795(1997).
- Jakob, A., Stucki, S. and Struis, R. P. W. J. : "Complete Heavy Metal Removal from Fly Ash by Heat Treatment : Influence of Chlorides on Evaporation Rates", Environ. Sci. Technol., 30(11), pp.3275-3283(1996)
- Takaoka, M., Takeda, N. and Miura, S. : "The Behavior of Heavy Metals and Phosphorus in an Ash Melting Process", Wat. Sci. Technol., 36(11), pp. 275-282(1997)
- Verhulst, D., Buekens, A., Spencer, P. J., Eriksson, G. : "Thermodynamic Behavior of Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces", Environ. Sci. Technol., 30(1), pp.50-56(1996)

- Oku, S., T. Kasai, M. hiraoka and N. Takeda : "Melting System for Sewage Sludge", Wat. Sci. Technol., 22(12), pp.319-327(1990).
- 21. : "Ash ", , pp.17-1 17-22(1995).
- 22. Yoshiie, R., Kawaguchi, M., Nishimura, M. and Moritomi, H. : "Experimental Analysis of Heavy Metal Emission in Melting Treatment of Incineration Ash", J. of Chem. Eng. of Japan, 33(3), pp.551-554(2000).
- 23. 西野順也, 田原賢日 : "都市ごみ燒却灰及び飛灰の物性と溶融處理", Journal of the Ceramic Society of Japan, 106(11), pp.1117-1123(1998).
- 24. 金井榮一, 島 健, 龜屋降志, 桃井淸室, 第 6 回廢棄物學會研究發表講演論文集, pp. 454-456(1995).
- 25. 原 雄, "ごみ燒却灰の リサイクル・有效利用最前線", TIC, pp.1-32(1997).
- 26. , : : ", , 19(4), pp.481-490(1997)
- 27. , , : " ", , 17(10), pp.983-992(1995)
- 28. Abe, A., Kambayashi, F. and Okada, M. : "Ash Melting Treatment by Rotating Type Surface Melting Furnace, Waste Management", 16(5-6), pp.431-443(1996).
- Sørensen, M. A., Koch, C. B., Stackpoole, M. M., Bordia, R. K., Benjamin, M. M. and Christensen, T. H. : "Effects of Thermal Treatment on Mineralogy and Heavy Metal Behavior in Iron Oxide Stabilized Air Pollution Control Residues", Environ. Sci. Technol., 34(21), pp.4620-4627(2000)
- Tessier, A., Cambell, P. G. C. and Bisson, M. : "Sequential Extraction Procedure for the Speciation of Particulate Trace Metal", Analytical Chemistry, 51(7), pp.844-850(1979).

- Kirby, C. S. and Rimstidt, J. D. : "Mineralogy and Surface Properties of Municipal Solid Waste Ash", Environ. Sci. Technol., 27, pp.652-660(1993)
- 32. , , , , : " ", , , 21(2), pp.225-233(1999)
- 33. 五十嵐 操, 上田義一 : "下水汚泥旋回溶融における重金屬の擧動", 下水道協會 誌, 36(446), pp.133-141(1999)
- 34. Brunner, P. H. and Mönch, H. : "The Flux of Metals through Municipal Solid Waste Incineration", Waste Management and Research, 4, pp.105-109(1986)
- 35. Katou, K., Asou, T., Kurauchi, Y., and Sameshima, R. : "Melting Municipal Solid Waste Incineration Residue by Plasma Melting Furnace with Graphite Electrode", Thin Solid Films, 386, pp.183-188(2001)
- 36. Lee, W.-K., Cheon, J.-R., Kim, J.-B. : " The Behavior oh Hevay Metals by Thermal Treatment of MSWI Fly Ash under the Reduction Condition (I)", J. of Korean Society of Environmental Engineers, 21(4), pp.699-709(1999)
- 37. Wunsch, P., Greilinger, C., Bieni , D., and Kettrup, A. : "Investigation of the Binding of Heavy Metals in Thermally Treated Residues from Waste Incineration", Chemosphere, 32(11), pp.2211-2218(1996)
- 38. Robert H. P. and Cecil H. C. : Chemical Engineers 'Handbook, 5th edition, pp.3-6 3-24(1973).
- Kang, H.-Y. and Lee, Y.-D. : "Heavy Metals Behavior during the Thermal Destruction of Wasted Sludge from a Municipal Wastewater Treatment Plant", J. of KSEE, 18(1), pp.83-89(1996)

· · 가

, , , , ,

,