
공학석사 학위논문

발전소 철근콘크리트공사의 품질부적합관리에 관한 조사연구

지도교수 이 수 용

2002년 8월

부경대학교 산업대학원

건 축 공 학 과

김 창 규

이 논문을 김창규의 공학석사 학위논문으로 인준함

2002년 6월 14일

주 심 공학박사 김 영 찬 (인) 위 원 공학박사 이 재 용 (인)

위 원 공학박사 이 수 용

< 목 차 >

Abstract

I.서 론1
1.1 연구의 배경 및 목적1
1.2 연구의 범위 및 연구방법3
Ⅱ. 건설공사 품질관리에 관한 예비적 고찰4
2.1 발전소 건설공사의 품질관리 특성4
2.2 발전소 건설공사 품질등급분류 및 관리5
2.2.1 품질등급의 개요5
2.2.2 품질등급 분류기준6
2.3 부적합 품질의 관리10
2.3.1 부적합 품목관리 목적10
2.3.2 부적합의 정의 및 처리과정10
2.3.3 부적합 보고서의 등급분류11
2.3.4 시정조치 요구서12
Ⅲ. 발전소 철근콘크리트공사의 품질관리 사례조사 및 분석13
3.1 공사개요 및 조사방법13
3.1.1 공사개요13
3.1.2 조사방법

3.1.3 철근콘크리트공사의 품질기준 특성16
3.2 사례발전소 철근콘크리트공사의 품질관리현황16
3.3 거푸집공사의 부적합보고서 발생특성24
3.3.1 건물별 부적합보고서24
3.3.2 부위별 부적합보고서27
3.3.3 공사시기별 부적합보고서28
3.4 철근공사의 부적합보고서 발생특성30
3.4.1 건물별 부적합보고서30
3.4.2 부위별 부적합보고서33
3.4.3 공사시기별 부적합보고서34
3.5 콘크리트공사의 부적합보고서 발생특성35
3.5.1 건물별 부적합보고서35
3.5.2 부위별 부적합보고서
3.5.3 공사시기별 부적합보고서39
3.6 매설철물공사의 부적합보고서 발생특성41
3.6.1 건물별 부적합보고서41
3.6.2 부위별 부적합보고서44
3.6.3 공사시기별 부적합보고서45
참 고 문 헌48
부 록51

< 표목차 >

丑	2.1 각국의 품질등급 분류	8
丑	2.2 공급자별 품질등급현황	9
丑	3.1 사례발전소 건물현황1	3
Ŧ	3.2 일반공사와 발전소공사의 품질기준 비교1	6
丑	3.3 건물별 부적합보고서 조사현황1	7
丑	3.4 공종별 부적합보고서 비율1	9
莊	3.5 부위별 부적합보고서 비율2	0
丑	3.6 공사시기별 부적합보고서 비율2	1
莊	3.7 거푸집공사의 부적합보고서 건물별 비율2	4
丑	3.8 거푸집공사의 부적합보고서 부위별 비율27	7
丑	3.9 거푸집공사의 부적합보고서 공사시기별 비율2(9
丑	3.10 철근공사의 부적합보고서 건물별 비율3(Э
丑	3.11 철근공사의 부적합보고서 부위별 비율3(3
丑	3.12 철근공사의 부적합보고서 공사시기별 비율34	4
丑	3.13 콘크리트공사의 부적합보고서 건물별 비율	3
Æ	3.14 콘크리트공사의 부적합보고서 부위별 비율3&	3
丑	3.15 콘크리트공사의 부적합보고서 공사시기별 비율4()
Ŧ	3.16 매설철물공사의 부적합보고서 건물별 비율41	L
丑	3.17 매설철물공사의 부적합보고서 부위별 비율44	1
丑	3.18 매설철물공사의 부적합보고서 공사시기별 비율46	;

< 그림목차 >

그림 1.1 연구의 흐름도
그림 2.1 NCR 처리과정1
그림 3.1 발전소 철근콘크리트공사의 NCR Tag 설치 예1
그림 3.2 부위별 부적합보고서 비율2
그림 3.3 공사시기별 부적합보고서 비율2
그림 3.4 거푸집공사의 부적합보고서 건물별 비율2
그림 3.5 거푸집공사의 부적합보고서 건물별 비율2
그림 3.6 거푸집공사의 부적합보고서 건물별 비율2
그림 3.7 거푸집공사의 부적합보고서 부위별 비율2
그림 3.8 거푸집공사의 부적합보고서 공사시기별 비율2
그림 3.9 철근공사의 부적합보고서 건물별 비율3
그림 3.10 철근공사의 부적합보고서 건물별 비율3
그림 3.11 철근공사의 부적합보고서 건물별 비율35
그림 3.12 철근공사의 부적합보고서 부위별 비율3
그림 3.13 철근공사의 부적합보고서 공사시기별 비율3(
그림 3.14 콘크리트공사의 부적합보고서 건물별 비율36
그림 3.15 콘크리트공사의 부적합보고서 건물별 비율37
그림 3.16 콘크리트공사의 부적합보고서 건물별 비율38
그림 3.17 콘크리트공사의 부적합보고서 부위별 비율39
그림 3.18 콘크리트공사의 부적합보고서 공사시기별 비율4(
그림 3.19 매설철물공사의 부적합보고서 건물별 비율42
그림 3.20 매설철물공사의 부적합보고서 건물별 비율43

그림	3.21	매설철물공사의	부적합보고서	건물별 비율44
그림	3.22	매설철물공사의	부적합보고서	부위별 비율45
그림	3.23	매설철물공사의	부적합보고서	공사시기별 비율46

A Study on the Characteristic of Non-Conformance Report for Reinforced Concrete Work in a Power Plant Construction

Chang-Gyu Kim

Department of Architectural Engineering,
Graduate School of Industry,
Pukyong National University

Abstract

This study is to show a characteristic of Non-Conformance Report(NCR) by the number of 215 samples for reinforced concrete work in the construction of a power plant.

The purpose of this study is to show the cause of Non-Conformance Report(NCR) for reinforced concrete work and to show basic data for the high quality of a structure work.

The results are as follows.

1) The average of the occurrence ratio of Non-Conformance Report(NCR) about per 100m' of an architectural area is to show as 0.02(per/100m'). One of them, G-building's Non-Conformance Report(NCR) occurs as 0.34(per/100m') largely

G-building which supplies cooling water to another building, has too many pipes, is carefully constructed.

2) The occurrence ratio of Non-Conformance Report(NCR) about each part of structure occurs at base(6.61%), column(3.25%), wall(52.35%), slab(19.41%), etc(18.38%).

The reason it is a high occurring ratio of Non-Conformance Report(NCR) about wall and slab is that different works of machine, electrical equipment and laying steels are interfered with each works. Therefore, each works need to deliberate before the structure is built.

3) The occurrence ratio of Non-Conformance Report(NCR) for each year of building construction occurs at 65% of the total average in first year and second year.

Also, in the occurrence ratio of each season per year, occurrence ratio of the summer season(32.56%) is the highest because many construction of a power plant has been worked in this season.

Therefore, the quality management need to do actively, and the quality management is continuously educating the laborers to adopt strict quality management in a Power Plant.

I. 서 론

1.1 연구의 배경 및 목적

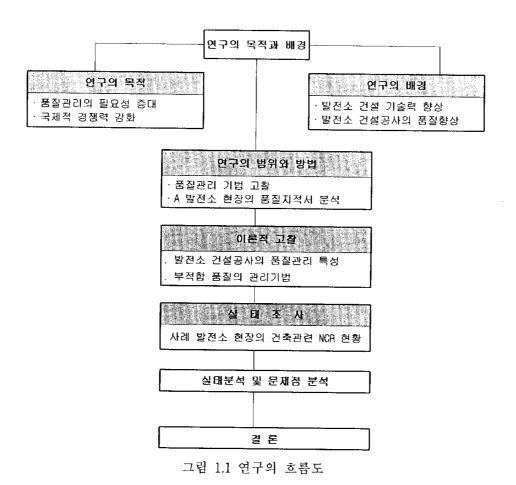
최근 우리나라는 경부고속철도, 신공항, 월드컵 경기장 건설 등 대규모 국책사업이 계속 진행되고 있으며, 이러한 사업을 통해 건설산업의 국제 경쟁력 향상을 위한 노력이 이어지고 있다. 건설업의 경쟁력 확보를 위해서는 경영과 품질관리에 대한 기법개발이 절실히 요구된다. 그러나 아직 이러한 대규모 건설사업의 수행에 있어서 핵심분야는 외국의 기술에 의존하고 있는 실정이다.

이러한 반면에 원자력발전소 건설에 대한 기술은 이미 70년대부터 선진 사업관리 능력과 기술을 우리나라가 획득하여 한국형 표준원전 건설에 이르기까지 발전하였다. 이 분야 건설에서는 기술자립에 성공하여 세계적으로 인정받고 있고, 원전의 건설관리기법을 중국 등 제3국가에 수출하고 있는 현실이다. 다른 건설기술 분야에서는 핵심분야를 외국의 기술에 의존하고 있는 입장에서 볼 때 발전소 건설분야 우위를 계속 유지하고 더욱 향상시키기 위한 노력이 필요하다고 볼 수 있다.

안정적인 에너지원의 확보가 각 나라마다 중요한 정책과제가 되고 있으므로 획기적인 대체에너지 기술이 개발되지 않는 한 원자력 발전소건설은 국내외를 막론하고 계속될 전망이다. 이에 따라 우리나라가 경쟁력을 갖고 있는 발전소 건설 기술 중 품질관리 부분에 대한 기술력향상을 위한 기초적인 연구가 계속 필요할 것으로 본다.

발전소 건설사업의 특성은 우선 자본 집약적인 거대 장치산업이라는 것이다. 투입 예산규모가 수 조원에 이르고 사업기간도 10여 년에 달하며 또한 천만 개 이상의 부품이 소요되는 최첨단 설비로 구성됨으로써 관련산업에 미치는 파급효과도 지대하다. 발전소 건설 및 설비에 참여

하는 업체 수는 4~5백 개 업체에 달하고 연인원 약 천만 명의 노동력이 투입된다. 그러나 무엇보다도 발전소 건설사업의 특성은 기술 집약적 첨단사업이라는 것과 건설 기술 측면에서는 안전성을 최우선으로 하는 사업이라는 것이다. 이처럼 자본규모가 방대하고 거대 장치사업인발전소 건설사업은 토목, 건축, 지질, 환경, 내진 뿐만 아니라 기계, 전기, 통신, 물리, 화학, 계측, 핵공학 등 많은 학문이 관련을 갖는 설비가동시에 진행되는 특성에 따라 사업시행에 있어서 고도의 건설기술과 관리기법을 적용한 전산시스템 운영과 이를 관리 감독하는 경험이 축적된고급인력을 필요로 한다.


특히, 무엇보다 철두철미하게 지켜져야 할 안전성 확보를 위해 개념설계 단계에서부터 안전성 위주의 심층방어, 다중방어, 방사선 피폭 최소화(ALARA: As Low As Reasonably Achievable) 등이 적용된 설계를 채택하고 있다. 주요 안전성 관련 기기에 대하여는 사고 발행 시를 대비하여 다중, 다원설계 방법을 채택하고 있다. 또한 엄격한 품질요건을 준수토록 하는 외에도 안전성 심사(예비·최종 안전성 분석, 환경영향평가), 안전성 검사(주요 공정별 사용 전 검사, 품질보증 검사 등)가 독립적인 안전규제 전문기관에 의해 이루어진다. 시공 중에는 시공사 자체검사, 사업주검사, 제3기관검사, 정부규제 검사 순으로 5단계 다중검사 체제로 검사가 진행되고 있어 철저한 품질관리를 통한 발전소 안전성 및 신뢰도를 제고하고 있다.1)

이에 본 연구는 건설기술 집약도가 높은 발전소 공사의 주가 되는 철 근콘크리트 공사의 품질관리에 대한 사례조사를 통해 주요 문제점을 도 출하고 분류 고찰함으로써 향후 발전소 건설현장에서 참고 할 수 있는 기초자료 제공을 목적으로 한다.

1.2 연구의 범위 및 연구방법

본 연구는 그 목적을 달성하기 위해 품질관리의 이론적 고찰과 더불어사례 발전소현장에서 발행된 품질부적합 보고서를 조사하여 분석하였다. 전체 발전소 건설공사에서 발행되는 품질지적서는 그 분량이 너무 방대하여 본 연구에서는 건축공사 중 철근콘크리트 공사를 중심으로 한정하였다.

이와 같은 결과를 토대로 발전소 건설공사 중 건축공사의 품질관리 향상 방안을 제시하였으며, 이 연구의 진행과정을 정리하면 그림 1.1과 같다.

Ⅱ. 건설공사 품질관리에 관한 예비적 고찰

2.1 발전소 건설공사의 품질관리 특성

발전소의 경우 화력 발전소, 수력 발전소, 복합발전소, 원자력 발전소등 다양한 발전원리로 건설되어진다. 그 중 원자력발전소는 자원빈국의국가에서는 가장 현실적인 에너지원으로 인식되어 계속 건설될 것으로예측된다. 그러나 세계적인 환경규제에 의한 영향과 유류 및 환율변동에 의한 영향이 화력발전에 비하여 월등히 낮은 이상적인 발전임에도불구하고 원전의 안전에 대한 막연한 불안감으로 원전의 건설이나 처분장의 유치에 일부 부정적인 시각이 있는 것은 사실이다. 그래서 더욱철저하고 완벽한 원전 안전보호체계로써 건설되어 일반인이 신뢰할 수있도록할 필요성이 있다.

실제 원자력발전소의 중요한 구조물은 큰 지진에도 영향을 적게 받는 견고한 암반 위에 건설되며 구조물 자체도 내진 설계로 이루어진다. 그예로 1994년 1월 17일 미국 로스엔젤레스에서 진도 6.6을 기록한 지진이 발생하여 많은 인명과 재산피해를 가져왔으나 이 지역의 산오노프레스 원전은 아무런 영향을 받지 않고 정상가동 되었으며. 1995년 1월 17일 일본 관서지방의 지진 발생 시에도 인근에 있는 많은 원전들은 아무런 피해 없이 정상가동 되었다. 하지만, 이러한 안정성을 확보하기 위해서는 일반 건설공사보다 더욱 더 고품질의 관리가 이루어져야 함을 알아야 한다.

이러한 발전소 건설의 안전성 확보를 위해 국내 발전소 공사를 발주 및 관리하는 한국전력공사의 경우, 1972년 고리 원자력 발전소 공사를 시작으로 아래와 같은 과정을 통해 발전소 건설공사 품질보증을 확보하기 시작했다.

1972년 : 고리 #1 건설시 미국원자력법 규정 10 CFR 50 부록 B 최초적용

1974년 : 한전원전 QA조직 발족

1976년 : 고리 #2 계약시 동요건을 준수토록 계약에서 요구

1977년 : 수화력발전 및 송배전 분야에서 공장검사 제도도입 (전력 설비검사반)

1978년 : 원자력법에 원전 건설, 운영 품질보증계획서 제출요건 명시

1983년 : 과기부고시 83-2호에 원전사업자 및 생산업체 허가 관련 기술

능력 및 품질보증 기준 제정(10 CFR 50 부록 B)

1984년 : 한전 원자력 품질보증 규정(27700)제정

1988년 : 한전사규에 수화력, 송배전분야 품질보증규정 추가

1995년 : 전사적 품질보증체제 확립으로 전산 및 통신분야까지 확대

1996년 : 원자력발전소 건설 및 운영에 표준 품질보증계획서 적용

2.2 발전소 건설공사 품질등급분류 및 관리

2.2.1 품질등급의 개요

품질등급이란 원자력발전소의 안전성 및 설비신뢰도 유지를 목적으로 대상계통 기기 및 구조물을 안전성과 신뢰성 기능의 중요도에 따라 구 분하는 것을 뜻한다. 이 품질등급 구분에 따라 품질보증체계를 유지하 고 적절한 품질보증 활동을 수행한다.

2.2.2 품질등급 분류기준

- 1) 국내 원자력 법령
- 2) 안전성 분석보고서 (PSAR: Preparation Safety Analysis Report, FSAR: Final Safety Analysis Report)
- 3) 미국 연방법 및 원자력 규제지침
 - ① 10 CFR 50 App. A : 원자력 발전소 일반설계 기준
 - 2 10 CFR 50.55a : Code and Standards
 - ③ RG 1.26 : Quality Group Classifications and Standards for Water Steam and Radioactive Waste Containing Components of NPP
- ④ RG 1.29: Seismic Design Classification
- 4) ANSI N 18.2 : Nuclear Safety Criteria for the Design of Stationary PWR
- 5) ANSI/ANS-51.1: Nuclear Safety Criteria for the Design of Stationary Pressurized Water Reactor Plant
- 6) IEEE-308: Criteria for Class 1E Power Systems for Nuclear Power Generating Stations
- 7) 기타 사업자, 설계자별 일반 설계기준 등

2.2.2.1 품질등급의 분류

품질등급(Quality Class)은 품질활동의 기본 지침이 되는 요건으로서, 적용되는 품질등급 및 품목의 특성에 따라 품질활동을 수행함으로써 적 정 품질을 확보할 수 있는 효율적인 관리 방법이다.

실제 원전설계 및 제작시는 각 담당 회사별로 품질등급을 설정, 운용 한다. 한전에서는 고리 3,4호기부터 미국 벡텔사의 품질등급 분류 방식 을 도입하여 원자로의 안전성 여부, 설비 신뢰성 유무 등에 따라 Q,T,R,S 의 4개 등급으로 분류하고 있고 수화력, 송변전 및 배전 설비의 경우 발전소 신뢰운전에 영향을 미치는 정도에 따라 신뢰성 등급 (R)과 비신뢰성 등급 (S)으로 구분, 적용하고 있다.

1) 안전성 관련 (Q)

- ① 미연방법 10 CFR 50.55a 및 NRC 규제지침 RG 1.26에 의거 원자로의 안전에 관련된 기기로서 고장 또는 결함 발행시 일반인에게 방사선 장해를 직접 또는 간접으로 미칠 가능성이 있는 품목
- ② 발전소 가동 중 안전 관련 기능의 수행과 안전하게 정지하는데 관련 된 계통 및 기기로서 원자로 격납 건물, 핵연료 건물, 원자로 냉각재 계통, 비상 노심 냉각계통, 화학 및 체적제어계통 및 기기 등에 해당

2) 안전성 영향 (T)

- ① 미 NRC 규제지침 RG 1.29 및 ANSI/ANS 51.1 에 의거 특별히 품 질 보증활동을 수행토록 요구하는 품목
- ② 고장 시 안전관련 기능을 수행 불가능한 수준으로 떨어뜨리는 기기 로써 터빈건물, 방사성 폐기물 건물, 원자로 보충수 펌프, 사용후 연 료 취급 설비, 방사성 폐기물 처리계통 및 기기 등에 해당

3) 신뢰성 관련 (R)

- ① 발전정지에 따른 기능 상실시 발전소 가동율에 영향을 준다고 판단되는 품목
- ② 터빈, 발전기, 변압기, 복수기 등 주로 발전소 2차 계통 품목에 해당 4) 일반산업 품목 (S)
 - Q, T, R 품목 이외의 일반 산업품목을 말한다.

2.2.2.2 국내외 품질등급분류 현황

국내외 품질등급의 구분을 비교하면 아래의 표 2.5와 같다.

표 2.1 각국의 품질등급 분류

- н	
7 是	. III gight 10 CED 5055 III NDC DC 100 ol o did not be a least of the
	·미 연방법 10 CFR 50.55a 및 NRC RG 1.26 의 요건에 따라 발전소 구
	조물, 계통 및 기기를 안전성 기능의 중요도를 고려하여 A, B, C, D 4
미국	개의 품질그룹으로 구분함.
-1-7	·A/E 회사, 주기기 제작자는 상기 요건에 따라 각기의 품질등급 분류기
	준을 운용하며 대표적인 예로서 벡텔사는 Q, T, R, S 로 품질등급을 분
	류함.
	·RCC-M Code A5000 에 따라 안전성 품목을 안전성 등급 1, 2, 3으로
ਜ਼ ਤੀ ਮ	분류함.
프랑스	·설계 및 제작사인 프라마톰 및 알스톰사의 분류기준에 따라 1차 계통은
	Q1, Q2, Q3, QNC로 2차계통은 C1, C2, C3 로 구분함.
	· CSA Z 299 요건에 따라 설계공정의 복잡성, 설계의 완성도, 제품 또는
캐나다	역무의 특성, 제작의 복잡성, 안전성, 경제성 등을 고려하여 점수로 평가
	후 1~5로 품질등급을 분류함.
	•국내 품질등급은 원전 설비 공급국가 및 공급자의 분류방법 및 기준에
	따라 다양하게 적용하고 있다.
한국	· 영광 3,4,5,6, 울진 3,4,5,6호기 종합설계 용역 계약자인 한국전력기술(주)
	의 품질등급 분류방법 및 기준은 미국 벡텔사의 분류기준을 참조로 하여
	Q, T, R, S 등급으로 분류함. ¹⁰⁾

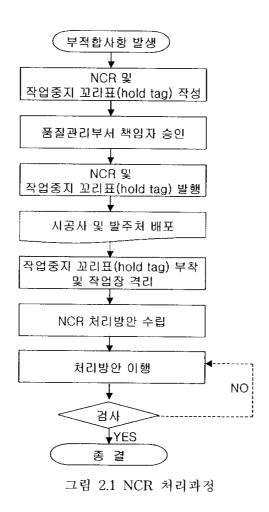
발전소 건설의 공급자별 품질등급 분류 현황은 표 2.6과 같다.

표 2.2 공급자별 품질등급현황

			English of the second state of the second stat
광 급 차	공급실적	품질등급	비
		Q (안전성)	
벡텔	고리 3,4, 영광 1,2호기	T (안전성 영향)	
(미국)	A/E	R (신뢰성)	
		S (일반산업기준)	
웨스팅	고리 1~4, 영광 1,2호기	0 (0 7 2 2)	구매관리 관련
하우스		Q (안전성)	A, B, C, D 47#
(미국)	NSSS 설비 공급	NA (비안전성)	의 Q-Level 운용
ABB-CE	여 과 이 4 - 9 기 이 4 중 기	QC-1 (안전성)	, , , , , , , , ,
	영광 3,4 , 울진 3,4호기	QC-2 (비안전성)	
(미국)	NSSS 설비 공급	QC-3 (비안전성)	
GE	영광 3,4 , 울진 3,4,	Major	
(미국)	월성 2,3,4호기 T/G공급	Nonmajor	
		품질등급 1	777
AECL	월성 1~4호기 A/E,	품질등급 2	
(캐나다)	NSSS 설비공급	품질등급 3	
		품질등급 4	
		Q1 (안전성)	
프라마톰	N000 111177	Q2 (안전성)	
(프랑스)	NSSS 설비공급	Q3 (비안전성)	
		QNC (비안전성)	
OLAE		C1 (신뢰성)	
알스톰	울진 1,2호기 T/G 공급	C2 (신뢰성)	
(프랑스)		C3 (신뢰성)	
GEC	77 1077 m/0 77		
(영국)	고리 1,2호기 T/G 공급	없 음	

2.3 부적합 품질의 관리

2.3.1 부적합 품목관리 목적


부적합 품목관리는 건설공사 중 부적합한 기자재의 사용과 부적합한 시공을 시정하고 그 원인을 규명하여 재발을 방지하기 위함이다. 발전소 공사의 경우, 부적합 관리절차서에 따라 부적합사항들을 관리하며, 시정조치를 요구한다. 이 관리절차서는 공사전에미리 품질관리 절차서에 포함되어 있어야하며, 고품질의 공사관리를 위해 철저하게 지켜진다.

2.3.2 부적합의 정의 및 처리과정

부적합이란 품목이나 업무의 품질을 불만족하거나 불확실하게 하는 특성, 서류 또는 절차상의 결함을 말한다. 부적합사항의 예를 들면 물리적 결함, 시험에서의 불합격(test failure), 부적합품목 혹은 부적절한 문서 그리고 규정된 공정, 검사 혹은 시험절차에서의 편차(deviation) 등이 포함된다.

이러한 부적합 사항들이 발생되면, 품질담당 요원뿐만 아니라 시공담당자 등 시공사 및 발주처 조직원이면 누구나 NCR(Non Conformance Report : 부적합발행보고서)을 발행한다. 발행된 NCR은 처리 방침에 따라 재작업 또는 수리를 위해 인수지역으로 부터 해체될 수 있는데 이는 관련 부적합 보고서의 작업 제한요건의 범위 내에서 진행될 수 있다. 또한 부적합 품목은 부적합 사항의 부주의한 설치 혹은 사용을 방지하기 위해 기호를 이용하여 영역을 표시하거나 로프(rope) 설치 또는 다른 적절한 방법으로 격리된 지역을 설치함으로써 적합품목과 격리하며, 부적합 품목은 꼬리표나 표시등을 사용하여 부적합 품목으로 명백히 확인한다.

그리고, 발행된 NCR은 처리방안이 수립되고 발주처로부터 승인과 처리등급의 결정이 난 후 NCR을 마무리한다.

2.3.3 부적합 보고서의 등급분류

NCR은 4가지 처리 범주 안에서 하나 이상의 항목을 이용하여 처리한다.

2.3.3.1 현상 사용 (USE-AS-IS)

어떤 결합사항이 원래의 기능에 영향을 주지 않으며 성능, 보수성, 작업성 및 안전성을 포함한 모든 기능상의 요건과 일치한다고 판단될 때 별도의 조치 없이 현상태로 사용될 수 있도록 결정한 것.

2.3.3.2 수리 (REPAIR)

결함사항이 본래 요건에는 만족하지 못하지만 기능상 안전하고 신뢰할 수 있는 상태까지 부적합한 특성을 복구시키는 방법.

2.3.3.3 재작업 (REWORK)

부적합 품목을 재가공, 재조립 또는 기타 수정방법에 의하여 본 래의 특성에 부합되도록 연결시키는 것.

2.3.3.4 폐기 (REJECT)

어떤 품목이 본래 의도하는 목적에 만족치 않은 상태로서 재작업이나 수리로는 회복이 불가능하여 사용 불가품목으로 처리하는 행위.

2.3.4 시정조치 요구서

시정조치 요구서(CAR: Corrective Action Request)란 품질관련 업무나 품목의 품질에 대한 부적합의 재발방지와 잠재적 부적합의 발행을 예방하기 위하여 시정조치 사항을 서면으로 작성한 품질보증 기록서로서 발행과 처리과정, 등급분류는 NCR과 같다.¹⁰⁾

Ⅲ. 발전소 철근콘크리트공사의 품질관리 사례조사 및 분석

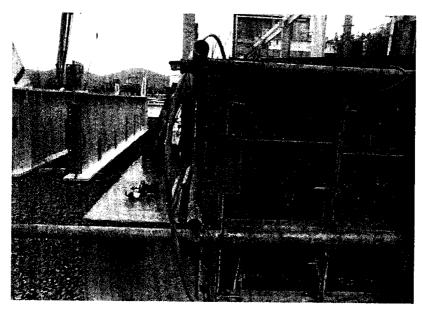
3.1 공사개요 및 조사방법

3.1.1 공사개요

1) 용량: 100만kw급 × 2기

2) 건물규모: 199,156m²

3) 공사기간 : 75개월


3.1.2 조사방법

본 연구의 실태조사는 6년간에 걸쳐 A발전소 건설현장에서 발생된 NCR(Non Conformance Report, 이하 부적합보고서라고 칭함)중 철근콘크리트공사 부분의 현황을 바탕으로 하였다. 표 3.1은 그 현황을 나타낸 것이다. 대상구조물이 발전소 건물이라는 특성상 그 규모가 크고, 공사부분이 복합공정으로 이루어져 있는 관계로 철근콘크리트공사에 해당하는 아래의 9개 건물을 조사범위로 선정하여 콘크리트공사, 철근공사, 거푸집공사, 매설철물공사 등 4개 공사로 구분하고 건물별, 부위별 및 시기별로 평가하였다.

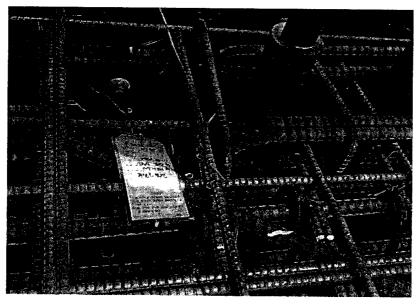
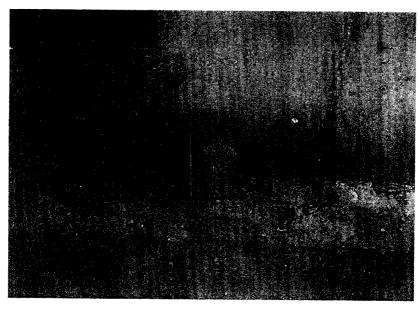

또한 부적합보고서의 조사건수에 대한 발생비율을 건물의 연면적당, 물량당, 기간별로 세분화하여 분석하였다.

표 3.1 사례발전소 건물현황


₹분 번호\	건물명	건축연면적 (m')	공사기간.	自己 用江 一一
11	A동	12,781	1997.05.01~2001.09.15	격납건물
2	B동	59,666	1997.05.01 ~ 2001.09.30	1차보조건물
3	C동	19,234	1997.08.15~2001.05.03	2차보조건물
4	D동	40,137	1997.06.16~2001.07.31	발전건물
5	E동	13,160	1998.06.15~2000.11.29	원료저장
6	F동	9,286	1997.07.28 ~ 2001.02.01	폐기물처리
7	<u>G동</u>	1,828	1998.01.01~2000.11.30	발전건물 냉각수 공급
8	H동	29,622	1998.01.01~2001.05.01	냉각수 공급
9	I동	13,442	1996.09.24~2002.03.02	처리실, 운전원 사무실 등
	Total	199,156	75개월	

a) 거푸집공사의 부적합보고서 발생 예

b) 철근공사의 부적합보고서 발생 예

c) 콘크리트공사의 부적합보고서 발생 예

u) 메일질불등자의 무직합보고서 발생 메 그림 3.1 발전소 철근콘크리트공사의 NCR Tag 설치 예

3.1.3 철근콘크리트공사의 품질기준 특성

표 3.2는 일반공사와 발전소건설공사의 건축공사 표준시방서에 대한 기준을 비교한 것이다.

표 3.2 일반공사와 발전소공사의 품질기준 비교

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	임반공사	A발전소공시	判立			
관련 법령	건축법, 건설업법	원자력법, 미연방법	_			
관련 CODE	KS 등	ACI, ASTM,				
- TE CODE	K2 2	AISC, ASME 등	_			
철근의	05 455	콘크리트 강도, 철근의 직경,				
이음·정착길이	25 ~ 45D	부위별 별도지정	~			
철근의 피복	30~70 mm	$1\frac{1}{2} \sim 6\frac{1}{2}$ inch				
==-	50 10 Hall	(38.1 ~ 165.1cm)				
콘크리트의	180∼270 kg/cm²	4500 ~ 5500 PSI	I Fana al al al			
강도	100 - 270 kg/ciii	(313 ~ 383 kg/cm²)	LEAN 제외			
콘크리트의	0 10 105	3 ± 1 inch				
Slump값	$8 \sim 18 \pm 2.5$ cm	$(7.6 \pm 2.5 \text{cm})$	유동화제외			
시멘트 종류	1종	5종	fly ash 20%이하			
염소 이온량	0.3 kg/m³	0.2 kg/m ³				

*PSI: Pound Square Inch

3.2 사례발전소 철근콘크리트공사의 품질관리현황

사례발전소 건축공사의 NCR 발생현황을 건물별, 위치별, 공사시기별로 구분하고 각각의 자재량에 대한 부적합보고서 발생비율, 공사기간별부적합보고서 발생비율, 분기별 부적합보고서 발생비율을 조사하였다.

표 3.3은 각 건물별 등급현황과 처리결정현황을 나타내었다.

표 3.3 건물별 부적합보고서 조사현황

				동,	子相 -			415	결정	
구분	건물명	총건수	Q	T	R	S	1	R	U	w
<u></u>	A 농	2	2			-	J	1	1	- ***
	B동	4	3	1	 		 	1	2	1
거	C 농	2	2			-		2		1
거 푸 집 공 사	D동	8		8			+ -	3	4	1
집	F\forall F	2	2		 _	_	 -	3	 	1 -
ਨੂੰ ਹੈ.	G동	4	4		 			3	1	1
^r	H동	2	-	2		- -		$\frac{3}{1}$	1	-
	I동	4	4				 	4		
	소계	28	17	11	0 -	0	0	15	10	3
2 1502244 BX4131	A동	8	8	- 11	y y	·······································	E U	5	1	
	B동	13	13	_	_			7	1	2
	C동	7	7		_		_		4	2
철	D동	2		2	_	_		5	2	-
철 근 공 사	E\forall E	3		3				2	1	
なっ	F\forall F	3	3	-	_			$\frac{2}{2}$	1	
^F	G동	4	4		-	_		4	_	-
	H동	3		3		_	1	$\frac{4}{2}$		
	I동	5	5					3	2	
		48	40	- 8	0.8	0	1	30	- 12	5
- 1881 - 1-24-1-1-1	A 동	7	7	-	-	- -	-	3	4	<u>-</u>
=	B동	5	5	_	_		_	4	1	
콘 크	C동	6	6	-	_	_		5	1	
리	D동	9		9	_	_	_	8	_	1
	E동	1	_	1	_			1	_	
트 공 사	G동	11	11					10	1	_
사	H동	6	2	4	_	_	-	5	1	
	I동	3	2			1		3		
	소계	48	33	14	0	1	0	39	- 8	1
	A동	20	19	-	-	1	-	7	12	1
	B동	34	34		_	_	-	9	23	2
메	C동	4	4	-	_		-	1	3	
설치	D동	5	1	4	- 1	-	-	1	3	1
무	E동	3		3	- 1		-	1	1	1
설 물 공 사	F동	9	9	_	-	-	1	2	4	2
사	G동	4	4	-			-	2	1	1
	H동	3		3		-	- 1	2	1	
	I동	9	9		_	_	2	-	7	-
	소계 :	- 91		10	0	1	3	25	55	8
	전체	215	170	43	0	2	4	109	85	17
							out was it		OR TOTAL T	- Sec. 10 (1985) 5

표 3.3에서 보면, 총 부적합보고서 발생건수에 대한 공종별 구성비율은 각종 매입 철물설치공사(43%), 철근공사(22%), 콘크리트공사(22%), 거푸집공사(13%)의 순으로 조사되었다. 대부분의 건물이 발전소 건축의 특성상 안전성과 관련이 있고(Q), 안전성에 영향을 미치는 정도(T)로 나타났으며, 대부분의 건물이 현상태로 사용(U)되거나 기능상 안전하고 신뢰할 수 있는 상태까지 부적합한 특성을 복구시켰음(R)을 알 수 있다.

표 3.4는 부적합보고서 발생비율을 건물의 연면적당, 공사물량당, 기간별로 구분하여 나타낸 것이다.

건물의 연면적 100㎡당 발생비율을 공종별로 비교하여보면, 거푸집공사(0.01건), 철근공사(0.02건), 콘크리트공사(0.02건), 매설철물공사(0.05건) 순으로 높게 나타났다.

부적합보고서의 물량별 발생비율을 공종별로 비교해보면, 거푸집공사 (0.056건/1,000㎡), 콘크리트공사(0.126건/1,000㎡), 철근공사(0.683건/ton), 매설철물공사(8.06건/ton) 순으로 나타난다.

부적합보고서의 발생빈도를 기간별로 나타내기 위해 1년간(12개월) 발생비율을 보면, 철근공사(1.55건), 거푸집공사(1.68건), 콘크리트공사 (1.81건), 매설철물공사(2.48건) 순으로 높게 나타났다.

이상에서 보면 연면적당, 공사물량당, 기간별 분석에서 매설철물공사의 부적합보고서의 발생비율이 높게 나타난다. 따라서 발전소 건설의 각종 배관 공사에 따르는 매설철물공사의 난이도를 짐작할 수 있다.

표 3.4 공종별 부적합보고서 비율

17		*	小个 帮			
분	건물명		거무집량(m)	건수/연면점(100m²)	건수/거푸집(1,000m')	オ ム/オフレコラ T&)
	A동	12,787	48.324	0.02	0.041	1.80
_,	B동	59.666	166,290	0.01	0.024	2.90
거	C동	19,234	58,379	0.01	0.034	1.80
푸 기	D윧	40,137	53,316	0.02	0.150	0.50
집 공	롱귀	9,286	29,922	0.02	0.067	1.81
사	G동	1,828	18,852	0.22	0.212	0.69
~1	H동	29,622	79,328	0.01	0.025	2.83
	당	13,442	43,082	0.03	0.093	1.11
3.53	소계	320,753	497,493	0.01	0.056	1.68
7	건물명		小子書		발생되옵	
¥	we o	건축연면적(m)	월근량(ton)	건수/연면적(100m)	건수/월근광(1,000ton)	건수/기간(12개월)
	A동	12,787	12,994	0.06	0.616	1.80
	B동	59,666	19,986	0.02	0.650	2.90
철	C동	19,234	6,300	0.04	1.111	1.80
근	D동	40,137	7,126	0.00	0.281	0.50
공	E동	13,160	1,586	0.02	1.892	1.81
사	F동	9,286	4,382	0.03	0.685	0.69
	G.₹	1,828	2,816	0.33	2.131	2.83
	H동	29,622	8,538	0.01	0.351	1.11
	1 %	13,442	6,532	0.02	0.459	0.48
	소계	199,156	70,260	0.02	0.683	1.55
7	包養場	공사			발생비율 :	
분			콘크리트랑(m)		건수/콘크리트(1,000㎡)	
_	A동 DE	12,787	65,816.67	0.05	0.106	1.58
콘	B동 C도	59,666	100,017.79	0.01	0.050	1.12
크 리	C동 D동	19,234	33,442.73	0.03	0.179	1.54
드	E동	40,137 13,160	64,350.34	0.02	0.140	2.24
<u>-</u>	G동	1,828	10,398.87	0.01	0.096	0.60
사	H동	29,622	12,622.06 55,485.08	0.60	0.871	5.20
- '	I동	13,442	38,982		0.108	2.22
XXX	소계	186.002	497.493	0.02 0.02	0.077 0.126	0.48 1.81
7			H수광	0.02	U.126 발생비율	1.01
¥	건물명	건축명점(m)			변 6시발 건수/매설챌물(1,000ton)	
51,ACT	A동	12,787	1,938	0.16	10.32	4.51
	B동	59,666	3,816	0.06	8.91	7.59
메	C동	19,234	820	0.02	4.88	1.03
설	D동	40.137	2,292	0.01	2.18	1.24
철	E	13,160	128	0.02	23.44	1.81
물 공	F동	9,286	382	0.10	23.56	2.07
사	G동	1,828	164	0.22	24.39	1.89
Ī	H동	29,622	764	0.01	3.93	1.11
[I동	13,442	980	0.07	9.18	1,11
	소계	506,766	994,986	0.05	8.06	2.48
	원체	989,820	-	0.02		L
						Marian 2017 (2020) National Conference (1977) (2020) 1.

표 3.5는 사례발전소의 부적합보고서 발생비율을 건물의 부위별로 구분하여 등급과 처리결정을 나타낸 것이다.

표 3.5 부위별 부적합보고서 비율

1 3 3 4 6 7												
구 분	부위명		Control Park	召盟	112	소	نسل		결정		4	발생비율
		Q	T	R	S	4	J	R	Ü	W	계	(%)
	기둥		1		-	1	-	<u> </u>	1		1	3.57
거푸집	슬래브	4	3		-	7	_	5		2	7	25
공사	벽체	8	3	-		11	_	7	4	-	11	39.29
	기타	5	4			9	-	3	5	1	9	32.14
	소계	17	11	0	0	28	. 0	15	10	3	28	100
	기초	4	_		_	4	_	4	-	-	4	8.33
철근	기둥	1	-	-	-	1	_	-	1	-	1	2.08
월년 공사	슬래브	10	3	_	_	13	-	6	7	-	13.	27.08
0 1	벽체	17	3	-	_	20	-	13	3	4	20	41.67
	기타	8	2	-	-	10	-	8	1	1	10	20.84
	소계	40	8	0	0	48	0 -	31	12	5	48	100
	기초	4	1	-	_	5	_	2	2	1	5	10.42
⇒ ∽ ∽l	기둥	1	2	_	-	3	-	2	-	1	3	6.25
콘크리 트공사	슬래브	4	3	-	-	7	-	7	-		7	14.58
-01	벽체	22	7	-	1	30	-	26	4	_	30	62.5
	기타	2	1	_		3	-	2	1	_	3	6.25
	소계	33	14	0	1	48	0	39	7	2	48	100
	기초	_	1	_	-	1	_	_	1	_	1	1.09
매설	기둥	1	-	_	_	1	-	-	1	-	1	1.09
철물 공사	슬래브	8	2	_		10	_	6	3	1	10	10.98
~ ~ ~	벽체	54	5	_	1	60	-	15	38	7	60	65.93
	기타	17	2	-	-	19	3	4	12	-	19	20.91
	소계	80	10	0.	1	91	3	25	55	8	91	- 100
-	기초	8	2	0	0	-10	0	6	3	1	10	6.61
전체	기둥	3	3	0	0	6	0	2	3	1	6	3.25
전세 평균	슬래브	26	11	0	0	37	0	24	10	3	37	19.41
	벽체	101	18	0	2	121	0	61	49	11	121	52.35
	기타	32	9	0	0	41	3	17	19	2	41	18.38
	전체 :	170	43	0	2	215	3	110	84	18	215	100

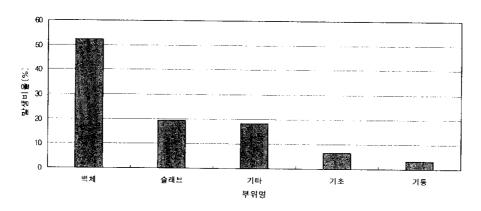


그림 3.2 부위별 부적합보고서 비율

부위별로는 각 공종마다 벽체에서 50% 이상의 높은 부적합보고서 발생비율이 나타났다. 특히 벽체에서 부적합보고서 발생비율이 높은 것은 기계·전기설비 매입물의 간섭, 매입물의 설치오차 초과로 인한 경우가 많았다. 그러므로 타공종과의 사전협의, 매입물 설치에 대한 대처 방안 등이 반드시 필요한 것으로 판단된다.

표 3.6은 사례발전소의 공사시기별 부적합보고서 발생비율을 나타낸 것이다.

표 3.6 공사시기별 부적합보고서 비율

-a-

구 분	공사/			75	计值		查		처리	결정		ኢ	박생비용
是	년도	분기	Q	Т	R	S	소 계	J	R	U	w	소 계	발생비율 (%)
		1	1		-	-	-1		1	-	-	1	3.57
	2차년도	2		-	_	-	0	-	-	-	-	0	0.00
	(1998)	3	3		-	_	3	3		_	-	3	10.71
거	L	4	2	3	_	-	5	3	2	-	-	5	17.85
平		1	2	1	-	-	3	1	1	1	-	3 -	10.71
- 집	3차년도	2	3	2	-	-	5	1	4	_	-	5	17.85
공	(1999)	3	-	1	-	-	1	-	1	-	-	1	3.57
사		4	11	3	_		4	1	2	1	- 1	4	14.29
,	_ [1	_	-		-	0	~		-	-	0	0.00
	4차년도	2	2	_		-	-2	1	-	1	-	2	7.15
	(2000)	3	2	_	-	_	2	-	2	-	-	2	7.15
		4	1	1		-	2	-	2	-	-	2	7.15
	소계		17	11	0	0	28	10	15	3	0	28	100

(계속)

-b-

7	공사	אוא			a 별		法		-31 =3°	[결정			
	년도			· · · · · · · · · · · · · · · · · · ·	1000000	La	-		7	4	r E	4	발생비율
	12.2	Company after	Q	T	R	S	계	J	R	U	W	계	(%)
	1333	1_	-	<u> </u>	<u> </u>		0		-			0	0.00
	1차년도	2	-	-	ļ	-	. 0	_		-		0	0.00
	(1997)	3	11	1		-	12	3	6	3	-	12	25.00
		4	6	<u> </u>	-		6	<u> </u>	6	<u> </u>	_	6	12.50
	0217	1	3		-		3	<u> </u>	2	1	_	3	6.25
-1	2차년도	2	6	2	-		8	5	3	-	-	- 8	16.66
철	(1998)	3	1	1_			2	-	2		-	2	4.17
근 광		4	1		_		1	-	1		-	1	2.09
₹,	0.01.1.	_1_	2	1_1_		-	3		2	1		3	6.25
사	3차년도	2		-			0			_	_	0	0.00
	(1999)	3	3	_		-	3	2	1	-	-	3	6.25
	ļ	4	4	2			6	2	4	_	_	6	12.50
	4-3-3-	1	3	1	-		4	-	4	_	_	4	8.33
	4차년도	2	-	_	-	-	0		-	-		0.	0.00
	(2000)	3				-	.0			_		0	0.00
377.2780		4		-	-	-	0.4	-		. –		0	0.00
	소계		40	8	0	0	48_	12	31	5	0	48	100
		1	-	-			0	-		_	-	0.	0.00
	1차년도	_2		<u> </u>	-	-	0	-		-	-	0	0.00
	(1997)	3	1	1			2		2	-	-	2	4.17
		4	3	1	-		4	1	3		-	4	8.32
	0.13.1	_1	2	2	_		4	-	4		_	4	8.32
콘 크	2차년도	2	4	-			4	2	2		_	4	8.32
∄	(1998)	3	10	7	_	_	17	3	13	1		17	35.42
리		4	7	-		1	8	-	7	1	_	- 8	16.67
트고		1		1			. 1	_	1		-	1	2.09
공 사	3차년도	2	1	1_			2	-	2		-	2	4.17
	(1999)	3	1	11	~_	_	2	_	2		_	. 2	4.17
		4	1		-		1		1	-		1.	2.09
		1	2	-	-	-	2	1	1		-	2	4.17
	4차년도	2		-	_	-	0]	-	-	0	0.00
	(2000)	3_	1		_	-	1		1	-	-	1	2.09
Figure 32		4		-		_	0]				0.	0.00
	소계	4.0	33	14	0	1	48	7	39	2	0	48	100

(계속)

7	구 공사시기			동:	子道:		ሷ		처리	결정		Δ	발생비율
분	변도	분기	Q	Т	R	S	계	J	R	U	w	계	(%)
		1	-	_	_		- 0	-	_	_	_	0	0.00
	1차년도	2_		_	-		0	-	_	-	-	0.	0.00
	(1997)	3	1_			-	1	-	-	1	-	1	1.10
	L	4	_1	-	-	_	1	-	_	_	1	1	1.10
		1	2	-	-	_	2	2	_	-	-	2	2.20
매	2차년도	2_	2	_		-	2	1	1	-	_	2	2.20
	(1998)	3	6	1		-	7	4	3	-	_	7	7.69
설철물공사		4	7	1	-	_	8	6	-	2	-	8	8.79
물		1	11	1	-	-	12	8	2	2	_	12	13.18
상	3차년도	2	6	1			7	3	2	1	1	7	7.69
^r	(1999)	3	6	2	-		8	4	4	-	_	8	8.79
		4	8	1	-	-	. 9	4	4	1	-	9 .	9.89
		1	11	-	_	-	11	6	4	1	_	11	12.10
	4차년도	2	9	2	-	1	12	8	3	-	1	12	13.18
	(2000)	3	- 8	1		-	9	7	2	-	_	9	9.89
		4	2	-	_	-	2	2	-	-	_	2	2.20
	소계		80	10	0 🖁	1	91	55	25	8	3	91	100
		£(1997)	23	3	0	0	26	4	17	4	1	26	12.10
전치		E(1998)	57	17	0	1	75	29	41	5	0	75	34.88
평균		£(1999)	49	18	0	0	67	26	33	7	1	67	31.16
73, 277 7322	Contraction of the contraction o	E(2000)	41	5	0	1	47	25	19	2	1	47	21.86
	전체		170	43	0	2	215	84	110	18	3	215	100

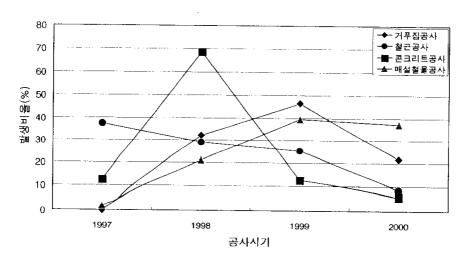


그림 3.3 공사시기별 부적합보고서 비율

전체적으로 1, 2, 3차년도로 지날수록 부적합보고서 발생비율이 조금씩 증가하다가 4차년도에는 감소했다. 이것은 작업자들이 공사초기에 엄격한 품질관리에 적응하지 못하다가 차츰 나아지기 때문인 것으로 판단된다.

또한, 거푸집공사는 2차년도와 3차년도, 철근공사는 1차년도와 2차년도에, 콘크리트공사는 2차년도에, 매설철물공사는 3차년도과 4차년도에 높은 부적합보고서 발생비율이 나타났다.

3.3 거푸집공사의 부적합보고서 발생특성

3.3.1 건물별 부적합보고서

표 3.7은 거푸집공사의 각 건물별 부적합보고서의 발생건수를 조사하여 건수/연면적(100m²), 건수/거푸집(1,000m²), 건수/기간(12개월)별로 발생비율을 나타낸 것이다.

표 3.7 거푸집공사의 부적합보고서 건물별 비율

· 구		공사	수량	발생비율					
是	건물명	건축연면적 (m')	거푸집량 (m')	건수/연면적 (100㎡)	건 <i>수/</i> 거푸집 (1,000㎡)	건수/기간 (12개월)			
	A동	12,787	48,324	0.02	0.041	1.80			
거 푸 집 공 사	B동	59,666	166,290	0.01	0.024	2.90			
	C동	19,234	58,379	0.01	0.034	1.80			
	D동	40,137	53,316	0.02	0.150	0.50			
	F동	9,286	29,922	0.02	0.067	1.81			
	G동	1,828	18,852	0.22	0.212	0.69			
	H동	29,622	79,328	0.01	0.025	2.83			
E-Manuel	I.E	13,442	43,082	0.03	0.093	1.11			
de Tar	소계 :	186,002	497,493	0.01	0.056	1.68			

3.3.1.1 연면적당 부적합보고서

그림 3.4는 거푸집공사에 있어서 건축연면적 100m' 당 부적합보고서 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 G동이 0.22(건/100m')로 다른 건물에 비해 상대적으로 많은 부적합보고서가 발생된 것으로 분석되었다. 하지만, 각 건물별 부적합보고서의 조사건수를 살펴보면 D동에서 전체 거푸집공사의 부적합보고서 중 28.5%가 발생되었다. 이는 D동이 타 건물과 비교해 부재의 크기가 매우 크며, 그 시공을위해 특수 거푸집을 조립·설치하기 때문에 타건물에 비해 많은 부적합보고서가 발생된 것으로 나타났다. 그리고, 콘크리트 타설전 시공측량및 확인측량을 실시하고 있는 작업절차상, 검측 당시에는 허용오차이내로 시공되어있으나, 콘크리트 타설시 생측압에 의한 변형이 많은 것으로 나타났다. 또한 발전소 건물의 특성상 각 건물에 기계 및 전기 배관등이 많은 이유로 발생하는 다량의 개구부(OPEN BOX)가 영향요인으로 작용하는 것으로 볼 수 있다.

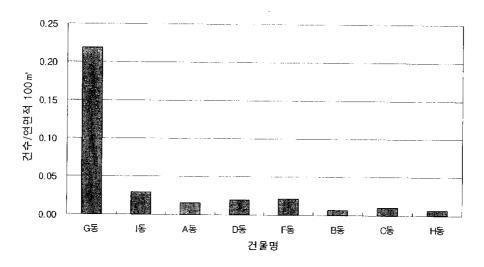


그림 3.4 거푸집공사의 부적합보고서 건물별 비율

3.3.1.2 물량당 부적합보고서

그림 3.5에서는 거푸집공사에서 각 건물별 거푸집량, 즉 거푸집 1,000 m' 당 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 G동이 0.212(건/1,000m')로 다른 건물에 비해 많은 부적합보고서가 발생된 것으로 분석되었다.

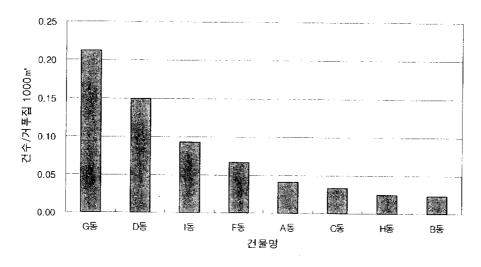


그림 3.5 거푸집공사의 부적합보고서 건물별 비율

3.3.1.3 기간별 부적합보고서

그림 3.6에서는 거푸집공사에서 각 건물의 공사기간별, 즉 개월 당 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 B동이 2.9(건/12개월)로 타 건물에 비해 많은 부적합보고서가 발생된 것으로 분석되었다. 이는 B동의 내부구조가 복잡하기 때문에 비롯된 것으로보인다.

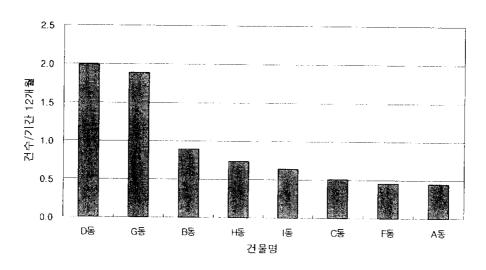


그림 3.6 거푸집공사의 부적합보고서 건물별 비율

3.3.2 부위별 부적합보고서

표 3.8은 거푸집공사의 부위별 조사결과로 기둥, 슬래브, 벽, 기타부분 에서 발생한 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

표 3.8 거푸집공사의 부적합보고서 부위별 비율

尹 、基	부위명		궁	子祖		소		치리	결정		ŝ	발생비율
	T713	Q	Ť	R	ន	계	j	R	U	W	계	(%)
	기둥		1	_	-	1	_	_	1	_	1	3.57
거푸집	슬래브	4	3		-	7		5	-	2	7	25
공사	벽체	8	3	-	_	11		7	4	-	11	39.29
	기타	5	4		-	9	-	3	5	1	9	32.14
	소계	17	11	- 0	0	28	0	15	10	3	28	100

그림 3.7에서는 거푸집공사에서 각 부위별 부적합보고서의 발생비율을 그래프로 나타낸 것이다.

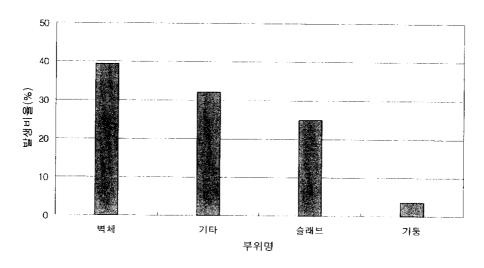


그림 3.7 거푸집공사의 부적합보고서 부위별 비율

부재 중 벽체와 슬래브에서 약 64%의 부적합보고서가 발생되었고, 벽체와 슬래브에서는 콘크리트 타설중에 일어나는 변형으로 인한 부적합보고서발생이 많이 발생되었던 것으로 나타났다. 특히, 벽체의 경우, 슬래브에 비해 거푸집 조립도의 작성, 승인 등의 절차를 소홀히 관리한 것이 거푸집의 변형요인으로 볼 수 있다.

3.3.3 공사시기별 부적합보고서

표 3.9는 거푸집공사의 공사시기별 조사결과로 1998년, 1999년, 2000 년도의 각 분기별로 발생한 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

그림 3.8에서는 거푸집공사에서 각 시기별 부적합보고서의 발생비율을 그래프로 나타낸 것이다.

표 3.9 거푸집공사의 부적합보고서 공사시기별 비율

7	공사기	(17)		동	子世		소		처리	결정		会	11 VA II 용
甚	*년도	분기	Q	Т	R	S	계	J	R	บ	W	소 계	(%)
		1	1			-	1	-	1	-	-	1	3.57
	2차년도	2	-	-	-		0	-	-	_	-	0	0.00
	(1998)	3	3	-	-		3	3		-	-	-3	10.71
거		4	2	3	-	-	5	3	2	-	-	5	17.85
푸		1	2	_1_	-	-	3	1	1	1	-	3	10.71
집	3차년도	2	3	2	_	-	5	1	4	-	~	5	17.85
	(1999)	3	-	11	_		1		1	-	-	1	3.57
공		4	1	3	_		4	1	2	1	-	4	14.30
사		1	-	-		_	0	-		_	-	0	0.00
ĺ	4차년도	2	2	_	-	-	2	_1	-	1	-	2	7.15
	(2000)	3	2		-	-	2	-	2	-	_	2	7.15
Tital		_4	1	1	_	_	× 2	-	2	-	-	2	7.15
1487	소계		17	11	0	0	-28	10	15	3.	0	28	100

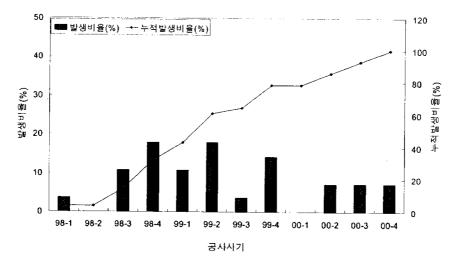


그림 3.8 거푸집공사의 부적합보고서 공사시기별 비율

2차년도(1998년) 1분기부터 발생되기 시작한 부적합보고서는 3차년 도(1999년)에 가장 많이 발생되었고, 4차년도(2000년)에서는 감소되는 추이를 나타내었다. 그리고, 4차년도(2000년)에는 허용오차에 의한 부적합보고서의 발생은 감소하였으나, 도면 불일치로 인한 부적합보고서발생이 늘어난 것으로 나타나 공사 후반기의 관리가 상대적으로

미흡했던 것으로 볼 수 있다.

3.4 철근공사의 부적합보고서 발생특성

3.4.1 건물별 부적합보고서

표 3.10은 철근공사의 각 건물별 부적합보고서 발생개수를 건수/연면적(100㎡), 건수/철근(1,000ton), 건수/기간(12개월)별로 발생비율을 나타낸 것이다.

표 3.10 철근공사의 부적합보고서 건물별 비율

7		공사	수량		발생비율	
土	건물명	건축연면적 (m')	천근량 (ton)	건수/연면적 (100㎡)	건수/철근량 (1,000ton)	건수/기간 (12개월)
	A동	12,787	12,994	0.06	0.616	1.80
	B동	59,666	19,986	0.02	0.650	2.90
<u>-</u> 1	C동	19,234	6,300	0.04	1.111	1.80
·철 근	D동	40,137	7,126	0.00	0.281	0.50
공	E동	13,160	1,586	0.02	1.892	1.81
사	F동	9,286	4,382	0.03	0.685	0.69
	G동	1,828	2,816	0.33	2.131	2.83
	H동	29,622	8,538	0.01	0.351	1.11
Tudar od a USF 1 X 1200	I동	13,442	6,532	0.02	0.459	0.48
	소계	199,156	70,260	0.02	0.683	

3.4.1.1 연면적별 부적합보고서

그림 3.9는 철근공사에서 각 건물의 건축연면적 당 부적합보고서의 발생비율을 그래프로 나타낸 것이다. 이 중 G동이 0.33(건/100㎡)으로 콘크리트공사에서와 마찬가지로 다른 건물에 비해 상대적으로 많은 부적합보고서가 발생된 것으로 분석된다. 그러나, 부적합보고서의 발 생수로만 비교한다면 발전소의 여러 건물 중 A, B, C동에서 총 48개부적합보고서의 58%인 28개가 발생된 것으로 나타났다. 이는 이들건물들이 발전소 건물의 70%정도를 차지하고 있기 때문이며, 실제현장에서 가공·조립되는 철근의 종류와 수량이 많고, 철근의 조립이복잡한 것도 주요원인 중에 하나인 것으로 이해된다.

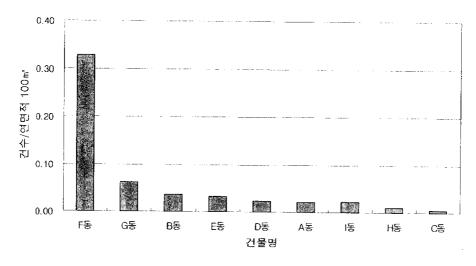


그림 3.9 철근공사의 부적합보고서 건물별 비율

3.4.1.2 물량별 부적합보고서

그림 3.10에서는 철근공사에서 각 건물의 철근량, 즉 철근 1,000ton 당 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 이중 G동이 2.13(건/1,000ton)으로 다른 건물에 비해 많은 부적합보고서가 발생된 것이다. 이는 전체적으로 G동이 냉각수 공급 건물로써 타 건물보다 설비배관이 많은 관계로 품질관리에 어려움이 있었던 것으로 볼수 있다.

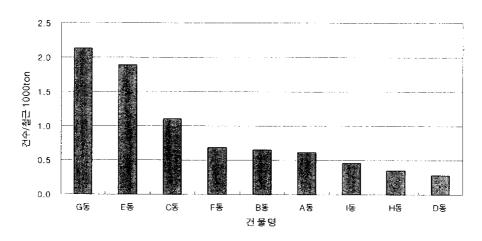


그림 3.10 철근공사의 부적합보고서 건물별 비율

3.4.1.3 기간별 부적합보고서

그림 3.11에서는 철근공사에서 각 건물의 공사기간, 즉 개월 당 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 B동이 2.9(건/12개월)로 다른 건물에 비해 많은 부적합보고서가 발생되었다. 이는 공사의 진행이 기계·전기·설비 등의 간섭으로 인하여 지연되는 경우가 많았다. 그러므로 철근공사가 끝나지 않은 상태에서 부적합보고서 발생건수가 많았던 것으로 볼 수 있다.

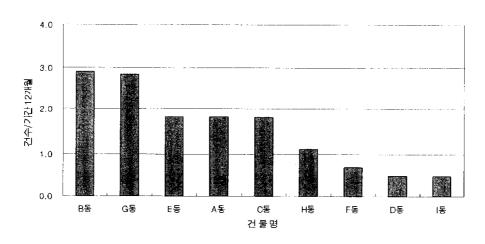


그림 3.11 철근공사의 부적합보고서 건물별 비율

3.4.2 부위별 부적합보고서

표 3.11은 철근공사의 부위별 조사결과로 기초, 기둥, 슬래브, 벽체, 기타부분에서 발생한 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

- - 7	부위명		. 동	計量		<u>م</u>		처리	결정		*	발생비율
i u	T-11-6	Q	T	R	S	계	J	R	u	W	소 계	(%)
	기초	4	-	-	-	4	-	4	-	-	4	8.33
최그	기둥	1	-	-	-	1	-	-	1	-	1.	2.08
철근 공사	슐래브	_10	3	-	-	13	-	6	7	-	13	27.08
0 1	벽체	17	3	-	-	20	-	13	3	4	20	41.67
***	기타	8	2	_	-	10	-	8	1	1	10	20.84
	소계	40	- 8	0	0	48	o	31	12	- 5	48	100

표 3.11 철근공사의 부적합보고서 부위별 비율

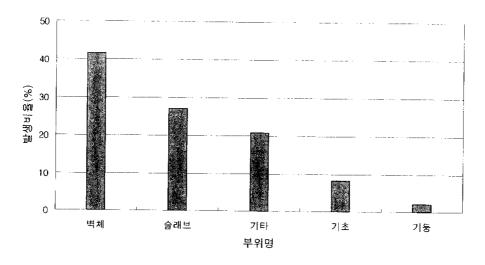


그림 3.12 철근공사의 부적합보고서 부위별 비율

그림 3.12에서는 철근공사에서 각 부재별 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 부재 중 벽체와 슬래브에서 약 68% 의 부적합보고서가 발생되었고, 벽체에서 41% 발생되었다. 특히, 벽체에서는 철근의 기계적 이음과정(CAD-WELDING*) 서 발생한 공극의 시방기준초과와 조립된 철근들이 타 공종(기계, 전기)매입물과의 간섭 등으로 인한 파손이 많이 발생하였으며, 슬래브에서는 조립불량이 많았던 것으로 나타났다.

3.4.3 공사시기별 부적합보고서

표 3.12는 철근공사의 공사시기별 조사결과로 1997년, 1998년, 1999년, 2000년도의 각 분기별로 발생한 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

표 3.12 철근공사의 부적합보고서 공사시기별 비율

7	공사	(2		뜡.	計量		소		취리	결정		ュ	발생비율
뷴	년도	분기	Q	Т	R	Ś	계	J	R	ľu	w	月月	(%)
		1	_	-	-	-	0	_	-	_	_	0	0.00
	1차년도	_2	_	-	-		0	_	-	-	-	0	0.00
	(1997)	3	11	1	-		12	3	6	3	_	12	25.00
		4	6	_	_	-	6	-	6	-	-	6	12.50
		1	3		-	_	3	-	2	1		3	6.25
	2차년도	2	6	2	_	_	8	5	3	_	-	-8	16.66
철	(1998)	3	1	1			2	-	2	-	-	2	4.17
근		4	1				1	_	1		-	1	2.09
공		1	2	1		_	3	_	2	1	-	.3	6.25
사	3차년도	2	-	_	_	-	0		-	_	-	0	0.00
	(1999)	3	3	_	_	-	- 3	2	1	-	-	3	6.25
		4	4	2		-	, 6	2	4	-		6	12.50
		1	3	1		_	4	-	4	-	_	4	8.33
	4차년도	2		_	-		0.	-	_	-	-	0	0.00
	(2000)	3				_	0	-	- "	-	-	0	0.00
- Whate		4		_	_	— .	0	-	-	-	_	0	0.00
	소계		40	8	0	0	48	12	31	5	0	48	100

^{*}CAD-WELDING : 칠근의 이음방법 중 직경이 큰 철근의 경우 일반적인 겹침이음시공의 어려움과 재료의 절약을 위해 가스압접법과 유사한 방법으로 화약의 폭발력으로 발생하는 순간 발생하는 열을 이용하여 철근을 접합하는 방법

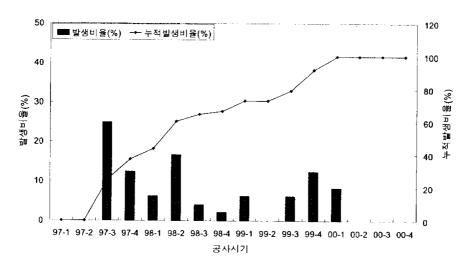


그림 3.13 철근공사의 부적합보고서 공사시기별 비율

그림 3.13에서는 철근공사에서 각 시기별 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 1997년도 3분기에 가장 많은 부적합보고서가 발생되었고 이후, 부적합보고서는 2000년도까지 감소되는 추이를 나타내었다. 이는 작업자들이 공사초기에 발전소 건설공사의 엄격한 품질관리에 적응을 잘 하지 못하다 차츰 많이 개선되었기 때문으로 볼 수 있다.

3.5 콘크리트공사의 부적합보고서 발생특성

3.5.1 건물별 부적합보고서

표 3.13은 콘크리트공사의 각 건물별 부적합보고서 발생개수를 조사하여 건수/연면적(100m'), 건수/콘크리트(1,000m'), 건수/기간(12개월)별로 발생비율을 나타낸 것이다.

표 3.13 콘크리트공사의 부적합보고서 건물별 비율

		공사	수량	a state	: 발생비율	
子门是	건물명	건축연면적 (㎡)	콘크리트량 (m')	건수/연면적 (100㎡)	건수/콘크리트 (1,000㎡)	건수/기간 (12개월)
	A동	12,787	65,816.67	0.05	0.106	1.58
콘	B동	59,666	100,017.79	0.01	0.050	1.12
ュ	C동	19,234	33,442.73	0.03	0.179	1.54
리	D동	40,137	64,350.34	0.02	0.140	2.24
E	E동	13,160	10,398.87	0.01	0.096	0.60
공	G동	1,828	12,622.06	0.60	0.871	5.20
사	H동	29,622	55,485.08	0.02	0.108	2,22
	I욷	13,442	38,982	0.02	0.077	0.48
	소계	189,876	381,115.54	0.02	0.126	

3.5.1.1 연면적별 부적합보고서

그림 3.14에서는 콘크리트공사에서 각 건물의 건축연면적 100㎡당 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 G동이 0.6(건/100㎡)으로 다른 건물에 비해 상대적으로 많은 부적합보고서가 발생된 것으로 분석되었다.

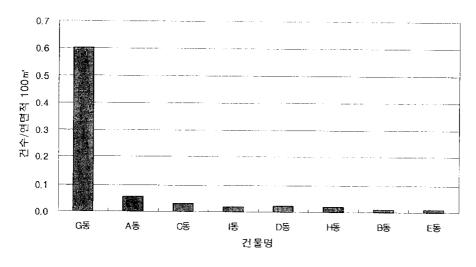


그림 3.14 콘크리트공사의 부적합보고서 건물별 비율

이는 G동의 경우, 구조물이 복잡하며, 규모가 커서 철근의 가공·조립이 복잡하다. 그리고, 각종 매입물의 수량이 많으며, 슬럼프(slump) 값의 제한으로 인하여 시공성이 저하된 것이 부적합보고서발생의 주요요인으로 나타났다. 그리고 이들은 대부분 수리(repair)로 처리되었다.

3.5.1.2 물량별 부적합보고서

그림 3.15에서는 콘크리트공사에서 각 건물의 콘크리트량 즉, 콘크리트 1,000㎡ 당 부적합보고서의 발생개수를 각각 비교 분석하여 그래프로 나타낸 것이다.

이 중 G동이 0.871(발생개수/1,000m')로 다른 건물에 비해 상대적으로 많은 부적합보고서가 발생된 것으로 분석되었다. 이러한 이유는 콘크리트공사의 연면적별 부적합보고서 조사분석 결과와 동일한 것으로 나타났다.

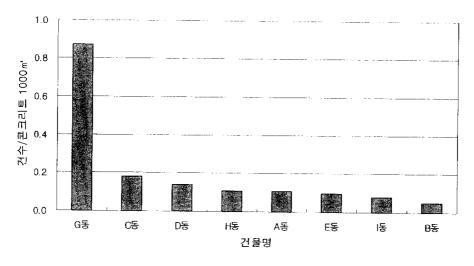


그림 3.15 콘크리트공사의 부적합보고서 건물별 비율

3.5.1.3 기간별 부적합보고서

그림 3.16에서는 콘크리트공사에서 각 건물의 공사기간, 즉 개월 당부적합보고서의 발생개수를 각각 비교하여 그래프로 나타내었다. 이 중 G동이 5.2(건/12개월)로 다른 건물에 비해 최대 10배 이상, 최소 2배 이상의 많은 부적합보고서가 발생된 것으로 나타났다.

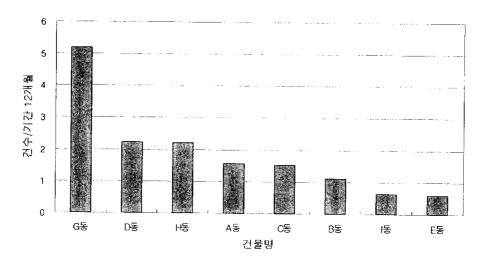


그림 3.16 콘크리트공사의 부적합보고서 건물별 비율

3.5.2 부위별 부적합보고서

표 3.14는 거푸집공사의 부위별 조사결과로 기초, 기둥, 슬래브, 벽체, 기타부분에서의 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

丑	3.14	콘크리	트공사의	부적합보고서	부위별	비율
---	------	-----	------	--------	-----	----

구 분	부위명		৳	揰		Δ		처리	결정		A	발생비율
	1 11 0	Q	Т	R	S	계	J	R	U	w	계	(96)
	기초	4	1	-	-	5	-	2	2	1	5	10.42
3777E	기둥	1	2	-	_	3	-	2	-	1	3	6.25
콘크리트 공사	슬래브	4	_ 3	-	-	7	-	7		-	7	14.58
, ,	벽체	22	7	+	1	30	-	26	4	-	30	62.5
	기타	2	1	-	-	3	_	2	1	_	3	6,25
	소계	33	14	0	1	48	0	39	7	2	48	100

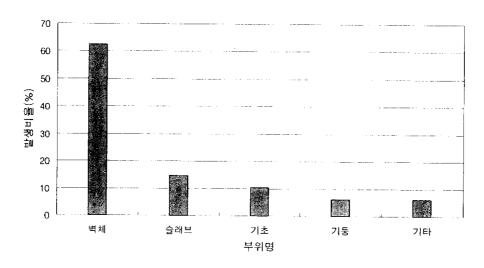


그림 3.17 콘크리트공사의 부적합보고서 부위별 비율

그림 3.17에서는 콘크리트공사에서 각 부위의 부적합보고서 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 벽체에서 발생된 부적합보고서가 전체부적합보고서의 62.5%가 발생된 것으로 분석되었다. 이는 발전소 건물의 특성상, 벽체의 경우 층고가 높고, 설비 시설물들의 고정을 위한 매입물이 많으며, 양생조건의 열악 등으로 인한 콘크리트의 균열 및 재료분리가 많이 발생되었다. 그리고 대부분의 부적합보고서는 수리(repair)로써 처리되었던 것으로 나타났다.

3.5.3 공사시기별 부적합보고서

표 3.15는 콘크리트공사의 공사시기별 조사결과로 1차년도도(1997년), 2차년도(1998년), 3차년도(1999년), 4차년도(2000년)도의 각 분기별로 발생한 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

표 3.15 콘크리트공사의 부적합보고서 공사시기별 비율

7	공사				计值.		소		처리	결정		Zz	발생비율
!	년도	분기	Q	Т	R	S	계	J	R	U	W	계	(%)
		1	_		_	-	0	-	-	_	-	0	0.00
	1차년도	2	_		_	_	0	-	-		- "	0	0.00
	(1997)	3	1_	1		_	2		2		-	2	4.17
		4	_3	1	_	_	4.	1	3	-	-	4	8.32
	İ	_ 1	2	2	-	_	4	-	4	_	-	4	8.32
3 7	2차년도	2	4		_	_	4	2	2	-	_	14	8.32
콘 크	(1998)	3	10	7	-	_	17	3	13	1	_	17	35.42
리 트 공 사		4	7	_	_	1	8	-	7	1	-	8	16.67
트		1		1	_	-	1	-	1			1	2.08
상	3차년도	2	1	1	-	-	2	-	2	_	_	2	4.17
~T	(1999)	3	1_	1	-	-	2	-	2	-	_	2	4.17
		4	1				1	-	1	-	-	1	2.09
		1	2		_	-	2	1	1	_	_	2.	4.17
	4차년도	2	-	_	-	-	0	_	_		-	0	0.00
	(2000)	3	1_		-	-	1		_1	-	_	1	2.09
711 758 7071		4	-		_		0	_	_		-	0	0.00
	소계		33	14	0	1	48	7	39	2	0	48	100

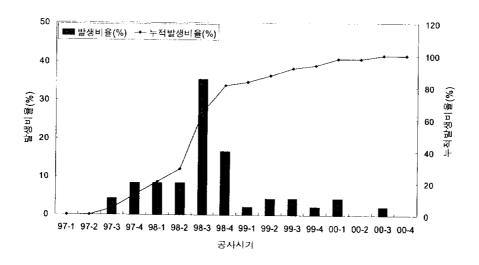


그림 3.18 콘크리트공사의 부적합보고서 공사시기별 비율

그림 3.18은 콘크리트공사에서 각 시기별 부적합보고서 발생비율을 분석하여 그래프로 나타낸 것이다. 1997년도 3분기에 발생되기 시작한 부적합보고서는 1998년도 3분기에 가장 많이 발생되었고, 해마다 3분기에 다른 분기에 비해 많은 부적합보고서가 발생되었던 것으로 나타났다. 이는 여러 건물의 공사착공이 2분기에 많았고 기초공사 이후 본격적으로 상부구조물이 형성되는 시점이 대부분 3분기였기 때문으로 볼수 있다. 그리고 1998년도에 가장 많은 부적합보고서가 발생된 것은 G동의 공사가 가장 활발하게 이루어지고 있는 시점으로 나타났다.

3.6 매설철물공사의 부적합보고서 발생특성

3.6.1 건물별 부적합보고서

표 3.16은 매설철물공사의 건물별 부적합보고서 발생개수를 조사하여 건수/연면적(100㎡), 건수/매설철물(1,000ton), 건수/기간(12개월)별로 발 생비율을 나타낸 것이다.

표 3.16 매설철물공사의 부적합보고서 건물별 비율

		공시	수량		발생비율	
子.是	건물명	건축면적	매설철물량	건수/연면적	건수/매설절물	건수/기간
		(m')	(ton)	(100m ¹)	(1,000ton)	(12개월)
	<u> A동</u>	12,787	1,938	0.16	10.32	4.51
	B동	59,666	3,816	0.06	8.91	7.59
	C동	19,234	820	0.02	4.88	1.03
매설	D동	40,137	2,292	0.01	2.18	1.24
철물	E동	13,160	128	0.02	23.44	1.81
공사	F동	9,286	382	0.10	23.56	2.07
	G동	1,828	164	0.22	24.39	1.89
	H동	29,622	764	0.01	3.93	1.11
	12	13,442	980	0.07	9.18	1.11
	소계	199,162	11,284	0.05	8.06	- 4
	천체	199,162	11,284	0.05	8.06	12

3.6.1.1 연면적별 부적합보고서

그림 3.19는 매설철물공사에서 각 건물의 건축연면적 100㎡당 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 G동이 0.22(발생개수/100㎡)로 콘크리트공사, 철근공사와 마찬가지로 다른건물에 비해 상대적으로 많은 부적합보고서가 발생된 것으로 분석되었다. 그러나 연면적별 부적합보고서 수는 적으나 각 건물별 부적합보고서발생수는 B동과 A동에서 발생된 수가 전체의 59%를 차지할 정도로 이들 건물에서서 많은 량을 차지하고 있었다. 이러한 이유는 기계, 전기설비를 위한 매입물의 타 건물에 비해 그 수량이 많고, 실제현장에서 이들 매입물의 설치 시 타 공종과 간섭이 많은 것이 주요요인으로 나타났다.

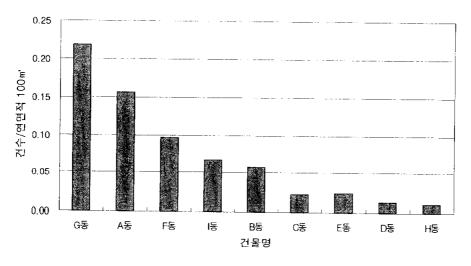


그림 3.19 매설철물공사의 부적합보고서 건물별 비율

3.6.1.2 물량별 부적합보고서

그림 3.20에서는 매설철물공사에서 각 건물의 매설철물량 즉, 매설철물 1,000ton 당 부적합보고서의 발생비율을 분석하여 그래프로 나타낸것이다. 이 중 G동이 24.39(건/1,000ton)로 다른 건물에 비해 많은 부적합보고서가 발생된 것으로 분석되었다.

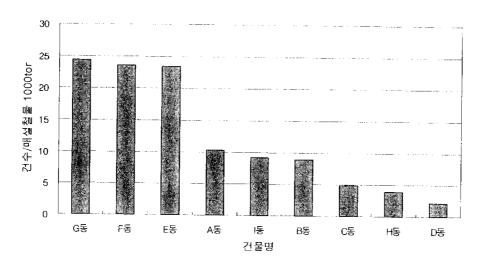


그림 3.20 매설철물공사의 부적합보고서 건물별 비율

3.6.1.3 기간별 부적합보고서

그림 3.21에서는 매설철물공사에서 각 건물의 공사기간, 즉 개월 당부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 이 중 B 동이 7.59(발생개수/12개월)로 다른 건물에 비해 최대 약 7배, 최소 약1.7배 많은 부적합보고서가 발생된 것으로 분석되었다.

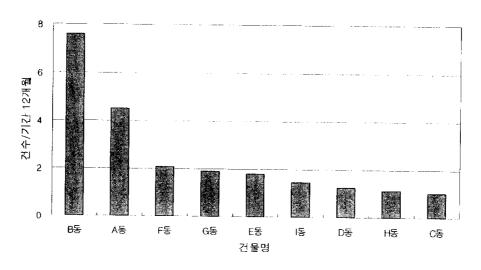


그림 3.21 매설철물공사의 부적합보고서 건물별 비율

3.6.2 부위별 부적합보고서

표 3.17은 매입철물공사의 부위별 조사결과로 기초, 기둥, 슬래브, 벽체, 기타부분에서 발생한 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

표 3.17 매설철물공사의 부적합보고서 부위별 비율

子 분	부위명		ক	子担		소		처리	결정		소	발생비율
, -		Q	T	R	S	'계	J	- R	U	W	계	(%)
매설	기초	-	1	-		1			1	_	1	1.09
플 철물	기둥	1	_	-	_	1	_	_	1	-	1	1.09
원린	슬래브_	8	2	_	_	10	-	6	3	1	10	10.98
공사	벽체	54	5	_	1	60	-	15	38	7	60	65.93
570	기타	17	2	-		19	3	4	12	-	19	20.91
	소계 .	80	10	0	. 1	91	3	25	55	8	91	100
	전체	80	10	0	1	91	3	25	55	8	91	

그림 3.22는 매입철물공사에 관련하여 발생된 부적합보고서의 각 부 위별 현황을 분석하여 그래프로 나타낸 것이다.

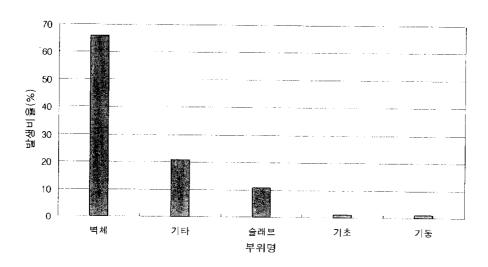


그림 3.22 매설철물공사의 부적합보고서 부위별 비율

부재중 벽체에서 약 66%의 부적합보고서가 발생되었고, 이 중 매입물의 설치오차 초과로 인한 경우가 주요 원인으로 분석되고 있어 매입물 설치에 대한 대처 방안이 반드시 필요한 것으로 나타났다.

3.6.3 공사시기별 부적합보고서

표 3.18은 매입철물공사의 공사시기별 조사결과로 1997년, 1998년, 1999년, 2000년도의 각 분기별로 발생한 부적합보고서 조사건수의 발생비율(%)을 나타낸 것이다.

그림 3.23에서는 매설철물공사에서 각 시기별 부적합보고서의 발생비율을 분석하여 그래프로 나타낸 것이다. 1997년 3분기에 발생되기 시작한 부적합보고서는 1998년 3분기부터 급격한 증가세를 보이다가, 2000년 4분기에서는 조금 감소되는 추이를 나타내었다. 이는 구조물 시공당시에 발견되지 못한 기계, 전기 설비시설의 설치 시점에서 발견되는 경우가 많기 때문이다.

표 3.18 매설철물공사의 부적합보고서 공사시기별 비율

7분	공사			동:	計道		<u>\$</u>		처리	결정		<u>ል</u>	발생비율
, I T	년도	분기	Q	T	R	S	계	J	R	U	W	湘	(%)
		1		-	_		0	-	_		-	0	0.00
	1차년도	2				_	0.	-	_	-	-	0	0.00
	(1997)	3	1				1		_	1		1	1.10
	ļ	4	1				1.	-	-	_	1	1.	1.10
		1	2			-	2	2		_	_	2	2.20
	2차년도	2_	2		_		2	1	1	-	_	2	2.20
매설	(1998)	3_	6	1			7	4	3	-	_	7	7.69
게 a 철물		4	7	1	-	-	8	6		2	_	8	8.79
홍차		1	11	1	-	-	12	8	2	2	_	12	13.18
	3차년도	2	6	1			7	3	2	1	1	7	7.69
	(1999)	_3	_6	2		-	8	4	4	_	_	8.	8.79
		4	8	1	-	_	. 9	4	4	1	_	9	9.89
		1	11	-			11	_ 6	4	1	-	11	12.10
	4차년도	2	9	2	-	1	12.	8	3	_	1	12	13.18
	(2000)	_3	8	1	-	_	9	7	2	-	-	9	9.89
1 - 1 5 7 7		4	_2	_	_	-	2	2			_	2	2.20
1414	소계		80	10	0	1	91	55	25	8	- 3	91	100
	전체		80	10	0	1	91	55	25	8	3	91	

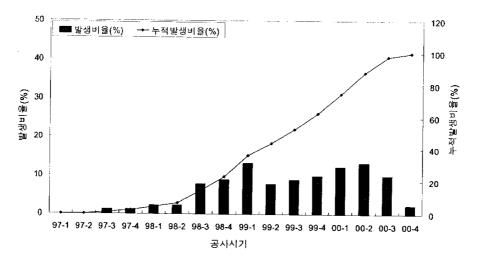


그림 3.23 매설철물공사의 부적합보고서 공사시기별 비율

Ⅳ. 결론

본 연구는 건설기술 집약도가 매우 높은 발전소 건설현장을 대상으로 건축공사의 철근콘크리트공사와 관련된 부적합보고서의 발생을 조사·분석하여, 발전소공사의 철근콘크리트공사에서 발생하는 부적합 사항의 감소, 구조체공사의 품질을 향상시킬 수 있는 기초자료를 제공하고자연구를 진행하였으며, 그 결과는 다음과 같다.

- (1) 발전소건물의 연면적 100m'당 부적합보고서의 발생비율은 평균 0.02(건/100m')로 나타났으며, 그 중 G동에서 부적합보고서의 발생비율은 평균 0.34(건/100m')로 매우 크게 나타났다. 그 원인은 용도상 냉각수를 공급하는 복잡한 배관시설이 매우 많은 건물인 관계에서 비롯된 것으로 본다.
- (2) 부위별 부적합보고서의 발생비율은 기초(6.61%), 기둥(3.25%), 벽(52.35%), 슬래브(19.41%), 기타(18.38%)로 나타났다. 벽과 슬래브에서 부적합보고서 발생비율이 높은 이유는 구조물 내에 매입되는 기계, 전기설비와 관련된 매입철물 등의 간섭으로 인한 경우가 많았다. 그러므로 시공 전에 기계, 전기 공종과의 사전 협의가 충분히 이루어져야 할 것으로 판단된다.
- (3) 공사시기별 부적합보고서의 발생비율은 2차년(1998년)과 3차년(1999년)에서 전체 발생비율의 65% 이상을 차지하고 있다. 또한 분기별 발생비율은 3분기(32.56%)에서 가장 높았으나, 모든 분기에서 발생비율이

비슷하게 나타났다.

따라서 발생빈도가 높은 시점에서의 품질관리활동이 더욱 활발해져야할 것이며, 엄격한 품질관리에 적응할 수 있도록 작업자에 대한 꾸준한 품질관리 교육이 이루어져야 할 것이다.

참고문헌

- 1. 윤 여진, 건설기술인-현장은 지금, 건설기술인협회, 2001.
- 2. 이 배호, 건설공사 관리학 개론, 구미서관, 1993
- 3. 대한주택공사, 건설기술의 T.Q.C, 주택기술정보, 1987
- 4. 대한건설협회, 월간건설, 1994
- 5. 한국건설기술연구원, 건설기술정보지, 건설공사 품질관리 체계 정립 방안 연구, 1997
- 6. 대한건설협회 및 한국건설품질관리연구회, 건설공사 품질관리 발표회, 1995~1996
- 7. 토지개발공사, 토지개발기술, 토지개발에서 품질관리, 1995
- 8. 건설산업연구원, 건설광장, 1997
- 9. 이 준오, "건설공사의 품질관리체계 개선에 관한 연구", 중앙대 대학 원 토목공학과, 1997
- 10. 한국수력원자력(주), "원전품질보증교안", 2001
- Hellard, Ron Baden, "Total Quality in Construction Project",
 Thomas Telford, London, 1993
- 12. 신 종 서, "건설공사 품질관리기법향상"대한토목학회, 1996.03
- 13. 최 고 일, "고속도로 건설공사의 품질관리", 대한토목학회, 2001. 8
- 14. 이 학 기, "국내건설산업에서 ISO 9000 심사시 부적합 사항에 관한 연구"대한건축학회, 1999, 11

부 록

<부록 1> 부적합 사항 발생보고서 양식(영문)

<부록 2> 부적합 사항 발생보고서 양식(한글)

<부록 3> 부적합 사항 꼬리표(HOLD TAG)

<부록 1> 부적합 사항 발생보고서 양식(영문)

3		oly Boly					
무속압사항보고~		1. INCA 190, .		Z, Rev. No		3. Page	of
Nonconformance Report		4. Issue Date :	5. Items:			6.0 Class	
7. Item Location:	8. Serial/Tag No. :	ag No. :	9. Contr./Supplier :	plier:		10, P0/CP No :	.: .9
11. DWG/Part	Rev. No	12. System :	13. ANI Req'ed	ZEX 🗆	NO 14.Sh	14. Shop Insp. Or. :	
15. Item 16. Descr	Description of Nonconforming Item	onforming Item	21. Disposition 2	22. Field R	Field Recommended Disposition	Dispositio	G
17. Prep. by	18. Appr. by HQCM	,	23.Disposition by Ω	oy Contractor / Supplier /	1	FEDM	,
19. Cause Resp. Contractor	,	/ MORRA	24. App. by	A/E		26. F	26. Hold Tag.
/Supplier	\		25.Review/Concur. FQAM	FQAM /		1, 0	
20. Preventive Action	,			ANI /		Date :	
resp. contractor wgr / Supplier	,	FELM	27. Close Out	HQC/HFI		ANI	

<부록 2> 부적합 사항 발생보고서 양식(한글)

中母哲小啓보고서	 '	1. 光支 〇-〇〇〇-〇-412-〇〇〇〇-〇〇	-415-		2. 개정번호	3. 페이지	7	্য
Nonconfromance Report		4. 작성일자	船去器·S			6. 품질등급	100 170 170 170 170 170 170 170 170 170	
7.위치	8. 제작/기기식별번호	식별번호	9.계약자/공급자	왕교자		10.시병	10. 시방서번호	
11. 도면/부番번호	기정번호	12. 刘杨昭	13. %	13. 공인검사자 🗆확	□확인 □해당무 14.	14. 공장검사조직	रूर	
15. 항목 16. 单	ች합내용		21. 처리결정	22.	城市法司号	왕상		
						1		
17. 작성자 / 1	18. 승인 품질관리부서책임자	투사책임자 /	23. 처리방안협의/확인 ○○ 분야별 기술? /공급자	처리방안협의/확인 ○○ 분야별 기술관리 책임자 /광급자	,	시공간독부장	**	\
19. 부적합원인 〇〇 분야별 기술관리 책임자	,	시공감독부장 /	24. 🗢 શ	설계계약자			26. NCR TAG	
			25. 검토/동의	××관리 2부장	,		높	75
20. 제활망지대적 ○○ 분야별 기술관리 책임자 / 과고차	`	시광감독부장 /		공인검사자 (ANI)	/		聖朝皇	
			27 총 결	검사자	#V	공연검사자(ANI)	INI)	,

<부록 3> 부적합 사항 꼬리표(HOLD TAG)

N.C.R TAG

부적합보고서 처리 방안이 확정 될 때까지는 작업을 중지하시오

> 현장 품질 검사요원의 승인없이는 본 꼬리표를 제거하지 마시오

> > 10×16 cm

(전 면)

※ 부적합보고서 TAG 양식 기입 요령

기록란 ① 부적합 보고서 일련번호 및 개정번호 기록

- ② 부적합 보고서 발생일자 기록
- ③ 부적합 보고서 보고자 성명기록
- ④ 부적합 보고서 보고자 전화번호 및 꼬리표 번호기록
- ⑤ 작업 중지 사유중 해당사항에 ×표시 기록
- ⑥ 부적합 내용을 간단히 기록
- * 부적합보고서 TAG는 붉은색 바탕에 검정색 글씨

N.C.R TAG
(현장 품질 검사요원의 숭인 없이는 본 꼬리표를 제거하지 마시오)
부적합 보고서 일련번호 :
개정 : 작성일자 : ②
담당 검사자 : ③ 연락처 : ④
꼬리표 번호 :/
작업 중지 사유 : □ 재작업 □ 폐기 □ 처리방안 □ 서류결함 □
:
비 고 :
10×16cm (뒷 면)

(뒷 면)

감사의 글

지난 2년간 대학원 생활을 지내면서, 부족하지만 끝까지 결실을 맺을 수 있도록 세심한 배려와 관심으로 지도를 아끼지 않아 주신 이수용 교수님께 진심으로 감사의 말씀을 올립니다.

본 논문의 심사과정에서 미비점 보완과 많은 조언으로 논문을 다듬어주시고, 부족한 점을 보충할 수 있도록 세심히 살펴주신 김영찬교수님, 이재용교수님, 임영빈교수님께 깊은 감사의 말씀을 올립니다.

그리고 연구과정 동안 늘 같이하며 서로용기와 도움을 주며 이 자리에 같이 설 수 있게된 손일도, 이재영, 노용식, 지대준, 김경민, 김만식, 이영래 등 동문들과 연구실 밖에서 저에게 힘을 북돋아 주었던 소중한 사람들에게 진심으로 감사를 전합니다.

특히, 처음부터 끝까지 도와주신 시공재료연구실의 손일도님과, 회사의 동료로서 많은 도움을 주신 김대성님, 조용석님, 이준오님, 바쁜 공정에도 많은 배려를 해주신 이선표 부장님 이하 모든 동료 여러분들에게도 감사의 말씀을 올립니다.

마지막으로 이번 논문을 통해 너무나도 부족한 저의 모습을 다시 한 번 돌아보면서 앞으로도 끝없이 노력할 것을 다짐하면서 항상 말없이 지켜봐 주신 아버님, 어머님, 형, 형수, 동생, 그리고 새로이 태어날 나 의 조카에게 사랑한다는 말씀과 함께 이 작은 결실을 바칩니다.