가

2002 2

가

2002 2

:

2002 12 26

- ()
 - ()

1.			 • 1
2.			 . 4
	2.1	CFRP	 • 4
	2.2	-	 • 6
	2.3		 • 8
	2.4		 11
	2	.4.1	 11
	2	.4.2	 12
3.			 15
	3.1		 15
	3.2		 21
4.			 27
	4.1		 27
	4.2	AE	 31
	4.3		 37
	4.4	CCD	 41
	4.5	SEM	 49
5.			 55
			 57
A b	stra	ct	 59

- i -

- E : Modulus of elasticity
 - ^u : Ultimate tensile strength
 - " : Fracture strain rate
 - 12 : Poisson's ratio
- R : Stress ratio
- $N_{\rm f}$: Fracture cycle in fatigue
- S : Stress
- a : Damage length
- d : Hole diameter

- ii -

1. , 가 . 가 , 가 . , (Carbon Fiber Reinforced Plastic, CFRP) 가 . CFRP , (matrix cracking), , (debonding), (delamination), 가 . CFRP 가 , , 가 (1). , (2,3) CFRP ,

- 1 -

가 . Boller⁽⁴⁾ 1964 , Owen (5) 가 (6) , Lawcock . 가 • • 가 (Acoustic Emission, AE) • (7) 1970 , AE , Ni (8 10) AE (11) Chow 가 GFRP . AE Х 가 CFRP . . 가 CFRP 가 [0/90]s [90/0]s [0/ ± 45/90]s CFRP . AE AE AE 가

•

- 2 -

CCD

	가		(SEM)
	[0/90]s, [90/0]s	CFRP	
	CCD)	
가	. (CFRP	
	가		

- 3 -

2. 2.1 CFRP 가 가 . (fatigue) . • 가 가 가 . 가 가 . (stress concentration) • 가 (crack • density)가 가 , 가 .

 90°

- 4 -

- 5 -

.

, 가 . , 가 . , , 가 , 가 가 . 가 S - N 가 , (13) . 가 (1) $= UTS - b \log N_f + d$ (1) , UTS (Ultimate tensile strength), N_f , b d . , 가 가 . , S - N (fatigue limit) . S-N 1 1 가 S - N •

•

- 6 -

,

· 가

, , , , ,

가 10⁶ 가

.

.

S - N

,

,

- 7 -

가 가 . 가 가 • 가 • 가 • 가 , • 가 가 가 • 0 가 가 , 가

가 . (ply) 가

.

,

가

•

- 8 -

, 가 4가 .

> 가 , , , 가 가

. Fig. 1

.

- 9 -

(a) [0/90]s CFRP

(b) [90/0]s CFRP

(c) $[0/ \pm 45/90]$ s CFRP

Fig. 1 Lay-up orientation of CFRP laminate composite.

- 10 -

. (strain energy) , , , 7۲

가 . 가 (AE)

AE

.

가 가 . 기· 기· (Non-Destructive Test, NDT)가 . , , , AE 기·

, , , , ブ . AE

AE , AE . (SNR)

- 11 -

•

ア・ ア・ ア・ AE ア・ 、AEア・ ア・ ア・

AE (event count)

2.4.2

•

AE

가 가 Hz 20kHz AE

. AE

,

⁽¹⁴⁾. AE

,

. AE

- 12 -

가

,

,

AE

가

AE 가 • 가 . 가 AE AE • • 가 • 가 dB dB • , • AE AE AE , . AE AE (Fig. 2) AE AE , AE event, AE count, , , 가 . AE event count , , •

•

,

- 13 -

Fig. 2 Parameter of acoustic emission signal analysis.

Low HCU 1003 Table 1

() ,

Table 1 Physical properties of prepreg Low R/C HCU 1003 material

Meterial	CF Wt(gr/m ²)	Resin Wt(gr/m ²)	R/C	Scrim Wt(gr/m ²)	T otal Wt(gr/m ²)	t (mm)
HCU 1003	112	41	27 ± 2	34	155	0.126

(Carbon Fiber Reinforced Prepreg)

					,		
	フ	ŀ	•	가	,	245mm(Fig. 3	3
)			[0/90]s	[90/0]s	[0/ ± 45/90]s		8
						(Silicon	Oil
KS	707)				(Hot Press	s, Fig. 4)	
		150	,	80kg/c	m^2 1		1

1 0.9mm가 .

- 15 -

•

3.1

3.

CFRP	(Fig. 5)	
ASTM D -3039- $00^{(15)}$	200mm × 25mm	가
,	가	5mm
	가	
가 .		
(araldite)		
1 : 1	(: 2.0mm)	

	#60	-	가	, #220
-				
,				
				가
			30 °	
			1	30 30

.

. Fig. 6

- 16 -

Fig. 3 Sampling position for CFRP specimen.

Fig. 4 Hot press.

Fig. 5 Diamond wheel cutter.

Fig. 6 CFRP specimen configuration.

,

(H , 5ton) ASTM D3039-00⁽¹⁵⁾ 0.5mm/min (H , 5ton) • (half sine) . _ 0.1 S - N 5Hz . 1×10^{6} . DA 30° PC 60W • S , TR-850 CCD 가 PC • 0.1 0.2mm . 30 . SEM • SEM . SEM $7.4 \mu m$ (Fig. 7). PAC AEDSP 32/16 PC AE 가 150kHz R15 . AE ()

- 21 -

가

	, 100kH	Z	300kHz		
. Threshold	Fixed		Threshold	40dB	
. AEDSP 32/	16 ,		R 15		1
channel	Fig. 8			AE	
			, AEDSP 32/16	가	
	AE			MISTRAS	8-2
001 AE	가				
CCD					
AE					
AE		가	. Fig. 9		
Fi	g. 10				

- 22 -

Fig. 7 SEM photograph of fiber diameter.

- 23 -

Fig. 8 AEDSP 32/16 board and sensors.

- 24 -

Fig. 9 Schematic diagram of experimental apparatus.

- 25 -

Fig. 10 Photo of experimental apparatus.

- 26 -

4.1 Fig. 11 (a), (b), (c) [0/90]s, [90/0]s $[0/\pm 45/90]s$ 3 가 가 CFRP . 3 _ 가 -가 가 Fig. 11 (a) . [0/90]s [90/0]s $1424 k g_{\rm f}$ $1420 k g_{\rm f}$ (b) Fig. 11 (c) [0/ ± 45/90]s 3가 가 $1002 k g_{\rm f}$ 1.5mm . [0/ ± , 45/90]s Fig. 11 (a), (b) 227.6 229.8MPa 가 가 [0/ ± 45/90]s 가 ±45° .

> 7 ↓ . T able 2 , , , [0/ ± 45/90]s

> > •

가

- 27 -

4.

	Ultimate tensile strength	Maximum Load	Modulus of elasticity	Fracture strain rate	poisson's ratio
Fiber orientation	u (MPa)	$P(kg_f)$	E(GPa)	u (%)	12
[0/90]s	775.6	1424	53.1	1.46	0.042
[90/0]s	773.4	1420	56.0	1.38	0.043
$[0/ \pm 45/90]s$	545.8	1002	43.3	1.26	0.046
Average	698.3	1282	50.8	1.36	0.044

Table 2 Variation of strength of tensile test results

(a) [0/90]s

(b) [90/0]s

Fig. 11 Load-displacement relationships.

- 29 -

Fig. 11 Load-displacement relationships.

4.2 AE

Fig. 12 (a),	(b), (c)		[0/90]s,
[90/0]s [0/	±45/90]s 37ト		가
CFRP		AE	3
AE cou	nt		
	count (a) (c)	, ,
,	, ,	,	
	Fig. 12 (a) [0/90]s	
가	99		
752kgf	AE countフ	2600	,
가	count	가 가 153	
	13800 co	unt	
1163kg ¹ .	count가 18200	171.3	3
134 1k g f	. Fig.	12 (b) [90/0]s	18
75	833	count	
가	count 7	나 가 171	
13600		count가 29600	
210.4	1527kgf	. Fig. 12 (c) [0/ ±
45/90]s			
144.3	(a), (b)		
$938 kg_{\rm f}$. 7	ŀ	39
69	$489 kg_{\rm f}$	333	
count		$845 kg_{\rm f}$	count
가	129 403	33	가
가	count가 6867	144.3	3

- 31 -

			[90/0]s, [$[0/90]$ s, $[0/\pm$
45/90]s	count 가	. (a)		
				(b)
				(0)
	가			
			count가	
	. Fig	. 13	AE cou	ınt
log-log				
(2) (4)		가		
P , AE.	AE co	ount		
	P = 86.083	$5AE_{c}^{0.2712}$		(2)
	$P = 49.12^{\circ}$	$7AE_{c}^{0.3346}$		(3)
	P = 164.13	$3AE_{c}^{0.1925}$		(4)
AE	count	가 n	가	0.3346
フトフ	ŀ		[0/90]s	AE
count가 18200	n		0.2712	2

.

ount~1	16200	11		0.2712			
	$[0/ \pm 45/90]s$	가 가	n	0.1925			
	[90/0]s7}		AE cou	int	가	가	

[0/90]s $[0/\pm 45/90]s$.

- 32 -

(b) [90/0]s

Fig. 12 The relationships of load and AE count for tensile test time.

- 33 -

(c) $[0/ \pm 45/90]$ s

Fig. 12 The relationships of load and AE count for tensile test time.

(b) [90/0]s

Fig. 13 Load-AE count relationships.

- 35 -

Fig. 13 Load-AE count relationships.

- 36 -

[0/90]s [90/0]s -S-N Fig. 14 . 95, 90, [0/90]s CFRP 85, 70% 30 7.157 × 10^6 가 [90/0]s 95, 80% 가 . [0/90]s 가 , . [0/90]s [90/0]s [90/0]s가 [0/90]s • Fig. 15 [90/0]s 80% (a/d) (a) . 가 0 1 × 10⁵ (d) . 4.44 가 . (Characteristic Damage State, CDS)⁽¹⁶⁾ 5×10^{5} 5.43

- 37 -

,

- 38 -

Fig. 14 S-N Curve for CFRP specimen with hole(R=0.1).

Fig. 15 The development of damage during the fatigue life ([90/0]s, max=0.8 u, R=0.1).

- 40 -

4.4 CCD

Fig. 16 (a)	(d) $[0/ \pm 45/$	90]s		
	S T R - 85	50 CCD		
	. Fig.	16 (a)		
	. Fig. 16	(b)	$296 kg_{\rm f}$	
				AE
count가	33.3	. Fig.	16 (c)	
			90%	
855kgf	. Fig. 16	(d)	938kgf	
	,	AE	count가	
	6867			± 4
5 °		± 4	5°	
	45 °	가		
45 °		±45°		
	. Fig. 17 (a)	(b) [0/90]s	, [90/0]s	
	[0/ ±	= 45/ 90]s		
7	ł	. Fig	g. 18 (a)	(f) [90/0]s
		80%	가	

. (a)
. (b)
$$1 \times 10^5$$

. (c) 가 가

- 41 -

가 .

- 42 -

(a) Load=0kg_f

(b) Load=296kg_f

Fig. 16 Photographs of video recording of fracture by tensile test($[0/ \pm 45/90]$ s).

(c) Load=855kg_f

(d) Load=938kgf

Fig. 16 Photographs of video recording of fracture by tensile $test([0/ \pm 45/90]s)$.

(a) [0/90]s (b) [90/0]s

Fig. 17 Photographs of fracture by tensile test.

- 45 -

Fig. 18 Photographs of video recording of fracture by fatigue test (fatigue limit = 1×10^6).

- 46 -

(c) 3×10^5 cycle

Fig. 18 Photographs of video recording of fracture by fatigue test (fatigue limit = 1×10^6).

(e) 7×10^5 cycle

Fig. 18 Photographs of video recording of fracture by fatigue test (fatigue limit = 1×10^6).

- 48 -

4.5 SEM

(SEM) Fig. 19 . Fig. 19 (a) [0/90]s 가 . Fig. 19 (b) (c) [90/0]s [0/ ± 45/90]s 90° . Fig. 19 (b) 0° 가 . Fig. 19 (c) 45 ° Fig. 19 (d) 0° 가 • SEM Fig. 20 . Fig. 20 (a) . 0° 90 ° • 가 가 . 가 가 . Fig. 20 (b) , , . Fig. 20 (c)

- 49 -

. Fig. 20 (d)

.

- 50 -

(a) [0/90]s

(b) [90/0]s

Fig. 19 SEM photograph of side and fracture surface for after tensile test.

- 51 -

(c) $[0/ \pm 45/90]s$

(d) [0/90]s

Fig. 19 SEM photograph of side and fracture surface for after tensile test.

- 52 -

(a) [90/0]s

(b) [90/0]s

Fig. 20 SEM Photograph of side and fracture surface for after fatigue test.

- 53 -

(c) [0/90]s

(d) [0/90]s

Fig. 20 SEM Photograph of side and fracture surface for after fatigue test.

- 54 -

가 7 [0/90]s, [90/0]s $[0/ \pm 45/90]s$ CFRP 가 AE , CCD SEM 가 . 1. [0/90]s [90/0]s 가 $[0/ \pm 45/90]$ s **±** 45 ° AE count 2. I, , , , , AE count [90/0]s 가 29600 가 [0/90]s 18200, [0/±45/90]s가 6867 가 AE count 가 . 80% 3. [90/0]s 0 1 × , 10^{5} 4.44 5 × 10^{5} 가 1×10^{6} 8.46

- 55 -

.

4. CC	D					[0/ ±
45/90]s			45 °	,		
			가.			
5.		[90/0]s			80%	
	가		1×10^{6}			
					가	

6. SEM

,

, 가 .

- 56 -

- (1) , " 2 , pp. 172 179, 1990.
- (2) Ogin, S. L. Smith, P. A. and Beaumont, P. W. R., "Matrix cracking and stiffness reduction during the fatigue of [0/90₂]_s GFRP laminate", Composite Science and Technology, Vol. 22, pp. 22 31, 1985.
- (3) Tsai, C. L. and Daniel, I. M., "The behavior of cracked cross-ply composite laminates under general in-plane loading", Damage in Composite Materials, ed. G. Z. Voyiadjis, Elsevier, pp. 51 66, 1993.
- (4) Boller, K. H., Modern Plastics, 41, No. 10, pp. 146, 1964.
- (5) Owen, M. J. and Bishop, P. T., "Crack-growth relationship for glass-reinforced Plastics and their application to design", J. phys., Vol. 7, pp. 1214, 1974.
- (6) Lawcock, G. L. Ye and Mai, Y., "Progressive Damage and Residual Strength of a Carbon Fiber Reinforced Metal Laminate", Journal of Composite Materials, Vol. 31, No. 8, pp. 762 787, 1997.
- (7) , I. M. Daniel, "
 AE , , 11 , 5 , pp. 14 21, 1998.
- (8) Ni, Q. Q. and Jinen, E., "Fracture Mechanism and Acoustic Emission of short Carbon Fiber Reinforced Nylon", Society.

- 57 -

",

Mater. Science.(Japan), Vol. 42, pp. 255, 1993.

- (9) Ni, Q. Q. and Jinen, E., "Fracture Behavior and Acoustic Emission of SFC", Society. Mater. science.(Japan), Vol. 42, pp. 561, 1993.
- (10) Ni, Q, "Fracture Behavior and Acoustic Emission in Bending Test on single-fiber Composites", Engineering. Fracture Mechanics, Vol. 56, pp. 779, 1997.
- (11) Chow, T. M. Hutchins, D. A. and Mottram, J. T., "Simultaneous acoustic emission and ultrasonic tomography imaging in anisotropic polymer composite-material", Journal of Acoustical Society of America, Vol. 94, pp. 944 953, 1993.
- (12) J. S. Huh., "Fatigue Life Prediction of Circular Notched Composite Laminnates", , 1994.
- (13) Agarwal and J. W. Dally, B. D., "Prediction of Low-Cycle Fatigue Behavior of GFRP", An Experimental Approach, J. Mater, Science, pp. 193 199, 1975.

",

(14) , "

34 , 1 , pp. 20 32, 1994.

- (15) Standard test method for "tensile properties of polymer matrix composite materials", ASTM D3039, 2000.
- (16) Reifsnider, K. L., Proceedings. 14th Annual Society of Engineering science Meeting, Lehigh University, Bethlehem, pp. 14 16, 1977.

- 58 -

Evaluation of the Mechanical Properties and Fatigue Damage on Lay-up Orientation of Carbon Fiber Reinforced Plastic Composite

Young-Il Tae

Department of Safety Engineering, Graduate school,

Pukyong National University

Abstract

In recent years, advanced composites like CFRP are increasingly used in various industry fields because of their unique specific strength and stiffness properties. However CFRP laminate composites bring on the problems as like the delamination, matrix cracking, debonding, fiber breaking. These complex damage mechanism depend on the material, lay-up sequence, geometry and loading condition.

The purpose of study is the estimation of the fatigue damage mechanism and mechanical properties effected by lay-up orientation for CFRP laminate composite with the hole notch. The tensile tests for [0/90]s, [90/0]s, and $[0/\pm45/90]$ s laminate composite were accomplished with acoustic sensor and failure processes were recorded by CCD video camera in real time. The analysis of cumulate AE count was done by AE analysis software (MISTRAS-2001). Also SEM examination for fracture and side surface were carried out. In addition, fatigue tests were carried out for CFRP of [0/90]s, [90/0]s lay-up recording damage processes of surface by CCD video camera in each cycle.

From this study, the following conclusions could be drawn.

1. Mechanical properties were obtained and they were similar between two kinds of cross-ply orientation in CFRP laminate composites, however cumulate AE count,

- 59 -

regardless of lay-up orientation, was increased on tensile test according to increasing the load,

2. The damage length according to the fatigue repeat cycles was expressed as three stages in [90/0]s laminate composite.

3. Fatigue damage failure mechanism of [0/90]s, [90/0]s laminate composite involves splitting, fiber-matrix debonding as well as delamination and fiber breaking which promotes the fracture.

These results will be useful for development of the newer composite properties and failure prevention of composite structures.

- 60 -

가

•

,

,

,

•

, , ,

,

, , , , , ,

•

, .

, ,

2002 2

•

, ,

,

, ,

•