2002年 8月

Feasibility Analysis System For Apartment Reconstruction Project

2002年 8月

(

(

()

•	

1.	
2.	2
•	
1.	
1.1	
1.2	4
2.	
2.1	6
2.2	8
3.	
5 .	
3.1	
3.2	
3.3	
3.4	가 21
3.5	21
3.6	
3.7	
3.8	
3.9	
3.10	

•	
1.	

1.			
	1.1		27
	1.2		28
2.		가	
	2.1		28
	2.2		2
	2.3		29
	2.4		29
3.			
	3.1		30
	3.2		35
	3.3		39
	가.		39
			46
	٠		60
			66
4.			68
•			
1.			
	1.1		72
	1.2		73

2.	
2.1	
2.2	
2.3	
3.	
3.1	
3.2	
3.3	
4.	
4.1	
4.2	
5.	
5.1	97
6.	
6.1	
6.2	
7.	
•	
Abstract	

•

1. 1962 가 .

, , 가가 가 가 .

· · 가 가 ,

, 가 , 가

가 ,

가 , 가 ,

, 가 가 .

,

•

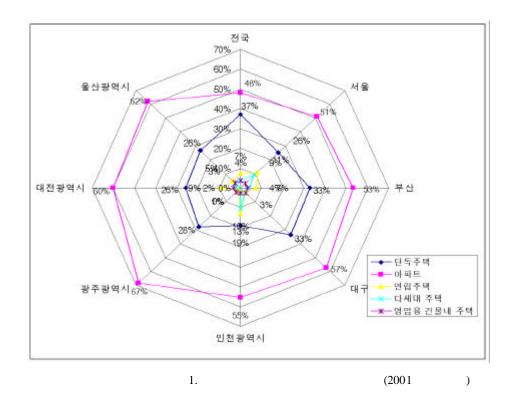
.

(1)

. (2)

(3)

(4)


- 2 -

1. 1.1 가 5 가 2000 가 47.7% 37% 가 , 47 50

가가 1) 2) 1) 3

)

가 2)

1970

가

가 1975 가

가

1987 11 가

- 4 -

가 가 1988

,

. 1988 6

, 1988 12 가 가

2001 7

, (フト) · 2001 7

, 2002 7 1

1	1
4	·I

					4		'(4	:	,)	۲	
				,						1	987	11	
							가		, 19	88	6 16	5	
4		2	42	가						가			
4							'(4		,)		
										,			
		가											,
							가가						
4/5											•		
1970				•									
										,			•
•													,
											2001	7	4
			(가)'				, 2	2002	7	1		
						•			•				(가
)'													
								,					
	,					가		가			,		
							•						

- 6 -

가 가 .

	1.	
	4 2	·
	3 9	가
	47 44 3 7	4/5 2/3
	44 42	
	42 4 32 2	
	33 32	
()	44 3 34 3	
	48	
	49	
	33 2 34 22	,

가. 1984. 4. 10: . 1987. 12. 4. -. 1988. 6. 16. -가 가 47 가 가 , 가

. 1993. 2. 20. -. , 660m²

- 8 -

가 가 2 가 가 2 가 . 1994. 1. 7. -. 1994. 7. 30. -가 가 33 20

가가

가

가

- 9 -

가

. 1997. 12.13. -

20 가

,

1 가 2 1 2 1

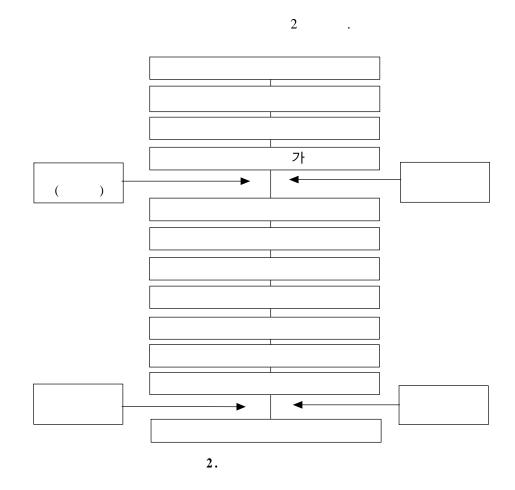
. 1999. 2. 8. -

가 .

2/3 4/5

. 1999. 4. 30. -

, 가 · · 가 가 가 .


가 44 3 7

.

3) .

가 가

.

3) 2 2 : 3 :

3.1 4)

가 「(가) 10 가 가 가. 가 가 가 가 가 가 가

 4)
 18 :
 2 1

 15

- 13 -

가 , 가 가 가 5) 가 가 47) (

·

5) 20 : 1 ,

(1)

(2)

.)

(3)

· ·

(5)

,

(6) 가 6)

가. 7) 가

(1)

(2)

(3)

(4)

() (5)

(6)

가 가

7) 28 ():

): 3 57 (3 8) 10

20

- 16 -

.

,

(3) 가

.

. 가 가

(4) 가 가

· ,

9) 3.3 가 가 가 가. 10) 가 가 가 가 가 가 가 11) **(1)** 59 (3 9)): 3 3 1 . 44 3, 42 10) 11) 42 4 32

- 18 -

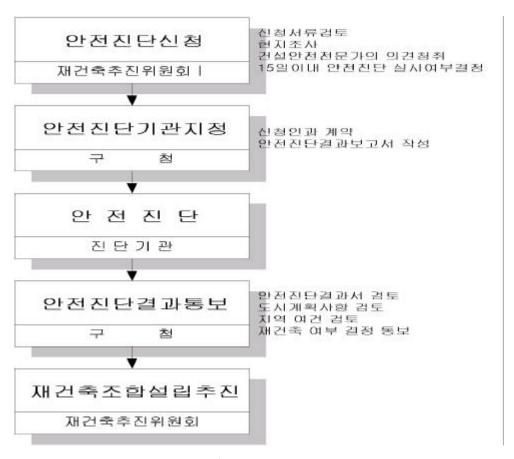
4,

2

(2)

가

15


· 가 ,

.

가

가

.

3.

(3) 7[†] ,

, 가

13 (

32 2 3)

(**4**)

·

(5)

•

8

가() .

7| 12) 3.4 가 가 가 3.5 가 가 가 가. 가 IMF , 가

.

· 가 가· 가

(1)

(2) , , 가

가 .

가

		I	
•		•	
	()	• :	
· :			
. :		• :	
	,		(, ,
 •	<u></u> 가	,)
•			
	,	•	가
(· · 가	가
)			
		•	
가	가		가
・ 가		· 가	가
가		가	71
		•	
	100%		
	(가	100%	(가
 :)	:)
・ 가		•	
•		• 가	
・ ・ 가		• 가	

: 2001,

· ,

.

3.7

가 2

가 .

3.8

, 가

가.

,

가 ,

가 ,

•

가 가 , 가 .

•

.

가

3.9 7

•

3.10

1 1 2 2

13) 43 (·): 3
1 2 2

.

•

1.

1.1

가 ' 가 , , ,

가

가 '14) .15)

(1)

(2) 가

(3) ,

(4)

(5)

(6) , ,

(7)

(8)(9)

14) , , ^p , a , () , 1 ,

2001. 12

15) , , , 1996, p518

- 27 -

가 가 가 .¹⁶⁾

가 _.¹⁷⁾

2. 가

2.1

가 . 가

.

2.2

가 , , , ,

. 가 가

, , ,

¹⁷⁾ Real Estate Development: Principles and Process, by Gayle Berens, Marc A. Weiss, Urban Land Institute, Mike, E. Miles, January 17, 2000

, , 가 가

가 .

2.3

가

.

PFI(Private Finance

Initiative) 가 가 가

VFM (Value for Money) 18)

2.4.

가 .

, .

18) , 2000 2

1981 ICAM (Integrated Computer Aided Manufacturing)

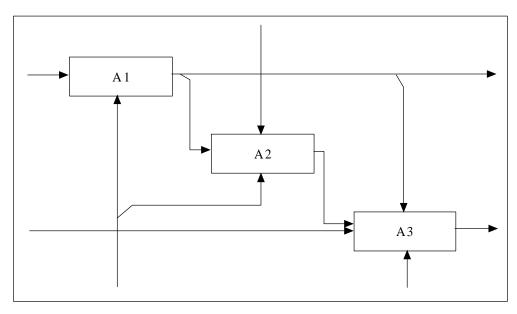
IDEF

IDEF0(IDEF Function Modeling)

3.1

가.

가 가


. IDEF0

(1) IDEF		
IDEF (ICAM DEFinition	on) 1981	ICAM (Integrated
Computer Aided Manuf	acturing)	
	가 ,	, ,
가		. IDEF0(IDEF Function
Modeling)	IDEF1(IDEF Infor	mation Modeling),
<i>5</i> /	IDEF1X,	5//
IDEF2(IDEF Dynamics	Modeling) ,	
IDEF3(IDEF	Process Modeling)	
	IDEF4(IDEF Object-0	Oriented Design)
19) IDEF5(IDEF Ontology Description	Capture) .
IDEF	, ,	
	가	
19)	"The branch o	f metaphysics that studies
the nature of existence"		,
Mikrkosmos syn	- (lang nbol 가	gauge-independent)
가		

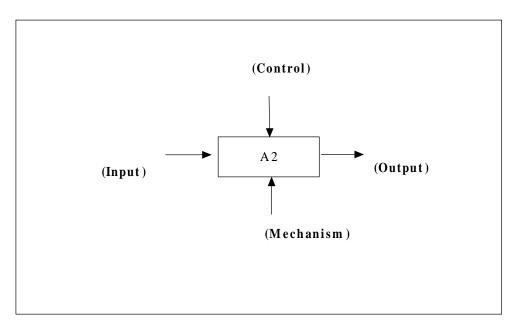
- 31 -

(2) IDEF0 IDEF0 (Relational Data Modeling) IDEF0 (Implementation Deign) (3) IDEF 0 IDEF0 IDEF0 가 IDEF0 (Diagram) 4 (Activity) (Concept) () 3 6

- 32 -

4. IDEF0 (Diagram)

・A ' 가 ,


가 가 .

-가 .

, () .

ICOM 5

- 33 -

5. IDEF0 ICOM

, 가 , 가

가

.

,

, ,

,

, 가

. , , ,

·

,

가 .

3.2 20)

가 .

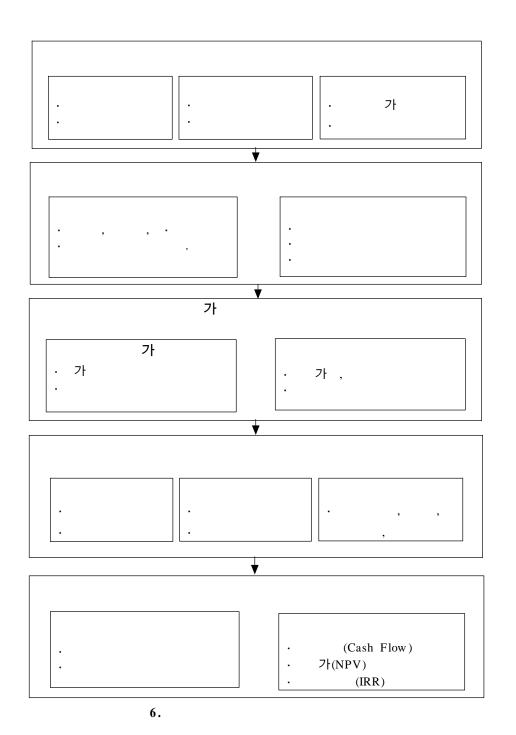
가 , ,

3 .

,

, 가 가

,


20)

20) 2 , , , , 2001.11

가 가 가 가 , 가 가 가 가 가 가 가(NPV) 가 (IRR) 가 가가 가 가 가가 0 가 가

- 36 -

가(NPV)가 0

- 38 -

가.

(1)

,

•

3.

Input Data	Control	Mechanism	Output

(2)

가

Input Data	Control	Mechanism	Output
가		· =	
			•
		+	

5.

	6	172 +30 +20 ×2 (, 2 230)
	7	170 +30 +16 ×2 +16 ×2
P.C	6	162 +30 +19 ×2 (, 2 220)
	7	162 +30 +15 ×2 +16 ×2
		+55

1 ()	55
2 (4.5m	1)	95
2 ()	40
		15
		10
1	가 150	10
1	가 150	20

15m PHC, PC	20
16m 30m PHC	40
30m	
15m	40
16m 30m	80
	15
Earth Anchor	10
. 1 2	
_,	
 가 .	
3m	15
бт	30
9m	45

8. 가

		()
	(, , , , , , , , ,	
	, , , , , , , , , , , , , , , , , , ,	
	, , , , , , , , , , , , , , , , , , , ,	115
1	(, , , , , , , ,	(11.21 3.15)
)	
	()	
	(,)	
	, , , (1)	
	(, ,)	
2	(1)	90
2		(12.1 2.28)
	(, ,)	
	(, ,)	
-	, , (, , , ,)	
	(, , , , ,)	
	(, , , , , ,)	75
3	(, , , , , , , , ,	(12.10 2.22)
	,)	
	(, , , , , , , , , , ,	
	, (,)	
	(, , , , , , ,	, 55
4)	(12.21 2.13)
	(, , , , , , , , ,	, (12.21 2.13)
	, , , , , ,	35
5	, (,), (,	(1.1 2.4)
6		15
		(1.17 1.31)

(3)

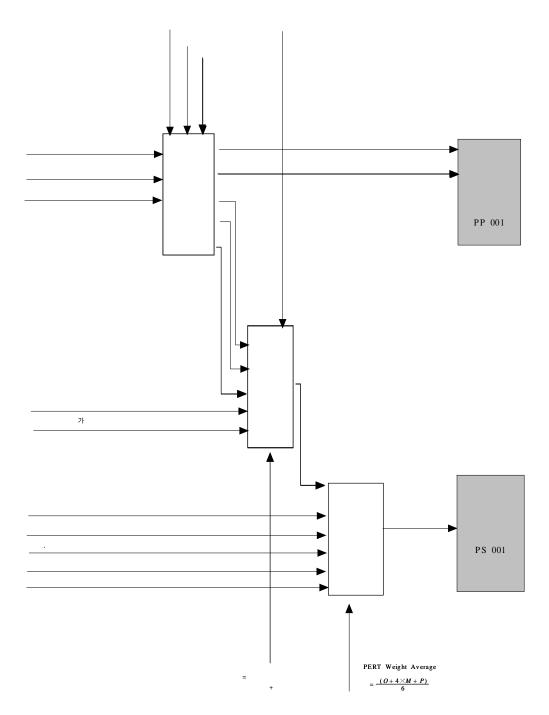
,

4 10

.

가 ,

.


가 .

, 가

•

Input Data	Control	Mechanism	Output
		· PERT Weight	
		Average	
		$=\frac{(O+4\times M+P)}{6}$	
		: Optimistic	
		: Most likely	
		: Pessimistic	

	optimistic	most likely	pessimistic	PERT weighted average	
가					PERT Weight
					Average
					$=\frac{(O+4\times M+P)}{6}$
					: Optimistic
					: Most likely
					: Pessimistic

, , , , , , , , , , (

,) 8가 .

11.

Input Data	Control	Mechanism	Output
•			
•			
(.)			

 (1)

 가 가

 가

•

가

12.

Input Data	Control	Mechanism	Output
	$R r = \frac{Lp}{Lt}$ $Cs = Ct \times Rr$ $Rr : 7t$ $Cp : $	$C_{s} = \frac{\sum_{i=1}^{n} C_{i}}{n}$ $Cc:$ $Cs:$ $Cs:$ $Ci:$	
		$C_c = \frac{\sum_{i=1}^{n} C_i}{n}$	×·s

(2)

가 ,

.

16

13.

Input Data	Control	Mechanism	Output
		= x	
· 가		$C_c = \frac{\sum_{i=1}^n C_i}{n} \times S$	

4			가 '				
1,2,3							
	,						
	,						
					,		
가	•						
()							
1)							
가					,	가가	
, ,	,	,		21)			
·							
		,					
가							
		2001	9	2002	3		
	10						가
					26		
		7	3%		•		

(가)

21)

- 48 -

22 5 2

14. (:)

				/
1	64,651,814	44,825,121	19,826,693	69.33%
2	79,778,063	61,612,835	18,165,228	77.23%
3	77,887,957	58,260,192	19,627,765	74.80%
4	77,476,090	57,998,692	19,477,398	74.86%
5	35,388,786	25,964,596	9,424,190	73.37%
6	50,795,133	34,864,508	15,930,625	68.64%
7	115,257,000	74,591,520	40,665,480	64.72%
8	130,597,509	98,860,732	31,736,777	75.70%
9	65,930,875	51,412,983	14,517,892	77.98%
10	64,480,383	47,727,629	16,752,754	74.02%
				73.06%
	132,228,705	96,612,363	35,616,342	73.06%

2)

2522)

15.

	(%)
20	3.15
30	3.05
50	2.98
100	2.90
150	2.86
200	2.82
300	2.78
500	2.74
1,000	2.67
2000	2.63
3,000	2.57

22) , 2002. 1,

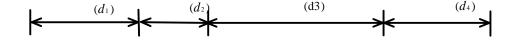
3)

, 가 가

,

•

16.


Input Data	Control	Mechanism	Output
		· PERT Weight	
		Average	
		$=\frac{(O+4\times M+P)}{6}$	
		: Optimistic	•
		: M ost likely	
		: Pessimistic	

$$D_1 = \sum_{d} = d_1 + d_2 + d_3 + d_4$$

$$D_{I} =$$

$$d_1 = d_2 =$$

$$d_3 = ... d_4 =$$

	(PERT weighted average)				
	(O)	(M)	(P)	PERT	
(d_1)					%
(d_2)					%
(d_3)					· PERT Weight Average
(d_4)					$=\frac{(O+4\times M+P)}{6}$
					: Optimistic
					: M ost likely
					: Pessimistic

4)

,

, 가 가

.

Input Data	Control	Mechanism	Output
•			
•			
• .			

5)

, 가

•

19.

Input Data	Control	Mechanism	Output

6)

,

•

20. .

Input Data	Control	Mechanism	Output
•			

30,000 /	3,000 /
600 /	600 /
5,000 /	1,000 /
50,000 /	30,000 /
85,600 /	34,600 /

7)

22.

Input Data	Control	Mechanism	Output
• 가가			
•			
•			

13

가 ' ()' 2001. 7

30

, 가 가

2002.7.1

가

2

= -

. 가

가 .

· 가 가

(가)

가 가 ,

•

.

$$(:) x (: \%) = ()$$

,

가 가 .

2000 42 10%

40% 4 ,

43 .

1000			10%	
1000	4000	100 +10	000	20%
4000	8000	700 +40	000	30%
8000		1900 +8	8000	40%

	()
가	
-	
× (0.3%)	

가가

가가 가가 2

,

, , (가.

) , .

25.

25.7			
25.7	()	
 가			
()			

30

가 2/100

, 10/100

. ,

.

26.

	()	()
60 m ²	:			× 2%
60 m ²	:			

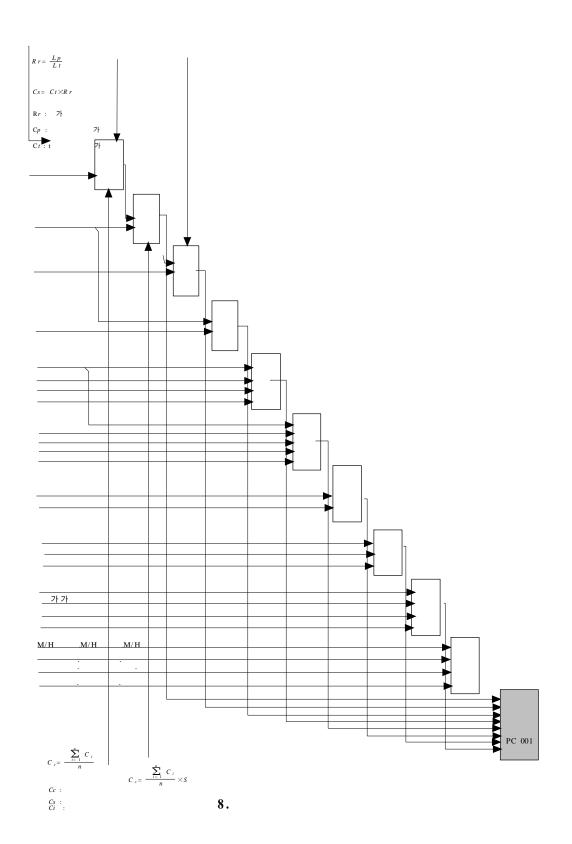
가

•

.

	0.8%

8)


.

.

·

28.

Input Data	Control	Mechanism	Output
• M/H			
• M/H .			
			-
			-

(1) 가 가 가 가 가 가 , 가 , 3

Input Data Control MechanismOutput PERT Weight Average $=\frac{(O+4\times M+P)}{6}$ 가 가 가 가 : Optimistic 가 가 가 : Most likely 가 : Passimistic 가 가 가 가

가 23) (2) 가 가 가 가 가 (가) 가 가 가 가 1989 11 10 8 3 1 가 98 () 가 가 가 가 가 가 가

- 61 -

21 1 2001 4 ,

23) ,

31. (100)

가	23	, , , , , ,
	10	,
	10	, , ,
	7	, , , ,
	7	, ,
	5	, , ,
	5	, , , / ,
	33	, ,

 가
 가

 가
 가

 가
 ,

 가
 가

 가
 가

가 가 가 , 가

가 (Hedonic Price Function) 가 가

, 가

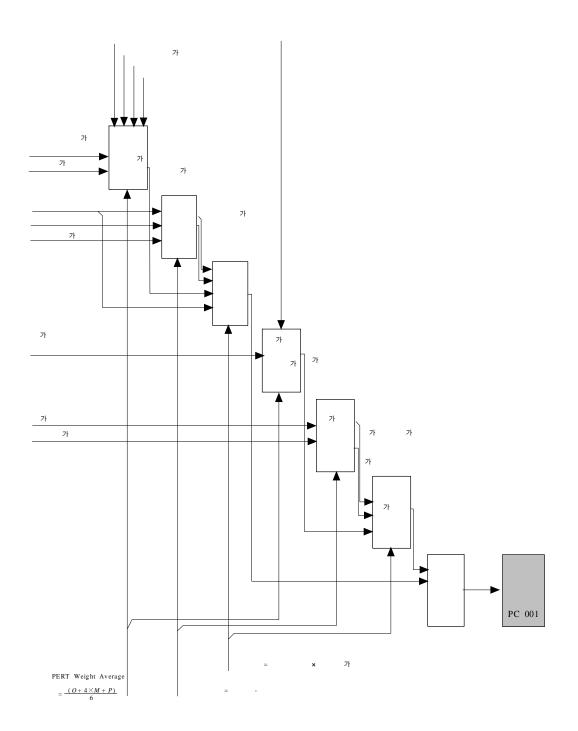
.

() 가

가 , 가

. 가

가 , 가 가 ,


 (3) み
 가
 가
 가
 가
 カ
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</

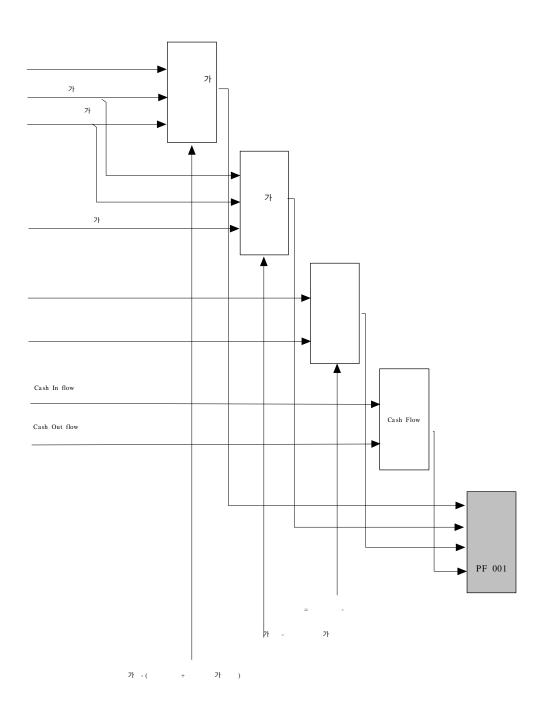
가 . 가

가 가 가

32. 가

	Input Data	Control	Mechanism	Output
가	. 가		PERT Weight Average $= \frac{(O+4\times M+P)}{6}$ 7\tag{Post in a post likely} 7\tag{Passimistic}	· 가 가
	· 가 · 가			· 가
	가 · 가			

가 .


, Cash Flow 4

가

가

13

	Input Data	Control	Mechanism	Output
가	· · 가 · 가		· 가 - (+ 가)	
· 가	· 가 · 가			
Cash Flow	· Cash In flow · Cash Out flow			Cash Flow

(1)
, 1981 ICAM(Integrated Computer Aided Manufacturing)
IDEF
IDEFO(IDEF Function Modeling)

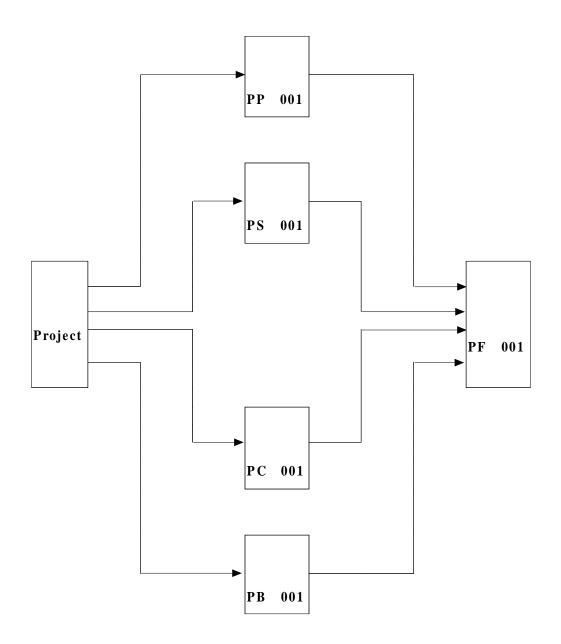
(2)
, , , , ,

(4) , , , ,

, 11 (Activity) .

(Activity)

3


(3)

(8) (Activity)
(Input), (Control), (Mechanism), (Output)

- 69 -

34. 가

	가	
	•	
	가 가	
	M/H	
	M/H	
	M/H	
가		

1.1

1 99 1985 17 85,617.00m²(25,899.14) 60.37% 가 가 가 (煙道), 가 가 가 4 5 가 가 가 가

: 10,338m²(3,127)

: 52,860m²(15,890)

: 11.86% : 60.37%

: 5 26 920

:

·

S

. 15 25

22 .

85,617.00m² 13,011.32m²(3,920.31), 313,734.35m² (94,904) , 11.86% , , 60.37% .

	99	1		
	()			
		85,402.00m ²		
85,617.00m ²		215.00m²		
		0.00		
15	, 18, 19, 20, 21, 22, 2	23, 24, 25		
(75	49,462.45 5,462.39) 54,271.91 9,442.25)	313,734.35 (94,904.64)		
13,011.32				
 15.24%				
292.10%				
2340 (:672 , 1668 :10),		
	2,340			

가 .

.

가.

25 RC 7 , 5

 $= 170 + 30 + 16 \times 24 + 10 \times 2$ = 604

•

(1) 가

12 3 6 135 .

= 95 (2) + 40 (2) = 135

		(m²)
#1	3	8344.98
#2	3	4422.92
#3	3	7142.10
#4	3	5047.92
#5	2	3614.27
#6	2	4211.04
#7	3	7284.42
#8	3	4211.04
#9	3	1066.49
#10	2	3244.06
#11	2	3015.14
, , , #1	2	842.98

36 11 160 6 20 プトプト .

(2)

PILE 37 7
20 プラント .

24) (), , 2000. 7

	25	MAT THK 1,000
	22-24	MAT THK 1,000
	18-21	MAT THK 800
	17	MAT THK 700
		MAT THK 700
PILE	PHC 400	10m - 15m

(3) 가 가

.

가 8 가 1 35 70 가

	$170 + 30 + 16 \times 24 + 10 \times 2$	604
	95 (2) + 40 (2)	135
	15m PHC = 20	20
<u></u> 가	35 (5 35)×2 = 70	70
		829

1,000 40

65 가 가 38

829 .

2.3

, 2000 8 가 ,

, , , , ,

가 .

39 50 .

optimistic	most likely	passimistic	PERT weighted average	
 1	2	3	2	
 1	1	2	1	PERT Weight
1	1	2	1	Average
1	1	1	1	$(O+4\times M+P)$
4	6	12	6	$= \frac{(O+4\times M+P)}{6}$: O ptimistic
2	4	5	4	: Most likely
30	30	32	30	: Pessimistic
4	5	6	5	
44	50	63	50	

,

, , 8가 .

3.1

가. 가

, 가

가

.

2002 3 プト

가 .

40. 가

	()	()		가	
20	270	0	270	81,500,000	, , ,
17	130	0	130	66,500,000	, , ,
15	175	118	293	55,750,000	, , ,
13	135	92	227	47,250,000	, , ,
	710	210	920		, , ,

. 가

•

(Sunk Cost)

2002 7 590,000(/ m²) 85,617㎡ 7 , , () .

3.2

가. 5

가 1999 2001 32

41 .

•

가

20	(/)	30	(/)	40	(/)
1	1860156	11	1789965	21	1905266
2	1703254	12	1754238	22	1723022
3	1893899	13	1753697	23	1683325
4	1929626	14	1841751	24	1582115
5	1745757	15	1860156	25	1616743
6	1858532	16	1650587	26	1585166
7	1864306	17	1893899	27	1813062
8	1925356	18	1929626	28	1794296
9	1916995	19	1753697	29	1809633
10	1948572	20	1841751	30	1746660
(/)	1864645	(/)	1806937	(/)	1725929

	()	()	(/)	
24	412	12,538.37	1,864,645	, , ,
28	352	12,773.80	1,864,645	, , ,
31	1,218	48,878.12	1,806,937	, , ,
44	358	19963.24	1,725,929	, , ,
	2340	94,154.24	1,805,275	, , ,
가		750.39	1,805,275	, , ,
		94,904.64		, , ,

3.2 가. S 가 2000 (94,904) **(1)** 2001 2002 3 9 가 10 14 73% (2)

15²⁵)

.

- 82 -

: , , , ()
: 2.675%
: , , , ×2.675% = , , , ()

(1) 가

.

가

(2)

, , 가 .

2001 11

가 6.92% .

(3) 45 (1)

가 43 .

43.

	12
,	

가 · 4 가 .

22

, , 가

			(/)	()
2000	6	2	,	,	, ,
2000	8	2	,	,	, ,
2002	5	1	,	,	, ,
2002	7	2	,	,	, ,
2002	8	1	,	,	, ,
2002	9	1	,	,	, ,
2002	10	1	,	,	, ,
2003	4	6	,	,	, ,
2003	7	4	,	,	, ,
2006	2	30	,	,	, ,
2006	8	5	,	,	, ,
		56			, ,

(2)

가 , , .

,	

(3)

, 5 E 가 가 가

가 가 E 가 , , ,

.

46.

	가()	m² ()
A	, , ,	24,290
В	, , ,	25,047
С	, , ,	24,499
D	, , ,	26,060
Е	, , ,	23,444

(4)

47.

30,000 /	3,000 /
600 /	600 /
5,000 /	1,000 /
50,000 /	30,000 /
85,600 /	34,600 /
85,600 × 920=78,752,000	34,600 × 920=3,183,2000
, ,	

, 1

.

가 .

.

= ×70% ×3%

 $= , , , \times 0.7 \times 0.03 = , , , ()$

,

4.1

가. 가 26)

. 가

가

가 .

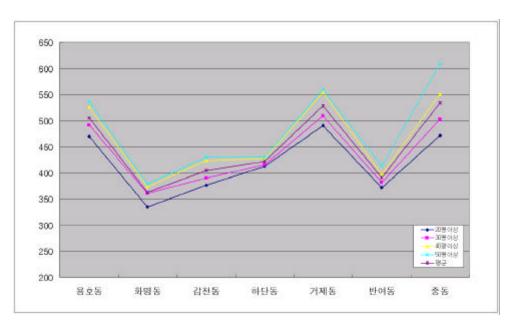
(1) 2002. 3

가 가 48 12

19

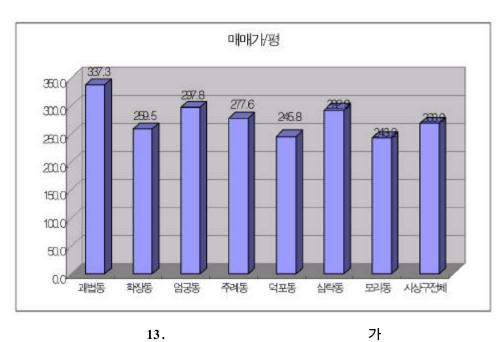
, 가

가 500


26) , 21 1 2001 4 ,

가 가

300 .


48.

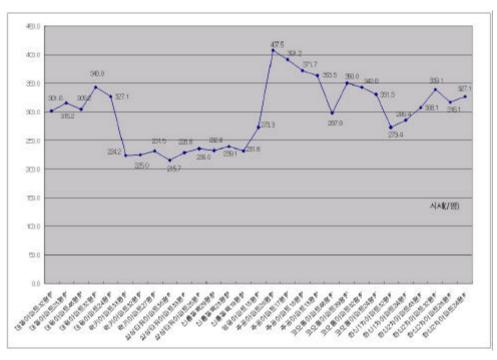
20	469.0	334.6	376.0	412.2	490.6	371.3	471.6
30	491.4	360.3	389.7	415.6	509.0	381.1	502.3
40	525.5	373.6	423.3	427.7	553.9	396.6	550.9
50	536.3	378.9	430.0	430.0	559.6	414.0	609.0
	505.6	361.9	404.8	421.4	528.3	390.8	533.5
	575.9	234.7	406.9	46.4	685.8	209.2	2161.6
	24.0	15.3	20.2	6.8	26.2	14.5	46.5

가 가 가 가 (2) (2) 72 가 13 가 가 가 가 가

・ 141 가 .

(3) 8 가 가 가 가 10

가 가 17


가 가

10

가

가

				(m^2)	
	24	2	358	37,239	1998 / 5
	25	6	741	89,059	1999 / 8
	15	4	441	45,968	1993 / 9
	20	2	208	22,771	1993 / 11
	6	3	156	12,634	1992 / 11
	5	12	460	24,201	1983 / 11
	5	26	920	52,437	1985 / 12
	25	13	1,158	133,619	1999 / 6
1	22	2	200	28,902	1998 / 7
2	25	11	1,016	129,330	1999 / 8

(4) 가

가 가 ,

가 ,

2,340 , 가

가

. 가

가 가 가

, 가 가

가 가 .

50. 가 (/)

	(0)	(M)	(P)	가	
20	412.2	371.3	331.3	371.5	PERT Weight
30	415.6	381.1	350.0	381.7	Average
40	427.7	396.6	308.0	387.0	$= \frac{(O + 4 \times M + P)}{6}$ 7 : Optimistic 7 : Most likely 7 : Pessimistic

•

(1) 가

가

가 51 , .

10%

, 70% 3 , 20%

51. 가

		가	()	()
24	412	3,715,000	12,538.37	, , ,
28	352	3,715,000	12,773.80	, , ,
31	1,218	3,817,000	48,878.12	, , ,
44	358	3,870,000	19963.95	, , ,
	2340	3,800,816	94,154.24	, , ,

(2) 100% 가

.

가 .

가

.

: 94,154.24()

: 25,536()

: 68,618.53()

가():3,800,817() ÷

: , , , () ÷ 가

			()		()	()
		13.65	12.02	90	21.9	1971
	15.77	14.14	50	25.54	1277	
		15.88	14.25	80	25.74	2059.2
99	21	17.81	16.29	95	29.43	2795.85
		17.91	16.29	198	29.43	5827.14
		20.43	18.69	95	33.76	3207.2
		20.55	18.69	132	33.76	4456.32
105	5	13.65	12.02	180	21.9	3942
						25535.71

4.2

가. 가

가 가

가 .

가

53 .

	()	가 ()			
1	73	6,802,650		,	,
1	225.80	9,070,200	,	,	,
2	225.80	7,558,500	,	,	,
3	225.80	6,046,800	,	,	,
	754.40	7,484,970	,	,	,

가 가

100% 가 .

가 ,

•

가 : 750.40()

: 364.77()

: 385.63()

가(): , , () 가 ÷ 가

: , , , () 가 ÷ 가

			()	()
		101	24.12	44.36
		102	15.09	29.85
		103	19.34	35.81
99	99 2	104	19.46	35.81
		105	28.81	53.06
		201	90.17	55.34
		2`02	28.81	53.06
105	1	1	14.7	28.74
105	1	1	14.7	28.74
	3		255.2	364.77

5. 27)

5.1

. = -

가.

. 가

·

: , , , () : , , , ()

: , , , ()

• 가

27) , , 2000, 2002 7

(1) 가 가 (m²): 590,000() (m²): 85,617 m² 가 (m²): , , ()

, , , ()×72.88%()= , , , () 가

, , , ()×51.39%()= , , () : , , , ()

	()
	, , ,
	, , ,
	, , ,
가	, , ,
	, , ,
	, , ,
-	, , ,
x (0.3)	, , ,

		가
가	(가	가
)	(>1	, .
,		,
		가
(가)	가	•
,	가	
	Cash flow .	NPV (Net
Present Value), IRR(Internal Rate of Return)	
6.1		
가.		
•		
가	(100% 가)	
	가 (가)	. 56

		()	가			가
		23,454	3,800,817	,	, ,	
	가	364.77	7,768,179	,	, ,	
			,	,	,	
	가		,	,	,	
	가		,	,	,	
			,	,	,	
	가		,	,	,	

•

가

·

20 150% 30 7|

가 가

가 . 가 ,

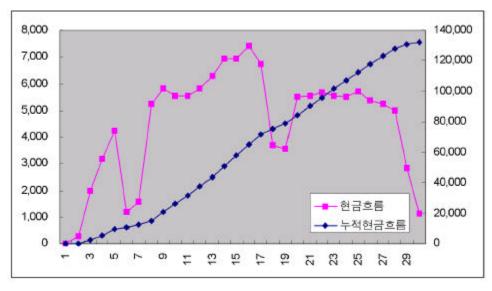
'0' 가 .

100% 가

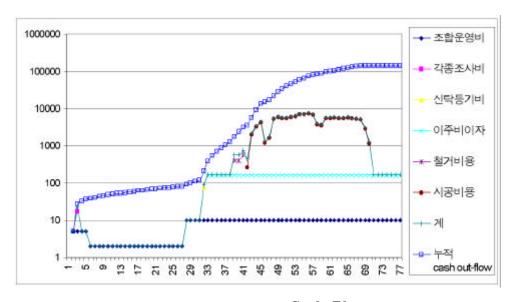
'0' 57

1.125 .

	-				,	,	,
	×	(0.3)			,	,	,
					,	,	,
	-			NPV:	,	,	,
	(NPV)/		가				
1+(/)					1.125

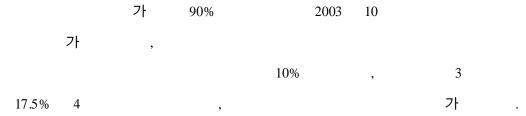

6.2

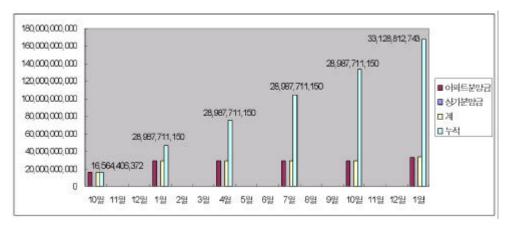
가.


		()				
	가			0		
		,	,	,		
		,	,	,		
		,	,	,		
		,	,	,		
			,	,		
			,	,		
			,	,		
		,	,	,		
			,	,		
		,	,	,		
		,	,	,		
		,	,	,		
		,	,	,		
		,	,	,		
		,	,	,		
가 		,	,	,		

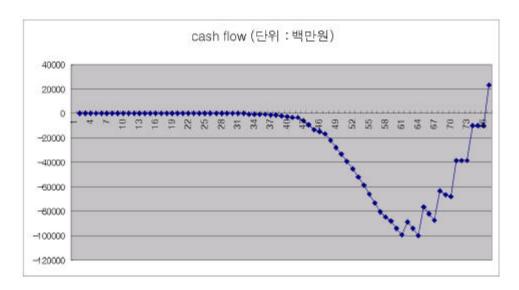
Cash Flow

(1) Cash Out Flow





16. Cash Flow


(2) Cash Inflow

16. Cash Inflow

(3) Cash Flow

17. Cash Flow

가 (Net Present Value)

가 가

가가 가

가가 0

.

$$NP \ V = \sum_{t=0}^{n} \frac{B t}{(1+r)^{t}} - \sum_{t=0}^{n} \frac{Ct}{(1+r)^{t}}$$

$$B_t = t$$

$$C_t = t$$

$$r \ = \qquad : \ 0.7\,\%$$

$$n = : 5$$

(IRR)

가 가

가(NPV)가 '0'

$$\sum_{t=0}^{n} \frac{Bt}{(1+IRR)^{t}} = \sum_{t=0}^{n} \frac{Ct}{(1+IRR)^{t}}$$

$$B_t = t$$

$$C_t = t$$

$$r = ... n = (...)$$

7.

(1) 1985 17 가 가 (3) 13,011.32m², 313,734.35 m² 15.24%, 292.10% 가 1999 (6) 5 2001 32 가 (8) 380 /() (9) Cash Flow, NPV, IRR (10) 112.5% (11) NPV가

- 106 -

•

· · 가 가 , ·

가 , 가 가 , 가 가 ,

가 ,

,

.

가 IDEFO (IDEF Function Modeling)

,

.

, ,

, ·

가

가 .

가 가

•

1.	, r		FEASIBILITY		д,	
		, 1997				
2.	, •				J ,	
		, 2001				
3.	,	P	. , 2000			
4.	, r				J ,	
		, 2001				
5.	, r			д,		
2001						
6.	, r				:	
		Д		, 1999	•	
7.	, P		(FMS)	가	Б	
		, 199	93			
8.	, r				д,	
		, 2001				
9.	, ₽					
Ð				, 2001		
10.	, F					
(5) ₁ ,		,
2001 23.		, r		J ,		,
2000						
11.	, P					J ,
			, 2000			
12.	, r		д,			, 2000

13.	, P		:			
	д,		, 2001			
14.	, •		ð,			
,		2001				
15.	, •			:	7	가
		,		, 2000		
16.	, [Д			
	, 2001					
17.	, •		ð,			
2001						
18.	, ,	가				
	ð ,		, 1994			
19.	,			а		
	1998					
20.	,	, , ,			Д	,
		, 2001				
21.	,				가 』	,
		, 2001				
22.	,				:	
		д,		, 2001		
23.	,				Ð	,
		, 2001				
24.	, "			Д		
	33.	, r				
	:		1 ,		, 1991	
, 1993						

- 25. , 1991 3 26. : , 2000 27. **J**, 2001 28. **J**, , 2000 29. ⊿, , 2000 , 2002 30. Д 31. Д , 1999 가 32. (, 2001)₁, 33. , 2001 34. **J**, 2001
- 35. Brandon, P. S. ed., Building Cost Modeling & Computer J., 1987
- 36. Neil, James M. Construction Cost Estimation for Control , Prentice-Hall. inc 37. Feasibility Study of the Geostationary Stratospheric Lighter-than-Air Platform / D. K. Griffin; G. Perrotta 2001 VOL 49; ISSU 196: pp.27 45 Navigation (Paris)
- 38. Assessing a higher education project: a Mauritius feasibility study / Belli, Pedro; Khan, Qaiser 1999 VOL:31,ISSUE:1,PAGE:27 Applied Economics

39. Reactivity-Adjusted VOC Measurements by Airtrak: A Feasibility Study / Chang, T. Y.; Hurley, M. D.; Nance, B. I.; Japar, S. M. 1998 VOL:32,ISSUE:14,PAGE:2124 ENVIRONMENTAL SCIENCE AND TECHNOLOGY -WASHINGTON DC

Feasibility Analysis System For Apartment Reconstruction Project

Jeong-man Jeong

Interdisciplinary Program of Construction Engineering and Management

Graduate School Pukyong National University

Abstract

The reconstruction of an apartment is a rebuilding task that the owners of an existing old age inferiority houses form a consortium and hire a contractor to remove the old houses and build new apartments.

The side affirmative economic effect is very large, and, as for the rebuilding task, a nation can do employment invention effects in efficient action and construction business of a limited country not to mention a dwelling environment improvement and house supplying expansion.

A reconstruction project is very complex and requires technical knowledges and experiences, however, the consortium usually does not have any related knowledge.

In this thesis, we suggested a systematic procedure to execute a reconstruction project focused on the profitability analysis.

A model is developed to identify and calculate all relevant cost and revenue to the project using the IDEFO methodology. for the validity of the model, an example project is chosen and the feasibility study is carried. The proposed procedure shows very good performance to apply to the project.

가 가 가 (?) 가 가 CM 가 CM 가 가

가

Open

(?)).... () 가 () (?) () CM CM 2 가... 가 가 가 가

2002 7.3