工學碩士 學位論文

LaAlO₃

2002年 2月

釜慶大學校 大學院

電子工學科

曺 廷 昊

工學碩士 學位論文

LaAlO₃

指導教授 鄭 守 泰

論文 工學碩士 學位論文 提出

2002年 2月

釜慶大學校 大學院

電子工學科

曺 廷 吴

曺廷昊 工學碩士 學位論文

認准

2001年 12月 26 日

- 主審 工學博士 權 泰 夏 印
- 委員 工學博士 柳志久 印
- 委員 工學博士 鄭 守 泰 印

Abstract

·1
•7
3-1
3-1-1. 8
3-1-2. 9
3-2
·
$4-1 L_2O_3 - Al_2O_3 \qquad \qquad$
4-1-1 14
4-1-2
$4-2 La_2O_3 - Al(OH)_3$
4-1-1
4-1-2

Effect of Mechanochemical Process on the Synthesis and Dielectric Properties of LaAlO₃ Ceramics

Jung-Ho Cho

Department of Electronic Engineering, Graduate School, Pukyong National University

Abstract

Synthesis and dielectric properties of LaAlO₃ ceramics from mixtures of La_2O_3 -Al₂O₃(here after LAO) and La_2O_3 -Al(OH)₃(here after LAH) via ground(planetary ball mill) and unground(wet ball mill) process were investigated.

In case of LAO mixtures, the single phase LaAlO₃ of ground powder was formed at 1300 , while that of unground powder was formed at above 1400 . If non-reacted La₂O₃ exists in calcining powder, it would be changed to La(OH)₃ by moisture in the air, and the densities of sintered samples would be worse. The densities of ground and unground samples were 97.3% of theory density at 150 0 , and 95.7% at 1600 , respectively. Grains of ground sample showed uniformity, and their sizes were 2 $3 \mu m$ (unground; non-uniformity, 4 5μ m). Dielectric constant of ground and unground samples was the same value of 22. Dielectric loss of ground(0.001) sample was lower than that of unground(0.005).

In case of LAH mixtures, the single phase LaAlO₃ of ground powder was formed at 1000, while that of unground powder was formed at 1300 . Density and grains of ground sample showed 98% of theory density and a uniform size of $0.75 \ \mu m$, respectively, however those of unground sample showed 93% and non-uniform sizes of 4 5 µm. Dielectric constant and temperature coefficient of capacitance (c) of both ground and unground samples were 21 22 +70 +74 ppm/, respectively. Dielectric loss of ground and sample(0.0003) was 10 times as low as that of unground sample(0.003) due to a uniform and small grain size.

Lanthanum aluminate(LaAlO₃) 가 , [1,2] YBCO 가 YBCO . LaAlO₃ Al_2O_3 La_2O_3 , LaAlO₃ 1500 - 1700 가 [1,3,4] LaAlO₃ 가 , 가 [6] sol-gel^[5] (PAA) , ^[7] [8] 가 LaAlO₃ LaAlO₃ • Mankicwich ^[9] • Ammonium carbonate La A1 LaAlO₃가 1300 • , [10,11] mechanochemical 가 2 가 , , 가 [12] Saito^[13] Zhang

•

- 1 -

, 가 .

LaAlO₃ [16] La₂O₃ - Al₂O₃

,

 $La_2O_3 - Al(OH)_3$

•

•

가 LaAlO₃

,

가.

W .	nernst	가
w .	nernst	∠ Γ

•

mechanochemistry

・ a. フト ^[17]

,

,

a. 7ł .^[17] b. .

u. .

e. : , , oxidation-reduction.

.

. , Carey Lee

AgCl HgCl 가 .

 Cl_2 7

,

,

가

.

•

•

. 가

,

가

,

•

가 가

•

,

•

.

Substance	Low pressure form	High pressure form	Pressure(bars)
CaCO ₃	Calcite	Aragonite	3000
PbO ₂		orthorhombic	10000
Sb ₂ O ₃	Senarmonite	Valentinite	10000
SiO ₂	Quartz	Coesite	13500

Table 1. Mechanochemical phase transformation

- 1. (mechanical synthesis)
- 7년 . 2. (cold alloying)^[22] 가.
- 3. (cermets) (hard)

•

.

4. (minerals)

•

Na(OH) Al(OH)₃

Materials	Purity (%)	Maker
La ₂ O ₃	99.99	Yakuri Pure Chemical, Japan
Al ₂ O ₃	99.8	Junsei Chemical, Japan
Al(OH) ₃	99.9	High Purity Chemical, Japan

Table 2. Raw material of LaAlO₃ ceramics.

Table 3. Material weight of LaAlO₃ ceramics.

Materials	Formula weight	mole	weight
La_2O_3	325.81	1/2	162.901
Al ₂ O ₃	101.96	1/2	50.98
Al(OH) ₃	78.08	1	78.08

4

3.1

•

LaAlO₃

.

$La_2O_3 - Al(OH)_3(LAH)$

•

 $La_2O_3 - Al_2O_3(LAO)$

•

3

3

2가

가

(unground)

•

٠

4-1-1.

.

(1)	(wet ball mill)			
	(ball mill)	50g	3mm	ZrO_2
,	200 cc		250cc	
	24			
(2)	(drying)			
		, 180	20	
	가		(OH)가	

.

•

(3) (calcining)

7† 1100 1400 4 . (4) 2

•

1 .

(5) (forming)		
2	(4 wt% PVA)	100 g 4 cc
	0.2 mm	
	10 mm	
1500 kg/cm^2	가	
(6) (sintering)		
	1300- 1600	4
PVA	500 4	
	2 /min	1000
1 /min		

planetary ball mill (Pulverisett 6, FRITSCH) 가 . (ground) . .

3-1-2.

(1)	(grinding)				
15 g		Al_2O_3		10	
	15 g				
			가		80 ml
				ZrO_2	(10 mm-25
5 n	nm-20)	10			. planetary ball

$1500 \mathrm{kg/cm^2}$	1300- 1600
4	

Fig. 1. Fabrication process of LaAlO₃ ceramics.

DT G

SEM(S-2700, HITACHI)

8,000

50

•

.

가.

,

.

1 mm

 $\varepsilon r = \frac{Ct}{\varepsilon o A}$ (0 : 8.854 × 10⁻¹⁴ F/cm]) C , t , A 1 MHz 30 100

LCZ (HP4192A)

.

Fig. 2. Schematic diagram

4-1 L2 O3-AbO3 4-1-1 3 XRD • La_2O_3 Al_2O_3 La(OH)₃ La_2O_3 • 가 La(OH)₃7 . La_2O_3 Al_2O_3 . La (OH)₃ , Al_2O_3 La(OH)₃ La_2O_3 . [9] La_2O_3 • Al_2O_3 가 Al_2O_3 La(OH)₃ La_2O_3 . • DT G 4 DTG(derivative thermogravimetry) . (OH) 가 OH 300-400 • 가 OH. OH 가 . 가 . (OH) La_2O_3 Al_2O_3

Fig. 3. XRD patterns of unground and ground powders. (: LaAlO₃, : La₂O₃, :La(OH)₃, :Al₂O₃)

$$D = \frac{0.9 \cdot \lambda}{\beta \cdot \cos \theta} \quad \cdots \quad 4 \quad 1$$

Table 4. Particle size of unground and ground powder

	particle size(nm)		
unground	520		
ground	90		

Fig. 4. DTG trace of the unground and ground powders

Fig. 5. XRD patterns of unground powder treated at various temperatures. (: LaAlO₃, : La₂O₃)

5	1400	1500
XRD .	1400	
La_2O_37 = 30		. 1500
	LaAlO ₃	
6 10		
XRD	. 1100	
LaAlO ₃		Al ₂ O ₃
La_2O_3	, 1200	LaAlO ₃
가 가 가		
. 1300	LaAlO ₃	
		100
	. 4	5
	가	

.

DT G

Fig. 6. XRD patterns of ground powder treated at various temperatures (: LaAlO₃, : La(OH)₃, : La₂O₃, : Al₂O₃).

Fig. 7. Sintered density of LaAlO₃ ceramics with unground and ground samples

1400

4.5

4

1300

- 20 -

1500

Temperature('C)

- 1200(G - 1300(G

1400(U)

1700

•

1600

1200 가 1300 La₂O₃. Х 6 LaAlO₃ - CaTiO₃^[3] La_2O_3 LaAlO₃-SrTiO₃^[23] 가 1350- 1450 La₂O₃フト 가 . 1200 . 가 • 8 1200 1300 • 1300 LaAlO₃ La₂O₃フト 1200 . 가 , 80 6 % 가 . Х . 9 1200 La2O3フト Х . La(OH)₃ 가 , $La(OH)_3$ La_2O_37 가 . La(OH)₃ 5 La₂O₃ , 가a La_2O_3 $La(OH)_3$ 가 6.57 4.42 g/cm³ 가 . 가 . 가 • LaAlO₃

- 21 -

Fig. 8. Expansion rate of ground samples as a function of time.

Fig. 9. XRD patterns of LAO green samples kept in air (calcined at 1200) (: LaAlO₃, : La(OH)₃, : La₂O₃, : Al₂O₃).

	lattice pa	rameters	structures	theorical
	a()	c()		density
LaAlO ₃	5.364	13.11	rhombohed- ral	6.525
La_2O_3	3.937	6.129	hexagonal	6.57
La(OH) ₃	6.528	3.858	hexagonal	4.428

Table 5. Lattice parameters, Structures and Theorical density $LaAlO_3$, La_2O_3 and $La(OH)_3$ powders.

Fig. 10. SEM micrographs of $LaAlO_3$ ceramics by unground and ground sintered at 1500 .

Fig. 11. Dielectric constant of LaAlO₃ ceramics made of unground and ground samples (at 1MHz).

11			
	. 1300		1400
19.5		1500	

- 24 -

가

Fig. 12. Dielectric loss of LaAlO₃ ceramics made of unground and ground samples at 1MHz.

Fig. 13. Temperature dependence of capacity of LaAlO₃ ceramics made of unground and ground samples.

Table 6. Dielectric constant, Dielectric loss and temperature coefficient of LaAlO₃ ceramics made of unground at 1600 and ground samples at 1500 (1MHz).

Sample	Dielectric constant(&r)	Dielectric loss(tanδ)	Temperature coefficient	remarks
Unground	22.10	0.005	+120ppm/℃	Sintered at 1600°C
Ground	22.16	0.001	+85ppm/°C	Sintered at 1500℃

4-1-3								
$La_2O_3 - A$	$l_2O_3(L$	AO)					()
La	A1O ₃							
							1400	
	,		1300			,		
	La ₂	J₃Zŀ	,				La ₂ C)3
La(OH) ₃		,					160	0
6.29g/c	m ³	,		1500	6.35g/ cr	n ³		
97.3%					가			
4-5µm	,			가 2-	3µm.			
		가		,	22			
			0.001		0.005			
				가	+85ppm/			

+120 ppm/ .

4-2 La₂O₃-Al(OH)₃ 4-2-1 14 10 DTG() 400 A1(OH)₃ . La(OH)₃ (OH) , 540 512 - Al₂O₃ boehmite [24] 가 Yanagida $Al_2O_3 \cdot 3H_2O$. 가 가 550 • 15 XRD . Debey - Sherrer ^[25] 8 500 nm 70nm • - Al₂O₃ • Х-15 La_2O_3 . La(OH)₃ Al(OH)₃ La₂O₃가 La(OH)₃ 가 [16] La(OH)₃7

•

,

,

Fig. 14. DTG trace of the unground and ground powders.

Fig. 15. XRD patterns of unground and ground powders before heating process (: La(OH)₃, : Al(OH)₃).

	particle size(nm)			
unground	500			
ground	70			

Table 7. Particle size of unground and ground samples

.

Fig. 16. XRD patterns of unground powders treated at various temperatures (: LaAlO₃, : La₂O₃).

Fig. 17. XRD patterns of ground powders treated at various temperatures ($: LaAlO_3$, $: La_2O_3$).

0.75 µm

.

- 34 -

300

,

가

Fig. 19. SEM micrographs of $LaAlO_3$ ceramics with unground and ground process.

가

Fig. 20. Dielectric constant and loss of LaAlO₃ ceramics of ground() and unground() samples as a function of frequency.

Fig. 21. Dielectric constant and loss of LaAlO₃ ceramics of ground () and unground() samples (1MHz).

22 30-100

+70ppm/ , +74ppm/

.

가

sample	dielectric constant(r)	dielectric loss(tan)	temperature coefficient
unground	20.56	0.003	+74ppm/
ground	22.40	0.0003	+70ppm/

Table 8. Dielectric constant and dielectric loss of LaAlO₃ ceramics of unground and ground samples.

4-2-3						
$La_2O_3 - A$	(OH) ₃ (LA	H)				(
)	LaAlO ₃					
		1300				
			1000			
		LAC)			
Al(OH) ₃ 가		- Al ₂ C)3			
		1500	4			6.13 g/cm ³
	93 %	,	4-5	μ m		,
	1400	4		6.41 g	$/ \mathrm{cm}^{3}$	
98%	,	0	.75 μm			
	21,	0.003	,		22	0.0003 ,
		+70 +7	74 ppm/			
	가		,			

LaAlO₃

원료물질	물질 La ₂ O ₃ -Al ₂ O ₃		La ₂ O ₃ -AI(OH) ₃		
분 쇄 방 법	습식 볼밀	메카노케미컬	습식 볼밀	메카노케미컬	
단일상 생성 온도	1400℃ 이상	1300℃	1300℃	1000℃	
분말입경	540nm	90nm	500nm	70nm	
소결 밀도	6.29g/cm ³ (1600℃)	6,35g/cm ³ (1500°C)	6.13g/cm ³ (1500℃)	6.41g/cm ³ (1400℃)	
Grain size	4-5µm	2-3µm	4-5µm	0.75µm	
유 전 율	21.8	22.16	20.32	22.4	
유 전 손 실	0.002	0.001	0.003	0.0003	

•

•

La₂O₃7

가

La(OH)₃ LaAlO₃ . . , $La_2O_3 - Al(OH)_3$

1400

22.4

.

, • ,

,

0.0003 가

- 41 -

98%

,

가

LaAlO₃

: 7 La₂O₃-Al₂O₃(LAO) La₂O₃-Al(OH)₃(LAH) () () LaAlO₃

.

, $La_2O_3 - Al_2O_3(LAO)$ LaAlO₃ 1400 , 130 0 6.29g/cm^{3} . 1600 1500 . 6.35g/cm^{3} 97.3% . 가 가 2-3 4-5µm , 가 μm . 0.001 22 . 가 +85ppm 0.005 . +120 ppm/ / , $La_2O_3 - Al(OH)_3$ (LAH) LaAlO₃ 1300 100 , 93%, 4-5µm 0 . 98% 0.75 , ,

μm . 21, 0.003 , 22 0.0004 , +70 +74 ppm/ . , La₂O₃-A1(OH)₃(LAH)

•

가 가 LaAlO₃

: , , LaAlO₃, ,

,

Effect of Mechanochemical Process on the Synthesis and Dielectric Properties of LaAlO₃ Ceramics

Department of Electronic Engineering Dirrected by Professor Su-Tae-Chung

Synthesis and dielectric properties of $LaAlO_3$ ceramics from mixtures of La_2O_3 -Al₂O₃ (here after LAO) and La_2O_3 -Al(OH)₃ (here after LAH) via ground(planetary ball mill) and unground(wet ball mill) process were investigated.

In case of LAO mixtures, the single phase LaAlO₃ of ground powder was formed at 1300 , while that of unground powder was formed at above 1400 . If non-reacted La₂O₃ exists in calcining powder, it would be changed to La(OH)₃ by moisture in the air, and the densities of sintered samples would be worse. The densities of ground and unground samples were 97.3% of theory density at 150 0 , and 95.7% at 1600 , respectively. Grains of ground sample showed uniformity, and their sizes were 2 $3 \mu m$ (unground; non-uniformity, 4 $5 \mu m$). Dielectric constant of ground and unground samples was the same value of 22. Dielectric loss of ground(0.001) sample was lower than that of unground(0.005).

In case of LAH mixtures, the single phase LaAlO₃ of ground powder was formed at 1000, while that of unground powder was formed at 1300. Density and grains of ground sample showed 98% of theory density and a uniform size of 0.75 μ m, respectively,

- 44 -

however those of unground sample showed 93% and non-uniform sizes of 4 5 μ m. Dielectric constant and temperature coefficient of capacitance (c) of both ground and unground samples were 21 22 and +70 +74 ppm/, respectively. Dielectric loss of ground sample(0.0003) was 10 times as low as that of unground sample(0.003) due to a uniform and small grain size.

Keyword: planetary ball mill, LaAlO₃, Dielectric constant, Dielectric loss

- [1] Claudio. Zuccaro, Michael Winter, Norbert Klein, and Knut Urban, "Microwave absorption in single crystals of lanthanum aluminate" J. Appl. Phys. Vol. 82, No. 11, pp. 5695-5704, 1998.
- [2] Seo-Yong Cho, In-Tae Kim, Kug Sun Hong, "Microwave dielectric properties and applications of rare-earth aluminates" J. Mater. Res., Vol. 14, No. 1, 1999.
- [3] Jong Ha Moon, Hyun M. Jang, Hyun S. Park, Jong Y. Shin and

Ho S.Kim, "Sintering Behavior and Microwane Dielectric Properties of (Ca,La)(Ti,Al)O₃ Ceramics" Jpn. J. Appl. Phys. Vol. 38, pp. 6821-6826, 1999.

- [4] Gun Yong Sung, Kwang Yong Kang, and Sin-Chong Park, "Synthesis and Preparation of Lanthanum Aluminate Target for Radio-Frequency Magnetron Sputtering" J. Am. Ceram. Soc., Vol. 74, No. 2, pp. 437-439, 1991.
- [5] Eshev and V. Slavova, "Preparation of Lanthanum Aluminate Thin Films by a Sol- Gel Procedure Using Alkoxide Precursors," Mater. Res. Bull., Vol. 29, pp. 255-261, 1994.
- [6] Douy and P. Odier, "The Polyacrylamide Gel: A Novel Route to Ceramic and Glassy Oxide Powder," Mater. Res. Bull., Vol. 24, pp. 1119-1126, 1989.
- [7] C. Lux, R. D. Clark, A. Salazar, L. K. Sveum, and M. A. Krebs,
 "Aerosol Generation of Lanthanum Aluminate," J. Am. Ceram.
 Soc., Vol. 80, No. 1, pp. 133-141, 1997.
- [8] Kakihara and T. Okubo, "Low Temperature Powder Synthesis of LaAlO₃ Through in situ Polymerization Route Utilizing Citric Acide and Ethylene Glycol," J. Alloys Compd., Vol. 266, pp. 117-124, 1998.
- [9] P. M. Mankicwich, J. H. Scofield, W. J. Skocpol, R. E. Howard, A.H. Dayem and E. Good, "Reproducible Technique for Fabrication of Thin Films of High Temperature Superconductors," Appl. Phys. Lett., Vol 51. No. 21, pp. 1752-1755, 1987.
- [10] Jose F. Fernandez-Bertran, "Mechanochemistry: an overview"

Pure Appl. Chem., Vol. 71, No, 4, pp. 581-586, 1999.

- [11] J. P. Eymery, F. Ylli "Study of a mechanochemical transformation in iron pyrite" J. Alloys and Compounds 298, pp. 306-309, 2000.
- [12] Junmin Xue, Dongmei Wan, See-Ee Lee, etal "mechanochemical Synthesis of Lead Zirconate Titanate from Mixed Oxides" J. Am. Ceram. Soc., Vol. 82, No. 7, pp. 1687-92, 1999.
- [13] Qiwu Zhang and Fumio Saito, "Mechanochemical Synthesis of Lanthanum Aluminate by Grinding Lanthanum Oxide with Transition Alumina" J. Am. Ceram. Soc., Vol. 83, No. 2, pp. 439-441, 2000.
- [14] K. HAMADA, T. ISOBE. M. SENNA, "Comparative studies of the mechanochemical synthesis of MgTiO₃ precursors by milling various mixtures containing oxides and hydroxides" J. Mater. Sci. letter, Vol. 15, pp. 603-605, 1996.
- [15] Jadambaa Temuujin, Kenneth J. D. Mackenzie, Tsedev Jadambaa, Banzar Namjildorj, Budjav Olziiburen, Mark E. Smith and Paul Angerer, "Effect of mechanochemical treatment on the synthesis of calcium dialuminate" J. Mater Chem, Vol. 10, pp. 1019-1023, 2000.
- [16] Yang Jiang, Yue Wu, Yi Xie, and Yi-Tai Qian, "Synthesis and Characterization of Nanocrystalline Lanthanide Oxysulfide via a La(OH)³ Gel Solvothermal Route" J. Am. Ceram. Soc., Vol. 83, No. 10, pp. 2628-30, 2000.
- [17] Aaron C. Dodd and Paul G. McCormick, "Synthesis of

nanoparticulate zirconia by mechanochemical processing" Scripta mater, Vol. 44, pp. 1725-1729, 2001.

- [18] N. tevulova, A. Buchal, P. Petrovi, K. Tkaova and V. epelak
 "Structural investigation of the high-energy milled Fe-Si system"
 J. Magnetism and Magnetic Materials, Vol. 203, pp.190-192, 1999.
- [19] F. Kh. Urakaev and V. V. Boldyrev "Mechanism and kinetics of mechanochemical processes in comminuting devices" Powder Technology, Vol. 107, pp. 93-107, 2000.
- [20] P. N. Kuznetsov, L. I. Kuznetsova, A. M. Zhyzhaev, G. L. Pashkov and V. V. Boldyrev, "Ultra synthesis of metastable tetragonal zirconia by means of mechanochemical activation" Applied Catalysis A: General 5904, 1-9, 2001.
- [21] K. B. Gerasimov and V. V. Boldyrev, "On mechanism of new phases formation during mechanical alloying of Ag-Cu, Al-Ge and Fe-Sn systems" Materials Research Bulletin, Vol. 31, pp. 1297-1305 1996.
- [22] C. Suryanarayana, E. Ivanov and V. V. Boldyrev, "The science and technology of mechanical alloying" Materials Science and Engineering A, Vol. 304-306, pp. 151-158, 2001.
- [23] Pai-hsuan Sun, Tetsuro Nakamura, Yue Jin Shan, Yoshiyuki Inaguma, Mitsuru Itoh and Toshiki Kitamura, "Dielectric Behavior of (1-x)LaAlO₃-xSrTiO₃ Solid Solution System at Microwave Frequencies" Jpn. J. Appl. Phys. Vol. 37, pp. 5625-5629, 1998.
- [24] Hiroaki Yanagida, Kunihiko Koumoto, Masaru Miyayama, "The

chemistry of ceramics" Originally published by Maruzen Co., Ltd, Tokyo, pp. 138-141.

- [25] H. P. klug and L. E. Alexander, "X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials"; p491. Wily, New York, 1962.
- [26] Yuan Go Wang, Paul M. Bronsveld, and jeff. Th. M. DeHosson,"Ordering of Octahedral Vacancies in Transition Aluminas" J.Am. Ceram. Soc., Vol. 81, No. 6, pp. 1655-1660, 1999.
- [27] Hippel, "Dielectrics and Waves"; pp. 86-91, 1983.
- [28] , , , , , , , , "Ba[Mg_{1/3}(Nb_{0.2}T a_{0.8})_{2/3}]O₃ 7; "

Vol. 13. No. 6, pp.485-492, 2000.

가

,

2002 1